Algorithmik - Kompaktkurs

Größe: px
Ab Seite anzeigen:

Download "Algorithmik - Kompaktkurs"

Transkript

1 Algorithmik - Kompaktkurs Sommersemester 2012 Steffen Lange 0/1, Folie Prof. Steffen Lange - HDa/FbI - Algorithmik

2 Organisatorisches Vorlesung Folien im Netz (/* bitte zur Vorlesung mitbringen */) Übung Übungsblätter im Netz bitte zur Übung durcharbeiten Anregungen / Kommentare / Fragen per per Telefon: /1, Folie Prof. Steffen Lange - HDa/FbI - Algorithmik

3 Literatur Th.H. Cormen, Ch.E. Leiserson, R. Rivest, C. Stein, Algorithmen - Eine Einführung, 2. Auflage, Oldenbourg Verlag, Uwe Schöning, Algorithmik, Spektrum Akademischer Verlag, Rolf Klein, Algorithmische Geometrie, 2. Auflage, Springer Juraj Hromkovič, Algorithmics for Hard Problems, 2nd Edition, Springer, /1, Folie Prof. Steffen Lange - HDa/FbI - Algorithmik

4 Aufgabenstellung Ein großes Wirtschaftsmagazin will eine Analyse der Börsenentwicklung der letzten 5 Jahre erstellen. Dabei soll u.a. für jede Aktie nachträglich ein bester Einkaufstag und Verkaufstag festgestellt werden.... Das Wirtschaftsmagazin hat Informationen über die Börsennotierungen gekauft. Für jede Aktie gibt es eine Zahlenfolge. Die erste Zahl ist der Kurs der Aktie am ersten Börsentag und jede folgende Zahl gibt (in der Reihenfolge der Börsentage) die absolute Kursänderung gegenüber dem Vortag an.... Anhand der gegebenen Zahlenfolge soll der im gegebenen Zeitraum durch einen einmaligen Kauf und Verkauf der Aktie maximal erzielbare Gewinn bestimmt werden. 0/1, Folie Prof. Steffen Lange - HDa/FbI - Algorithmik

5 Beispiel Daten für die Aktie xyz Kurs der Aktie am 0. Tag: 120 Tag K-änd Aufgabe... Anhand der gegebenen Zahlenfolge soll der im gegebenen Zeitraum durch einen einmaligen Kauf und Verkauf der Aktie maximal erzielbare Gewinn bestimmt werden. 0/1, Folie Prof. Steffen Lange - HDa/FbI - Algorithmik

6 Beispiel Daten für die Aktie xyz Kurs der Aktie am 0. Tag: 120 Tag K-änd Einkaufstag: 0 Verkaufstag: 1 Gewinn: -0.5 Einkaufstag: 0 Verkaufstag: 5 Gewinn: 5.0 Einkaufstag: 0 Verkaufstag: 2 Gewinn: 1.5 Einkaufstag: 1 Verkaufstag: 5 Gewinn: 5.5 0/1, Folie Prof. Steffen Lange - HDa/FbI - Algorithmik

7 Beispiel Daten für die Aktie xyz Kurs der Aktie am 0. Tag: 120 Tag K-änd Lösungsansatz... finde Tage i und k (/* 1 i k */), so daß die Summe der Kursänderungen für die Tage i, i+1,..., k maximal ist 0/1, Folie Prof. Steffen Lange - HDa/FbI - Algorithmik

8 algorithmische Fragestellung finde einen möglichst effizienten Algorithmus zur Lösung des folgenden algorithmischen Problems (/* die Anzahl der benötigten Vergleiche V(n) und der benötigten Additionen A(n) soll also klein sein */) es sei a[1],...,a[n] eine Folge rationaler Zahlen für alle Paare (i,k) mit 1 i k n sei f(i,k) wie folgt definiert: k f(i,k) = Σ a[j] j=i zulässige Eingabe: Folge a[1],...,a[n] von rationalen Zahlen zulässige Ausgabe: bestimme z = max { f(i,k) 1 i k n } 0/1, Folie Prof. Steffen Lange - HDa/FbI - Algorithmik

9 Algorithmus 1 (/* normal */) 1. Berechne nacheinander für jedes zulässige Paar (i,k) den Wert von f(i,k) (/* benutze dabei, daß f(i,k+1) = f(i,k) + a[k+1] gilt */) 2. Bestimme ein Paar (i,k) für das f(i,k) maximal ist und gib f(i,k) aus. Analyse von Algorithmus 1 A(n) =... = 1/2*(n*(n-1)) V(n) =... = 1/2*(n*(n+1)) - 1 T(n) = A(n) + V(n) = n 2-1 0/1, Folie Prof. Steffen Lange - HDa/FbI - Algorithmik

10 Algorithmus 2 (/* divide and conquer */) a[1],...,a[n] sei eine Folge rationaler Zahlen, wobei n eine Zweierpotenz ist für alle zulässigen Paare (i,k) seien die Werte C rechts (i,k) und C links (i,k) wie folgt definiert: C rechts (i,k) = max { f(j,k) i j k } C links (i,k) = max { f(i,j) i j k } für alle zulässigen Paare (i,k) sei C max (i,k) wie folgt definiert: C max (i,k) = max { f(j,m) i j m k } C max (1,8) = 8 Tag K-änd /1, Folie Prof. Steffen Lange - HDa/FbI - Algorithmik C rechts (1,4) = 2 C links (5,8) = 3.5

