Wurzeln als Potenzen mit gebrochenen Exponenten. Vorkurs, Mathematik

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Wurzeln als Potenzen mit gebrochenen Exponenten. Vorkurs, Mathematik"

Transkript

1 Wurzeln als Potenzen mit gebrochenen Exponenten

2 Zur Einstimmung Wir haben die Formel benutzt x m n = x m n nach der eine Exponentialzahl potenziert wird, indem man die Exponenten multipliziert. Dann sollte gelten x m m n = x n x = x = x n n = x n n Mit anderen Worten, x½ ist die Zahl, die quadriert gerade x ergibt (n = 2). x /n ist diejenige Zahl, die zur n-ten Potenz erhoben gerade x ergibt. 2

3 Begriffserklärungen Das Symbol selbst wird als Wurzel bezeichnet; es steht für die Quadratwurzel, das ist die 2-te Wurzel. ist das Symbol für die n-te Wurzel. n Das Wurzelzeichen erfüllt die Funktion eines Operators, d.h. auf den unter diesem Zeichen stehenden Operanden wird die Operation Wurzelziehen angewendet. Der Index n, d.h. die Ordnung der Wurzel, ist immer eine natürliche Zahl. Wenn aus der Potenzgleichung a n = b bei bekannten Exponenten n und bekannten Potenzwert b mit n N { 0 }, b 0 die Basis ermittelt werden soll, dann wird die zugehörige Rechenart Wurzelrechnung oder Radizieren genannt a = n b

4 Begriffserklärungen Dabei nennt man b den Radikanden, n den Wurzelexponenten und a den Wurzelwert (oder kurz die n-te Wurzel ). 4

5 Begriffserklärungen Die n-te Wurzel aus b 0 ist diejenige nicht negative Zahl a, deren n-te Potenz den Wert b ergibt, wobei gelten soll: a R, n N { 0 } Auf Grund der Definition der n-ten Wurzel kann man wegen der Forderung, dass b 0 sein soll, keine Wurzeln aus negativen Zahlen ziehen. Auch der Wurzelwert darf nicht negativ sein (z.b. ist -2 nicht die. Wurzel aus -8). 5

6 Wurzeln als Potenzen mit gebrochenen Exponenten a m n = n a m, m, n N, n 0, a R, a 0 Alle Rechenregeln für Potenzen mit ganzzahligen Exponenten sind auch für die Potenzen mit gebrochenen Exponenten gültig.. Wurzeln lassen sich nur dann addieren, wenn sie sowohl in ihren Radikanden als auch in ihren Wurzelexponenten übereinstimmen 2 5 u 6 u 4 5 u 2 6 u = 6 u 2 5 u 2. Wurzeln mit gleichen Wurzelexponenten werden miteinander multipliziert, indem man das Produkt der Radikanden mit dem gemeinsamen Wurzelexponenten radiziert n a n b = n a b 6

7 Rechenregeln a m n = n a m n a n b = n a b n a n b = n a b m n a = n m a = m n a 7

8 Das Rechnen mit Wurzeln: Aufgaben - Aufgabe : Der Ausdruck soll soweit wie möglich vereinfacht werden. Aufgabe 2: 2 0 a 5 soll vereinfacht werden. Aufgabe : Die Ausdrücke sind als Potenzen mit gebrochenem Exponenten darzustellen a ) 7, b ) 2, c ) 5 4, d ) e ) a, f ) h ) k ) x b y, g ) a b 4 x y, i ) 5, j ) 4 x 5, l ) 5 5 x 5 y z 6 a b

9 Das Rechnen mit Wurzeln: Lösungen -2 Lösung : Es hat den Anschein, als könne hier nichts vereinfacht werden, denn es treten zwar lauter Quadratwurzeln auf, aber die Radikanden sind alle voneinander verschieden. Betrachtet man jedoch die Radikanden genauer, so erkennt man, dass jeder ein Vielfaches von einer Quadratzahl ist = = = = = 4 2 Lösung 2: 2 0 a 5 = a = a = a = 4 a 8-2

10 Das Rechnen mit Wurzeln: Lösung a ) 7 = 7, b ) 2 = 2, c ) 5 4 = 4 5 d ) = = 5 2 = e ) a = a 2, f ) x b y = b y x g ) a b = a b 2, h ) 4 x y 4 = x y i ) 5 = 5 = 5 2, j ) = x 4 x / 4 = x 4 k ) 5 a b = a b 5, l ) x 5 y z 6 = 5 x y z 2 8-

11 Das Rechnen mit Wurzeln: Aufgabe 4 Mit dem Wurzelzeichen ist zu schreiben: a ) 2 2, b ) 2, c ) 7 0.5, d ) e ) a 7, f ) x y x, g ) 5 x 8 8, h ) 5 x i ) 4, j ) 5.25 a, k ) 5 2 a, l ) x y

12 Das Rechnen mit Wurzeln: Lösung 4 2 a ) 2 2 = 2, b ) = 2 = 9 c ) = 7 4 = 7, d ) = = e ) a = 7 a 2, f ) x y x = x x y g ) 5 x 8 = 5 8 x 8 h ) 5 x = 8 5 x = 8 5 x = 8 25 x i ) 4 = 4, j ) 5.25 a = a = a k ) 2 2 a a = 5 5 = a 5 2 = a 2 5 l ) x y 2 5 = x y 2 5 = 5 x y 2 9-2

13 Das Rechnen mit Wurzeln: Aufgabe 5 Der Radikand ist durch teilweises Wurzelziehen zu vereinfachen: a ) 2, b ) 48, c ) 54, d ) 88 e ) 08, f ) 28, g ) 250, h ) 75 i ) 2, j ) 48, k ) 54, l ) 88 0-

14 Das Rechnen mit Wurzeln: Lösung 5 a ) 2 = 6 2 = 6 2 = 4 2 b ) 48 = 6 = 6 = 4 c ) 54 = 2 = 6 d ) 88 = 22 4 = 2 22 e ) 08 = 27 4 = 2 2 = 6 f ) 28 = 2 7 = 2 2 = 8 2 g ) 250 = 5 0 h ) 75 = 5 5 i ) 2 = 2 5 = = 2 4 j ) 48 = 6 = 2 4 = 2 6 k ) 54 = 2 = l ) 88 = 2 = 2

