Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2009 Mathematik (2. Sek)

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2009 Mathematik (2. Sek)"

Transkript

1 Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2009 Mathematik (2. Sek) Gymnasium Unterstrass Zürich Aufnahmeprüfung 2009 Kurzgymnasium (Anschluss 2. Sekundarklasse) Mathematik Name: Die Prüfung besteht aus zwei Teilen. Im ersten Teil ergibt jede richtige Lösung einen Punkt. Schreibe die Resultate bitte in die rechte Spalte. Beachte dabei eine Richtzeit von etwa 30 Minuten. Im zweiten Teil ist der Lösungsweg wesentlich. Die Aufgaben können in beliebiger Reihenfolge, müssen aber alle direkt nach der Aufgabe auf diese Blätter gelöst werden. Der Rechenweg muss in der Darstellung ersichtlich sein. Schreibe bitte Zwischenresultate auf. Zeichne und konstruiere sorgfältig Parallelen und Senkrechten dürfen mit dem Geodreieck gezeichnet werden. Zu den Konstruktionsaufgaben gehört ein Konstruktionsbericht. Bezeichne die Lösungsfigur bitte sorgfältig. Gesamtzeit für beide Teile: 90 Minuten. Teil I II Total Aufgabe Punkte = = = = 4 30 erreicht Teil I (Richtzeit: 30 Minuten) Resultate 1 Wie viele zweistellige Primzahlen, die kleiner sind als 40, gibt es? Anzahl = 2 Berechne den folgenden Ausdruck auf drei Dezimalen genau: 3" 14.3 " 2.72 # ( ) 2 = 3 Vereinfache den Term so weit wie möglich: 8p" 7 16 # 9 20 : 3 5p = =

2 Gymnasium Unterstrass Zürich Seite 2 Aufnahmeprüfung 2009 Mathematik (2. Sek) 4 Zwei rechteckige Stoffplanen deren Breiten 6 m und 8 m und deren Längen 12 m und 4 m betragen, müssen zu einer flächengleichen, quadratischen Plane zusammengenäht werden. Wie gross ist die Seite der neuen Plane? (Genauigkeit: zwei Dezimalen) Die Seite ist cm gross. 5 Bestimme den grössten gemeinsamen Teiler der drei Zahlen 48, 64 und 252. ggt(48,64,252) = 6 Bei einem gleichschenkligen Dreieck sitzen alle drei Eckpunkte auf einem Kreis, wobei eine der Dreiecksseiten den Durchmesser des Kreises bildet. Die Fläche des Dreiecks beträgt 9 cm 2. Wie gross ist der Radius des Kreises? Der Radius r beträgt cm 7 Bestimme die Lösungsmenge bezüglich G = Q. 10x x = 0 L =

3 Gymnasium Unterstrass Zürich Seite 3 Aufnahmeprüfung 2009 Mathematik (2. Sek) 8 Berechne die Summe der beiden Winkel α und β in der folgenden Figur. t ist Tangente an den Kreis k. α + β = 9 Bestimme die Lösungsmenge in aufzählender Form bezüglich G = Z. 10 " (2x " 5) + 3x < 20 L = 10 Das Modell eines Uhrwerks hat einen Durchmesser von 30 cm. Der Durchmesser des Uhrwerks in der Realität beträgt 1.2 cm. Wie gross (in cm) ist der Durchmesser eines Uhrwerk- Zahnrädchens im Modell, wenn er in der Realität 0.5 mm beträgt? Gib die Antwort in cm auf drei Dezimalen genau. Der Durchmesser ist cm gross.

4 Gymnasium Unterstrass Zürich Seite 4 Aufnahmeprüfung 2009 Mathematik (2. Sek) Teil II (Richtzeit: 60 Minuten) 1 Konstruiere das gleichschenklige Dreieck ABC (AB: Basis) und schreibe einen Konstruktionsbericht. Konstruiere direkt im unteren Feld. M: Mittelpunkt von AC P h b Konstruktion: Skizze: Konstruktionsbericht:

5 Gymnasium Unterstrass Zürich Seite 5 Aufnahmeprüfung 2009 Mathematik (2. Sek) 2 Ein Getränkelieferant fährt um 8.50 Uhr bei seinem Depot ab. Er hat geplant, um 9.25 Uhr beim ersten Kunden einzutreffen. a) In welcher Entfernung zum Depot wohnt dieser Kunde, wenn der Lieferant planmässig bei ihm eintrifft und mit einer mittleren Geschwindigkeit von 42 km/h unterwegs war? b) Der zweite Kunde wohnt 15.4 km vom ersten entfernt. Die dortige Lieferung wurde auf punkt Uhr abgemacht. Um 9.40 Uhr fährt der Lieferant beim ersten Kunden ab. Nach 4.9 km Fahrstrecke mit immer noch 42 km/h mittlerer Geschwindigkeit muss er wegen einer Baustelle 4 Minuten lang anhalten. Mit welcher durchschnittlichen Geschwindigkeit müsste er danach weiterfahren können, um immer noch pünktlich beim zweiten Kunden einzutreffen? Gib die Antwort in km/h.

6 Gymnasium Unterstrass Zürich Seite 6 Aufnahmeprüfung 2009 Mathematik (2. Sek) 3 a) Ein quaderförmiger Öltank steht in einer prismaförmigen Wanne, deren Grundfläche ein gleichschenkliges Trapez ist (siehe Zeichnung), damit allenfalls auslaufendes Öl darin aufgefangen wird. Der Tank ist 5.20 m lang, 3.80 m breit und 6.10 m hoch. Ist die Wanne genügend gross, um das Öl des vollgefüllten Tanks auffangen zu können? b) Berechne Umfang und Fläche des Vierecks ABCD: (M ist der Kreismittelpunkt.)

7 Gymnasium Unterstrass Zürich Seite 7 Aufnahmeprüfung 2009 Mathematik (2. Sek) 4 Für den rechteckigen, 10.8 m x 30.0 m messenden kleinen Innenhof eines Neubaus sind quadratische Bodenplatten vorgesehen. a) Wie viele Platten braucht es, wenn sie maximal gross sein sollen, der Hof damit vollständig gefüllt und keine Platten aufgeschnitten werden sollen? b) Bei einer zweiten (gänzlich andersartigen) Planungsvariante sind die Masse des Hofes zu bestimmen. Länge und Breite sollen sich verhalten wie 16 : 9 und seine Fläche soll gleich gross sein wie bei der ersten Variante.