11 Algorithmus 2 (/* divide and conquer; Berechnung von c max (1,n) */) 1. Falls n = 1, so gib a[n] aus. 2. Falls n > 1, so gehe gehe wie folgt vor: Berechne mit diesem Algorithmus C max (1,n/2) und C max (n/2+1,n). Berechne C rechts (1,n/2) und C links (n/2+1,n). Bestimme M = max { C max (1,n/2),C max (n/2+1,n),c rechts (1,n/2)+C links (n/2+1,n) } und gib M aus. Analyse von Algorithmus 2 T(n) = 2*T(n/2) + 2n - 1 =... = 2n*log(n) - n + 1 0/1, Folie Prof. Steffen Lange - HDa/FbI - Algorithmik

12 Algorithmus 3 (/* clever */) 1. Setze Max = max { a[1],0 } und Max* = Max. 2. Für z = 2,...,n: Bestimme Max* = max { Max*+a[z],0 }. Max = max { Max*,Max } 3. Falls Max > 0, so gib Max aus. Sonst bestimme z = max { a[1],...,a[n] } und gib z aus. Schleifeninvariante... für jedes z mit 2 z n gilt: Max = max { C max (1,z),0 } Max* = max { C rechts (1,z),0 } 0/1, Folie Prof. Steffen Lange - HDa/FbI - Algorithmik

13 Algorithmus 3 (/* clever */) 1. Setze Max = max { a[1],0 } und Max* = Max. 2. Für z = 2,...,n: Bestimme Max* = max { Max*+a[z],0 }. Max = max { Max*,Max } 3. Falls Max > 0, so gib Max aus. Sonst bestimme z = max { a[1],...,a[n] } und gib z aus. Analyse von Algorithmus 3 A(n) = n - 1 V(n) 1 + 2*(n - 1) n - 1 = 3n - 1 T(n) = A(n) + V(n) 4n - 2 0/1, Folie Prof. Steffen Lange - HDa/FbI - Algorithmik

14 Vergleich der Algorithmen Anzahl der Elemente normal divide & conquer clever 4 (= 2 2 ) (=2 4 ) (=2 6 ) (=2 8 ) (=2 10 ) /1, Folie Prof. Steffen Lange - HDa/FbI - Algorithmik

15 Zielstellungen Verständnis ausgewählter Prinzipien zum Entwurf effizienter Algorithmen Kenntnis von der Umsetzung dieser Prinzipien im Gebiet algorithmische Geometrie Fähigkeit, komplizierte Algorithmen in Bezug auf deren Laufzeit zu analysieren 0/1, Folie Prof. Steffen Lange - HDa/FbI - Algorithmik

16 Gliederung 1. Grundlagen 2. Sortier- und Selektionsverfahren 3. Paradigmen des Algorithmenentwurfs 4. Ausgewählte Datenstrukturen 5. Algorithmische Geometrie 6. Umgang mit algorithmisch schwierigen Problemen 0/1, Folie Prof. Steffen Lange - HDa/FbI - Algorithmik

Datenstrukturen. Sommersemester Kapitel 1: Motivation / Grundlagen. Steffen Lange

Datenstrukturen. Sommersemester Kapitel 1: Motivation / Grundlagen. Steffen Lange Datenstrukturen Sommersemester 2010 Steffen Lange 1/1, Folie 1 2010 Prof. Steffen Lange - HDa/FbI - Datenstrukturen Organisatorisches Vorlesung wöchentlich; zwei Blöcke Folien im Netz (/* bitte zur Vorlesung

Mehr

Kapitel 3: Untere Schranken für algorithmische Probleme Gliederung

Kapitel 3: Untere Schranken für algorithmische Probleme Gliederung Gliederung 1. Grundlagen 2. Analyse der Laufzeit von Algorithmen 3. Untere Schranken für algorithmische Probleme 4. Sortier- und Selektionsverfahren 5. Paradigmen des Algorithmenentwurfs 6. Ausgewählte

Mehr

Kapitel 1: Motivation / Grundlagen Gliederung

Kapitel 1: Motivation / Grundlagen Gliederung Gliederung 1. Motivation / Grundlagen 2. Sortier- und Selektionsverfahren 3. Paradigmen des Algorithmenentwurfs 4. Ausgewählte Datenstrukturen 5. Algorithmische Geometrie 6. Umgang mit algorithmisch schwierigen

Mehr

Informatikgrundlagen (WS 2015/2016)

Informatikgrundlagen (WS 2015/2016) Informatikgrundlagen (WS 2015/2016) Klaus Berberich (klaus.berberich@htwsaar.de) Wolfgang Braun (wolfgang.braun@htwsaar.de) 0. Organisatorisches Dozenten Klaus Berberich (klaus.berberich@htwsaar.de) Sprechstunde

Mehr

Teil 2 - Softwaretechnik. Modul: Programmierung B-PRG Grundlagen der Programmierung 1 Teil 2. Übersicht. Softwaretechnik

Teil 2 - Softwaretechnik. Modul: Programmierung B-PRG Grundlagen der Programmierung 1 Teil 2. Übersicht. Softwaretechnik Grundlagen der Programmierung 1 Modul: Programmierung B-PRG Grundlagen der Programmierung 1 Teil 2 Softwaretechnik Prof. Dr. O. Drobnik Professur Architektur und Betrieb verteilter Systeme Institut für

