Einführung. Vita Rutka. Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik SS 2009

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Einführung. Vita Rutka. Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik SS 2009"

Transkript

1 Einführung Vita Rutka Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik SS 2009

2 Was ist FEM? Die Finite-Elemente-Methode (FEM) ist ein numerisches Verfahren zur näherungsweisen Lösung, insbesondere elliptischer partieller Differentialgleichungen mit Randbedingungen. Sie ist auch ein weit verbreitetes modernes Berechnungsverfahren im Ingenieurwesen. [Wikipedia] So kam es dazu... Anfänge: Courant ( 42), Argyris ( 54), Turner et al ( 56), Clough ( 60, Begriff FE ), Zienkewitz ( 65, das 1. Buch) Diverse Ingenieuranwendungen in den späten 60 ern, frühen 70 ern 1970+: Anfänge kommerzieller FEM-Software (Ansys, Abaqus, etc) Heute: unzählige (freie & kommerzielle) Software, Anzahl der Forscher (Ingenieure, Mathematiker, Informatiker) ր, das populärste Werkzeug

3 Wo kommen elliptische (u.ä.) Gleichungen vor? Einige Beispiele: Temperaturverteilung: u = 0 Lamé-Navier Gleichungen in Elastizität mit u = (u, v): µ u + (λ + µ) u = f (u, v): Komponenten der Verschiebung, f: innere Kraft, λ, µ: Lamé Koeffizienten Navier-Stokes Gleichungen der Strömungsmechanik ν u + u u + 1 ρ p = f u = 0 u = (u, v): Geschwindigkeit, p: Druck, ν: Viskosität, ρ: Dichte

4 Unsere Grundgleichung Poisson (Laplace) Problem mit Randbedingungen u = f in u = u D auf D, n u = g auf N (Dirichlet bzw. Neumann Randbedingungen) Wichtig: u = ( u)

5 jeder Anfang ist eindimensional

6 Grundidee in 1D... aus der Sicht eines Mathematikers... Zu lösen: u = f in = (0, 1), u(0) = u(1) = 0 Trick : u v = f v für alle v + Integration: für ausreichend glatte v s: (u v) = u v+u v u v = u v = f v (u v) u v = u v 1 u v 0 u v Nehme v: v(0) = v(1) = 0 schwache Formulierung: suche u, so dass u v = f v v : Integrale v 2 und (v ) 2 machen Sinn } {{ } Sobolevraum H 1(Ableitung) 0(Randbedingung) ()

7 Grundidee in 1D Die schwache Formulierung: suche u H0() 1 =: V so dass u v = f v v V } {{ } } {{ } Bilinearform a(u,v) Funktional F(v) Problem: V : unendlichdimensional! Lösung: ersetze V durch ein endlichdimensionales V h. Suche u h V h : a(u h, v) = F(v) v V h Beispiele: V h := span {sin(πnx) n {0, 1, 2,...10}}, dim(v h ) = 11 V h : Raum der Stückweise linearen Funktionen mit Stützstellen 0, 0.2, 0.4, 0.7, 0.8, 1, dimv h = 4 (nur die inneren Knoten)

8 Grundidee in 1D Zu lösen: a(u h, v) = F(v) v V h Ritz-Galerkin: Sei {φ 1,...φ N } eine Basis von V h. Dann u h = N v j φ j, v j =? i=1 Verlange: a(u h, φ i ) = F(φ i ) i {1,...N} Beachte: N a(u h, φ i ) = a( v j φ j, φ i ) = j=1 N v j φ j j=1 φ i = = N j=1 N j=1 ( φ j φ ) i vj a(φ j, φ i )v j! = F(φ i ) Mit A = (A ij ) = (a(φ j, φ i )), b = (b i ) = (F(φ i )) und v = (v i ): A v = Steifigkeitsmatrix b Ladevektor

9 Grundidee in 1D Zu lösen: Av = b Wünschenswert: die Berechnung von A ij soll möglichst einfach sein die Matrix A soll möglichst schwachbesetzt sein

10 FEM: Zerlege in endlich viele Teilmengen ( Elemente ): = τ Th τ τ 1 τ 2 τ 3 τ 4 τ 5 τ 6 Die Räume V h enthalten Funktionen, deren Einschränkungen auf τ T h Polynome sind. Beispiel (stückweise lineare Funktionen): τ 1 τ 2 τ 3 τ 4 τ 5 τ 6 Basisfunktionen φ 1,..., φ N von V h sollten einfach zu berechnen sein und einen möglichst kleinen Träger haben. Beispiel ( Hütchenfunktionen ): φ 1 φ 2 φ 3 φ 4 φ 5 τ 1 τ 2 τ 3 τ 4 τ 5 τ 6

