3. Übungsblatt - Lösungsskizzen. so, dass f tatsächlich eine Wahrscheinlichkeitsdichte

Größe: px
Ab Seite anzeigen:

Download "3. Übungsblatt - Lösungsskizzen. so, dass f tatsächlich eine Wahrscheinlichkeitsdichte"

Transkript

1 Einführung in die Wahrscheinlichkeitstheorie und Statistik Prof. Dr. Jan Johannes Sandra Schluttenhofer Wintersemester 208/9 3. Übungsblatt - Lösungsskizzen Aufgabe 9 Stetige Verteilungen, 4 = Punkte). Wir betrachten den Wahrscheinlichkeitsraum Ω, A, P) = R, B, Pareto α,xm ), wobei die Dichte der Pareto-Verteilung mit Parametern α > 0 und x m > 0 gegeben ist durch fx) = C α,xm x α+) C α,xm x α+), x x m, x xm} =. 0, x < x m a) Bestimmen Sie die Konstante C α,xm ist. so, dass f tatsächlich eine Wahrscheinlichkeitsdichte b) Bestimmen Sie die zugehörige Verteilungsfunktion F. c) Sei nun α = x m =. Berechnen Sie die Wahrscheinlichkeiten P[, 2]) und P2, )). Lösung 9. a) Damit f eine Wahrscheinlichkeitsdichte ist, müssen zwei Dinge erfüllt sein: f 0 überall und fx) dx =. Die erste Bedingung ist offensichtlich erfüllt, solange R C α,xm 0 ist Hinweis zur Korrektur: man muss für diese fehlende Begründung nicht unbedingt Punkte abziehen). Aus der zweiten Bedingung ermitteln wir C α,xm : [ = fx) dx = C α,xm x α+) dx = C α,xm ] x m α x α = C α,xm x m α x α m, R die Gleichung ist genau mit C α,xm = αx α m erfüllt. b) Es gilt für x x m : F x) = P, x]) = x fy) dy = C α,xm = C [ ] α,x m x α x α xm ) α m =. α x und für x < x m : F x) = P, x]) = x x [ y α+) dy = C α,xm ] x x m α y α fy) dy = 0, da über nichts integriert wird die Dichte f ist erst für Werte größer als x m nicht Null). Insgesamt erhalten wir: 0, x < x m, F x) = x mx ) α, x xm

2 c) Es ist mit α = x m = : C α,xm = und fx) = x 2 x }. P[, 2]) = 2 [ ] 2 fx) dx = x = 2 + = 2. Alternativ ) kann diese Wahrscheinlichkeit auch mittels der Verteilungsfunktion F x) = x x } berechnet werden: P[, 2]) = P, 2]) P, ]) = F 2) F ) = ) ) = 2 2. Aufgrund Feststellung P, ]) = F ) = 0 sieht man auch an der Wahrscheinlichkeitsdichte f selbst) gilt P2, )) = P, ]) P[, 2]) = 2. Bemerkung: Wir haben in c) ohne weiteren Kommentar benutzt, dass Px}) = 0 bei stetigen Verteilungen gilt. Die Wahrscheinlichkeit, dass eine stetig verteilte Zufallsvariable genau einen bestimmten Wert x R annimmt, ist Null. Aufgabe 0 Neyman-Pearson-Tests, Poisson-Verteilung, 4 = Pkte). Die Anzahl der im Laufe eines Jahres bei einer Versicherung eingehenden Schadensmeldungen wird als Poisson-verteilt mit einem unbekannten Parameter λ > 0 angenommen. Aufgrund der Daten des Vorjahres möchten Sie die Hypothese H 0 : P λ0 } gegen die Alternative H : P λ } mit einem λ > λ 0 testen. a) Geben Sie die Neyman-Pearson-Tests für dieses Testproblem an. Was muss erfüllt sein, damit einer dieser Test ein bester Test zum Niveau α 0, ) ist? b) Unter welchen Voraussetzungen ist ein bester Test ϕ zum Niveau α aus a) ein gleichmäßig bester Test für H 0 : P λ0 } gegen H : P λ, λ > λ 0 }? c) Im letzten Jahr sind 9876 Schadensmeldungen eingegangen. Wir interessieren uns für folgendes Testproblem: H 0 : Es werden 9000 Schadensmeldungen eingehen. H : Es werden mehr als 9000 Schadensmeldungen eingehen. Können Sie die Nullhypothese mit einem Neyman-Pearson-Test zum Signifikanzniveau α = 0.05 ablehnen? Hinweis: Es gilt: 956 λ k 0 k=0 exp λ k! 0) Lösung 0. a) Es handelt sich hier um das statistische Experiment Ω, A, P Λ ) mit Ω = N 0, A = PN 0 ), Λ = R +. Die Wahrscheinlichkeitsverteilungen P λ, λ Λ = λ 0, λ sind Poisson- Verteilungen mit Parameter λ > 0 und Zähldichten λ λk p Poiλ k) = e k! =: p λk) 2

3 Das statistische Testproblem mit einfachen Hypothese ist: wobei λ > λ 0. Um die Ablehnbereiche H 0 : P λ0 } vs. H : P λ } A c = k N 0 p λ k) cp λ0 k)} = zu bestimmen, berechnen wir den Likelihoodquotienten: Lk) := p λ k) p λ0 k) λk e λ k! = e λ 0 λk 0 k! = k N 0 p } λ k) p λ0 k) c λ Die Neyman-Pearson-Tests für dieses Testproblem lauten daher: 0 Lk) < c, ϕ Ac : N 0, }, ϕ Ac k) = Lk) c, λ 0 ) k e λ 0 λ. ) ϕ Ac ist ein bester Neyman-Pearson-Test zum Niveau α, sofern die Gleichung P λ0 ϕ Ac = ) = α für ein c R erfüllt werden kann. b) Da k Lk) für festes λ > λ 0 > 0 streng monoton wachsend ist siehe ), können wir die Bedingungen Lk) c bzw. Lk) < c umformen zu k c bzw. k c. Die Neyman-Pearson-Tests sind also von der Form 0 k < c, ϕ c k) =, k c, jeweils zum Niveau P λ0 ϕ c = ) = P λ0 [c, )). Der Neyman-Pearson-Test ist ein bester Test zum Niveau α, sofern die Gleichung P λ0 [c, )) = α für ein c R erfüllt werden kann. Offensichtlich hängt die Existenz eines Neyman-Pearson-Tests zum Niveau α daher nicht vom konkreten Wert von λ ab sondern nur von der Eigenschaft von λ, größer als λ 0 zu sein). Nehmen wir nun also an, dass für ein vorgegebenes α 0, ) ein c R existiert, so dass P λ0 k c ) = α, wir nennen den zugehörigen besten Neyman-Pearson Test ϕ. Dann gilt für jedes λ > λ 0 nach dem Neyman-Pearson-Lemma der Vorlesung: Für jede Entscheidungsfunktion ϕ : Ω 0, } mit P λ0 ϕ = ) α: P λ ϕ = 0) P λ ϕ = 0). Anders formuliert bedeutet das: Für vorgegebenes λ 0, α haben wir ein festes ϕ gefunden, sodass für alle λ > λ 0 gilt: ϕ minimiert ϕ P λ ϕ = 0) unter der Nebenbedingung P λ0 ϕ = ) α. Das bedeutet gerade, dass ϕ ein gleichmäßig bester Test für die Hypothesen H 0 : P λ0 } gegen H : P λ, λ > λ 0 } ist. 3