Mehr

Algorithmen und Berechnungskomplexität I

Algorithmen und Berechnungskomplexität I Institut für Informatik I Wintersemester 2010/11 Organisatorisches Vorlesung Montags 11:15-12:45 Uhr (AVZ III / HS 1) Mittwochs 11:15-12:45 Uhr (AVZ III / HS 1) Dozent Professor für theoretische Informatik

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme Stefan Werner (Übungen) sowie viele Tutoren Teilnehmerkreis und Voraussetzungen Studiengänge

Mehr

Kapitel 2: Analyse der Laufzeit von Algorithmen Gliederung

Kapitel 2: Analyse der Laufzeit von Algorithmen Gliederung Gliederung 1. Motivation / Einordnung / Grundlagen 2. Analyse der Laufzeit von Algorithmen 3. Untere Schranken für algorithmische Probleme 4. Sortier- und Selektionsverfahren 5. Paradigmen des Algorithmenentwurfs

Mehr

Algorithmen & Datenstrukturen

Algorithmen & Datenstrukturen Algorithmen & Datenstrukturen Prof. Dr. Gerd Stumme Universität Kassel FB Elektrotechnik/Informatik FG Wissensverarbeitung Sommersemester 2009 Ziele der Veranstaltung 1 Kennenlernen grundlegender Algorithmen

Mehr

16. All Pairs Shortest Path (ASPS)

16. All Pairs Shortest Path (ASPS) . All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e

Mehr

Organisatorisches. Informatik II Informationen und Daten. Organisatorisches. Organisatorisches. Rainer Schrader. 13. Oktober 2008

Organisatorisches. Informatik II Informationen und Daten. Organisatorisches. Organisatorisches. Rainer Schrader. 13. Oktober 2008 Dozent: Prof. Dr. Rainer Schrader Informatik II Informationen und Daten Rainer Schrader Zentrum für Angewandte Informatik Köln 13. Oktober 2008 Tel.: 470-6030 email: schrader@zpr.uni-koeln.de Sprechstunde:

Mehr

Kapitel 5: Dynamisches Programmieren Gliederung

Kapitel 5: Dynamisches Programmieren Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

Algorithmen und Datenstrukturen (AuD) Prof. Dr. Claudia Eckert und Dr. Thomas Stibor

Algorithmen und Datenstrukturen (AuD) Prof. Dr. Claudia Eckert und Dr. Thomas Stibor Algorithmen und Datenstrukturen (AuD) Prof. Dr. Claudia Eckert und Dr. Thomas Stibor Organisatorisches: Vorlesung 4 SWS, Zentralübung 2 SWS: 6 Credit Points Mi 9:45 11:15 Raum 1200 (Vorlesung) Do 8:00

Mehr

Kapitel 5: Dynamisches Programmieren Gliederung

Kapitel 5: Dynamisches Programmieren Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

Kapitel 2: Formale Sprachen Kontextfreie Sprachen. reguläre Grammatiken/Sprachen. kontextfreie Grammatiken/Sprachen

Kapitel 2: Formale Sprachen Kontextfreie Sprachen. reguläre Grammatiken/Sprachen. kontextfreie Grammatiken/Sprachen reguläre Grammatiken/prachen Beschreibung für Bezeichner in Programmiersprachen Beschreibung für wild cards in kriptsprachen (/* reguläre Ausdrücke */)?; [a-z]; * kontextfreie Grammatiken/prachen Beschreibung

Mehr

Programmieren I + II

Programmieren I + II Programmieren I + II Werner Struckmann Institut für Programmierung und Reaktive Systeme Wintersemester 2015/2016 Sommersemester 2016 Was ist Informatik? Die Informatik ist die Wissenschaft von Aufbau,

Mehr

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005 Paradigmen im Algorithmenentwurf Problemlösen Problem definieren Algorithmus entwerfen

Mehr

Ideen der Informatik Suchen und Sortieren [Ordnung muss sein ] Kurt Mehlhorn Adrian Neumann viele Folien von Kostas Panagiotou

Ideen der Informatik Suchen und Sortieren [Ordnung muss sein ] Kurt Mehlhorn Adrian Neumann viele Folien von Kostas Panagiotou Ideen der Informatik Suchen und Sortieren [Ordnung muss sein ] Kurt Mehlhorn Adrian Neumann viele Folien von Kostas Panagiotou Suchen Welche Telefonnummer hat Kurt Mehlhorn? Wie schreibt man das Wort Equivalenz?

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

Theoretische Informatik: Berechenbarkeit und Formale Sprachen

Theoretische Informatik: Berechenbarkeit und Formale Sprachen Theoretische Informatik: Berechenbarkeit und Formale Sprachen Prof. Dr. F. Otto Fachbereich Elektrotechnik/Informatik, Universität Kassel 34109 Kassel, Germany E-mail: otto@theory.informatik.uni-kassel.de

Mehr

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie Gliederung 1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie 4/3, Folie 1 2010 Prof. Steffen Lange - HDa/FbI

Mehr

ADS. 1. Vorlesung. Techniken der Programmentwicklung Prof. Dr. Wolfgang Schramm

ADS. 1. Vorlesung. Techniken der Programmentwicklung Prof. Dr. Wolfgang Schramm ADS 1. Vorlesung Techniken der Programmentwicklung Prof. Dr. Wolfgang Schramm 6.10.2016 ORGANISATORISCHES Algorithmen & Datenstrukturen Prof. Dr. Wolfgang Schramm Der Dozent 2 Prof. Dr. Wolfgang Schramm