11 Grundidee in 1D Zusammenfassung: kontinuierliches Problem: u = f in = (0, 1), u(0) = u(1) = 0 schwache Formulierung: a(u, v) := u v = f v =: F(v) v H 1 0() FEM: Suche u V h : a(u h, φ i ) = F(φ i ) φ 1,...φ N : eine Basis von V h (Hütchenfunktionen)

12 die Welt der bunten Bilder zweidimensionale Probleme

13 FEM in 2D: Schwache Formulierung 1D: Kontinuierliches Problem: u = f in = (0, 1), u(0) = u(1) = 0 Schwache Formulierung: Multipliziere die Gleichung mit einer Funktion v und integriere FEM: wähle v diskret (z.b., stückweise lineare Funktionen) 2D: genauso!! Zu lösen: xx u + yy u = u = f in, u = 0 auf Beachte: xx u + yy u = ( x, y ) ( x u, y u) = u

14 Schwache Formulierung: u = f ( u) v = f v ( u) v = f v Beachte: ( u v) = ( u) v + u v Damit ( u) v = ( u v) u v = ( u v) n u v die schwache Formulierung u v = f v } {{ } } {{ } Bilinearform a(u,v) Funktional F(v) v H0() 1 } {{ } d.h. R v2 < und R v v<

15 FEM in 2D: Diskretisierung zerlege in Teilgebiete: Stückweise polynomiale Funktionen (z.b., linear d.h. P 1 Elemente): Basisfunktionen (Nodalbasis):

16 FEM in 2D: Gleichungssystem Diskretes Gleichungssystem: a(u h, φ i ) = F(φ i ) φ i {Basis von V h } Setze u h = N j=1 v jφ j, dann (a(u, v) = u v) N a(u h, φ i ) = a( v j φ j, φ i ) = i=j N i=j a(φ j, φ i )v j! = F(φ i ) Mit A = (A ij ) = (a(φ j, φ i )), b = (b i ) = (F(φ i )) und v = (v i ): Av = b

17 Bemerkung zur praktischen Realisierung Hauptarbeit: berechne A ij = a(φ j, φ i ) = Beispiel: φ j φ i = τ T h τ φ j φ i a(φ 1, φ 1 ) = m=1,2,3,12,13,14,15 a(φ 1, φ 2 ) = m=3,12 τ m φ 1 φ 2 φ 1 φ 1 τ m a(φ 1, φ 3 ) = 0

18 Die rechte Seite: eine Möglichkeit: schreibe Dann fφ i f N f j φ j j=1 N f j φ j φ i = j=1 N j=1 f j φ j φ i } {{ } berechne ähnlich wie a(φ i,φ j ) oder: berechne (fast) exakt!! fφ i

19 PDE Toolbox von Matlab

20 Was ist das? The Partial Differential Equation Toolbox contains tools for the study and solution of partial differential equations (PDEs) in two-space dimensions (2-D) and time. A set of commandline functions and a graphical user interface let you preprocess, solve, and postprocess generic 2-D PDEs for a broad range of engineering and science applications, including structural mechanics, electromagnetics, heat transfer, and diffusion. [

21 (Elliptische) Grundgleichungen Skalare Gleichungen: linear: nichtlinear: (c u) + au = f (c(u) u) + a(u)u = f(u) Randbedingungen: Dirichlet: hu = r Verallgemeinerte Neumann: n (c u) + qu = g

22 (Elliptische) Grundgleichungen Gleichungssysteme: (c 11 u 1 ) (c 12 u 2 ) + a 11 u 1 + a 12 u 2 = f 1 (c 21 u 1 ) (c 22 u 2 ) + a 21 u 1 + a 22 u 2 = f 2 Randbedingungen: Dirichlet: h 11 u 1 + h 12 u 2 = r 1 h 21 u 1 + h 22 u 2 = r 2 Verallgemeinerte Neumann: n (c 11 u 1 ) + n (c 12 u 2 ) + q 11 u 1 + q 12 u 2 = g 1 n (c 21 u 1 ) + n (c 22 u 2 ) + q 21 u 1 + q 22 u 2 = g 2 oder auch gemischt

23 Benutzung PDE-Toolbox hat die typischen Bausteine eines (kommerziellen) FEA (Finite Element Analysis)-Werkzeugs: Benutzer Pre-prozess Prozess Baue das FE Modell (Geometrie, Materialparameter, usw). Nicht selten: Auswahl der Methoden, Algorithmen Durchführung numerischer Berechungen (oft eine Black Box für Benutzer) Benutzer Post-prozess Analysiere die Ergebnisse