15 Das Rechnen mit Wurzeln: Aufgaben 6, 7 Aufgabe 6: Der Radikand ist durch teilweises Wurzelziehen zu vereinfachen: ) a 5, 2 ) 4 %x 7 y, ) 5 4 x 6 y 5 4 ) (a + b), 5 ) 24 x y, 6 ) 4 2 x 5 y 7 ) 5 2 x 5 y 7, 8 ) ( x 2 4 x + 4) 4 Aufgabe 7: Der vor der Wurzel stehende Faktor ist unter die Wurzel zu bringen: ) 2 2, 2 ) 4, ) ) , 5 ), 6 ) ) x x, 8 ) x y z, 9 ) x y z 0 ) x y z, ) x x, 2 ) a b b a -

16 Das Rechnen mit Wurzeln: Lösung 6 ) a 5 = a 2 a, 2 ) 4 x 7 y = x 4 x y ) 5 4 x 6 y 5 = x y 5 4 x 4 ) a b = a b a b 5 ) 24 x y = 2 x y = 2 x y 6 ) 4 2 x 5 y = x 5 y = 2 x 4 2 x y 7 ) 5 2 x 5 y 7 = x 5 y 7 = 2 x y 5 y 2 8 ) x 2 4 x 4 4 = x 2 4 x 4 x 2 4 x 4-2

17 Das Rechnen mit Wurzeln: Lösung 7 ) 2 2 = 2 = 8, 2 ) 4 = 4 2 = 48 ) 2 8 = 8, 4 ) = 4 = 2 5 ) =, 6 ) = = 7 ) x x = x, 8 ) x y z = x 2 y 2 z 9 ) x y z = z x y 2 0 ) x y z = x6 z y 2, ) x x = x 2 ) a b b a = a b -

18 Das Rechnen mit Wurzeln: Aufgabe 8 ) x2 2 6 x 5 2 ) a b 2 c 2 c7 a 8 b 5 ) a b 4 a b a b 4 ) u v u v u v 2 5 ) )

19 Das Rechnen mit Wurzeln: Lösung 8 ) x2 2 6 x 5 = 2 x 2 ) a b 2 c 2 c7 a 8 b 5 = a b c ) a b 4 a b a b = 4 a 2 b 2 4 ) u v u v u v 2 = u v u v u v = u v 5 ) 2 2 = 2 6 ) =

20 Das Rechnen mit Wurzeln: Aufgabe 9 Die Ausdrücke sind soweit wie möglich zu vereinfachen: ) ) ) ) )

21 Das Rechnen mit Wurzeln: Lösung 9 ) 2 75 = 8 2 ) = 9 2 ) = ) = 8 5 ) = 7 5-2

22

Potenzen und Wurzeln

Potenzen und Wurzeln Potenzen und Wurzeln Anna Heynkes 18.6.2006, Aachen Dieser Text soll zusammenfassen und erklären, wie Potenzen und Wurzeln zusammenhängen und wie man mit ihnen rechnet. Inhaltsverzeichnis 1 Die Potenzgesetze

Mehr

Wichtig! Bei jeder Wurzelaufgabe soll versucht werde den Wert so weit wie möglich zu vereinfachen und es darf kein Wurzelausdruck im Nenner stehen.

Wichtig! Bei jeder Wurzelaufgabe soll versucht werde den Wert so weit wie möglich zu vereinfachen und es darf kein Wurzelausdruck im Nenner stehen. 7 WURZELRECHNEN, RADIZIEREN Die Wurzelausdrücke Berechnen Se den Wurzelwert ohne Taschenrechner! 1 3 6 Wichtige Erkenntnisse beim rechnen mit Wurzelausdrücken: 4 Der Wurzelindex wird nicht geschrieben.

Mehr

Wichtig! Bei jeder Wurzelaufgabe soll versucht werde den Wert so weit wie möglich zu vereinfachen und es darf kein Wurzelausdruck im Nenner stehen.

Wichtig! Bei jeder Wurzelaufgabe soll versucht werde den Wert so weit wie möglich zu vereinfachen und es darf kein Wurzelausdruck im Nenner stehen. ALGEBRA GRUNDRECHENARTEN 7 WURZELRECHNEN, RADIZIEREN Berechnen Se den Wurzelwert ohne Taschenrechner! 1 3 6 Wichtige Erkenntnisse beim rechnen mit Wurzelausdrücken: 4 Der Wurzelindex wird nicht geschrieben.

Mehr

Reelle Zahlen (R)

Reelle Zahlen (R) Reelle Zahlen (R) Bisher sind bekannt: Natürliche Zahlen (N): N {,,,,,6... } Ganze Zahlen (Z): Z {...,,,0,,,... } Man erkennt: Rationale Zahlen (Q):.) Zwischen den natürlichen Zahlen befinden sich große

Mehr

Einführung in die Potenzrechnung

Einführung in die Potenzrechnung .2.0.. Mathematische Grundlagen II Einführung in die Potenzrechnung Bei der Multiplikation haben wir festgestellt, dass aa 2 eine andere Schreibweise von aa aa und aa eine andere Schreibweise aa aa aa

Mehr

Potenzen - Wurzeln - Logarithmen

Potenzen - Wurzeln - Logarithmen Potenzen - Wurzeln - Logarithmen Anna Geyer 4. Oktober 2006 1 Potenzrechnung Potenz Produkt mehrerer gleicher Faktoren 1.1 Definition (Potenz): (i) a n : a... a, n N, a R a... Basis n... Exponent od. Hochzahl

Mehr

Wurzelgleichungen. 1.1 Was ist eine Wurzelgleichung? 1.2 Lösen einer Wurzelgleichung. 1.3 Zuerst die Wurzel isolieren

Wurzelgleichungen. 1.1 Was ist eine Wurzelgleichung? 1.2 Lösen einer Wurzelgleichung. 1.3 Zuerst die Wurzel isolieren 1.1 Was ist eine Wurzelgleichung? Wurzelgleichungen Beispiel für eine Wurzelgleichung Eine Wurzelgleichung ist eine Gleichung bei der in mindestens einem Radikanten (Term unter der Wurzel) die Unbekannte

Mehr

Mathematik Quadratwurzel und reelle Zahlen

Mathematik Quadratwurzel und reelle Zahlen Mathematik Quadratwurzel und reelle Zahlen Grundwissen und Übungen a : a a Stefan Gärtner 1999 004 Gr Mathematik elementare Algebra Seite Inhalt Inhaltsverzeichnis Seite Grundwissen Definition Quadratwurzel

Mehr

n: Exponent (= Hochzahl. Zeigt an, wie oft die Basis mit sich selber multipliziert wird.)

n: Exponent (= Hochzahl. Zeigt an, wie oft die Basis mit sich selber multipliziert wird.) 10. Potenzen 10.1 Definition Potenz (Repetition)Begriffe Potenz: n gleiche Faktoren a a n = a a a a a a a a a n n: Exponent (= Hochzahl. Zeigt an, wie oft die Basis mit sich selber multipliziert wird.)