Mehr

Algorithmen und Datenstrukturen (AuD) Prof. Dr. Claudia Eckert

Algorithmen und Datenstrukturen (AuD) Prof. Dr. Claudia Eckert Algorithmen und Datenstrukturen (AuD) Prof. Dr. Claudia Eckert Organisatorisches: Vorlesung 4 SWS, Zentralübung 2 SWS: 6 Credit Points Mi 10:30-12:00 Raum 1200 (Vorlesung) Do 8:15-9:45 Raum 1200 (Vorlesung)

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2013/14 1. Vorlesung Kapitel 1: Sortieren Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Das Problem Eingabe Gegeben: eine Folge A = a 1, a 2,..., a

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Datenstrukturen und Algorithmen Sommersemester 2013 1 1 O. Einführung 0.1 Organisatorisches 0.2 Überblick 2 0.1 Organisatorisches DSAL Team Veranstaltungen & Termine Kommunikation Materialien Übungsbetrieb

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra Effiziente Algorithmen und Datenstrukturen I Kapitel 10: Lineare Algebra Christian Scheideler WS 2008 19.02.2009 Kapitel 10 1 Überblick Notation Arithmetik auf großen Zahlen (Addition und Multiplikation)

Mehr

Uebersicht. Webpage & Ilias. Administratives. Lehrbuch. Vorkenntnisse. Datenstrukturen & Algorithmen

Uebersicht. Webpage & Ilias. Administratives. Lehrbuch. Vorkenntnisse. Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Uebersicht Administratives Einleitung Ein einführendes Beispiel Matthias Zwicker Universität Bern Frühling 2010 2 Administratives Dozent Prof. Zwicker, zwicker@iam.unibe.ch

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2012/13 Organisatorisches Vorlesung: Übungsbetreuung: Übungen: Programmierübungen: Alexander Wolff (E29) Jan Haunert (E27) Markus Ankenbrand Titus Dose Alexej

Mehr

Programmieren I + II

Programmieren I + II Programmieren I + II Werner Struckmann Institut für Programmierung und Reaktive Systeme Wintersemester 2012/2013 Sommersemester 2013 Was ist Informatik? Die Informatik ist die Wissenschaft von Aufbau,

Mehr

Abschnitt: Algorithmendesign und Laufzeitanalyse

Abschnitt: Algorithmendesign und Laufzeitanalyse Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher

Mehr

Programmiervorkurs. Organisation: Steffen Gebert, Alexander Wolff. Tutoren: Jürgen Zöller, Jonathan Stoll. Wintersemester 2012/2013

Programmiervorkurs. Organisation: Steffen Gebert, Alexander Wolff. Tutoren: Jürgen Zöller, Jonathan Stoll. Wintersemester 2012/2013 Programmiervorkurs Wintersemester 2012/2013 Organisation: Steffen Gebert, Alexander Wolff Tutoren: Jürgen Zöller, Jonathan Stoll Kontakt (für Organisatorisches, Fehler auf Folien...): Steffen Gebert steffen.gebert@informatik.uni-wuerzburg.de

Mehr

Vorlesung Analysis I / Lehramt

Vorlesung Analysis I / Lehramt Vorlesung Analysis I / Lehramt TU Dortmund, Wintersemester 2012/ 13 Winfried Kaballo Die Vorlesung Analysis I für Lehramtsstudiengänge im Wintersemester 2012/13 an der TU Dortmund basiert auf meinem Buch

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2010

Mehr

Übersicht über Informatik und Softwaresystemtechnik WS 99/00, Prof. Dr. Andreas Schwill

Übersicht über Informatik und Softwaresystemtechnik WS 99/00, Prof. Dr. Andreas Schwill Konvexe Hülle Hierbei handelt es sich um ein klassisches Problem aus der Algorithmischen Geometrie, dem Teilgebiet der Informatik, in dem man für geometrische Probleme effiziente Algorithmen bestimmt.

Mehr

Amortisierte Laufzeitanalyse

Amortisierte Laufzeitanalyse Paris-Lodron Universität Salzburg 24 Januar, 2014 Inhaltsverzeichnis 1 Einführung Definition Beispiel:Stapeloperationen Beispiel: Binärzähler (1/2) Beispiel: Binärzähler (2/2) 2 Analyse der Stack mittels

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Dr. Hanjo Täubig Tobias Lieber Sommersemester 2011 Übungsblatt 5 14. Juni 2011 Grundlagen: Algorithmen und Datenstrukturen

Mehr

Übersicht. Datenstrukturen und Algorithmen. Übersicht. Divide-and-Conquer. Vorlesung 9: Quicksort (K7)

Übersicht. Datenstrukturen und Algorithmen. Übersicht. Divide-and-Conquer. Vorlesung 9: Quicksort (K7) Datenstrukturen und Algorithmen Vorlesung 9: (K7) Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://www-i2.rwth-aachen.de/i2/dsal0/ Algorithmus 8. Mai 200 Joost-Pieter

Mehr

Proseminar Online Algorithmen, Prof. Dr. Rolf Klein

Proseminar Online Algorithmen, Prof. Dr. Rolf Klein Proseminar Online Algorithmen, Prof. Dr. Rolf Klein Vortrag von Michael Daumen am 13.12.2000 Thema : Minimum Spanning Tree und 2-Approximation der TSP-Tour Inhalt des Vortrags : 1. genaue Vorstellung des

Mehr

Algorithmen und Datenstrukturen CS1017

Algorithmen und Datenstrukturen CS1017 Algorithmen und Datenstrukturen CS1017 Th. Letschert TH Mittelhessen Gießen University of Applied Sciences Organisatorisches und Einführung Lehrpersonal Dozent Dr. Letschert Tutoren Alissia Sauer Jonas