4 c) Nach b) sind die Neyman-Pearson-Tests sind von der Form 0 k < c, ϕ c k) =, k c, Wir suchen nun diejenigen c, für die die Neyman-Pearson-Tests das Signifikanzniveau α einhalten. Es gilt nach dem Hinweis für alle c 956: P λ0 ϕ c = ) = P λ0 [c, )) = P λ0 [0, c )) P λ0 [0, c ]) P λ0 [0, 956]) = 956 k=0 λ k 0 k! exp λ 0) 0.05 Damit sind alle Neyman-Pearson-Tests mit c 956 Tests zum Niveau α, insbesondere können wir mit 0 k < 956, ϕ 956 k) =, k 956, die Nullhypothese mit dem Signifikanzniveau α = 0.05 ablehnen d.h. ϕ ) = ). Aufgabe Messbarkeit kombinierter Abbildungen, 4 = Pkte). Sei Ω, A) ein Messraum und X n : Ω R, n N, eine Folge von A, B)-messbaren Abbildungen. a) ) Sei m N. Zeigen Sie, dass folgende Abbildungen A, B)-messbar sind: i) sup X n : Ω R ii) inf X n : Ω R 2) Zeigen Sie, dass folgende Abbildungen A, B)-messbar sind: i) lim sup n X n : Ω R ii) lim inf n X n : Ω R 3) Es existiere der punktweise Limes der Folge X n ) n N, den wir mit X = lim n X n bezeichnen. Zeigen Sie: Dann ist X eine A, B)-messbare Abbildung. b) Zeigen Sie, dass die Abbildung A, B)-messbar ist. Lösung. a) Y : Ω R, hω) := X ω) > X 2 ω), 0 sonst, ) Es ist bekannt, dass, a] : a R} ein Erzeugendensystem von B R ist. Sei a R beliebig. Es gilt sup ) ) X n, a] = ω Ω : sup X n ω) a} = ω Ω : n m : X n ω) a} = ω Ω : X n ω) a} Xn, a]) }} A, da X n messbar = A. 4

5 ) E) Damit ist gezeigt: sup X n A, es folgt mit Proposition 07.08): sup X n ist A, B)-messbar. Analog ist ) inf X ) n, a] = ω Ω : inf X nω) a} Damit ist gezeigt: = ω Ω : n m : X n ω) a} = ω Ω : X n ω) a} Xn, a]) }} A, da X n messbar = A. inf X n ) E) A, d.h. inf X n ist A, B)-messbar. Alternativ kann beim Infimum auch mit inf X n = sup X n ) argumentieren. Man muss dann nur begründen, warum auch die Multiplikation einer Funktion mit ) die Messbarkeit erhält. Das ist klar, denn X n ), a]) = Xn [ a, )) A, da auch [ a, ) B. 2) Aus )i) ist bekannt, dass jede Abbildung Y m := sup X n : Ω R A, B)- messbar ist. Aus )ii) folgt: inf m Y m = inf m N sup X n = lim sup n X n ist A, B)-messbar. Die Argumentation für lim inf n X n ist analog. 3) Existiert X = lim n X n, so gilt für alle ω Ω : Xω) = lim sup n X n ω). Daher ist X nach 2) A, B)-messbar. b) Y hat die Form Y = A mit A := ω Ω : X ω) > X 2 ω)}. Offensichtlich gilt für eine beliebige Menge B B R :, 0, B, Y A, B, 0 B, B) = A c, B, 0 B, Ω, 0, B. Es ist also Y B) A, falls wir zeigen können, dass A A. In unserem Fall gilt Q liegt dicht in R, daher liegt in jedem Intervall X 2 ω), X ω)) eine rationale Zahl): A = ω Ω : X ω) > X 2 ω)} = ω Ω : q Q : X ω) > q und q > X 2 ω)} = ) ω Ω : X ω) > q} ω Ω : q > X 2 ω)} q Q = ) X q, )) X2, q)) A, }}}} q Q A A da Q abzählbar ist und abzählbare Schnitte / Vereinigungen wieder in der σ-algebra A enthalten sind. 5