8 Gymnasium Unterstrass Zürich Seite 8 Aufnahmeprüfung 2009 Mathematik (2. Sek) 5 Fällt ein Ball aus der Höhe h (in m) auf einen glatten Hartboden, so erreicht er nach jedem Aufprall das 0.9-fache der vorherigen Höhe. Nimm an, dass die Anfangshöhe h = 2 m ist. a) Welche Höhe erreicht der Ball nach dem 1. Aufprall, 2. Aufprall, 3. Aufprall, 4. Aufprall, n- ten Aufprall? Trage die entsprechenden Werte in die Tabelle ein. h (Anfangshöhe) h 1 (nach 1. h 2 (nach 2. h 3 (nach 3. h 4 (nach 4. usw. h n (nach dem n-ten Höhe im m 2 usw. b) Trage die entsprechenden Werte als Punkte in das unterstehende Koordinatensystem ein. c) Macht es Sinn die Punkte aus b) mit einer Linie zu verbinden? Begründe deine Antwort

9 Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2009 Mathematik (3. Sek) Gymnasium Unterstrass Zürich Aufnahmeprüfung 2009 Kurzgymnasium (Anschluss 3. Sekundarklasse) Mathematik Name: Die Prüfung besteht aus zwei Teilen. Im ersten Teil ergibt jede richtige Lösung einen Punkt. Schreibe die Resultate bitte in die rechte Spalte. Beachte dabei eine Richtzeit von etwa 30 Minuten. Im zweiten Teil ist der Lösungsweg wesentlich. Die Aufgaben können in beliebiger Reihenfolge, müssen aber alle direkt nach der Aufgabe auf diese Blätter gelöst werden. Der Rechenweg muss in der Darstellung ersichtlich sein. Schreibe bitte Zwischenresultate auf. Zeichne und konstruiere sorgfältig Parallelen und Senkrechten dürfen mit dem Geodreieck gezeichnet werden. Zu den Konstruktionsaufgaben gehört ein Konstruktionsbericht. Bezeichne die Lösungsfigur bitte sorgfältig. Gesamtzeit für beide Teile: 90 Minuten. Teil I II Total Aufgabe Punkte = = = = 4 30 erreicht Teil I (Richtzeit: 30 Minuten) Resultate 1 Wie viele zweistellige Primzahlen, die kleiner sind als 40, gibt es? Anzahl = 2 Berechne den folgenden Ausdruck auf drei Dezimalen genau: 3" 14.3 " 2.72 # ( ) 2 = 3 Vereinfache den Term so weit wie möglich: 7 8p" 16s # 9 20 : 3s 5p = =

10 Gymnasium Unterstrass Zürich Seite 2 Aufnahmeprüfung 2009 Mathematik (3. Sek) 4 Aus einem rechteckigen Stück Papier muss ein kleineres Rechteck ausgeschnitten werden, dessen Seitenlängen jeweils 1 der ursprünglichen Längen betragen. 3 Welcher Anteil des ursprünglichen Papiers bleibt übrig? Notiere diesen Anteil als Bruch:. 5 Bestimme den grössten gemeinsamen Teiler der drei Zahlen 48, 64 und 252. ggt(48,64,252) = 6 Bei einem gleichschenkligen Dreieck sitzen alle drei Eckpunkte auf einem Kreis, wobei eine der Dreiecksseiten den Durchmesser des Kreises bildet. Die Fläche des Dreiecks beträgt 9 cm 2. Wie gross ist der Radius des Kreises? Der Radius r beträgt cm 7 Bestimme die Lösungsmenge bezüglich G = Q. 2x " 4 x " 3 3 = 5 L =

11 Gymnasium Unterstrass Zürich Seite 3 Aufnahmeprüfung 2009 Mathematik (3. Sek) 8 Berechne die Summe der beiden Winkel α und β in der folgenden Figur. t ist Tangente an den Kreis k. α + β = 9 Bestimme die Lösungsmenge in aufzählender Form bezüglich G = Z. "(2x " 5) + 5x < 2x +10 L = 10 Das Modell eines Uhrwerks hat einen Durchmesser von 30 cm. Der Durchmesser des Uhrwerks in der Realität beträgt 1.2 cm. Wie gross (in cm) ist der Durchmesser eines Uhrwerk- Zahnrädchens im Modell, wenn er in der Realität 0.5 mm beträgt? Gib die Antwort in cm auf drei Dezimalen genau. Der Durchmesser ist cm gross.

12 Gymnasium Unterstrass Zürich Seite 4 Aufnahmeprüfung 2009 Mathematik (3. Sek) Teil II (Richtzeit: 60 Minuten) 1 Konstruiere das gleichschenklige Dreieck ABC (AB: Basis) und schreibe einen Konstruktionsbericht. Konstruiere direkt im unteren Feld. M: Mittelpunkt von AC P h b Konstruktion: Skizze: Konstruktionsbericht:

13 Gymnasium Unterstrass Zürich Seite 5 Aufnahmeprüfung 2009 Mathematik (3. Sek) 2 Ein Getränkelieferant fährt um 8.50 Uhr bei seinem Depot ab. Er hat geplant, um 9.25 Uhr beim ersten Kunden einzutreffen. a) In welcher Entfernung zum Depot wohnt dieser Kunde, wenn der Lieferant planmässig bei ihm eintrifft und mit einer mittleren Geschwindigkeit von 42 km/h unterwegs war? b) Der zweite Kunde wohnt 15.4 km vom ersten entfernt. Die dortige Lieferung wurde auf punkt Uhr abgemacht. Um 9.40 Uhr fährt der Lieferant beim ersten Kunden ab. Nach 4.9 km Fahrstrecke mit immer noch 42 km/h mittlerer Geschwindigkeit muss er wegen einer Baustelle 4 Minuten lang anhalten. Mit welcher durchschnittlichen Geschwindigkeit müsste er danach weiterfahren können, um immer noch pünktlich beim zweiten Kunden einzutreffen? Gib die Antwort in km/h.

14 Gymnasium Unterstrass Zürich Seite 6 Aufnahmeprüfung 2009 Mathematik (3. Sek) 3 a) Ein quaderförmiger Öltank steht in einer prismaförmigen Wanne, deren Grundfläche ein gleichschenkliges Trapez ist (siehe Zeichnung), damit allenfalls auslaufendes Öl darin aufgefangen wird. Der Tank ist 5.20 m lang, 3.80 m breit und 6.10 m hoch. Dummerweise hat nach dem vollständigen Füllen des Tankes jemand einen Hahn geöffnet, der das Öl des Tanks in die Wanne auslaufen lässt. Wie hoch wird die Wanne mit Öl gefüllt, wenn der Hahn auf einer Höhe von 1.60 angebracht ist? (Genauigkeit: 2 Dezimalen) b) Gegeben ist ein Kreissektor mit dem Radius r = 14 cm und dem Mittelpunktswinkel von 60. DC ist parallel zu AB. Die Strecke MD ist 8 cm lang. α) Wie lang ist der in der Zeichnung fett gedruckte Streckenzug MDCBA in cm? (" = 22 7) β) Wie gross ist der Inhalt der weissen Fläche DCBA in cm 2? (Genauigkeit: 2 Dezimalen)

15 Gymnasium Unterstrass Zürich Seite 7 Aufnahmeprüfung 2009 Mathematik (3. Sek) 4 Franz hat für seine physikalischen Versuche drei verschiedene Fadenpendel gebaut: (Unter einem Fadenpendel versteht man ein Stück Schnur mit einer bestimmten Länge, an welchem unten ein Gewicht angebunden wird Abbildung). Das kürzeste Pendel braucht pro Schwingung (= einmaliges Hin- und Herschwingen) eine Zeit von 1.8s, das mittlere 2.4s und beim längsten Pendel dauert die Schwingung 4.2s. a) Die drei Pendel werden gleichzeitig aus der Startposition losgelassen. Wie lange dauert es, bis sie zum ersten Mal wieder alle gleichzeitig die Startposition erreichen? b) Welche maximale Schwingungsdauer darf ein viertes Fadenpendel aufweisen, wenn es immer dann in der Startposition vorbeikommen soll, wenn eines der drei anderen Pendel seine Startposition erreicht? c) Franz hat bereits festgestellt, dass die Dauer einer Schwingung bei Fadenpendeln alleine durch die Schnurlänge bestimmt wird. Er vermutet weiter, dass die Schwingungsdauer proportional zur Schnurlänge ist. Was sagst du zu Franz Vermutung, wenn bei seinen zwei kürzeren Pendeln die Längen 82cm und 146cm betragen?