Mehr

Theoretische Informatik: Berechenbarkeit und Formale Sprachen

Theoretische Informatik: Berechenbarkeit und Formale Sprachen Theoretische Informatik: Berechenbarkeit und Formale Sprachen Prof. Dr. F. Otto Fachbereich Elektrotechnik/Informatik, Universität Kassel 34109 Kassel, Germany E-mail: otto@theory.informatik.uni-kassel.de

Mehr

Einführung in die Informatik

Einführung in die Informatik Einführung in die Informatik Christian Rössl Wintersemester 2016/17 Einführung in die Informatik Christian Rössl EinfInf 2016: Übersicht 2 Berechenbarkeit Rekursion Java Analyse Theoretische Grundlagen

Mehr

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015. Vorlesung 5, Donnerstag, 20.

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015. Vorlesung 5, Donnerstag, 20. Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 5, Donnerstag, 20. November 2014 (Wie baut man eine Hash Map, Universelles Hashing)

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2010

Mehr

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14)

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14) 1 Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14) Einleitung Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 11. Oktober 2013) 2 Kommunikationsnetzwerke...

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 2014/15 3. Vorlesung Laufzeitanalyse Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Recap: Diskutieren Sie mit Ihrer NachbarIn! 1. 2. 3. Was sind

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Lehrstuhl für Informatik I Algorithmen und Datenstrukturen Wintersemester 2013/14 Organisatorisches Vorlesung: Übungsbetreuung: Übungen: Programmiertutorium: Alexander Wolff (E29) Krzysztof Fleszar (E13)

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen 11. Übung Verkettete Listen, Sortieren Insertionsort, Mergesort, Radixsort, Quicksort Clemens Lang Übungen zu AuD 19. Januar 2010 Clemens Lang (Übungen zu AuD) Algorithmen

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme Tanya Braun (Übungen) sowie viele Tutoren Teilnehmerkreis und Voraussetzungen Studiengänge Bachelor

Mehr

Kapitel 0: Organisatorisches

Kapitel 0: Organisatorisches Einführung in die Praktische Informatik Wintersemester 2009 / 2010 Kapitel 0: Organisatorisches Prof. Dr. Manfred Reichert Andreas Lanz, Rüdiger Pryss Universität Ulm Institut für Datenbanken und Informationssysteme

Mehr

Computerorientiertes Problemlösen

Computerorientiertes Problemlösen 1 / 13 Computerorientiertes Problemlösen 22. 26. September 2014 Steffen Basting WS 2014-2015 2 / 13 Organisatorisches 22.09. 26.09. Zeit Mo Di Mi Do Fr 11:00 bis 13:00 13:00 bis 15:30 15:30 bis 18:00 Vorlesung:

Mehr

Algorithmen und Datenstrukturen Einführung

Algorithmen und Datenstrukturen Einführung Algorithmen und Datenstrukturen Einführung Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Motivation Einführung in die Begriffe Algorithmus Datenstruktur

Mehr

Algorithmen und Datenstrukturen (Th. Ottmann und P. Widmayer) Folien: Suchverfahren Autor: Stefan Edelkamp / Sven Schuierer

Algorithmen und Datenstrukturen (Th. Ottmann und P. Widmayer) Folien: Suchverfahren Autor: Stefan Edelkamp / Sven Schuierer Algorithmen und Datenstrukturen (Th. Ottmann und P. Widmayer) Folien: Suchverfahren Autor: Stefan Edelkamp / Sven Schuierer Institut für Informatik Georges-Köhler-Allee Albert-Ludwigs-Universität Freiburg

Mehr

Algorithmen und Datenstrukturen (für ET/IT) Programm heute. Sommersemester Dr. Tobias Lasser. 1 Organisation

Algorithmen und Datenstrukturen (für ET/IT) Programm heute. Sommersemester Dr. Tobias Lasser. 1 Organisation Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2014 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Programm heute 1 Organisation 2 Einführung Ziele und Inhalt

Mehr

Approximationsalgorithmen: Klassiker I. Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling

Approximationsalgorithmen: Klassiker I. Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling Approximationsalgorithmen: Klassiker I Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling VO Approximationsalgorithmen WiSe 2011/12 Markus Chimani

Mehr

Inhaltsverzeichnis. Danksagungen... 11

Inhaltsverzeichnis. Danksagungen... 11 Danksagungen............................................ 11 Einführung............................................... 13 Über dieses Buch.......................................... 15 Voraussetzungen...................................

Mehr

Institut für Telematik Universität zu Lübeck. Programmieren. Kapitel 0: Organisatorisches. Wintersemester 2008/2009. Prof. Dr.

Institut für Telematik Universität zu Lübeck. Programmieren. Kapitel 0: Organisatorisches. Wintersemester 2008/2009. Prof. Dr. Institut für Telematik Universität zu Lübeck Programmieren Kapitel 0: Organisatorisches Wintersemester 2008/2009 Prof. Dr. Christian Werner 1-2 Überblick Ziele Inhaltsüberblick Ablauf der Veranstaltung

Mehr

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie Gliederung 1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. äume / Graphen 5. Hashing 6. Algorithmische Geometrie 4/5, olie 1 2014 Prof. Steffen Lange - HDa/bI

Mehr

Algorithmik II. SS 2003 Prof. Dr. H. Stoyan Lehrstuhl für Informatik 8 ( Künstliche Intelligenz) Email: stoyan@informatik.uni-erlangen.