Mehr

Definition: Unter der n-ten Potenz einer beliebigen reellen Zahl a versteht man das n-fache Produkt von a mit sich selbst

Definition: Unter der n-ten Potenz einer beliebigen reellen Zahl a versteht man das n-fache Produkt von a mit sich selbst Potenzen mit ganzzahligen Exponenten Definition: Unter der n-ten Potenz einer beliebigen reellen Zahl a versteht man das n-fache Produkt von a mit sich selbst Man schreibt a n = b Dabei heißt a die Basis,

Mehr

1 Mengen und Mengenoperationen

1 Mengen und Mengenoperationen 1 Mengen und Mengenoperationen Man kann verschiedene Objekte mit gemeinsamen Eigenschaften zu Mengen zusammenfassen. In der Mathematik kann man z.b. Zahlen zu Mengen zusammenfassen. Die Zahlen 0; 1; 2;

Mehr

Potenzen mit ganzzahligen Exponenten: Rechenregeln

Potenzen mit ganzzahligen Exponenten: Rechenregeln Lüneburg, Fragment Potenzen mit ganzzahligen Exponenten: Rechenregeln 5-E1 5-E2 Potenzen: Rechenregeln Regel 1: Potenzen mit gleicher Basis können dadurch miteinander multipliziert werden, dass man die

Mehr

1.Rationale und irrationale Zahlen. Quadratwurzel.

1.Rationale und irrationale Zahlen. Quadratwurzel. 1.Rationale und irrationale Zahlen 1.1Quadratwurzeln Die Quadratwurzel aus einer rationalen Zahl 5 = 5; denn 5 = 5 und 5 > 0 r > 0 (geschrieben r ) ist diejenige nichtnegative Zahl, deren Quadrat r ergibt.

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 2. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 2. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN Bisher kennen wir bereits folgende Zahlenbereiche: N Natürliche Zahlen Z Ganze Zahlen Q Rationale Zahlen Bei

Mehr

Mathematik-Dossier Potenzen und Wurzeln Stoffsicherung und repetition.

Mathematik-Dossier Potenzen und Wurzeln Stoffsicherung und repetition. Name: Mathematik-Dossier Potenzen und Wurzeln Stoffsicherung und repetition. Inhalt: Potenzen Die zweite Wurzel (Quadratwurzel) Verwendung: Dieses Dossier dient der Repetition und Festigung innerhalb der

Mehr

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand:

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand: M 9.1 Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: Quadratwurzeln sind nur für positive Zahlen definiert: ; ; ; ; M 9.2 Reelle Zahlen

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand:

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand: M 9.1 Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: Quadratwurzeln sind nur für positive Zahlen definiert: ; ; ; ; M 9.2 Reelle Zahlen

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 4 4. Semester ARBEITSBLATT 4 POTENZEN MIT RATIONALEM EXPONENTEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 4 4. Semester ARBEITSBLATT 4 POTENZEN MIT RATIONALEM EXPONENTEN ARBEITSBLATT POTENZEN MIT RATIONALEM EXPONENTEN Um mit Wurzeln rechnen zu können müssen wir diese in Potenzschreibweise umformen. Dazu benötigen wir folgende Definition: s r r s + Definition: a a a R,

Mehr

Quadratwurzeln. Reelle Zahlen

Quadratwurzeln. Reelle Zahlen M 9. Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: = Quadratwurzeln sind nur für positive Zahlen definiert: 0 25 = 5; 8 = 9; 0,25 = =

Mehr

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand:

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: M 9.1 Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: Quadratwurzeln sind nur für positive Zahlen definiert: 0 25 5; 81 9; 0,25 0,5; 0,0081

Mehr

Serie 2. Algebra-Training. Potenzen und Wurzeln. Theorie & Aufgaben. VSGYM / Volksschule Gymnasium

Serie 2. Algebra-Training. Potenzen und Wurzeln. Theorie & Aufgaben. VSGYM / Volksschule Gymnasium Algebra-Training Theorie & Aufgaben Serie 2 Potenzen und Wurzeln Theorie und Aufgaben: Ronald Balestra, Katharina Lapadula VSGYM / Volksschule Gymnasium Liebe Schülerin, lieber Schüler Der Leitspruch «Übung

Mehr

Mathematik - Ein Lehr- und Übungsbuch

Mathematik - Ein Lehr- und Übungsbuch Die wichtigsten Lehrbücher bei HD Mathematik - Ein Lehr- und Übungsbuch Band : Arithmetik, Algebra, Mengen- und Funktionenlehre Bearbeitet von Carsten Gellrich, Regina Gellrich 4., korr. Aufl. 006. Buch.