24 Literatur [1] R. Rannacher. Numerische Mathematik 3 (Numerik von Problemen der Kontinuumsmechanik), Vorlesungsskriptum WS 2006/2007, Heidelberg [2] R. Rannacher. Numerische Mathematik 2 (Numerik Partieller Differentialgleichungen), Vorlesungsskriptum SS 2006, Heidelberg [3] D. Braess. Finite Elemente: Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie, Springer, 2003

Kevin Caldwell. 18.April 2012

Kevin Caldwell. 18.April 2012 im Rahmen des Proseminars Numerische Lineare Algebra von Prof.Dr.Sven Beuchler 18.April 2012 Gliederung 1 2 3 Mathematische Beschreibung von naturwissenschaftlich-technischen Problemstellungen führt häufig

Mehr

Finite Elemente Methoden (aus der Sicht des Mathematikers)

Finite Elemente Methoden (aus der Sicht des Mathematikers) Finite Elemente Methoden (aus der Sicht des Mathematikers) Alfred Schmidt Übersicht: Partielle Differentialgleichungen, Approximation der Lösung, Finite Elemente, lineare und höhere Ansatzfunktionen, Dünn

Mehr

Finite Differenzen und Elemente

Finite Differenzen und Elemente Dietrich Marsal Finite Differenzen und Elemente Numerische Lösung von Variationsproblemen und partiellen Differentialgleichungen Mit 64 Abbildungen Springer-Verlag Berlin Heidelberg NewYork London Paris

Mehr

Computer Aided Engineering

Computer Aided Engineering Computer Aided Engineering André Dietzsch 03Inf Übersicht Definition Teilgebiete des CAE CAD FEM Anwendungen Was hat das mit Rechnernetzen zu tun? André Dietzsch 03Inf Computer Aided Engineering 2 Definition

Mehr

Computersimulation physikalischer Phänomene mit der Finite- Elemente-Methode

Computersimulation physikalischer Phänomene mit der Finite- Elemente-Methode K.Bräuer: Computersimulation physikalischer Phänomene mit der Finiten-Elemente-Methode 1 Computersimulation physikalischer Phänomene mit der Finite- Elemente-Methode Kurt Bräuer Privatdozent am Institut

Mehr

Lineare Gleichungssysteme Hierarchische Matrizen

Lineare Gleichungssysteme Hierarchische Matrizen Kompaktkurs Lineare Gleichungssysteme Hierarchische Matrizen M. Bebendorf, O. Steinbach O. Steinbach Lineare Gleichungssysteme SIMNET Kurs 24. 27.4.26 / 6 Numerische Simulation stationäre und instationäre

Mehr

FEM. Finite Elemente Methode. Diese Unterlagen dienen gemäß 53, 54 URG ausschließlich der Ausbildung an der Hochschule Bremen.

FEM. Finite Elemente Methode. Diese Unterlagen dienen gemäß 53, 54 URG ausschließlich der Ausbildung an der Hochschule Bremen. FEM Finite Elemente Methode Diese Unterlagen dienen gemäß 53, 54 URG ausschließlich der Ausbildung an der Hochschule Bremen. Vorlesung FEM INHALT 1.Einleitung 1.1.Historischer Überblick über die Finite

Mehr

FB IV Mathematik Universität Trier. Präsentation von Nadja Wecker

FB IV Mathematik Universität Trier. Präsentation von Nadja Wecker FB IV Mathematik Universität Trier Präsentation von Nadja Wecker 1) Einführung Beispiele 2) Mathematische Darstellung 3) Numerischer Fluss für Diffusionsgleichung 4) Konvergenz 5) CFL-Bedingung 6) Zusammenfassung

Mehr

Leistungsbeurteilung von FEM Software durch NAFEMS-Benchmarks

Leistungsbeurteilung von FEM Software durch NAFEMS-Benchmarks Leistungsbeurteilung von FEM Software durch NAFEMS-Benchmarks 17. BAYREUTHER 3D-KONSTRUKTEURSTAG Bayreuth, 16. September 2015 Stefan Hautsch, M.Sc. Maximilian Braun, M.Sc. Einleitung und Motivation 2 Einleitung

Mehr

Prof. Dr.-Ing. Christopher Bode. Finite-Elemente-Methode

Prof. Dr.-Ing. Christopher Bode. Finite-Elemente-Methode Prof. Dr.-Ing. Christopher Bode Finite-Elemente-Methode Kapitel 1: Einleitung BEUTH Hochschule für Technik Berlin Prof. Dr.-Ing. C. Bode 2 Was ist FEM? Die FEM ist ein mathematisches Verfahren zur Lösung