Algorithmik II. SS 2003 Prof. Dr. H. Stoyan Lehrstuhl für Informatik 8 ( Künstliche Intelligenz) Email: stoyan@informatik.uni-erlangen. Algorithmik II SS 2003 Prof. Dr. H. Stoyan Lehrstuhl für Informatik 8 ( Künstliche Intelligenz) Email: stoyan@informatik.uni-erlangen.de Homepage der Vorlesung Vorbemerkungen I http://www8.informatik.uni-erlangen.de/immd8

Mehr

Kürzeste Wege in Graphen. Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik

Kürzeste Wege in Graphen. Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik Kürzeste Wege in Graphen Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik Gliederung Einleitung Definitionen Algorithmus von Dijkstra Bellmann-Ford Algorithmus Floyd-Warshall Algorithmus

Mehr

Grundlagen der Programmierung

Grundlagen der Programmierung Grundlagen der Programmierung Dr. Tom Kamphans 1. Vorlesung 12.10.2016 1 Organisatorisches Vorlesung: Mittwochs 14:00 15:30, Raum F 201 Übung: Mittwochs 15:45 19:00, Raum F 225 Übung: alle zwei Wochen

Mehr

Algorithmen und Datenstrukturen ITS(B)-B 2016

Algorithmen und Datenstrukturen ITS(B)-B 2016 Einführung Was ist (die) Informatik? Die Informatik und ihre Geschichte sowie ihre Abgrenzung von anderen Wissenschaften darzulegen gestaltet sich nicht ganz einfach (siehe dazu unter vielen Anderen ((GI)

Mehr

Alignment-Verfahren zum Vergleich biologischer Sequenzen

Alignment-Verfahren zum Vergleich biologischer Sequenzen zum Vergleich biologischer Sequenzen Hans-Joachim Böckenhauer Dennis Komm Volkshochschule Zürich. April Ein biologisches Problem Fragestellung Finde eine Methode zum Vergleich von DNA-Molekülen oder Proteinen

Mehr

5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c)

5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) 5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) mit V = {1,...,n} und E {(v, w) 1 apple v, w apple n, v 6= w}. c : E!

Mehr

Algorithmen I. Dennis Hofheinz. Übungen: Lukas Barth und Lisa Kohl. Institut für theoretische Informatik Web: https://crypto.iti.kit.

Algorithmen I. Dennis Hofheinz. Übungen: Lukas Barth und Lisa Kohl. Institut für theoretische Informatik Web: https://crypto.iti.kit. Algorithmen I Dennis Hofheinz Übungen: Lukas Barth und Lisa Kohl Institut für theoretische Informatik Web: https://crypto.iti.kit.edu/algo-sose16 (Folien von Peter Sanders) KIT Institut für Theoretische

Mehr

Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g:

Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g: TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 2 Prof. Dr. Helmut Seidl, S. Pott,

Mehr

Algorithmen I. Dennis Hofheinz und Henning Meyerhenke. Übungen: Christian Staudt und Christoph Striecks

Algorithmen I. Dennis Hofheinz und Henning Meyerhenke. Übungen: Christian Staudt und Christoph Striecks Algorithmen I Dennis Hofheinz und Henning Meyerhenke Übungen: Christian Staudt und Christoph Striecks Institut für theoretische Informatik Web: https://crypto.iti.kit.edu/algo-sose15 (Folien von Peter

Mehr

Didaktik der Informatik Seminar

Didaktik der Informatik Seminar Didaktik der Informatik Seminar Institut für Softwaretechnologie 1 Grundregeln wir behandeln uns gegenseitig mit Höflichkeit und Respekt Pünktlichkeit und Anwesenheit sind wichtig 2 Motivation RoboCupJunior

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 0. Organisatorisches Malte Helmert Gabriele Röger Universität Basel 16. Februar 2015 Organisatorisches Personen Dozenten Prof. Dr. Malte Helmert E-Mail: malte.helmert@unibas.ch Büro:

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik Hochschule Darmstadt, Wintersemester 2015/16 Bernd Baumgarten (Lehrbeauftragter) Der Großteil der Folieninhalte ist dankend übernommen von Prof. Steffen Lange, h_da 0/1, Folie 1

Mehr

1. Einführung. Was ist ein Algorithmus (eine Datenstruktur)? Welche Probleme kann man damit lösen? Warum betrachten wir (effiziente) Algorithmen?

1. Einführung. Was ist ein Algorithmus (eine Datenstruktur)? Welche Probleme kann man damit lösen? Warum betrachten wir (effiziente) Algorithmen? 1. Einführung Was ist ein Algorithmus (eine Datenstruktur)? Welche Probleme kann man damit lösen? Warum betrachten wir (effiziente) Algorithmen? Wie beschreiben wir Algorithmen? Nach welchen Kriterien

Mehr

Operations Research II

Operations Research II Operations Research II Einführung in die kombinatorische Optimierung Prof. Dr. Peter Becker Fachbereich Informatik Hochschule Bonn-Rhein-Sieg Wintersemester 2015/16 Peter Becker (H-BRS) Operations Research

Mehr

Value-at-Risk. Kann man das Risiko steuern? Finanzwirtschaft VI Matthias Paesel Hochschule Magdeburg-Stendal (FH)