16 Gymnasium Unterstrass Zürich Seite 8 Aufnahmeprüfung 2009 Mathematik (3. Sek) 5 Fällt ein Ball aus der Höhe h (in m) auf einen glatten Hartboden, so erreicht er nach jedem Aufprall das 0.9-fache der vorherigen Höhe. Nimm an, dass die Anfangshöhe h = 2 m ist. a) Welche Höhe erreicht der Ball nach dem 1. Aufprall, 2. Aufprall, 3. Aufprall, 4. Aufprall, n- ten Aufprall? Trage die entsprechenden Werte in die Tabelle ein. h (Anfangshöhe) h 1 (nach 1. h 2 (nach 2. h 3 (nach 3. h 4 (nach 4. usw. h n (nach dem n- ten Höhe im m 2 usw. b) Trage die entsprechenden Werte als Punkte in das unterstehende Koordinatensystem ein. c) Macht es Sinn die Punkte aus b) mit einer Linie zu verbinden? Begründe deine Antwort

17 Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2009 Mathematik Lösungen 2. Sek: TEIL p cm cm , 3, 2, 1, 0, -1, -2, -3, cm TEIL 2 1 Konstruktionsbericht: - AM verlängern und von M aus nochmals AM abtragen C - Von P aus das Lot auf AC fällen F (= Höhenfusspunkt) - FP verlängern - k(c, AC) " FP B 2 a) 24.5 km b) 70 km/h 3 a) Trapez: h = 8.25m A = 92.36, resp m 2 Tank: V = = m 3 Tankgrundfläche: A = = m 2 Restfläche = Trapezfläche Tankgrundfläche = = m 2 b) Höhe des Öls (, wenn alles auslaufen würde): Die Wanne ist genügend gross. AC = 89 " 9.43 A = " AD = 53 " a) 1.2 m, b) Länge = 24 m, Breite = 13.5 m 5 a) h = V Tank A Re st = =1.66 m U = " h (Anfangshöhe) h 1 (nach 1. h 2 (nach 2. h 3 (nach 3. h 4 (nach 4. usw. h n (nach dem n-ten Höhe im m usw. 2 ( 0.9) n )

18 Gymnasium Unterstrass Zürich Seite 2 Aufnahmeprüfung 2009 Mathematik b). y x c). Nein, es macht keinen Sinn, da die Höhe sich nicht kontinuierlich, sondern nur nach einem Aufprall verändert.

19 Gymnasium Unterstrass Zürich Seite 3 Aufnahmeprüfung 2009 Mathematik Lösungen 3. Sek: TEIL p 4s cm , 3, 2, 1, 0, -1, -2, -3, cm TEIL 2 1 Siehe 2. Sek 2 Siehe 2. Sek 3 a) Trapez: h = 8.25m A = 92.36, resp m 2 Tankvolumen oberhalb des Hahns: V = ( ) = m 3 Tankgrundfläche: A = = m 2 Restfläche = Trapezfläche Tankgrundfläche = = m 2 Höhe des Öls (, wenn alles oberhalb des Hahns auslaufen würde): b) α) β) 4 a) 50.4s h = V Tank A Re st = =1.22 m "22"14 7"6 = cm = cm A = 22 " " 60 # 8"8" "2 = #16" 3 $ # 27.71= cm b) 0.6s c) nicht proportional, denn: 82:1.8= =146:2.4 5 Siehe 2. Sek Bewertung von Teil I: Aufgabe 1.2 Richtige Antwort: 1 P., bei falscher Anzahl Dezimalen 0.5 P.; Aufgabe 1.4 Richtige Antwort: 1 P., bei falscher Anzahl Dezimalen 0.5 P.; Aufgabe 1.5 Korrigiere bitte die Antwort, die richtige Antwort ist 4.; Aufgabe 1.9 Richtige Antwort: 1 P., Antwort ohne negative Zahlen: 0.5 P.; Aufgabe 1.10 Richtige Antwort: 1 P., bei falscher Anzahl Dezimalen 0.5 P..

Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2016 Mathematik (2. Sek)

Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2016 Mathematik (2. Sek) Gymnasium Unterstrass Zürich Seite 1 Gymnasium Unterstrass Zürich Aufnahmeprüfung 2016 Kurzgymnasium (Anschluss 2. Sekundarklasse) Mathematik Name: Die Prüfung besteht aus zwei Teilen. Im ersten Teil steht

Mehr

Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2015 Mathematik (3. Sek)

Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2015 Mathematik (3. Sek) Gymnasium Unterstrass Zürich Seite 1 Gymnasium Unterstrass Zürich Aufnahmeprüfung 2015 Kurzgymnasium (Anschluss 3. Sekundarklasse) Mathematik Name: Die Prüfung besteht aus zwei Teilen. Im ersten Teil steht

Mehr

Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2016 Mathematik (3. Sek)

Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2016 Mathematik (3. Sek) Gymnasium Unterstrass Zürich Seite 1 Gymnasium Unterstrass Zürich Aufnahmeprüfung 2016 Kurzgymnasium (Anschluss 3. Sekundarklasse) Mathematik Name: Die Prüfung besteht aus zwei Teilen. Im ersten Teil steht

Mehr

Teil I (Richtzeit: 30 Minuten)

Teil I (Richtzeit: 30 Minuten) Gymnasium Unterstrass Zürich Seite 1 Gymnasium Unterstrass Zürich Aufnahmeprüfung 2012 Kurzgymnasium (Anschluss 2. Sekundarklasse, NLM) Mathematik Name: Die Prüfung besteht aus zwei Teilen. Im ersten Teil

Mehr

Teil I (Richtzeit: 30 Minuten)

Teil I (Richtzeit: 30 Minuten) Gymnasium Unterstrass Zürich Seite Aufnahmeprüfung 00 Mathematik (. Sek) Gymnasium Unterstrass Zürich Aufnahmeprüfung 00 Kurzgymnasium (Anschluss. Sekundarklasse) Mathematik Name: Die Prüfung besteht aus

Mehr

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Hohl) Serie: E1 Dauer: 90 Minuten Lösungen Hilfsmittel: Vorschriften: Bewertung:

Mehr

Zentrale Aufnahmeprüfung 2015 für die Handelsmittelschulen des Kantons Zürich. Vorname:... Aufgaben 1 2 3 4 5 6 7 8 9 Total Note

Zentrale Aufnahmeprüfung 2015 für die Handelsmittelschulen des Kantons Zürich. Vorname:... Aufgaben 1 2 3 4 5 6 7 8 9 Total Note Zentrale Aufnahmeprüfung 2015 für die Handelsmittelschulen des Kantons Zürich Mathematik Name:... Vorname:... Prüfungsnummer:... Du hast 90 Minuten Zeit. Du musst alle Aufgaben in dieses Heft lösen. Wenn

Mehr

Sekundarschulabschluss für Erwachsene. Geometrie A 2012

Sekundarschulabschluss für Erwachsene. Geometrie A 2012 SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2012 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Hohl) Serie: E2 Dauer: 90 Minuten Lösungen Hilfsmittel: Vorschriften: Bewertung:

Mehr

Mathematik: Korrekturanleitung

Mathematik: Korrekturanleitung Kanton St.Gallen Bildungsdepartement St.Gallische Kantonsschulen Gymnasium Aufnahmeprüfung 2014 Mathematik: Korrekturanleitung Die Korrekturanleitung legt die Verteilung der Punkte auf die einzelnen Aufgaben

Mehr

Zentrale Aufnahmeprüfung für die Handelsmittelschulen des Kantons Zürich

Zentrale Aufnahmeprüfung für die Handelsmittelschulen des Kantons Zürich Zentrale Aufnahmeprüfung für die Handelsmittelschulen des Kantons Zürich Aufnahmeprüfung 2013 Für Kandidatinnen und Kandidaten mit herkömmlichem Lehrmittel Mathematik Name:... Nummer:... Dauer der Prüfung:

Mehr

Sekundarschulabschluss für Erwachsene

Sekundarschulabschluss für Erwachsene SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2011 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

Mathematik 1 (ohne Taschenrechner)

Mathematik 1 (ohne Taschenrechner) Kanton St.Gallen Bildungsdepartement Gymnasium Aufnahmeprüfung 2018 Mathematik 1 (ohne Taschenrechner) Dauer: 90 Minuten Kandidatennummer: Geburtsdatum: Korrigiert von: Punktzahl/Note: Aufgabe 1 2 3 4

Mehr

Name: Bearbeitungszeitraum:

Name: Bearbeitungszeitraum: Meine Geomappe Name: Bearbeitungszeitraum: vom bis zum Aufgabe 1 Zeichne einen Kreis mit a) Radius 2 cm. b) Radius 3,5 cm. c) Radius 1,7 cm. Aufgabe 2 Zeichne einen Kreis mit einem Durchmesser von 5 cm

Mehr

Übungsaufgaben Klasse 7

Übungsaufgaben Klasse 7 Übungsaufgaben Klasse 7 2. Oktober 2006 Dreieckskonstruktion Versuche erst, alle Aufgaben zu lösen. Die Lösungen findest du ab Montag auf: http://www.hagener-berg.de/serdar/ unter dem Punkt Schulinfos.

Mehr

BMS Aufnahmeprüfung Jahr 2014 Basierend auf Lehrmittel: Mathematik (Schelldorfer)

BMS Aufnahmeprüfung Jahr 2014 Basierend auf Lehrmittel: Mathematik (Schelldorfer) Bildungsdirektion des Kantons Zürich Mittelschul- und Bildungsamt BMS Aufnahmeprüfung Jahr 2014 Basierend auf Lehrmittel: Mathematik (Schelldorfer) Fach Mathematik Teil 1 Serie A Dauer 45 Minuten Hilfsmittel

Mehr

Mathematik, 3. Sekundarschule (Neues Lehrmittel, Erprobungsversion)

Mathematik, 3. Sekundarschule (Neues Lehrmittel, Erprobungsversion) Zentrale Aufnahmeprüfung 2011 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 3. Sekundarschule (Neues Lehrmittel, Erprobungsversion) Von der Kandidatin oder vom Kandidaten

Mehr

Teil I (Richtzeit: 30 Minuten)

Teil I (Richtzeit: 30 Minuten) Gymnasium Unterstrass Zürich Seite 1 Gymnasium Unterstrass Zürich Aufnahmeprüfung 2013 Kurzgymnasium (Anschluss 2. Sekundarklasse, neues LM) Mathematik Name: Die Prüfung besteht aus zwei Teilen. Im ersten

Mehr

Gestalterische, Gewerbliche, Gesundheitlich-Soziale und Technische Berufsmaturitätsschulen des Kantons Zürich

Gestalterische, Gewerbliche, Gesundheitlich-Soziale und Technische Berufsmaturitätsschulen des Kantons Zürich Aufnahmeprüfung 006 Serie B Teil Fach: Teil Zeit: 45 Minuten Hilfsmittel: - Geometriewerkzeuge, kein Taschenrechner Vorschriften: - Der Lösungsvorgang muss vollständig ersichtlich sein. - Ungültiges ist

Mehr

Mathematik, 2. Sekundarschule

Mathematik, 2. Sekundarschule Zentrale Aufnahmeprüfung 2009 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 2. Sekundarschule Von der Kandidatin oder vom Kandidaten auszufüllen: Name:........................

Mehr

Mathematik II (Geometrie)

Mathematik II (Geometrie) Mathematik II (Geometrie) Zeit: 120 Minuten Jede Aufgabe gibt maximal 5 Punkte. Zum Lösen jeder der sieben Aufgaben steht jeweils ein Blatt zur Verfügung. Verwende auch die Rückseite, falls du auf der

Mehr

- Zeichenutensilien, kein Taschenrechner, keine Formelsammlung

- Zeichenutensilien, kein Taschenrechner, keine Formelsammlung Bildungsdirektion des Kantons Zürich Mittelschul- und Bildungsamt BMS Aufnahmeprüfung Jahr 2014 Basierend auf Lehrmittel (alt): Arithmetik und Algebra (Hohl) Fach Mathematik Teil 1 Serie D Dauer 45 Minuten

Mehr

Übertrittsprüfung 2014

Übertrittsprüfung 2014 Departement Bildung, Kultur und Sport Abteilung Volksschule Übertrittsprüfung 2014 Aufgaben Prüfung an die 3. Klasse Bezirksschule Prüfung Name und Vorname der Schülerin / des Schülers... Prüfende Schule...

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

Mathematik Aufnahmeprüfung 2013 Profile m,n,s

Mathematik Aufnahmeprüfung 2013 Profile m,n,s Mathematik Aufnahmeprüfung 2013 Profile m,n,s Zeit: 2 Stunden. Rechner: TI30/TI34 oder vergleichbare. Hinweis: Der Lösungsweg muss nachvollziehbar sein, ansonsten werden keine Teilpunkte vergeben. Aufgabe

Mehr

Mathematik 1: (ohne Taschenrechner) Korrekturanleitung

Mathematik 1: (ohne Taschenrechner) Korrekturanleitung Kanton St.Gallen Bildungsdepartement St.Gallische Kantonsschulen Gymnasium Aufnahmeprüfung 013 Mathematik 1: (ohne Taschenrechner) Korrekturanleitung Löse die Aufgaben auf diesen Blättern. Der Lösungsweg

Mehr

Übungen. Löse folgende Aufgaben mit GeoGebra

Übungen. Löse folgende Aufgaben mit GeoGebra Übungen Löse folgende Aufgaben mit GeoGebra A1 Die Fachbegriffe in den Kästchen sollen den untenstehenden Aussagen bezüglich eines Dreiecks ABC zugeordnet werden. Du darfst die Kärtchen mehrfach verwenden

Mehr

http://www.olympiade-mathematik.de 7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1967/1968 Aufgaben und Lösungen

http://www.olympiade-mathematik.de 7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1967/1968 Aufgaben und Lösungen 7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1967/1968 Aufgaben und Lösungen 1 OJM 7. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 12 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

Grundwissen 8 - Aufgaben Seite 1

Grundwissen 8 - Aufgaben Seite 1 Grundwissen 8 - Aufgaben 22.01.2016 Seite 1 1. Ergänze jede der folgenden Aussagen zum Rechnen mit Potenzen mathematisch sinnvoll und grammatikalisch korrekt. a) Zwei Potenzen mit gleicher Basis werden

Mehr

St.Gallische Kantonsschulen Aufnahmeprüfung 2010 Gymnasium. Kandidatennummer: Geburtsdatum: Note: Aufgabe