Mehr

M 9.1. Quadratwurzeln. Wie bezeichnet man die Zahl unter der Wurzel? Für welche Zahlen ist die Wurzel definiert? Berechne: Carina Mittermayer (2010)

M 9.1. Quadratwurzeln. Wie bezeichnet man die Zahl unter der Wurzel? Für welche Zahlen ist die Wurzel definiert? Berechne: Carina Mittermayer (2010) M 9.1 Quadratwurzeln Wie wird definiert? Wie bezeichnet man die Zahl unter der Wurzel? Für welche Zahlen ist die Wurzel definiert? Berechne: M 9.2 Reelle Zahlen Was sind irrationale Zahlen? Nenne vier

Mehr

4 Potenzen Wachstumsprozesse Exponentialfunktionen

4 Potenzen Wachstumsprozesse Exponentialfunktionen 4 Potenzen Wachstumsprozesse Exponentialfunktionen 4.1 Potenzieren Radizieren 4.1.1 Potenzen mit natürlichen Exponenten Exponentielle Wachstumsvorgänge 4.1.1.1 Wiederholung zum Potenzieren ist eine Potenz

Mehr

Brückenkurs Mathematik, THM Friedberg, 15 19.9.2014

Brückenkurs Mathematik, THM Friedberg, 15 19.9.2014 egelsammlung mb2014 THM Friedberg von 6 16.08.2014 15:04 Brückenkurs Mathematik, THM Friedberg, 15 19.9.2014 Sammlung von Rechenregeln, extrahiert aus dem Lehrbuch: Erhard Cramer, Johanna Neslehová: Vorkurs

Mehr

J Quadratwurzeln Reelle Zahlen

J Quadratwurzeln Reelle Zahlen J Quadratwurzeln Reelle Zahlen J Quadratwurzeln Reelle Zahlen 1 Quadratwurzeln Ein Quadrat habe einen Flächeninhalt von 64 cm. Will man wissen, wie lang die Seiten des Quadrates sind, so muss man herausfinden,

Mehr

Zahlen und elementares Rechnen (Teil 1)

Zahlen und elementares Rechnen (Teil 1) und elementares Rechnen (Teil 1) Dr. Christian Serpé Universität Münster 6. September 2010 Dr. Christian Serpé (Universität Münster) und elementares Rechnen (Teil 1) 6. September 2010 1 / 40 Gliederung

Mehr

Logarithmen. Gesetzmäßigkeiten

Logarithmen. Gesetzmäßigkeiten Logarithmen Gesetzmäßigkeiten Einführung Als erstes muss geklärt werden, für was ein Logarithmus gebraucht wird. Dazu sollte folgendes einführendes Beispiel gemacht werden. Beispiel 1: 2 x = 8 Wie an diesem

Mehr

Zahlen und elementares Rechnen

Zahlen und elementares Rechnen und elementares Rechnen Christian Serpé Universität Münster 7. September 2011 Christian Serpé (Universität Münster) und elementares Rechnen 7. September 2011 1 / 51 Gliederung 1 2 Elementares Rechnen 3

Mehr

3.1. Die komplexen Zahlen

3.1. Die komplexen Zahlen 3.1. Die komplexen Zahlen Es gibt viele Wege, um komplexe Zahlen einzuführen. Wir gehen hier den wohl einfachsten, indem wir C R als komplexe Zahlenebene und die Punkte dieser Ebene als komplexe Zahlen

Mehr

b n = b In der darauffolgenden Prüfung zu diesem Thema mussten die Schülerinnen und Schüler die Aufgabe

b n = b In der darauffolgenden Prüfung zu diesem Thema mussten die Schülerinnen und Schüler die Aufgabe Aufgabenblatt Aufgaben zum Thema Potenzgesetze 1. Unterhaltsame Potenzgesetze Im Unterricht wurden die folgenden 5 Potenzgesetze behandelt: 1. Gesetz: 2. Gesetz: 3. Gesetz: 4. Gesetz: 5. Gesetz: a n a

Mehr

Mathematik. FOS 11. Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23. Juli Kontakt und weitere Infos:

Mathematik. FOS 11. Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23. Juli Kontakt und weitere Infos: FOS 11. Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23. Juli 2004 Kontakt und weitere Infos: www.schule.barmetler.de Inhaltsverzeichnis 1 Wiederholung 5 1.1 Bruchrechnen.............................

Mehr

a heißt Radikand Das (Quadrat-)Wurzelziehen ist die Umkehrung des Quadrierens. Das Quadrieren ist die Umkehrung des (Quadrat-)Wurzelziehens.

a heißt Radikand Das (Quadrat-)Wurzelziehen ist die Umkehrung des Quadrierens. Das Quadrieren ist die Umkehrung des (Quadrat-)Wurzelziehens. 1 Reelle Zahlen - Quadratwurzeln Wir kennen den Flächeninhalt A = 49 m 2 eines Quadrats und möchten seine Seitenlänge x berechnen Es ist also jene Zahl x zu ermitteln, die mit sich selbst multipliziert

Mehr

Demo-Text für Quadratwurzeln ALGEBRA. Teil 1. Einführung und Grundeigenschaften. (Klasse 8 / 9) Friedrich W.

Demo-Text für  Quadratwurzeln ALGEBRA. Teil 1. Einführung und Grundeigenschaften. (Klasse 8 / 9) Friedrich W. Teil 1 Einführung und Grundeigenschaften (Klasse 8 / 9) Datei Nr. 101 Friedrich W. Buckel Stand: 1. Mai 014 ALGEBRA Quadratwurzeln INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Vorwort Die Einführung des 1-jährigen

Mehr

Ein rechteckiger Garten hat die Seitenlängen a = 55,0 m und b = 42,0 m.

Ein rechteckiger Garten hat die Seitenlängen a = 55,0 m und b = 42,0 m. 1 Ein rechteckiger Garten hat die Seitenlängen a = 55,0 m und b = 42,0 m. Welche Seitenlänge hat ein quadratischer Garten, der einen um 10% größeren Flächeninhalt hat? Von einem Quadrat ist die Länge der

Mehr

Komplexe Zahlen. 1) Motivierende Aufgabe. 2) Historisches

Komplexe Zahlen. 1) Motivierende Aufgabe. 2) Historisches Annelie Heuser, Jean-Luc Landvogt und Ditlef Meins im 1. Semester Komplexe Zahlen Will man nur addieren und subtrahieren, multiplizieren und dividieren, kommt man uneingeschränkt mit reellen Zahlen aus.