Value-at-Risk. Kann man das Risiko steuern? Finanzwirtschaft VI Matthias Paesel Hochschule Magdeburg-Stendal (FH) Value-at-Risk Kann man das Risiko steuern? Gliederung I. Was versteht man unter Value-at-Risk? II. Anwendung des Value-at-Risk III. Grenzen des Value-at-Risk IV. Fazit V. Literatur Was versteht man unter

Mehr

Übung zu HRE&M II: Lehren, Lernen und Entwickeln. Sommersemester 2014. Übungsblatt zur 5. Übung am 05.06.2014

Übung zu HRE&M II: Lehren, Lernen und Entwickeln. Sommersemester 2014. Übungsblatt zur 5. Übung am 05.06.2014 Übung zu HRE&M II: Lehren, Lernen und Entwickeln Sommersemester 2014 Übungsblatt zur 5. Übung am 05.06.2014 Aufgabe 1: Klassifikation von Lernzielen nach dem Abstraktionsgrad (Richt-, Groboder Feinlernziel)

Mehr

Sortieren durch Einfügen. Prof. Dr. W. Kowalk Sortieren durch Einfügen 1

Sortieren durch Einfügen. Prof. Dr. W. Kowalk Sortieren durch Einfügen 1 Sortieren durch Einfügen Prof. Dr. W. Kowalk Sortieren durch Einfügen 1 Schon wieder aufräumen Schon wieder Aufräumen, dabei habe ich doch erst neulich man findet alles schneller wieder Bücher auf Regal

Mehr

Algorithmen II Vorlesung am 15.11.2012

Algorithmen II Vorlesung am 15.11.2012 Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

(Stand: 13.10.201508.10.2015)

(Stand: 13.10.201508.10.2015) Universität Hildesheim Fachbereich 4 Seite 1 von 8 Studienordnung und Modulhandbuch für das Wahlpflichtfach Informationstechnologie im Bachelor-Studiengang Internationales Informationsmanagement (IIM)

Mehr

Algorithmen und Datenstrukturen Tutorium I

Algorithmen und Datenstrukturen Tutorium I Algorithmen und Datenstrukturen Tutorium I 20. - 25. 04. 2016 AlgoDat - Tutorium I 1 1 Organisatorisches Kontakt 2 Landau-Notation Definiton von O Logarithmen Gesetze & Ableitung Satz von l Hôpital 3 Algorithmen

Mehr

Institut für Programmierung und Reaktive Systeme 27. Mai Programmieren II. 12. Übungsblatt

Institut für Programmierung und Reaktive Systeme 27. Mai Programmieren II. 12. Übungsblatt Technische Universität Braunschweig Dr. Werner Struckmann Institut für Programmierung und Reaktive Systeme 27. Mai 206 Programmieren II 2. Übungsblatt Hinweis: Auf diesem und den folgenden Übungsblättern

Mehr

Theoretische Informatik SS 04 Übung 1

Theoretische Informatik SS 04 Übung 1 Theoretische Informatik SS 04 Übung 1 Aufgabe 1 Es gibt verschiedene Möglichkeiten, eine natürliche Zahl n zu codieren. In der unären Codierung hat man nur ein Alphabet mit einem Zeichen - sagen wir die

Mehr

Übersicht Datenstrukturen und Algorithmen. Literatur. Algorithmus: Wikipedia Definition. Vorlesung 1: Einführung. Prof. Dr.

Übersicht Datenstrukturen und Algorithmen. Literatur. Algorithmus: Wikipedia Definition. Vorlesung 1: Einführung. Prof. Dr. Übersicht Datenstrukturen und Vorlesung 1: Prof. Dr. Erika Ábrahám Theorie Hybrider Systeme Informatik 2 http://ths.rwth-aachen.de/teaching/ss-14/ datenstrukturen-und-algorithmen/ Diese Präsentation verwendet

Mehr

Grundlagen der Programmierung

Grundlagen der Programmierung Grundlagen der Programmierung Algorithmen und Datenstrukturen Die Inhalte der Vorlesung wurden primär auf Basis der angegebenen Literatur erstellt. Darüber hinaus sind viele Teile direkt aus der Vorlesung

Mehr

Zeichnen von Graphen. graph drawing

Zeichnen von Graphen. graph drawing Zeichnen von Graphen graph drawing WS 2006 / 2007 Gruppe: D_rot_Ala0607 Christian Becker 11042315 Eugen Plischke 11042351 Vadim Filippov 11042026 Gegeben sei ein Graph G = (V; E) Problemstellung V E =

Mehr

Flüsse in Netzwerken. Seminar über Algorithmen SoSe 2005. Mike Rohland & Julia Schenk

Flüsse in Netzwerken. Seminar über Algorithmen SoSe 2005. Mike Rohland & Julia Schenk Flüsse in Netzwerken Seminar über Algorithmen SoSe 2005 Mike Rohland & Julia Schenk Inhalt Einführung Definition Maximale Flüsse Schnitte Restgraphen Zunehmende Wege Max-Fluss Min-Schnitt Theorem Ford-Fulkerson

Mehr

Praktische Informatik I

Praktische Informatik I Praktische Informatik I WS 2005/2005 Prof. Dr. Wolfgang Effelsberg Lehrstuhl für Praktische Informatik IV Universität Mannheim 1. Einführung 1-1 Inhaltsverzeichnis (1) 1. Einführung 1.1 Was ist Informatik?