6 Aufgabe 2 Messbarkeit reellwertiger Abbildungen, 4 = Punkte). a) Sei f : R R eine monoton wachsende Funktion. Zeigen Sie, dass f dann schon eine B, B)-messbare Abbildung ist. b) Die Funktion g : R [0, ] R, s, x) gs, x) sei für alle x [0, ] stetig in s. Außerdem sei g für alle s R Riemann-integrierbar in x. Zeigen Sie, dass hs) := 0 gs, x) dx B,B)-messbar ist. c) Sei κ : R R eine Abbildung. Es gelte x : κx) = c} B für alle c R. Folgt hieraus bereits die Messbarkeit von κ? Beweisen Sie ihre Antwort! Und vergleichen Sie das Ergebnis mit Proposition ) Hinweis: Sie dürfen ohne Beweis B = 2 R verwenden. Lösung 2. a) Möglichkeit : Wir nutzen folgende Charakterisierung: I Intervall a, b I : x R : a x b x I) Wir betrachten E := I R, I Intervall }. Dies ist ein Erzeugendensystem von B. Für die B, B)-Messbarkeit von f genügt es zu zeigen, dass f E) B ist. Sei dazu I E ein Intervall. Wir zeigen mittels obiger Charakterisierung, dass f I) ein Intervall ist: Seien a, b f I) und x R mit a x b. Dann gilt weil f monoton wachsend ist) fa), fb) I, fx) R, fa) fx) b). Da I ein Intervall ist, folgt fx) I, d.h. x f I). Damit ist f I) ein Intervall, also f I) B und also f E) B. Möglichkeit 2: E :=, y] : y R} ist ein Erzeugendensystem der Borelschen σ- Algebra B, d.h. σe) = B. Für die B, B)-Messbarkeit von f genügt es zu zeigen, dass f E) B ist. Sei also, y] E mit y R beliebig. Definiere M := x R : fx) y} und c := sup M. Im Falle M = setze c :=, im Falle M = R setze c := ). Dann gilt:, c) f, y]), c] R und somit f, y]) B), denn: Sei x, c). Dann ist x < c. Angenommen fx) > y, so wäre nach Def. des Supremums c x, Widerspruch! Also ist fx) y, d.h. x f, y]). Sei x f, y]). Dann ist fx) y. Nach Def. des Supremums folgt x c, also x, c]. b) Da g für alle s R in x Riemann-integrierbar ist, gilt n hs) = gs, x) dx = lim n 0 t= g s, t ) n t n t ) = lim n n n n t= g s, t ) n das Riemann-Integral ist Grenzwert von Riemann-Summen mit der Partition [ t n, t n ), t =,..., n des Intervalls [0, )). Definiere nun h n : R R, h n s) := n 6 n t= g s, t ). n

7 Die h n sind stetig, da gs, x) stetig in s ist für alle x R. Damit sind die h n B, B)- messbar. Wegen h = lim n h n ist damit auch h B, B)-messbar nach Aufgabe. c) κ muss nicht notwendigerweise messbar sein. Wir geben ein Gegenbeispiel an: Sei A 2 R \ B. Definiere die Funktion x x A, κ : R, B) R, B), κx) := x x A c. Dann gilt für alle c R: κ c}) = x c})) A) x ) )c}) A c ) }}}} c, c} +c, c} d.h. κ c}) B. Aber es gilt auch [0, ) B und also ist κ nicht B, B) -messbar. κ [0, )) = A / B Abgabe: In Zweiergruppen, bis spätestens Donnerstag, den 8. November 208, :5 Uhr. Die Übungszettelkästen sind im. OG, INF 205, vor dem Dekanat.) Homepage der Vorlesung: 7

Zufallsvariable, Verteilung, Verteilungsfunktion

Zufallsvariable, Verteilung, Verteilungsfunktion Kapitel 5 Zufallsvariable, Verteilung, Verteilungsfunktion 5.1 Zufallsvariable Sei (Ω, A, P ) ein beliebiger Wahrscheinlichkeitsraum. Häufig interessiert nicht ω selbst, sondern eine Kennzahl X(ω), d.h.

Mehr

5 Zufallsvariablen, Grundbegriffe

5 Zufallsvariablen, Grundbegriffe II. Zufallsvariablen 5 Zufallsvariablen, Grundbegriffe Def. 12 Es seien (Ω 1, E 1,P 1 ) und (Ω 2, E 2,P 2 ) Wahrscheinlichkeitsräume. Eine Abbildung X : Ω 1 Ω 2 heißt E 1 E 2 meßbar, falls für alle Ereignisse

Mehr

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 4

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 4 TUM, Zentrum Mathematik Lehrstuhl für Mathematische Physik WS 3/4 Prof. Dr. Silke Rolles Thomas Höfelsauer Felizitas Weidner Tutoraufgaben: Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge

Mehr

Stochastik I. Vorlesungsmitschrift

Stochastik I. Vorlesungsmitschrift Stochastik I Vorlesungsmitschrift Ulrich Horst Institut für Mathematik Humboldt-Universität zu Berlin Inhaltsverzeichnis 1 Grundbegriffe 1 1.1 Wahrscheinlichkeitsräume..................................

Mehr

Wahrscheinlichkeitstheorie und Statistik

Wahrscheinlichkeitstheorie und Statistik Wahrscheinlichkeitstheorie und Statistik Definitionen und Sätze Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2018 2.5.2018 Diskrete Wahrscheinlichkeitsräume Diskreter

Mehr

Stoppzeiten und Charakteristische Funktionen. Tutorium Stochastische Prozesse 15. November 2016

Stoppzeiten und Charakteristische Funktionen. Tutorium Stochastische Prozesse 15. November 2016 Stoppzeiten und Charakteristische Funktionen Tutorium Stochastische Prozesse 15. November 2016 Inhalte des heutigen Tutoriums Im heutigen Tutorium besprechen wir: (1) Eindeutigkeit von Maßen ohne schnittstabilen

Mehr

Aufgaben zu Kapitel 0

Aufgaben zu Kapitel 0 Aufgaben zu Kapitel 0 0.1. Seien A und B zwei Mengen. Wie kann man paarweise disjunkte Mengen A 1, A 2 und A 3 so wählen, dass A 1 A 2 A 3 = A B gilt? 0.2. Seien E ein Menge und A eine Teilmengen von E.

Mehr

8. Formelsammlung. Pr[ ] = 0. 0 Pr[A] 1. Pr[Ā] = 1 Pr[A] A B = Pr[A] Pr[B] DWT 8.1 Gesetze zum Rechnen mit Ereignissen 203/467 Ernst W.

8. Formelsammlung. Pr[ ] = 0. 0 Pr[A] 1. Pr[Ā] = 1 Pr[A] A B = Pr[A] Pr[B] DWT 8.1 Gesetze zum Rechnen mit Ereignissen 203/467 Ernst W. 8. Formelsammlung 8.1 Gesetze zum Rechnen mit Ereignissen Im Folgenden seien A und B, sowie A 1,..., A n Ereignisse. Die Notation A B steht für A B und zugleich A B = (disjunkte Vereinigung). A 1... A

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

Scheinklausur zur Vorlesung Stochastik II

Scheinklausur zur Vorlesung Stochastik II Institut für Mathematische Stochastik WS 2007/2008 Universität Karlsruhe 25. 02. 2008 Dr. B. Klar Scheinklausur zur Vorlesung Stochastik II Muster-Lösung Dauer: 90 Minuten Name: Vorname: Matrikelnummer:

Mehr

13 Grenzwertsätze Das Gesetz der großen Zahlen

13 Grenzwertsätze Das Gesetz der großen Zahlen 13 Grenzwertsätze 13.1 Das Gesetz der großen Zahlen Der Erwartungswert einer zufälligen Variablen X ist in der Praxis meist nicht bekannt. Um ihn zu bestimmen, sammelt man Beobachtungen X 1,X 2,...,X n

Mehr

Klausur zur Vorlesung Stochastik II

Klausur zur Vorlesung Stochastik II Institut für Mathematische Stochastik WS 003/004 Universität Karlsruhe 05. 04. 004 Prof. Dr. G. Last Klausur zur Vorlesung Stochastik II Dauer: 90 Minuten Name: Vorname: Matrikelnummer: Diese Klausur hat

Mehr

Klausur zur Einführung in die Wahrscheinlichkeitstheorie und Statistik

Klausur zur Einführung in die Wahrscheinlichkeitstheorie und Statistik Klausur zur Einführung in die Wahrscheinlichkeitstheorie und Statistik Prof. Dr. C. Löh/M. Blank 27. Juli 2012 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen

Mehr

Ü b u n g s b l a t t 7

Ü b u n g s b l a t t 7 Einführung in die Stochastik Sommersemester 07 Dr. Walter Oevel 21. 5. 2007 Ü b u n g s b l a t t 7 Mit und gekennzeichnete Aufgaben können zum Sammeln von Bonuspunkten verwendet werden. Lösungen von -Aufgaben

Mehr

Einführung in die statistische Testtheorie

Einführung in die statistische Testtheorie 1 Seminar Simulation und Bildanalyse mit Java von Benjamin Burr und Philipp Orth 2 Inhalt 1. Ein erstes Beispiel 2. 3. Die Gütefunktion 4. Gleichmäßig beste Tests (UMP-Tests) 1 Einführendes Beispiel 3

Mehr

Kapitel II Kontinuierliche Wahrscheinlichkeitsräume

Kapitel II Kontinuierliche Wahrscheinlichkeitsräume Kapitel II Kontinuierliche Wahrscheinlichkeitsräume 1. Einführung 1.1 Motivation Interpretation der Poisson-Verteilung als Grenzwert der Binomialverteilung. DWT 1.1 Motivation 211/476 Beispiel 85 Wir betrachten

Mehr

Erwartungswert als Integral

Erwartungswert als Integral Erwartungswert als Integral Anton Klimovsky Gemischte ZVen, allgemeine ZVen, Erwartungswert für allgemeine ZVen, Lebesgue-Integral bzgl. WMaß, Eigenschaften des Integrals, Lebesgue-Maß, Lebesgue-Integral

Mehr

Einführung in die Stochastik 6. Übungsblatt

Einführung in die Stochastik 6. Übungsblatt Einführung in die Stochastik 6. Übungsblatt Fachbereich Mathematik SS M. Kohler 3. Mai A. Fromkorth D. Furer Gruppen und Hausübung Aufgabe (a) Die Wahrscheinlichkeit, dass eine S Bahn Verspätung hat, betrage.3.

Mehr

2 Zufallsvariable, Verteilungen, Erwartungswert

2 Zufallsvariable, Verteilungen, Erwartungswert 2 Zufallsvariable, Verteilungen, Erwartungswert Bisher: Zufallsexperimente beschrieben durch W-Räume (Ω, A, P) Häufig interessiert nur eine zufällige Größe X = X(ω), die vom Ergebnis ω des Zufallsexperiments

Mehr

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Version: 22. September 2015 Evelina Erlacher 1 Mengen Es sei Ω eine Menge (die Universalmenge ) und A, B seien Teilmengen von Ω. Dann schreiben

Mehr

Klausur zu,,einführung in die Wahrscheinlichkeitstheorie

Klausur zu,,einführung in die Wahrscheinlichkeitstheorie Institut für angewandte Mathematik Wintersemester 2009/10 Andreas Eberle, Matthias Erbar, Bernhard Hader Klausur zu,,einführung in die Wahrscheinlichkeitstheorie Bitte diese Felder in Druckschrift ausfüllen

Mehr

8 Verteilungsfunktionen und Dichten

8 Verteilungsfunktionen und Dichten 8 Verteilungsfunktionen und Dichten 8.1 Satz und Definition (Dichten) Eine Funktion f : R R heißt Dichtefunktion, kurz Dichte, wenn sie (Riemann-) integrierbar ist mit f(t) 0 für alle t R und Setzt man

Mehr

Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt

Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt Universität Basel Wirtschaftswissenschaftliches Zentrum Zufallsvariablen Dr. Thomas Zehrt Inhalt: 1. Einführung 2. Zufallsvariablen 3. Diskrete Zufallsvariablen 4. Stetige Zufallsvariablen 5. Erwartungswert

Mehr

3 Bedingte Erwartungswerte

3 Bedingte Erwartungswerte 3 Bedingte Erwartungswerte 3.3 Existenz und Eindeutigkeit des bedingten Erwartungswertes E A 0(X) 3.6 Konvexitätsungleichung für bedingte Erwartungswerte 3.9 Konvergenzsätze von Levi, Fatou und Lebesgue

Mehr

4 Messbare Funktionen

4 Messbare Funktionen 4 Messbare Funktionen 4.1 Definitionen und Eigenschaften Definition 4.1. Seien X eine beliebige nichtleere Menge, M P(X) eine σ-algebra in X und µ ein Maß auf M. Das Paar (X, M) heißt messbarer Raum und

Mehr

Analysis I. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I 7. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching April 26, 207 Erinnerung Satz. (Zwischenwertsatz) Sei f : [a, b] R stetig mit f(a) f(b). Dann gibt es zu jedem

Mehr

Grundlagen der Wahrscheinlichkeitstheorie

Grundlagen der Wahrscheinlichkeitstheorie Priv.-Doz. Dr. H. Steinacker Wintersemester 2013/2014 Grundlagen der Wahrscheinlichkeitstheorie betrachte Wiederholungen eines Experimentes, gleicher Vorbereitung (z.b. Würfeln, Dart werfen, Doppelspaltexperiment,...)