Mehr

Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft

Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft Berufsbildende Schule 11 der Region Hannover Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft Das folgende Material soll Ihnen helfen sich einen Überblick

Mehr

Mathematische Grundlagen 2. Termrechnen

Mathematische Grundlagen 2. Termrechnen Inhaltsverzeichnis: 2. Termrechnen... 2 2.1. Bedeutung von Termen... 2 2.2. Terme mit Variablen... 4 2.3. Vereinfachen von Termen... 5 2.3.1. Zusammenfassen von gleichartigen Termen... 5 2.3.2. Vereinfachen

Mehr

2.2 Quadratwurzeln. e) f) 8

2.2 Quadratwurzeln. e) f) 8 I. Quadratwurzeln Rechne im Kopf und erkläre, wie du vorgegangen bist!, H a) 7 8 b) 5 6 c) 9 d) 6 9 e) 0 _ f) 8 _ g) 7 _ 00 h) 5 _ 69 Teilweises Wurzelziehen ist dann möglich, wenn sich eine Zahl so zerlegen

Mehr

:LHGHUKROXQJJUXQGVlW]OLFKHU0HWKRGHQ 3RWHQ]XQG:XU]HOUHFKQHQ. Pot enzen

:LHGHUKROXQJJUXQGVlW]OLFKHU0HWKRGHQ 3RWHQ]XQG:XU]HOUHFKQHQ. Pot enzen :LHGHUKROXQJJUXQGVlW]OLFKHU0HWKRGHQ RWHQ]XQG:XU]HOUHFKQHQ 9RUEHPHUNXQJHQ Pot enzen Potenzen sind Zahlen, die ein- oder mehrfach mit sich selbst multipliziert werden. ie Anzahl, wie oft dabei eine Zahl

Mehr

Vorkurs Mathematik Dozent: Dipl.-Math. Karsten Runge.

Vorkurs Mathematik Dozent: Dipl.-Math. Karsten Runge. Vorkurs Mathematik 17.08.-28.08.15 Dozent: Dipl.-Math. Karsten Runge E-mail: karsten.runge@hs-bochum.de www.hs-bochum.de\imt > Mathematik-Vorkurs > Mathematik-Werkstatt Die Mathematik-Werkstatt bietet

Mehr

4 Wurzeln, Dezimalzahlen und eine neue Menge die reellen Zahlen

4 Wurzeln, Dezimalzahlen und eine neue Menge die reellen Zahlen 4 Wurzeln, Dezimalzahlen und eine neue Menge die reellen Zahlen Tom und Sara werden jeden Tag von einem Schülerlotsen über einen Zebrastreifen vor der Schule geleitet. Sara hat ihn beobachtet und ihr ist

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

Die Wurzel einer Zahl a ist die Zahl, die mit sich selbst malgenommen wieder a ergibt.

Die Wurzel einer Zahl a ist die Zahl, die mit sich selbst malgenommen wieder a ergibt. Wurzel Wurzelexpoet Radikad oder auch Basis Die Wurzel eier Zahl a ist die Zahl, die mit sich selbst malgeomme wieder a ergibt. Die -te Wurzel et ma auch Quadratwurzel, dabei lässt ma die (als Wurzelexpoet)

Mehr

Terme und Gleichungen

Terme und Gleichungen Terme und Gleichungen Rainer Hauser November 00 Terme. Rekursive Definition der Terme Welche Objekte Terme genannt werden, wird rekursiv definiert. Die rekursive Definition legt zuerst als Basis fest,

Mehr

Grundwissen 9. Klasse. Mathematik

Grundwissen 9. Klasse. Mathematik Grundwissen 9. Klasse Mathematik Philipp Kövener I. Reelle Zahlen 1.1 Quadratwurzel Definition Für a 0 ist die Quadratwurzel diejenige nicht-negative Zahl, deren Quadrat a ergibt. a heißt Radikand und

Mehr

1. die ganzen Zahlen, denn 7= 1. a ist diejenige nicht negative Zahl, die quadriert a ergibt: 16 = 4; 0 = = 36 = 25 = e) Grundwissen 9.

1. die ganzen Zahlen, denn 7= 1. a ist diejenige nicht negative Zahl, die quadriert a ergibt: 16 = 4; 0 = = 36 = 25 = e) Grundwissen 9. Grundwissen 9. Klasse Quadratwurzel a ist diejenige nicht negative Zahl, die quadriert a ergibt: ( a ) a Die Zahl a unter der Wurzel heißt Radikand. Es gibt keine Quadratwurzel aus einer negativen Zahl.

Mehr

MATHEMATIK Leitprogramm technische Mathematik Rechenregeln

MATHEMATIK Leitprogramm technische Mathematik Rechenregeln M..04.0_ INHALT: 8. ADDITION UND SUBTRAKTION 44 9. MULTIPLIKATION UND DIVISION 49 0. BRÜCHE ERWEITERN UND KÜRZEN 6. RECHNEN MIT POTENZEN 69. RADIZIEREN 79 Information Wie Sie im ersten Kapitel gelernt

Mehr

Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten!

Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten! Mathefritz 5 Terme und Gleichungen Meine Mathe-Seite im Internet kostenlose Matheaufgaben, Skripte, Mathebücher Lernspiele, Lerntipps, Quiz und noch viel mehr http:// www.mathefritz.de Seite 1 Copyright

Mehr

Lernskript Potenzrechnung 2³ = 8

Lernskript Potenzrechnung 2³ = 8 Lernskript Potenzrechnung 2³ = 8 Inhaltsverzeichnis Erklärungen...2 Potenz...2 Basis...3 Exponent...4 Hoch null...5 Punkt- vor Strichrechnung mit Potenzen...5 Potenzen mit gleicher Basis...6 Potenzen mit

Mehr

Mathematikvorkurs. Fachbereich I. Sommersemester Elizaveta Buch

Mathematikvorkurs. Fachbereich I. Sommersemester Elizaveta Buch Mathematikvorkurs Fachbereich I Sommersemester 2017 Elizaveta Buch Themenüberblick Montag Grundrechenarten und -regeln Bruchrechnen Binomische Formeln Dienstag Potenzen, Wurzeln und Logarithmus Summen-

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Ausgabe: 2005-02-21 Abgabe: 2005-02-21 Technische Informatik - Eine

Mehr

Repetitionsaufgaben Wurzelgleichungen

Repetitionsaufgaben Wurzelgleichungen Repetitionsaufgaben Wurzelgleichungen Inhaltsverzeichnis A) Vorbemerkungen B) Lernziele C) Theorie mit Aufgaben D) Aufgaben mit Musterlösungen 4 A) Vorbemerkungen Bitte beachten Sie: Bei Wurzelgleichungen

Mehr

Vorlesung. Komplexe Zahlen

Vorlesung. Komplexe Zahlen Vorlesung Komplexe Zahlen Motivation Am Anfang der Entwicklung der komplexen Zahlen stand ein algebraisches Problem: die Bestimmung der Lösung der Gleichung x 2 + 1 = 0. 1 Mit der Lösung dieses Problems

Mehr

= T 2. Lösungsmenge ist die Menge aller Elemente des Definitionsbereiches D G, die die Gleichung zu einer Wahre Aussage machen.