St.Gallische Kantonsschulen Aufnahmeprüfung 2010 Gymnasium. Kandidatennummer: Geburtsdatum: Note: Aufgabe St.Gallische Kantonsschulen Aufnahmeprüfung 010 Gymnasium Mathematik 1 ohne Taschenrechner Dauer: 90 Minuten Kandidatennummer: Summe: Geburtsdatum: Note: Aufgabe 1 3 4 5 6 7 8 9 10 11 1 13 Punkte Löse

Mehr

Aufgaben zum Pythagoras, Kathetensatz, Höhensatz 1

Aufgaben zum Pythagoras, Kathetensatz, Höhensatz 1 Hinweise: Alle Zwischen- und Endergebnisse auf 2 Stellen nach dem Komma runden. Die Zeichnungen sind nicht maßstäblich. Alle Maße sind in mm, falls nicht anders angegeben. 1. Bestimme das Maß x in nebenstehender

Mehr

Name Vorname Schuljahr 2005/2006 Datum der Durchführung Donnerstag, ORIENTIERUNGSARBEIT

Name Vorname Schuljahr 2005/2006 Datum der Durchführung Donnerstag, ORIENTIERUNGSARBEIT Sekundarschule 4. Klasse Niveau P Name Vorname Schuljahr 2005006 Datum der Durchführung Donnerstag, 17.11.05 ORIENTIERUNGSARBEIT Sekundarschule Mathematik Niveau P (M6) Lies zuerst Anleitung und Hinweise

Mehr

Mathematik, 2. Sekundarschule (bisheriges Lehrmittel)

Mathematik, 2. Sekundarschule (bisheriges Lehrmittel) Zentrale Aufnahmeprüfung 2011 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 2. Sekundarschule (bisheriges Lehrmittel) Von der Kandidatin oder vom Kandidaten auszufüllen:

Mehr

Teil I (Richtzeit: 30 Minuten)

Teil I (Richtzeit: 30 Minuten) Gymnasium Unterstrass Zürich Seite 1 Gymnasium Unterstrass Zürich Aufnahmeprüfung 2011 Kurzgymnasium (Neues Lehrmittel) Mathematik Name: Die Prüfung besteht aus zwei Teilen. Im ersten Teil gilt folgende

Mehr

Falten regelmäßiger Vielecke

Falten regelmäßiger Vielecke Blatt 1 Gleichseitige Dreiecke Ausgehend von einem quadratischen Stück Papier kann man ohne weiteres Werkzeug viele interessante geometrische Figuren nur mit den Mitteln des Papierfaltens (Origami) erzeugen.

Mehr

Konstruktionen am Dreieck

Konstruktionen am Dreieck Winkelhalbierende Die Winkelhalbierende halbiert den jeweiligen Innenwinkel des Dreiecks. Sie agieren als Symmetrieachse. Dadurch ist jeder Punkt der Winkelhalbierenden gleich weit von den beiden Schenkeln

Mehr

Mathematik, 3. Sekundarschule

Mathematik, 3. Sekundarschule Zentrale Aufnahmeprüfung 2009 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 3. Sekundarschule Von der Kandidatin oder vom Kandidaten auszufüllen: Name:........................

Mehr

Kandidatennummer / Name... Gruppennummer... Aufgabe Total Note

Kandidatennummer / Name... Gruppennummer... Aufgabe Total Note Mathematik Lösungen Zweiter Teil mit Taschenrechner Kandidatennummer / Name... Gruppennummer... Vorname... Aufgabe 1 2 3 4 5 6 Total Note Punkte total Punkte erreicht 4 5 6 6 4 5 30 Die Prüfung dauert

Mehr

4. Mathematikschulaufgabe

4. Mathematikschulaufgabe 1. a) Zeichne mit Hilfe des y-abschnittes und eines Steigungsdreiecks die Geraden mit folgenden Gleichungen in ein Koordinatensystem! (Kennzeichne die Geraden mit I, II, III) I) y = 4-1,4 x II) 2x 3y 6

Mehr

Mathematik Aufnahmeprüfung 2013 Profile m,n,s

Mathematik Aufnahmeprüfung 2013 Profile m,n,s Mathematik Aufnahmeprüfung 2013 Profile m,n,s Zeit: 2 Stunden. Rechner: TI30/TI34 oder vergleichbare. Hinweis: Der Lösungsweg muss nachvollziehbar sein, ansonsten werden keine Teilpunkte vergeben. Aufgabe

Mehr

ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter

ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter Berufsmaturitätsschule GIB Bern Aufnahmeprüfung 2005 Mathematik Teil A Zeit: 45 Minuten Name / Vorname:... ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese

Mehr

Wassily Kandinsky: Structure joyeuse. Beschreibe die Figuren und zeichne sie aus freier Hand in dein Heft.

Wassily Kandinsky: Structure joyeuse. Beschreibe die Figuren und zeichne sie aus freier Hand in dein Heft. 6 Flächen Wie heißen die Figuren? a) Dreiecke Viereck d) Quadrat b) Kreis Quadrate e) Dreiecke Rechteck c) Rechtecke Viereck f) Kreis Wassily Kandinsky: Structure joyeuse Lege Vierecke. a) Nimm vier gleich

Mehr

Mathematik 1 (ohne Taschenrechner)

Mathematik 1 (ohne Taschenrechner) Kanton St.Gallen Bildungsdepartement Gymnasium Aufnahmeprüfung 2018 Mathematik 1 (ohne Taschenrechner) Korrekturanleitung Die Korrekturanleitung legt die Verteilung der Punkte auf die einzelnen Aufgaben

Mehr

. Wo liegt das Zentrum S? d) E ist das Bild von I mit

. Wo liegt das Zentrum S? d) E ist das Bild von I mit Zentrische Streckung, Ähnlichkeit 1. Eine gegebene Strecke ist durch Konstruktion im Verhältnis 5 3 harmonisch zu teilen. 1 U und V teilen die Strecke mit der Länge 24 cm harmonisch im Verhältnis 5 3.

Mehr

St.Gallische Kantonsschulen Aufnahmeprüfung 2010 Gymnasium. Kandidatennummer: Geburtsdatum: Note: Aufgabe

St.Gallische Kantonsschulen Aufnahmeprüfung 2010 Gymnasium. Kandidatennummer: Geburtsdatum: Note: Aufgabe St.Gallische Kantonsschulen Aufnahmeprüfung 2010 Gymnasium Mathematik 1 ohne Taschenrechner Dauer: 90 Minuten Kandidatennummer: Summe: Geburtsdatum: Note: Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 Punkte Löse

Mehr

Sekundarschulabschluss für Erwachsene. Geometrie A b) Strecken Sie das Dreieck ABC (Streckfaktor: -1/ Streckzentrum Z) (3 Punkte)

Sekundarschulabschluss für Erwachsene. Geometrie A b) Strecken Sie das Dreieck ABC (Streckfaktor: -1/ Streckzentrum Z) (3 Punkte) SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2013 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

Mathematik I Prüfung für den Übertritt aus der 9. Klasse

Mathematik I Prüfung für den Übertritt aus der 9. Klasse Aufnahmeprüfung 015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 9. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle

Mehr

Mathematik I - Prüfung für den Übertritt aus der 8. Klasse

Mathematik I - Prüfung für den Übertritt aus der 8. Klasse gyrnjmatur Aufnahmeprüfung 2015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I - Prüfung für den Übertritt aus der 8. Klasse Bitte beachten: Bearbeitungsdauer: 60 Minuten