Mehr

Analysis 3. Weihnachtsblatt Prof. Dr. H. Koch Dr. F. Gmeineder Besprechung: TBC, Januar Aufgabe 1: (Besonders prüfungsrelevant)

Analysis 3. Weihnachtsblatt Prof. Dr. H. Koch Dr. F. Gmeineder Besprechung: TBC, Januar Aufgabe 1: (Besonders prüfungsrelevant) Analysis 3 04.12.2018 Prof. Dr. H. och Dr. F. Gmeineder Besprechung: TBC, Januar 2019 Weihnachtsblatt Aufgabe 1: (Besonders prüfungsrelevant) Aufgabe 2: Sei Ω eine Menge und Σ eine σ-algebra auf Ω. Seien

Mehr

Lösungen ausgewählter Übungsaufgaben zum Buch. Elementare Stochastik (Springer Spektrum, 2012) Teil 5: Aufgaben zu den Kapiteln 9 bis 12

Lösungen ausgewählter Übungsaufgaben zum Buch. Elementare Stochastik (Springer Spektrum, 2012) Teil 5: Aufgaben zu den Kapiteln 9 bis 12 Lösungen ausgewählter Übungsaufgaben zum Buch Elementare Stochastik (Springer Spektrum, 0) Teil 5: Aufgaben zu den Kapiteln 9 bis Aufgaben zu Kapitel 9 Zu Abschnitt 9. Ü9.. Es sei ψ : R R stetig differenzierbar.

Mehr

Kapitel VII - Funktion und Transformation von Zufallsvariablen

Kapitel VII - Funktion und Transformation von Zufallsvariablen Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VII - Funktion und Transformation von Zufallsvariablen Markus Höchstötter Lehrstuhl

Mehr

Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie. Tobias Ried

Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie. Tobias Ried Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie Tobias Ried. März 2 2 Aufgabe (Messbarkeit der Komposition zweier Abbildungen). Seien (X, A), (Y, B) und (Z, C) Messräume und f : (X,

Mehr

Inhaltsverzeichnis (Ausschnitt)

Inhaltsverzeichnis (Ausschnitt) 8 Messbarkeit und Bildwahrscheinlichkeit Inhaltsverzeichnis (Ausschnitt) 8 Messbarkeit und Bildwahrscheinlichkeit Messbare Abbildungen Bildwahrscheinlichkeit Deskriptive Statistik und Wahrscheinlichkeitsrechnung

Mehr

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i 3 Kompaktheit In der Analysis I zeigt man, dass stetige Funktionen f : [a, b] R auf abgeschlossenen, beschränkten Intervallen [a, b] gleichmäßig stetig und beschränkt sind und dass sie ihr Supremum und

Mehr

7. Übungsblatt - Lösungsskizzen

7. Übungsblatt - Lösungsskizzen Einführung in die Wahrscheinlicheitstheorie und Statisti Prof. Dr. Jan Johannes Sandra Schluttenhofer Wintersemester 08/9 7. Übungsblatt - Lösungssien Aufgabe 5 Faltung und Ausdünnung einer Poisson-Verteilung,

Mehr

Stochastik. 1. Wahrscheinlichkeitsräume

Stochastik. 1. Wahrscheinlichkeitsräume Stochastik 1. Wahrscheinlichkeitsräume Ein Zufallsexperiment ist ein beliebig oft und gleichartig wiederholbarer Vorgang mit mindestens zwei verschiedenen Ergebnissen, bei dem der Ausgang ungewiß ist.

Mehr

TU DORTMUND Sommersemester 2018

TU DORTMUND Sommersemester 2018 Fakultät Statistik. April 08 Blatt Aufgabe.: Wir betrachten das Zufallsexperiment gleichzeitiges Werfen zweier nicht unterscheidbarer Würfel. Sei A das Ereignis, dass die Augensumme beider Würfel ungerade

Mehr

Klausur zur Vorlesung Stochastik II

Klausur zur Vorlesung Stochastik II Institut für Stochastik WS 007/008 Universität Karlsruhe. 0. 008 r. B. Klar Klausur zur Vorlesung Stochastik II Muster-Lösung auer: 90 Minuten Name: Vorname: Matrikelnummer: iese Klausur hat bestanden,

Mehr

Lösungen zu Übungsblatt 9

Lösungen zu Übungsblatt 9 Analysis : Camillo de Lellis HS 007 Lösungen zu Übungsblatt 9 Lösung zu Aufgabe 1. Wir müssen einfach das Integral 16 (x + y d(x, y x +y 4 ausrechnen. Dies kann man einfach mittels Polarkoordinaten, da

Mehr

Musterlösung Analysis 3 - Maßtherorie

Musterlösung Analysis 3 - Maßtherorie Musterlösung Analysis 3 - Maßtherorie 10. März 2011 Aufgabe 1: Zum Aufwärmen (i) Zeige, dass die Mengensysteme {, X} und P(X) σ-algebren sind. Es sind jeweils nur die Charakteristika nachzuweisen. (1)

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

Studienbegleitende Prüfung Stochastik 2

Studienbegleitende Prüfung Stochastik 2 Universität Karlsruhe (TH) Institut für Stochastik Prof. Dr. N. Bäuerle Name: Vorname: Matr.-Nr.: Studienbegleitende Prüfung Stochastik 2 27. März 2007 Diese Klausur hat bestanden, wer mindestens 20 Punkte

Mehr

Übungsklausur Höhere Mathematik I für die Fachrichtung Physik

Übungsklausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Institut für Technologie (KIT) Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 6..3 Übungsklausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((3++5) Punkte)

Mehr

Kapitel II Kontinuierliche Wahrscheinlichkeitsraume

Kapitel II Kontinuierliche Wahrscheinlichkeitsraume Kapitel II Kontinuierliche Wahrscheinlichkeitsraume 1. Einfuhrung 1.1 Motivation Interpretation der Poisson-Verteilung als Grenzwert der Binomialverteilung. DWT 1.1 Motivation 195/460 Beispiel 78 Wir betrachten

Mehr

Wiederholungsklausur zur Einführung in die Wahrscheinlichkeitstheorie und Statistik

Wiederholungsklausur zur Einführung in die Wahrscheinlichkeitstheorie und Statistik Wiederholungsklausur zur Einführung in die Wahrscheinlichkeitstheorie und Statistik Prof. Dr. C. Löh/M. Blank 8. Oktober 2012 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten.