= T 2. Lösungsmenge ist die Menge aller Elemente des Definitionsbereiches D G, die die Gleichung zu einer Wahre Aussage machen. Gleichungen Eine Gleichung ist eine Aussage, in der die Gleichheit zweier Terme durch Mathematische Symbol ausgedrückt wird. Dies wird durch das Gleichheitssymbol = symbolisiert G : = T 2 Definitionsmenge

Mehr

Mathematik: Mag. Wolfgang Schmid Arbeitsblatt 7 4. Semester ARBEITSBLATT 7 RECHNEN MIT LOGARITHMEN

Mathematik: Mag. Wolfgang Schmid Arbeitsblatt 7 4. Semester ARBEITSBLATT 7 RECHNEN MIT LOGARITHMEN Mathematik: Mag. Wolfgang Schmid Arbeitsblatt 7. Semester ARBEITSBLATT 7 RECHNEN MIT LOGARITHMEN Für das Rechnen mit Logarithmen gibt es nun natürlich eigene Rechengesetze, welche wir uns nun anschauen

Mehr

2 ZAHLEN UND VARIABLE

2 ZAHLEN UND VARIABLE Zahlen und Variable 2 ZAHLEN UND VARIABLE 2.1 Grundlagen der Mengenlehre Unter einer Menge versteht man die Zusammenfassung von unterscheidbaren Objekten zu einem Ganzen. Diese Objekte bezeichnet man als

Mehr

1 Zahlen. 1.1 Die Quadratwurzel. 1.2 Rechnen mit Quadratwurzeln. Grundwissen Mathematik 9

1 Zahlen. 1.1 Die Quadratwurzel. 1.2 Rechnen mit Quadratwurzeln. Grundwissen Mathematik 9 Zahlen. Die Quadratwurzel Die Quadratwurzel a ist die nicht negative Lösung der Gleichung x a. a 0 0 0 a heißt Radikand Ein Teil der Quadratwurzeln sind rationale Zahlen (z.b. 9, 0,0 oder ), 9 andere dagegen

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen

Mehr

Zahlen und Größen Beitrag 44 Fit im Umgang mit Quadratwurzeln 1 von 30

Zahlen und Größen Beitrag 44 Fit im Umgang mit Quadratwurzeln 1 von 30 I Zahlen und Größen Beitrag 44 Fit im Umgang mit Quadratwurzeln 1 von 30 Wer darf das Wurzelgefängnis wieder verlassen? Fit im Umgang mit Quadratwurzeln Von Alessandro Totaro, Stuttgart Illustriert von

Mehr

Die reellen Lösungen der kubischen Gleichung

Die reellen Lösungen der kubischen Gleichung Die reellen Lösungen der kubischen Gleichung Klaus-R. Löffler Inhaltsverzeichnis 1 Einfach zu behandelnde Sonderfälle 1 2 Die ganzrationale Funktion dritten Grades 2 2.1 Reduktion...........................................

Mehr

Rechnen mit Quadratwurzeln

Rechnen mit Quadratwurzeln 9. Grundwissen Mathematik Algebra Klasse 9 Rechnen mit Quadratwurzeln Die Quadratwurzel aus a ist diejenige nichtnegative Zahl aus R, deren Quadrat wieder a ergibt. a nennt man Radikand. Man schreibt dafür

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

6 Polynomielle Gleichungen und Polynomfunktionen

6 Polynomielle Gleichungen und Polynomfunktionen 6 Polynomielle Gleichungen und Polynomfunktionen Lineare Gleichungen Eine lineare Gleichung in einer Variablen ist eine Gleichung der Form ax + b = cx + d mit festen Zahlen a und c mit a c. Dies kann man

Mehr

Einführung und Grundeigenschaften (Klasse 8 / 9)

Einführung und Grundeigenschaften (Klasse 8 / 9) ALGEBRA Quadratwurzeln Teil 1 Einführung und Grundeigenschaften (Klasse 8 / 9) Datei Nr. 101 Friedrich W. Buckel Stand: 10. Januar 018 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Vorwort Die Einführung des

Mehr

QUADRATWURZELN FRANZ LEMMERMEYER

QUADRATWURZELN FRANZ LEMMERMEYER QUADRATWURZELN FRANZ LEMMERMEYER Nach den negativen Zahlen und den Brüchen steht in Klasse 8 eine weitere Erweiterung des Zahlbereichs an. Den ersten Schritt dazu machen die Quadratwurzeln.. Quadratwurzeln

Mehr

Michael Körner. Grundwissen Wurzeln und Potenzen Klasse VORSCHAU. Bergedorfer Kopiervorlagen. zur Vollversion

Michael Körner. Grundwissen Wurzeln und Potenzen Klasse VORSCHAU. Bergedorfer Kopiervorlagen. zur Vollversion Michael Körner Grundwissen Wurzeln und Potenzen 5.-10. Klasse Bergedorfer Kopiervorlagen Zu diesem Material Zu dieser Mappe Was sind Wurzeln? Wozu benötigt man Potenzen? Wieso gelten die Potenzgesetze

Mehr

Grundwissen 9. Klasse 9/1. Grundwissen 9. Klasse 9/2

Grundwissen 9. Klasse 9/1. Grundwissen 9. Klasse 9/2 Grundwissen 9. Klasse 9/. Quadratwurzel Definition: a ist diejenige positive Zahl, deren Quadrat a ergibt: a =a z.b. 5=5 Bezeichnung: Die Zahl a unter der Wurzel heißt Radikand. Radikandenbedingung: a

Mehr

Aufgabensammlung Klasse 8

Aufgabensammlung Klasse 8 Aufgabensammlung Klasse 8 Inhaltsverzeichnis 1 Potenzen mit natürlichen Hochzahlen 3 1.1 Rechenregeln für das Rechnen mit Potenzen..................... 3 1.1.1 Addition und Subtraktion von Potenzen...................