Mehr

Algorithmen und Datenstrukturen. Große Übung vom 29.10.09 Nils Schweer

Algorithmen und Datenstrukturen. Große Übung vom 29.10.09 Nils Schweer Algorithmen und Datenstrukturen Große Übung vom 29.10.09 Nils Schweer Diese Folien Braucht man nicht abzuschreiben Stehen im Netz unter www.ibr.cs.tu-bs.de/courses/ws0910/aud/index.html Kleine Übungen

Mehr

Datenstrukturen, Algorithmen und Programmierung 2

Datenstrukturen, Algorithmen und Programmierung 2 Datenstrukturen, Algorithmen und Programmierung 2 Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 1. VO SS 2009 14. April 2009 Petra Mutzel Kurzvorstellung

Mehr

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 3, Donnerstag 6.

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 3, Donnerstag 6. Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 3, Donnerstag 6. November 2014 (O-Notation, Theta, Omega) Junior-Prof. Dr. Olaf Ronneberger

Mehr

Vorlesung: Montag 8:15-10:00 Donnerstag 8:15-10:00 Hörsaal: M 1 M 1

Vorlesung: Montag 8:15-10:00 Donnerstag 8:15-10:00 Hörsaal: M 1 M 1 Begrüßung Informatik II Vorlesung: Montag 8:15-10:00 Donnerstag 8:15-10:00 Hörsaal: M 1 M 1 Übung: Dozent: Prof. Dr. Klaus Hinrichs Institut für Informatik Einsteinstr. 62 6. Stock, Raum 606 khh@uni-muenster.de

Mehr

Erzeugung zufälliger Graphen und Bayes-Netze

Erzeugung zufälliger Graphen und Bayes-Netze Erzeugung zufälliger Graphen und Bayes-Netze Proseminar Algorithmen auf Graphen Georg Lukas, IF2000 2002-07-09 E-Mail: georg@op-co.de Folien: http://op-co.de/bayes/ Gliederung 1. Einleitung 2. einfache

Mehr

2. Effizienz von Algorithmen

2. Effizienz von Algorithmen Effizienz von Algorithmen 2. Effizienz von Algorithmen Effizienz von Algorithmen, Random Access Machine Modell, Funktionenwachstum, Asymptotik [Cormen et al, Kap. 2.2,3,4.2-4.4 Ottman/Widmayer, Kap. 1.1]

Mehr

Sortieralgorithmen. Jan Pöschko. 18. Januar Problemstellung Definition Warum Sortieren?... 2

Sortieralgorithmen. Jan Pöschko. 18. Januar Problemstellung Definition Warum Sortieren?... 2 Jan Pöschko 18. Januar 2007 Inhaltsverzeichnis 1 Problemstellung 2 1.1 Definition................................... 2 1.2 Warum Sortieren?.............................. 2 2 Einfache Sortieralgorithmen

Mehr

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie Gliederung 1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. äume / Graphen. Hashing 6. Algorithmische Geometrie 4/6, Folie 1 2014 Prof. Steffen Lange - HDa/FbI

Mehr

Seminar über aktuelle Forschungsthemen in der Algorithmik, Dozent Prof. Dr. Alt;

Seminar über aktuelle Forschungsthemen in der Algorithmik, Dozent Prof. Dr. Alt; Seminar über aktuelle Forschungsthemen in der Algorithmik, Dozent Prof. Dr. Alt Referent Matthias Rost 1 Einleitung Definitionen Maximaler Dynamischer Fluss Algorithmus von Ford-Fulkerson Techniken zur

Mehr

Kapitel 2: Formale Sprachen Gliederung. 0. Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie

Kapitel 2: Formale Sprachen Gliederung. 0. Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie Gliederung 0. Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie 2.1. 2.2. Reguläre Sprachen 2.3. Kontextfreie Sprachen 2/1, Folie 1 2015 Prof. Steffen

Mehr

Logik und diskrete Strukturen

Logik und diskrete Strukturen Prof. Dr. Institut für Informatik Abteilung I Wintersemester 2012/13 Organisatorisches Vorlesung Dienstag und Donnerstag 10:15 11:45 Uhr (HS 1) und 12:30 14:00 Uhr (HS 2) Vorlesung am Vormittag = Vorlesung

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 1 für die Übung

Mehr

Beispiel zu Datenstrukturen

Beispiel zu Datenstrukturen zu Datenstrukturen Passend zum Kurs 01661 Version Juni 2008 Dieter Hoffmann Dipl.-Inform. Diese Kurshilfe zum Kurs Datenstrukuren I (Kursnummer 01661) bei Prof. Dr. Güting (Lehrgebiet Praktische Informatik

Mehr

Algorithmen und Datenstrukturen. PD Ma&hias Thimm

Algorithmen und Datenstrukturen. PD Ma&hias Thimm Algorithmen und Datenstrukturen PD Ma&hias Thimm Modulnummer, Addressaten und Voraussetzungen Modulnummer: 04IN1014 Adressaten: Bachelor Informa:k, 2. Jahr Bachelor Computervisualis:k, 2. Jahr Bachelor

Mehr

Einführung in die Informatik II

Einführung in die Informatik II Einführung in die Informatik II Vorlesung Sommersemester 2013 Prof. Dr. Nikolaus Wulff Ziele der Vorlesung Sie vertiefen die Kenntnisse aus Informatik I und runden diese in weiteren Anwendungsgebieten

Mehr

Suchen und Sortieren

Suchen und Sortieren Ideen und Konzepte der Informatik Suchen und Sortieren [Ordnung muss sein ] Kurt Mehlhorn (viele Folien von Kostas Panagiotou) Suchen Welche Telefonnummer hat Kurt Mehlhorn? Wie schreibt man das Wort Equivalenz?

Mehr