Mehr

Berufsmaturitätsprüfung 2006 Mathematik

Berufsmaturitätsprüfung 2006 Mathematik GIBB Gewerblich-Industrielle Berufsschule Bern Berufsmaturitätsschule Berufsmaturitätsprüfung 2006 Mathematik Zeit: 180 Minuten Hilfsmittel: Hinweise: Formel- und Tabellensammlung ohne gelöste Beispiele,

Mehr

Geometrie. in 15 Minuten. Geometrie. Klasse

Geometrie. in 15 Minuten. Geometrie. Klasse Klasse Geometrie Geometrie 6. Klasse in 5 Minuten Winkel und Kreis Zeichne und überprüfe in deinem Übungsheft: a) Wo liegen alle Punkte, die von einem Punkt A den Abstand cm haben? b) Färbe den Bereich,

Mehr

Serie 1 Klasse Vereinfache. a) 2(4a 5b) b) 3. Rechne um. a) 456 m =... km b) 7,24 t =... kg

Serie 1 Klasse Vereinfache. a) 2(4a 5b) b) 3. Rechne um. a) 456 m =... km b) 7,24 t =... kg Serie 1 Klasse 10 1. Berechne. 1 a) 4 3 b) 0,64 : 8 c) 4 6 d) ³. Vereinfache. 1x²y a) (4a 5b) b) 4xy 3. Rechne um. a) 456 m =... km b) 7,4 t =... kg 4. Ermittle. a) 50 % von 30 sind... b) 4 kg von 480

Mehr

Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt

Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt 1 7 Flächeninhalt 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt A = cm 2 und die Grundlinie a = 4 cm haben. Rechteck: h = 2,5 cm Parallelogramm:

Mehr

Grundwissen Mathematik für die Jahrgangsstufe 6 - Lösungen

Grundwissen Mathematik für die Jahrgangsstufe 6 - Lösungen Grundwissen Mathematik für die Jahrgangsstufe 6 - Lösungen 1. Gib mindestens drei Eigenschaften der natürlichen Zahlen an. Jede natürliche Zahl hat einen Nachfolger und jede natürliche Zahl außer 1 hat

Mehr

Übungsaufgaben Geometrie und lineare Algebra - Serie 1

Übungsaufgaben Geometrie und lineare Algebra - Serie 1 Übungsaufgaben Geometrie und lineare Algebra - Serie. Bei einer geraden Pyramide mit einer quadratischen Grundfläche von 00 cm beträgt die Seitenkante 3 cm. a) Welche Höhe hat die Pyramide? b) Wie groß

Mehr

Klausur zur Einführung in die Geometrie im SS 2002

Klausur zur Einführung in die Geometrie im SS 2002 Klausur zur Einführung in die Geometrie im SS 2002 Name, Vorname... Matr.Nr.... Semester-Anzahl im SS 2002:... Studiengang GH/R/S Tutor/in:... Aufg.1 Aufg,2 Aufg.3 Aufg.4 Aufg.5 Aufg.6 Aufg.7 Aufg.8 Gesamt

Mehr

Lernen an Stationen Thema: Flächenberechnung

Lernen an Stationen Thema: Flächenberechnung Lernen an Stationen Thema: Flächenberechnung 8. Jahrgang Mathematics is a way of thinking, not a collection of facts! Ausgehend von dieser grundsätzlichen Überzeugung sollte ein Unterricht zum Thema Flächenberechnung

Mehr

(3r) r 2 =? xy 3y a + 6b 14. ( xy

(3r) r 2 =? xy 3y a + 6b 14. ( xy Mathematik Aufnahmeprüfung 2014 Profile m,n,s Lösungen Aufgabe 1 (a) Vereinfache (schreibe als einen Bruch): 2 + a 2 + 3b 7 =? (b) (c) Vereinfache so weit wie möglich: Vereinfache so weit wie möglich:

Mehr

Mathematik, 2. Sekundarschule

Mathematik, 2. Sekundarschule Zentrale Aufnahmeprüfung 2010 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 2. Sekundarschule Von der Kandidatin oder vom Kandidaten auszufüllen: Name: Vorname:... Prüfungsnummer:

Mehr

20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen.

20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen. Flächeninhalte von Vielecken Parallelogramm Übungen - 9 20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen.

Mehr

Arbeitsblätter zur Arbeit mit GEOGEBRA in Klasse 6

Arbeitsblätter zur Arbeit mit GEOGEBRA in Klasse 6 Arbeitsblätter zur Arbeit mit GEOGEBRA in Klasse 6 Die folgenden Arbeitsblätter sind für die Arbeit im Mathematikunterricht Klasse 6 bestimmt. Sie kommen im Verlauf von Lernbereich 3 Dreiecke und Vierecke

Mehr

Mathematik I Prüfung für den Übertritt aus der 8. Klasse

Mathematik I Prüfung für den Übertritt aus der 8. Klasse Aufnahmeprüfung 015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 8. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle

Mehr

Mathematik. Prüfung zum mittleren Bildungsabschluss 2008. Saarland. Schriftliche Prüfung Pflichtaufgaben. Name: Vorname: Klasse:

Mathematik. Prüfung zum mittleren Bildungsabschluss 2008. Saarland. Schriftliche Prüfung Pflichtaufgaben. Name: Vorname: Klasse: Prüfung zum mittleren Bildungsabschluss 2008 Schriftliche Prüfung Pflichtaufgaben Mathematik Saarland Ministerium für Bildung, Familie, Frauen und Kultur Name: Vorname: Klasse: Bearbeitungszeit: 120 Minuten

Mehr

Mathematik 1: (ohne Taschenrechner) Korrekturanleitung

Mathematik 1: (ohne Taschenrechner) Korrekturanleitung Kanton St.Gallen Bildungsdepartement St.Gallische Kantonsschulen Gymnasium Aufnahmeprüfung 2015 Mathematik 1: (ohne Taschenrechner) Korrekturanleitung Die Korrekturanleitung legt die Verteilung der Punkte

Mehr

St.Gallische Kantonsschulen Aufnahmeprüfung 2011 Gymnasium. Kandidatennummer: Geburtsdatum: Note: Aufgabe Punkte

St.Gallische Kantonsschulen Aufnahmeprüfung 2011 Gymnasium. Kandidatennummer: Geburtsdatum: Note: Aufgabe Punkte St.Gallische Kantonsschulen Aufnahmeprüfung 2011 Gymnasium Mathematik 1 ohne Taschenrechner Dauer: 90 Minuten Kandidatennummer: Summe: Geburtsdatum: Note: Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 Punkte Löse

Mehr

St.Gallische Kantonsschulen Aufnahmeprüfung 2009 Gymnasium. Kandidatennummer: Geburtsdatum: Note: Aufgabe Punkte

St.Gallische Kantonsschulen Aufnahmeprüfung 2009 Gymnasium. Kandidatennummer: Geburtsdatum: Note: Aufgabe Punkte St.Gallische Kantonsschulen Aufnahmeprüfung 2009 Gymnasium Mathematik 1 ohne Taschenrechner Dauer: 90 Minuten Kandidatennummer: Summe: Geburtsdatum: Note: Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 Punkte Löse