Mehr

2.3 Logarithmus. b). a n = b n = log a. b für a,b 0 ( : gesprochen genau dann bedeutet, dass beide Definitionen gleichwertig sind) Oder log a

2.3 Logarithmus. b). a n = b n = log a. b für a,b 0 ( : gesprochen genau dann bedeutet, dass beide Definitionen gleichwertig sind) Oder log a 2.3 Logarithmus Bsp. Seite 84 mitte: Wie lange muss man Fr. 10 000.- zu 5,1% anlegen, um Fr. 16 000.- zu erhalten? Lösen Sie die Zinseszinsformel nach q n auf Aus q n erfolgt die Berechnung von n mittels

Mehr

Wer darf das Wurzelgefängnis wieder verlassen? Fit im Umgang mit Quadratwurzeln

Wer darf das Wurzelgefängnis wieder verlassen? Fit im Umgang mit Quadratwurzeln I Zahlen und Größen Beitrag 44 Fit im Umgang mit Quadratwurzeln 1 von 30 Wer darf das Wurzelgefängnis wieder verlassen? Fit im Umgang mit Quadratwurzeln Von Alessandro Totaro, Stuttgart Illustriert von

Mehr

1 Das Problem, welches zum Logarithmus führt

1 Das Problem, welches zum Logarithmus führt 1 Das Problem, welches zum Logarithmus führt Gegeben sei die folgende Gleichung: a = x n Um nun die Basis hier x) auszurechnen, muss man die n-te Wurzel aus a ziehen: a = x n n ) n a = x Soweit sollte

Mehr

Erzeugende Funktionen

Erzeugende Funktionen Hallo! Erzeugende Funktionen sind ein Mittel um lineare Rekursionen schneller ausrechnen zu können. Es soll die Funktion nicht mehr als Rekursion angeschrieben werden, sondern so, dass man nur n einsetzen

Mehr

Musterlösungen zur Linearen Algebra II Blatt 5

Musterlösungen zur Linearen Algebra II Blatt 5 Musterlösungen zur Linearen Algebra II Blatt 5 Aufgabe. Man betrachte die Matrix A := über dem Körper R und über dem Körper F und bestimme jeweils die Jordan- Normalform. Beweis. Das charakteristische

Mehr

Wirtschaftsmathematik: Mathematische Grundlagen

Wirtschaftsmathematik: Mathematische Grundlagen Wirtschaftsmathematik: Mathematische Grundlagen 1. Zahlen 2. Potenzen und Wurzeln 3. Rechenregeln und Vereinfachungen 4. Ungleichungen 5. Intervalle 6. Beträge 7. Lösen von Gleichungen 8. Logarithmen 9.

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Übungsbuch Algebra für Dummies

Übungsbuch Algebra für Dummies ...für Dummies Übungsbuch Algebra für Dummies von Mary Jane Sterling, Alfons Winkelmann 1. Auflage Wiley-VCH Weinheim 2012 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 527 70800 0 Zu Leseprobe

Mehr

3 Zahlen und Arithmetik

3 Zahlen und Arithmetik In diesem Kapitel werden Zahlen und einzelne Elemente aus dem Bereich der Arithmetik rekapituliert. Insbesondere werden die reellen Zahlen eingeführt und einige Rechenregeln wie Potenzrechnung und Logarithmieren

Mehr

M A T H E M A T H I K. Mathematik. Klasse 10. Epoche 2. Maximilian Ernestus

M A T H E M A T H I K. Mathematik. Klasse 10. Epoche 2. Maximilian Ernestus athematik lasse 10. poche 2 aximilian rnestus rithmetische Zahlenfolgen ine Zahlenfolge ist eine gesetzmäßige ufeinanderfolge von Zahlen Beispiel: Die emperatur in 25 m iefe beträgt 10 C. Je 100 m iefe

Mehr

QUADRATISCHE GLEICHUNGENN

QUADRATISCHE GLEICHUNGENN Schule Bundesgymnasium für Berufstätige Salzburg Thema Mathematik Arbeitsblatt A -.: Quadratische Gleichungen LehrerInnenteam m/ Mag Wolfgang Schmid Unterlagen QUADRATISCHE GLEICHUNGENN Definition: Eine

Mehr

INFOMAPPE ZUM EINSTUFUNGSTEST MATHEMATIK AN DER FOS/BOS MEMMINGEN

INFOMAPPE ZUM EINSTUFUNGSTEST MATHEMATIK AN DER FOS/BOS MEMMINGEN INFOMAPPE ZUM EINSTUFUNGSTEST MATHEMATIK AN DER FOS/BOS MEMMINGEN Liebe Schülerinnen und Schüler, wie schnell man einen bereits einmal gekonnten Stoff wieder vergisst, haben Sie sicherlich bereits schon

Mehr

Inhaltsübersicht. Definition und erste Eigenschaften komplexer Zahlen

Inhaltsübersicht. Definition und erste Eigenschaften komplexer Zahlen Inhaltsübersicht Kapitel 4: Die Macht des Imaginären: Komplexe Zahlen Definition und erste Eigenschaften komplexer Zahlen Die Polardarstellung komplexer Zahlen Polynome im Komplexen Exponentialfunktion

Mehr

Stichwortverzeichnis. Symbole. Stichwortverzeichnis

Stichwortverzeichnis. Symbole. Stichwortverzeichnis Stichwortverzeichnis Stichwortverzeichnis Symbole ( ) (Runde Klammern) 32, 66 (Betragszeichen) 32 (Multiplikations-Zeichen) 31 + (Plus-Zeichen) 31, 69 - (Minus-Zeichen) 31, 69 < (Kleiner-als-Zeichen) 33,

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

Mathematik. Subtraktion (Minuend Subtrahend = Differenz) Division (Dividend / Divisor = Quotient)

Mathematik. Subtraktion (Minuend Subtrahend = Differenz) Division (Dividend / Divisor = Quotient) Inhalt: Mathematik 2.2003 2003 by Reto Da Forno Termumformungen - Operationsstufen Seite 1 - Gesetze Seite 1 - Addition + Subtraktion Seite 2 - Potenzen Seite 2 - Polynomdivision Seite 3 - Ausklammern

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 5 4. Semester ARBEITSBLATT 5 WURZELGLEICHUNGEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 5 4. Semester ARBEITSBLATT 5 WURZELGLEICHUNGEN ARBEITSBLATT 5 WURZELGLEICHUNGEN Definition: Gleichungen, in denen eine Variable unter dem Wurzelzeichen auftritt, nennt man Wurzelgleichungen. Das Rechnen mit diesen Gleichungen können wir nach der Anzahl

Mehr

Die Zeilen mit geraden Zahlen beim Halbieren werden gestrichen.