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

2 Fortsetzung von Prämaßen zu Maßen, Eindeutigkeit

2 Fortsetzung von Prämaßen zu Maßen, Eindeutigkeit 2 Fortsetzung von Prämaßen zu Maßen, Eindeutigkeit a) Fortsetzungssatz, Eindeutigkeit Es wird gezeigt, dass jedes Prämaß µ auf einem Ring R zu einem Maß µ auf A(R) fortgesetzt werden kann, d.h. µ kann

Mehr

Wahrscheinlichkeitstheorie und Maßtheorie

Wahrscheinlichkeitstheorie und Maßtheorie KAPITEL 7 Wahrscheinlichkeitstheorie und Maßtheorie 7.1. Vorüberlegungen Die folgenden drei Beispiele sind Spezialfälle des Oberbegriffs Maß. Beispiel 7.1.1 (Verteilung der Ladung oder der Masse). Man

Mehr

Statistik für Ingenieure Vorlesung 3

Statistik für Ingenieure Vorlesung 3 Statistik für Ingenieure Vorlesung 3 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 14. November 2017 3. Zufallsgrößen 3.1 Zufallsgrößen und ihre Verteilung Häufig sind

Mehr

Signifikanztests Optimalitätstheorie

Signifikanztests Optimalitätstheorie Kapitel Signifikanztests Optimalitätstheorie Randomisierte Tests In einem statistischen Modell M, A, P ϑ sei ein Testproblem gegeben: H : ϑ Θ gegen H : ϑ Θ ; wobei also durch Θ Θ Θ eine Zerlegung des Parameterbereichs

Mehr

7 Poisson-Punktprozesse

7 Poisson-Punktprozesse Poisson-Punktprozesse sind natürliche Modelle für zufällige Konfigurationen von Punkten im Raum Wie der Name sagt, spielt die Poisson-Verteilung eine entscheidende Rolle Wir werden also mit der Definition

Mehr

15. Bereichsintegrale

15. Bereichsintegrale H.J. Oberle Analysis III WS 212/13 15. Bereichsintegrale 15.1 Integrale über uadern Ziel ist die Berechnung des Volumens unterhalb des Graphen einer Funktion f : R n D R, genauer zwischen dem Graphen von

Mehr

Diskrete Wahrscheinlichkeitstheorie - Probeklausur

Diskrete Wahrscheinlichkeitstheorie - Probeklausur Diskrete Wahrscheinlichkeitstheorie - robeklausur Sommersemester 2007 - Lösung Name: Vorname: Matrikelnr.: Studiengang: Hinweise Sie sollten insgesamt Blätter erhalten haben. Tragen Sie bitte Ihre Antworten

Mehr

2 Zufallsvariable und Verteilungsfunktionen

2 Zufallsvariable und Verteilungsfunktionen 8 2 Zufallsvariable und Verteilungsfunktionen Häufig ist es so, dass den Ausgängen eines Zufallexperiments, d.h. den Elementen der Ereignisalgebra, eine Zahl zugeordnet wird. Das wollen wir etwas mathematischer

Mehr

Nachklausur Wahrscheinlichkeitstheorie und Inferenz II Sommersemester Oktober 2011

Nachklausur Wahrscheinlichkeitstheorie und Inferenz II Sommersemester Oktober 2011 Nachklausur Wahrscheinlichkeitstheorie und Inferenz II Sommersemester 2011 28. Oktober 2011 Prof. Dr. Torsten Hothorn Institut für Statistik Nachname: Vorname: Matrikelnummer: Anmerkungen: ˆ Schreiben

Mehr

bn b n a n Z b a b := lim

bn b n a n Z b a b := lim KAPITEL 3 Satz von Fisher Tippett Gnedenko In diesem Kapitel beweisen wir den Satz von Fisher Tippett Gnedenko, der die Extremwertverteilungen beschreibt. Satz 3.0.1 (Satz von Fisher Tippett (1928), Gnedenko

Mehr

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 23. Bemerkung Integralbegriffe für Funktionen f : R d R (i) Lebesgue-Integral (Vorlesung Analysis IV). Spezialfall: (ii) Uneigentliches Riemann-Integral

Mehr

Erwartungswert und Varianz von Zufallsvariablen

Erwartungswert und Varianz von Zufallsvariablen Kapitel 7 Erwartungswert und Varianz von Zufallsvariablen Im Folgenden sei (Ω, A, P ) ein Wahrscheinlichkeitsraum. Der Erwartungswert von X ist ein Lebesgue-Integral (allerdings allgemeiner als in Analysis

Mehr

1 0, x C X (A). = 1 χ A(x).

1 0, x C X (A). = 1 χ A(x). Aufgabe 1 a) Wir müssen nur zeigen, dass χ A B (x) = χ A (x) χ B (x) für alle x X gilt. (Dass χ A χ B Abbildung von X in {0, 1} ist, ist klar.) Sei also x X beliebig. Fall 1: x A B. Dies bedeutet x A und

Mehr

Punktetabelle (wird von den Korrektoren beschriftet)

Punktetabelle (wird von den Korrektoren beschriftet) Probability and Statistics FS 2018 Prüfung 13.08.2018 Dauer: 180 Minuten Name: Legi-Nummer: Diese Prüfung enthält 12 Seiten (zusammen mit dem Deckblatt) und 10 Aufgaben. Das Formelblatt wird separat verteilt.

Mehr

Stochastik Approximationen der Binomialverteilung

Stochastik Approximationen der Binomialverteilung Stochastik Approximationen der Binomialverteilung Stefan Englert stefan.englert@gmx.net 21. April 2007 Inhaltsverzeichnis 1 Approximation von n! und b n,p (k) 2 2 Der Satz von de Moivre-Laplace 6 3 Die

Mehr

Hawkes Prozesse Grundlagen

Hawkes Prozesse Grundlagen Hawkes Prozesse Grundlagen Im Folgenden sei (Ω, F, F, P) eine stochastische Basis. Das heißt F = (F t ) t ist eine rechtsstetige Filtration mit F t F für alle t und P ein Wahrscheinlichkeitsmaß auf dem

Mehr

Konfidenzintervalle. Gesucht: U = U(X 1,..., X n ), O = O(X 1,..., X n ), sodass für das wahre θ gilt

Konfidenzintervalle. Gesucht: U = U(X 1,..., X n ), O = O(X 1,..., X n ), sodass für das wahre θ gilt Konfidenzintervalle Annahme: X 1,..., X n iid F θ. Gesucht: U = U(X 1,..., X n ), O = O(X 1,..., X n ), sodass für das wahre θ gilt P θ (U θ O) = 1 α, α (0, 1). Das Intervall [U, O] ist ein Konfidenzintervall