Mehr

JAHRESPRÜFUNG MATHEMATIK. 1. Klassen Kantonschule Reussbühl Luzern. 27. Mai 2014 Zeit: 13:10 14:40 (90 Minuten)

JAHRESPRÜFUNG MATHEMATIK. 1. Klassen Kantonschule Reussbühl Luzern. 27. Mai 2014 Zeit: 13:10 14:40 (90 Minuten) KLASSE: NAME: VORNAME: Mögliche Punktzahl: 51 48 Pte. = Note 6 Erreichte Punktzahl: Note: JAHRESPRÜFUNG MATHEMATIK 1. Klassen Kantonschule Reussbühl Luzern 7. Mai 014 Zeit: 1:10 14:40 (90 Minuten) Allgemeines

Mehr

Mathematik. ~~ Thurgau "'~ Zweiter Teil - mit Taschenrechner. Lösungen - Lösungen - Lösungen. 5 6 Total

Mathematik. ~~ Thurgau '~ Zweiter Teil - mit Taschenrechner. Lösungen - Lösungen - Lösungen. 5 6 Total Mathematik Zweiter Teil - mit Taschenrechner Name Vorname Aufgabe 1 2 Punkte total Punkte erreicht 6 6 4 5 Kandidatennummer I Gruppennummer Die Prüfung dauert 45 Minuten. Die Benützung des Taschenrechners

Mehr

Mathematik. Name, Vorname:

Mathematik. Name, Vorname: Kntonsschule Zürich Birch Fchmittelschule Aufnhmeprüfung 2007 Nme, Vornme: Nr.: Zeit: 90 Minuten erlubte Hilfsmittel: Tschenrechner us der Sekundrschule, lso weder progrmmierbr noch grfik- oder lgebrfähig

Mehr

Musterprüfung Gymnasiale Maturitätsschulen. Name/Vorname: Wohnort:

Musterprüfung Gymnasiale Maturitätsschulen. Name/Vorname: Wohnort: Musterprüfung Gymnasiale Maturitätsschulen Name/Vorname: Wohnort: Mathematik schriftlich Zeit: 120 Minuten Hinweise: Schreibe auf jedes Blatt deinen Namen. Löse alle Aufgaben direkt auf den Prüfungsblättern.

Mehr

Vierte Schularbeit Mathematik Klasse 3B am

Vierte Schularbeit Mathematik Klasse 3B am Vierte Schularbeit Mathematik Klasse 3B am 23.05.2016 SCHÜLERNAME: Gruppe A Lehrer: Dr. D. B. Westra Punkteanzahl : von 24 Punkten NOTE: NOTENSCHLÜSSEL 23-24 Punkte Sehr Gut (1) 20-22 Punkte Gut (2) 16-19

Mehr

Kandidatennummer / Name... Gruppennummer... Aufgabe Total Note

Kandidatennummer / Name... Gruppennummer... Aufgabe Total Note Mathematik Zweiter Teil mit Taschenrechner Kandidatennummer / Name... Gruppennummer... Vorname... Aufgabe 1 2 3 4 5 6 Total Note Punkte total Punkte erreicht 6 6 4 5 4 6 31 Die Prüfung dauert 45 Minuten.

Mehr

Hinweise: Bei allen Aufgaben muss der Lösungsweg nachvollziehbar sein! Zugelassene Hilfsmittel: nicht programmierbarer Taschenrechner

Hinweise: Bei allen Aufgaben muss der Lösungsweg nachvollziehbar sein! Zugelassene Hilfsmittel: nicht programmierbarer Taschenrechner Probeunterricht 2006 M 7 Textrechnen 1 Name:. Vorname:.. Hinweise: Bei allen Aufgaben muss der Lösungsweg nachvollziehbar sein! Zugelassene Hilfsmittel: nicht programmierbarer Taschenrechner Aufgabe 1.

Mehr

Aufgaben zur Übung der Anwendung von GeoGebra

Aufgaben zur Übung der Anwendung von GeoGebra Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,

Mehr

Repetition für JZK. F 1 F 2 F 3 F 4 b) Vervollständige die Wertetabelle und gib jeweils einen Term! n Term q n = Anz. Quadrate der Figur

Repetition für JZK. F 1 F 2 F 3 F 4 b) Vervollständige die Wertetabelle und gib jeweils einen Term! n Term q n = Anz. Quadrate der Figur Repetition für JZK Aufgabe 1 a) Zeichne die Figur F 4! F 1 F 2 F 3 F 4 b) Vervollständige die Wertetabelle und gib jeweils einen Term! n 1 2 3 4 5 6 7 Term q n = Anz. Quadrate der Figur F n u n = äusserer

Mehr

Mathematik I - Prüfung für den Übertritt aus der 9. Klasse

Mathematik I - Prüfung für den Übertritt aus der 9. Klasse su» I MATUR Aufnahmeprüfung 2015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I - Prüfung für den Übertritt aus der 9. Klasse Bitte beachten: Bearbeitungsdauer: 60

Mehr

Teil I (Richtzeit: 30 Minuten)

Teil I (Richtzeit: 30 Minuten) Gymnasium Unterstrass Zürich Seite 1 Gymnasium Unterstrass Zürich Aufnahmeprüfung 2013 Kurzgymnasium (Anschluss 3. Sekundarklasse, neues LM) Mathematik Name: Die Prüfung besteht aus zwei Teilen. Im ersten

Mehr

Basteln und Zeichnen

Basteln und Zeichnen Titel des Arbeitsblatts Seite Inhalt 1 Falte eine Hexentreppe 2 Falte eine Ziehharmonika 3 Die Schatzinsel 4 Das Quadrat und seine Winkel 5 Senkrechte und parallele Linien 6 Ein Scherenschnitt 7 Bastle

Mehr

Quadratwurzel. Wie lassen sich die Zahlen auf dem oberen und unteren Notizzettel einander sinnvoll zuordnen?

Quadratwurzel. Wie lassen sich die Zahlen auf dem oberen und unteren Notizzettel einander sinnvoll zuordnen? 1. Zahlenpartner Quadratwurzel Wie lassen sich die Zahlen auf dem oberen und unteren Notizzettel einander sinnvoll zuordnen? Quelle: Schnittpunkt 9 (1995) Variationen: (a) einfachere Zahlen (b) ein weiteres

Mehr

GEOMETRIE (4a) Kurzskript

GEOMETRIE (4a) Kurzskript GEOMETRIE (4a) Kurzskript Dieses Kurzskript ist vor allem eine Sammlung von Sätzen und Definitionen und sollte ausdrücklich nur zusammen mit weiteren Erläuterungen in der Veranstaltung genutzt werden.

Mehr

Repetition Mathematik 6. Klasse (Zahlenbuch 6)

Repetition Mathematik 6. Klasse (Zahlenbuch 6) Repetition Mathematik 6. Klasse (Zahlenbuch 6) Grundoperationen / Runden / Primzahlen / ggt / kgv / Klammern 1. Berechne schriftlich: 2'097 + 18 6 16'009 786 481 274 69 d.) 40'092 : 78 2. Die Summe von

Mehr

1. Mathematikschulaufgabe

1. Mathematikschulaufgabe Klasse 8 / I I 1.0 Gib in Mengenschreibweise an: 1.1 Zur Menge M gehören alle Punkte, deren Abstand von parallelen Geraden g und h gleich ist, oder die von einem Punkt A mehr als 4 cm entfernt sind. 1.