Mehr

Finite Elemente in Materialwissenschaften

Finite Elemente in Materialwissenschaften Finite Elemente in Materialwissenschaften Dieter Süss Institut für Festkörperphysik (8. Stock gelb) Vienna University of Technology dieter.suess@tuwien.ac.at http:/// http:///suess/papers Outline Geschichte

Mehr

Modellieren in der Angewandten Geologie II. Sebastian Bauer

Modellieren in der Angewandten Geologie II. Sebastian Bauer Modellieren in der Angewandten Geologie II Geohydromodellierung Institut für Geowissenschaften Christian-Albrechts-Universität zu Kiel CAU 3-1 Die Finite Elemente Method (FEM) ist eine sehr allgemeine

Mehr

Einführung FEM 1D - Beispiel

Einführung FEM 1D - Beispiel p. 1/28 Einführung FEM 1D - Beispiel /home/lehre/vl-mhs-1/folien/vorlesung/4_fem_intro/deckblatt.tex Seite 1 von 28 p. 2/28 Inhaltsverzeichnis 1D Beispiel - Finite Elemente Methode 1. 1D Aufbau Geometrie

Mehr

Optimale Steuerung. Sequentielle Quadratische Programmierung. Kevin Sieg. 14. Juli 2010. Fachbereich für Mathematik und Statistik Universität Konstanz

Optimale Steuerung. Sequentielle Quadratische Programmierung. Kevin Sieg. 14. Juli 2010. Fachbereich für Mathematik und Statistik Universität Konstanz Optimale Steuerung Kevin Sieg Fachbereich für Mathematik und Statistik Universität Konstanz 14. Juli 2010 1 / 29 Aufgabenstellung 1 Aufgabenstellung Aufgabenstellung 2 Die zusammengesetzte Trapezregel

Mehr

Kurze Einführung in die Finite-Elemente-Methode

Kurze Einführung in die Finite-Elemente-Methode Kurze Einführung in die Finite-Elemente-Methode Stefan Girke Wissenschaftliches Rechnen 23 Die Finite-Elemente-Methode In diesem Skript soll eine kurze Einführung in die Finite-Elemente-Methode gegeben

Mehr

2. Gauß-Integration. Prof. Dr. Wandinger 4. Scheibenelemente FEM 4.2-1

2. Gauß-Integration. Prof. Dr. Wandinger 4. Scheibenelemente FEM 4.2-1 Die analytische Integration der Steifigkeitsmatrix für das Rechteckelement ist recht mühsam. Für Polynome gibt es eine einfachere Methode zur Berechnung von Integralen, ohne dass die Stammfunktion benötigt

Mehr

FINITE ELEMENTE ANALYSE für Vollzeit-Studenten des Masterstudiengangs (MSc) Fahrzeugingenieurwesen 2. HAUSAUFGABE

FINITE ELEMENTE ANALYSE für Vollzeit-Studenten des Masterstudiengangs (MSc) Fahrzeugingenieurwesen 2. HAUSAUFGABE FINITE ELEMENTE ANALYSE für Vollzeit-Studenten des Masterstudiengangs (MSc) Fahrzeugingenieurwesen 2. HAUSAUFGABE Bekannt sind die Dimensionen des Tragwerkes in dem Bild (siehe Anlage 1): (, ), sein Elastizitätsmodul

Mehr

Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB)

Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB) Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB) Prof. R. Leithner, Dipl. Phys. E. Zander Wintersemester 2010/2011 Kapitel 8 Partielle

Mehr

Einführung in die Mathematik für Volks- und Betriebswirte

Einführung in die Mathematik für Volks- und Betriebswirte Einführung in die Mathematik für Volks- und Betriebswirte Von Prof. Dr. Heinrich Bader und Prof. Dr. Siegbert Fröhlich Mit 45 A bbildungen 8. A uflage R. Oldenbourg Verlag München Wien INHALTSVERZEICHNIS

Mehr

II. Elliptische Probleme

II. Elliptische Probleme II. Elliptische Probleme II.1 Finite Differenzen: Grundidee II.2 Konvergenzaussagen II.3 Allgemeine Randbedingungen II.4 Gekrümmte Ränder Kapitel II (0) 1 Dirichlet Randwerte mit finiten Differenzen Einfachster