Mehr

Stochastik Aufgaben zum Üben: Teil 2

Stochastik Aufgaben zum Üben: Teil 2 Prof. Dr. Z. Kabluchko Wintersemester 205/206 Hendrik Flasche Januar 206 Aufgabe Stochastik Aufgaben zum Üben: Teil 2 Es sei X eine Zufallsvariable mit Dichte f X (y) = cy 5 I y>. Bestimmen Sie c, P[2

Mehr

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist:

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist: Musterlösung Aufgabe a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [, ] R, die folgendermaßen definiert ist: f(x) := { für x R \ Q für x Q f ist offensichtlich beschränkt. Wir zeigen,

Mehr

Konstruktion der reellen Zahlen

Konstruktion der reellen Zahlen Konstruktion der reellen Zahlen Zur Wiederholung: Eine Menge K (mit mindestens zwei Elementen) heißt Körper, wenn für beliebige Elemente x, y K eindeutig eine Summe x+y K und ein Produkt x y K definiert

Mehr

Einführung in die angewandte Stochastik

Einführung in die angewandte Stochastik Einführung in die angewandte Stochastik Fabian Meyer 5. April 2018 Inhaltsverzeichnis 1 Wahrscheinlichkeitsrechnung 3 1.1 Definitionen................................... 3 1.2 Wahrscheinlichkeitsmaß, Wahrscheinlichkeitsverteilung,

Mehr

Erwartungswert. j=1. Beweis. Wegen der Voraussetzung nimmt die Zufallsvariable X nur endlich

Erwartungswert. j=1. Beweis. Wegen der Voraussetzung nimmt die Zufallsvariable X nur endlich Erwartungswert Naiv stellt man sich unter dem Erwartungswert einer Zufallsvariablen X Folgendes vor. Man führt das Experiment n-mal durch und bestimmt den Mittelwert (arithmetisches Mittel) der dabei für

Mehr

Übungsblatt 2 - Analysis 2, Prof. G. Hemion

Übungsblatt 2 - Analysis 2, Prof. G. Hemion Tutor: Martin Friesen, martin.friesen@gmx.de Übungsblatt 2 - Analysis 2, Prof. G. Hemion Um die hier gestellten Aufgaben zu lösen brauchen wir ein wenig Kentnisse über das Infimum bzw. Supremum einer Menge.

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Zulassungsprüfung Stochastik,

Zulassungsprüfung Stochastik, Zulassungsprüfung Stochastik, 10.10.14 Wir gehen stets von einem Maßraum (Ω, A, µ) bzw. einem Wahrscheinlichkeitsraum (Ω,A,P) aus. Die Borel σ-algebra auf R n wird mit B n bezeichnet, das Lebesgue Maß

Mehr

Wichtige Klassen reeller Funktionen

Wichtige Klassen reeller Funktionen 0 Wichtige Klassen reeller Funktionen Monotone Funktionen sind i.a. unstetig, aber man kann etwas über das Grenzwertverhalten aussagen, wenn man nur einseitige Grenzwerte betrachtet. Definition 0. : Sei

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

1.3 Zufallsvariablen

1.3 Zufallsvariablen 1.3 Zufallsvariablen Beispiel Irrfahrt zwischen drei Zuständen Start in G bei t = 0, Zeithorizont T N Grundraum σ-algebra Ω = {ω = (ω 0, ω 1,..., ω T ) {G, R, B} T +1, ω 0 = G} Wahrscheinlichkeitsmaß P

Mehr

Zusammenfassung der Lebesgue-Integrationstheorie

Zusammenfassung der Lebesgue-Integrationstheorie Zusammenfassung der Lebesgue-Integrationstheorie Das Lebesguesche Integral verallgemeinert das Riemannsche Integral. Seine Vorteile liegen für unsere Anwendungen vor allem bei den wichtigen Konvergenzsätzen,

Mehr

Meßbare Funktionen. bilden die Grundlage der Integrationstheorie. Definition 24.1 :

Meßbare Funktionen. bilden die Grundlage der Integrationstheorie. Definition 24.1 : 24 Meßbare Funktionen bilden die Grundlage der Integrationstheorie. Definition 24. : Sei X eine beliebige Menge, Y ein topologischer Raum, λ ein Maß auf X. f : X Y heißt λ-messbar, falls f (Ω) λ-messbar

Mehr

Abgabetermin: 5. Mai 2017, Uhr

Abgabetermin: 5. Mai 2017, Uhr Übungsblatt Nr. 1 26. April 2017 1. Sei F k, k K, eine Familie von σ-algebren, wobei K eine beliebige Menge ist. Zeigen Sie, daß F d = k K F k ebenfalls eine σ-algebra ist! Beweisen Sie, daß die Vereinigung

Mehr

Übungsscheinklausur,

Übungsscheinklausur, Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 27 Prof. Dr. F. Liese Übungsscheinklausur, 3.7.27 Dipl.-Math. M. Helwich Name:...

Mehr

9. Übung zur Maß- und Integrationstheorie, Lösungsskizze Aufgaben

9. Übung zur Maß- und Integrationstheorie, Lösungsskizze Aufgaben 9. Übung zur aß- und Integrationstheorie, Lösungsskizze Aufgaben A 50 (Eine Flächenberechnung mit dem Cavalierischen Prinzip). Es seien a, b > 0 und : { (x, y) R 2 : (x/a) 2 + (y/b) 2 1 }. (a) Skizzieren

Mehr

Lemma (Eigenschaften elementarer Mengen) 1. Jede elementare Menge lässt sich als disjunkte Vereinigung halboffener Intervalle schreiben.

Lemma (Eigenschaften elementarer Mengen) 1. Jede elementare Menge lässt sich als disjunkte Vereinigung halboffener Intervalle schreiben. 12.3. DIE LEBESGUE ALGEBRA 19 Bemerkung 12.3.2 (Bezeichnungen) Im Buch von Bauer [2] werden elementare Mengen als Figuren bezeichnet. Wir folgen mit unserer Nomenklatur Rudin [15]. Natürlich kann man auf

Mehr

Reelle Zufallsvariablen

Reelle Zufallsvariablen Kapitel 3 eelle Zufallsvariablen 3. Verteilungsfunktionen esultat aus der Maßtheorie: Zwischen der Menge aller W-Maße auf B, nennen wir sie W B ), und der Menge aller Verteilungsfunktionen auf, nennen

Mehr

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Version: 15. Jänner 2017 Evelina Erlacher Inhaltsverzeichnis 1 Mengen 2 2 Wahrscheinlichkeiten 3 3 Zufallsvariablen 5 3.1 Diskrete Zufallsvariablen............................