Mehr

Test zur Geometrischen Kreativität (GCT-DE)

Test zur Geometrischen Kreativität (GCT-DE) Pädagogische Hochschule Schwäbisch Gmünd Institut für Mathematik und Informatik Abteilung Informatik Test zur Geometrischen Kreativität (GCT-DE) Erstellt von Mohamed El-Sayed Ahmed El-Demerdash Master

Mehr

Mathematik I Prüfung für den Übertritt aus der 8. Klasse

Mathematik I Prüfung für den Übertritt aus der 8. Klasse Aufnahmeprüfung 014 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 8. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle

Mehr

M3/I Übung für die 5. Schularbeit Name:

M3/I Übung für die 5. Schularbeit Name: 1)Das Dreieck ABC ist vom Eckpunkt A aus im Verhältnis : 4 zu vergrößern. a = 45 mm, b = 40 mm, c = 60 mm 2)Vergrößere das Rechteck (a = 46 mm; b = 25 mm) im Verhältnis 2 :. Wähle als Zentrum den Eckpunkt

Mehr

Mathematik, 3. Sekundarschule

Mathematik, 3. Sekundarschule Zentrale Aufnahmeprüfung 2010 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 3. Sekundarschule Von der Kandidatin oder vom Kandidaten auszufüllen: Name: Vorname:... Prüfungsnummer:

Mehr

Mathematik: Korrekturanleitung

Mathematik: Korrekturanleitung Kanton St.Gallen Bildungsdepartement St.Gallische Kantonsschulen Gymnasium Aufnahmeprüfung 2014 Mathematik: Korrekturanleitung Die Korrekturanleitung legt die Verteilung der Punkte auf die einzelnen Aufgaben

Mehr

Eignungstest Mathematik

Eignungstest Mathematik Eignungstest Mathematik Klasse 4 Datum: Name: Von Punkten wurden Punkte erreicht Zensur: 1. Schreibe in folgende Figuren die Bezeichnungen für die jeweilige Figur! Für eine Rechteck gibt ein R ein, für

Mehr

BEISPIELARBEIT. erstmalig 2017 ZENTRALE KLASSENARBEIT MATHEMATIK. Schuljahrgang 6. Gymnasium

BEISPIELARBEIT. erstmalig 2017 ZENTRALE KLASSENARBEIT MATHEMATIK. Schuljahrgang 6. Gymnasium ARBEIT erstmalig 2017 ZENTRALE KLASSENARBEIT Schuljahrgang 6 Gymnasium Arbeitszeit: 45 Minuten Alle Aufgaben sind auf den Arbeitsblättern zu bearbeiten. Dazu gehören auch eventuell erforderliche Nebenrechnungen,

Mehr

Mathematik 1. Kanton St.Gallen Bildungsdepartement. St.Gallische Kantonsschulen Gymnasium Aufnahmeprüfung (ohne Taschenrechner)

Mathematik 1. Kanton St.Gallen Bildungsdepartement. St.Gallische Kantonsschulen Gymnasium Aufnahmeprüfung (ohne Taschenrechner) Kanton St.Gallen Bildungsdepartement St.Gallische Kantonsschulen Gymnasium Aufnahmeprüfung 2016 Mathematik 1 (ohne Taschenrechner) Dauer: 90 Minuten Kandidatennummer: Geburtsdatum: Korrigiert von: Punktzahl/Note:

Mehr

Symmetrien und Winkel

Symmetrien und Winkel Symmetrien und Winkel 20 1 13 Symmetrien Zeichnungen und Konstruktionen zur Symmetrie 401 A Wähle das erste oder das zweite Bild von Vasarely im mathbuch 1 auf Seite 65. Beschreibe es. B Zeichne das Bild

Mehr

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 26.2.24 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max 28 5 5 2 6 Punkte Notenpunkte PT 2 3 4 5 6 7 8 9 P. (max 2 2 2 4 5 3 3 4 3 Punkte WT Ana A.a b A.c Summe P. (max 7 5

Mehr

MATHEMATIK-WETTBEWERB 1997/98 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 1997/98 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 1997/98 DES LANDES HESSEN AUFGABEN DER GRUPPE A 1. Gib die jeweilige Lösungsmenge in aufzählender Form an; G = Z. a) 5(2x 4) + 3x 16 = 5(8 5x) b) 8(x 6) 3(8 x) = 4(x + 3) c) 12(2x

Mehr

Zugelassenes Hilfsmittel: Ein nicht programmierbarer Taschenrechner.

Zugelassenes Hilfsmittel: Ein nicht programmierbarer Taschenrechner. KANTON AARGAU Abschlussprüfung der Bezirksschule Aargau 2013 Mathematik 1. Serie Bestimmungen: Die Prüfungsdauer beträgt 120 Minuten. Zugelassenes Hilfsmittel: Ein nicht programmierbarer Taschenrechner.

Mehr

Kandidatennummer / Name... Gruppennummer... Aufgabe Total Note

Kandidatennummer / Name... Gruppennummer... Aufgabe Total Note Mathematik Zweiter Teil mit Taschenrechner Kandidatennummer / Name... Gruppennummer... Vorname... Aufgabe 1 2 3 4 5 6 Total Note Punkte total Punkte erreicht 4 5 6 6 6 6 33 Die Prüfung dauert 45 Minuten.

Mehr

Mathematik 1: (ohne Taschenrechner) Korrekturanleitung. Kanton St.Gallen Bildungsdepartement

Mathematik 1: (ohne Taschenrechner) Korrekturanleitung. Kanton St.Gallen Bildungsdepartement Kanton St.Gallen Bildungsdepartement St.Gallische Kantonsschulen Gymnasium Aufnahmeprüfung 2016 Mathematik 1: (ohne Taschenrechner) Korrekturanleitung Die Korrekturanleitung legt die Verteilung der Punkte

Mehr

Berechnen Sie den Umfang U des Grundstückes: a) mit Variablen (jeder Schritt muss ersichtlich sein). b) für a=5m.

Berechnen Sie den Umfang U des Grundstückes: a) mit Variablen (jeder Schritt muss ersichtlich sein). b) für a=5m. TG TECHNOLOGISCHE GRUNDLAGEN Seite 1 1 1.2.55 Berechnen Sie den Umfang U des Grundstückes: a) mit Variablen (jeder Schritt muss ersichtlich sein). b) für a5m. Kapitel 1 TG TECHNOLOGISCHE GRUNDLAGEN Seite

Mehr

1. Schularbeit Stoffgebiete:

1. Schularbeit Stoffgebiete: 1. Schularbeit Stoffgebiete: Grundrechnungsarten mit ganzen Zahlen Koordinatensystem a) Berechne: 6 Punkte [( 36) + ( 64)] : ( 4) + ( 144) : ( 12) 16 ( 2) = b) Löse die drei Gleichungen und mache die Probe:

Mehr

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben

Mehr

Mathematik I Prüfung für den Übertritt aus der 8. Klasse

Mathematik I Prüfung für den Übertritt aus der 8. Klasse Aufnahmeprüfung 016 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 8. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle

Mehr

Punkte mit besonderen Koordinaten 1

Punkte mit besonderen Koordinaten 1 MEXBOX Geraden und Vielecke 2. Punkte mit besonderen Koordinaten 1 Du brauchst: Koordinatensystem (0-20) 1 Dose Stöpsel Gummis Protokollblatt 7.7 Schreibe Dir bei allen Aufgaben die Punkte mit ihren Koordinaten

Mehr