Die Zeilen mit geraden Zahlen beim Halbieren werden gestrichen. Napier s Rechenbrett Die Bedeutung des Zweiersystems ist im Computer-Zeitalter kein Geheimnis mehr. Verdoppeln und Halbieren sind Tätigkeiten, welche uralt sind. Sie erfordern weder ein Zählen noch Rechnen,

Mehr

Stellen Sie bitte den Cursor in die Spalte B2 und rufen die Funktion Sverweis auf. Es öffnet sich folgendes Dialogfenster

Stellen Sie bitte den Cursor in die Spalte B2 und rufen die Funktion Sverweis auf. Es öffnet sich folgendes Dialogfenster Es gibt in Excel unter anderem die so genannten Suchfunktionen / Matrixfunktionen Damit können Sie Werte innerhalb eines bestimmten Bereichs suchen. Als Beispiel möchte ich die Funktion Sverweis zeigen.

Mehr

Wurzelgleichungen 150 thematisch geordnete Wurzelgleichungen mit ausführlichen Lösungen

Wurzelgleichungen 150 thematisch geordnete Wurzelgleichungen mit ausführlichen Lösungen Wurzelgleichungen 50 thematisch geordnete Wurzelgleichungen mit ausführlichen Lösungen 6. erweiterte Auflage vom 6.09.005 Copyright by Josef Raddy .Wurzelgleichungen mit einer Wurzel a) b) + + c) + 7 d)

Mehr

Zwei unbekannte Zahlen und alle vier Rechenarten

Zwei unbekannte Zahlen und alle vier Rechenarten Zwei unekannte Zahlen und alle vier Rechenarten HELMUT MALLAS Online-Ergänzung MNU 8/1 (15.1.015) Seiten 1, ISSN 005-58, Verlag Klaus Seeerger, Neuss 1 HELMUT MALLAS Zwei unekannte Zahlen und alle vier

Mehr

Quadratzahlen, Quadratwurzeln und Potenzen

Quadratzahlen, Quadratwurzeln und Potenzen Patrick Pirklbauer Matrikelnummer: 1011616 Quadratzahlen, Quadratwurzeln und Potenzen Mathematisches Seminar für LAK 621.416 Kursleiterin: Univ.-Prof. Dr.phil. Karin Baur Institut für Mathematik und wissenschaftliches

Mehr

Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 3. Übung

Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 3. Übung TU Bergakademie Freiberg Vorl. Frau Prof. Dr. Swanhild Bernstein Übung Dipl.-Math. Daniel Lorenz Freiberg, 25. Oktober 2016 Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 3. Übung Aufgabe

Mehr

DOWNLOAD. Wurzeln. Quadratwurzeln, Wurzelgesetze, Wurzelziehen. Michael Körner. Downloadauszug aus dem Originaltitel: Grundwissen Wurzeln und Potenzen

DOWNLOAD. Wurzeln. Quadratwurzeln, Wurzelgesetze, Wurzelziehen. Michael Körner. Downloadauszug aus dem Originaltitel: Grundwissen Wurzeln und Potenzen DOWNLOAD Michael Körner Wurzeln Quadratwurzeln, Wurzelgesetze, Wurzelziehen Michael Körner Grundwissen Wurzeln und Potenzen 5. 0. Klasse Bergedorfer Kopiervorlagen Downloadauszug aus dem Originaltitel:

Mehr

Test 1 zu Kapitel 1 bis 7 (Wurzelfunktionen und Quadratische Funktionen) 64 Test 2 zu Kapitel 8 bis 13 (Anwendungen quadratischer Gleichungen und

Test 1 zu Kapitel 1 bis 7 (Wurzelfunktionen und Quadratische Funktionen) 64 Test 2 zu Kapitel 8 bis 13 (Anwendungen quadratischer Gleichungen und 4 Inhalt 1 Quadratwurzeln 6 2 Rechnen mit Quadratwurzeln 8 3 Wurzelgleichungen 10 4 Reinquadratische Funktionen 12 5 Gemischtquadratische Funktionen 14 6 Quadratische Gleichungen 16 7 Satz von Vieta und

Mehr

2. Die Satzgruppe des Pythagoras

2. Die Satzgruppe des Pythagoras Grundwissen Mathematik 9. Klasse Seite von 17 1.4 Rechnen mit reellen Zahlen a) Multiplizieren und Dividieren von reellen Zahlen + Es gilt: a b = a b mit ab R, 0 Beispiele: 18 = 36 = 6 14 14 7 = = a a

Mehr

Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 3. Übung

Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 3. Übung TU Bergakademie Freiberg Vorl. Frau Prof. Dr. Swanhild Bernstein Übung Dipl.-Math. Daniel Lorenz Freiberg, WS 2017/18 Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 3. Übung Aufgabe

Mehr

MatheBasics Teil 4 Grundlagen der Mathematik

MatheBasics Teil 4 Grundlagen der Mathematik Fernstudium Guide Online Vorlesung Wirtschaftswissenschaft MatheBasics Teil 4 Grundlagen der Mathematik Version vom 02.11.2015 Dieses Werk ist urheberrechtlich geschützt. Jegliche unzulässige Form der

Mehr

1.2 Rechnen mit Termen II

1.2 Rechnen mit Termen II 1.2 Rechnen mit Termen II Inhaltsverzeichnis 1 Ziele 2 2 Potenzen, bei denen der Exponent negativ oder 0 ist 2 3 Potenzregeln 3 4 Terme mit Wurzelausdrücken 4 5 Wurzelgesetze 4 6 Distributivgesetz 5 7

Mehr