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Übungsaufgaben zur Vorlesung ANALYSIS I (WS 12/13) Lösungsvorschlag Serie 12

Übungsaufgaben zur Vorlesung ANALYSIS I (WS 12/13) Lösungsvorschlag Serie 12 Humboldt-Universität zu Berlin Institut für Mathematik Prof. A. Griewank Ph.D.; Dr. A. Hoffkamp; Dipl.Math. T.Bosse; Dipl.Math. L. Jansen Übungsaufgaben zur Vorlesung ANALYSIS I (WS 2/3) Lösungsvorschlag

Mehr

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung 2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung Die einfachste Verteilung ist die Gleichverteilung, bei der P(X = x i ) = 1/N gilt, wenn N die Anzahl möglicher Realisierungen von

Mehr

Wiederholungsklausur zur Analysis I

Wiederholungsklausur zur Analysis I Wiederholungsklausur zur Analysis I Prof. Dr. C. Löh/M. Blank 5. Oktober 2011 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen Sie, ob Sie alle Seiten erhalten

Mehr

Zulassungsprüfung Stochastik,

Zulassungsprüfung Stochastik, Zulassungsprüfung Stochastik,..3 Wir gehen stets von einem Maßraum (Ω, A, µ) bzw. einem Wahrscheinlichkeitsraum (Ω,A,P) aus. Die Borel σ-algebra auf n wird mit B n bezeichnet, das Lebesgue Maß auf n wird

Mehr

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom Prof. Dr. M. Kaßmann Fakultät für Mathematik Wintersemester 2011/2012 Universität Bielefeld Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom 27.10.2011 Aufgabe III.1 (4 Punkte) Sei Ω R

Mehr

sign: R R, sign(x) := 0 falls x = 0 1 falls x < 0 Diese ist im Punkt x 0 = 0 nicht stetig, denn etwa zu ε = 1 finden wir kein δ > 0

sign: R R, sign(x) := 0 falls x = 0 1 falls x < 0 Diese ist im Punkt x 0 = 0 nicht stetig, denn etwa zu ε = 1 finden wir kein δ > 0 ANALYSIS FÜR PHYSIK UND VERWANDTE FÄCHER I 81 3. Stetigkeit 3.1. Stetigkeit. Im Folgenden sei D R eine beliebige nichtleere Teilmenge. Typischerweise wird D ein allgemeines Intervall sein, siehe Abschnitt

Mehr

10 Transformation von Zufallsvariablen

10 Transformation von Zufallsvariablen 10 Transformation von Zufallsvariablen Sei X : Ω R eine Zufallsvariable mit Verteilungsfunktion F X (x) = P(X < x). Wir betrachten eine Funktion g: R R und sei Zufallsvariable Y : Ω R mit Y = g(x). Y :

Mehr

Klausur zur Vorlesung Stochastik II

Klausur zur Vorlesung Stochastik II Institut für Mathematische Stochastik WS 24/25 Universität Karlsruhe 7. März 25 Priv-Doz. Dr. D. Kadelka Klausur zur Vorlesung Stochastik II Dauer: 9 Minuten Name: Vorname: Matrikelnummer: Diese Klausur

Mehr

Mustererkennung: Wahrscheinlichkeitstheorie. D. Schlesinger () ME: Wahrscheinlichkeitstheorie 1 / 10

Mustererkennung: Wahrscheinlichkeitstheorie. D. Schlesinger () ME: Wahrscheinlichkeitstheorie 1 / 10 Mustererkennung: Wahrscheinlichkeitstheorie D. Schlesinger () ME: Wahrscheinlichkeitstheorie 1 / 10 Definitionen (axiomatisch) Wahrscheinlichkeitsraum (Ω, σ, P), mit Ω Die Grundmenge, die Menge der elementaren

Mehr

Kommutativität. De Morgansche Regeln

Kommutativität. De Morgansche Regeln 1. Formale Logik Proposition 1.1. Die logischen Elementarverknüpfungen gehorchen folgenden Äquivalenzen: (1.1) (1.2) p p p p p p Idempotenz (1.3) (1.4) p q q p p q q p Kommutativität (1.5) (1.6) (p q)

Mehr

5 Stetigkeit und Differenzierbarkeit

5 Stetigkeit und Differenzierbarkeit 5 Stetigkeit und Differenzierbarkeit 5.1 Stetigkeit und Grenzwerte von Funktionen f(x 0 ) x 0 Graph einer stetigen Funktion. Analysis I TUHH, Winter 2006/2007 Armin Iske 127 Häufungspunkt und Abschluss.

Mehr

Stochastik Serie 11. ETH Zürich HS 2018

Stochastik Serie 11. ETH Zürich HS 2018 ETH Zürich HS 208 RW, D-MATL, D-MAVT Prof. Marloes Maathuis Koordinator Dr. Marvin Müller Stochastik Serie. Diese Aufgabe behandelt verschiedene Themenbereiche aus dem gesamten bisherigen Vorlesungsmaterial.

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. D. Castrigiano Dr. M. Prähofer Zentralübung 38. Einschränkung eines Maßes TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 4 (Analysis 3) http://www.ma.tum.de/hm/ma9204

Mehr

Übung Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung mit

Übung Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung mit Übung 2 24..23 Ü b u n g 2 Aufgabe Die Poissonverteilung P(λ) hat die Wahrscheinlichkeitsfunktion p(x) = λx e λ (x ) x! Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung

Mehr

A Kurzskript: Stochastische Majorisierung und Testtheorie

A Kurzskript: Stochastische Majorisierung und Testtheorie A Kurzskript: Stochastische Majorisierung und Testtheorie A.1 Stochastische Majorisierung Denition A.1 (stochastisch gröÿer) Seien Q und P zwei W'Maÿe auf (R, B). Dann heiÿt Q stochastisch gröÿer als P

Mehr

Einführung und Grundlagen

Einführung und Grundlagen Kapitel 1 Einführung und Grundlagen Generelle Notation: Ω, A, P sei ein W-Raum im Hintergrund nie weiter spezifiziert Die betrachteten Zufallsvariablen seien auf Ω definiert, zb X : Ω, A M, A, wobei M,

Mehr