Mehr

Die Methode der Finiten Elemente

Die Methode der Finiten Elemente KAPITEL 2 Die Methode der Finiten Elemente 1. Theoretische Grundlagen Wir bezeichnen im Folgenden mit H m (Ω) L 2 (Ω), Ω R n offen, den Sobolevraum aller Funktionen mit schwachen Ableitungen α u in L 2

Mehr

Mathematisches Proseminar - Rotationssymmetrisches Wirbelstromproblem

Mathematisches Proseminar - Rotationssymmetrisches Wirbelstromproblem Mathematisches Proseminar - Rotationssymmetrisches Wirbelstromproblem Daniel Leumann 9. Oktober 3 Inhaltsverzeichnis Zusammenfassung 3 Methoden 4. Schwache Lösung... 4. DasGalerkin-Verfahren... 4.3 FiniteElementeMethode...

Mehr

Kapitel 15. Lösung linearer Gleichungssysteme

Kapitel 15. Lösung linearer Gleichungssysteme Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren

Mehr

Vergleich von Computational Fluid Dynamics-Programmen in der Anwendung auf Brandszenarien in Gebäuden. Frederik Rabe, Anja Hofmann, Ulrich Krause

Vergleich von Computational Fluid Dynamics-Programmen in der Anwendung auf Brandszenarien in Gebäuden. Frederik Rabe, Anja Hofmann, Ulrich Krause Vergleich von Computational Fluid Dynamics-Programmen in der Anwendung auf Brandszenarien in Gebäuden Frederik Rabe, Anja Hofmann, Ulrich Krause Gliederung Einleitung Grundlagen Grundlagen CFD NIST FDS

Mehr

Stochastische FEM mit elementaren Zufallselementen

Stochastische FEM mit elementaren Zufallselementen Stochastische FEM mit elementaren Zufallselementen Hans-Jörg Starkloff Westsächsische Hochschule Zwickau 13. Südostdeutsches Kolloquium zur Numerischen Mathematik 2007 Freiberg, 27. April 2007 Einführung

Mehr

Glättung durch iterative Verfahren

Glättung durch iterative Verfahren Numerische Methoden in der Finanzmathematik II Sommersemester 211 Glättung durch iterative Verfahren Vorlesung Numerische Methoden in der Finanzmathematik II Sommersemester 211 Numerische Methoden in der

Mehr

Finite Elemente. bzw. F + E K = 1. (1)

Finite Elemente. bzw. F + E K = 1. (1) Dr. S.-J. Kimmerle Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Wintertrimester 25 Finite Elemente Übung 2 Aufgabe 6 (Eulerscher Polyedersatz für Triangulierung)

Mehr

Charakteristikenmethode im Beispiel

Charakteristikenmethode im Beispiel Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)

Mehr

Ergänzungsseminar zu "Rechenmethoden für Studierende der Chemie"

Ergänzungsseminar zu Rechenmethoden für Studierende der Chemie Ergänzungsseminar zu "Rechenmethoden für Studierende der Chemie" VAK 02-03-2-RM-3 Johannes Ranke Ergänzungsseminar zu "Rechenmethoden für Studierende der Chemie" p.1/13 Programm 18.4. Überblick über Software

Mehr

Kapitel 1 Einführung. 1.1 Allgemeines zur Methode der finiten Elemente

Kapitel 1 Einführung. 1.1 Allgemeines zur Methode der finiten Elemente 1 Kapitel 1 Einführung 1.1 Allgemeines zur Methode der finiten Elemente Die Methode der finiten Elemente (FEM) ist eines der praktisch wichtigsten Näherungsverfahren zur Lösung von Variationsproblemen,

Mehr

EXCEL in der Wirtschaftsmathematik

EXCEL in der Wirtschaftsmathematik Hans Benker EXCEL in der Wirtschaftsmathematik Anwendung von Tabellenkalkulationsprogrammen für Studenten, Dozenten und Praktiker Springer Vieweg Inhaltsverzeichnis TEIL I: Einführung in EXCEL 1 Das Tabellenkalkulationsprogramm

Mehr

Adaptivität II - Theorie

Adaptivität II - Theorie Adaptivität II - Theorie Hubertus Bromberger, Manuel Nesensohn, Johannes Reinhardt, Johannes Schnur 8. November 2007 Fazit des ersten Vortrages Ein geeignet verfeinertes Gitter ermöglicht massive Einsparung

Mehr

1. Methode der Finiten Elemente

1. Methode der Finiten Elemente 1. Methode der Finiten Elemente 1.1 Innenraumprobleme 1.2 Außenraumprobleme 1.3 Analysen 1.4 Bewertung Prof. Dr. Wandinger 5. Numerische Methoden Akustik 5.1-1 1.1 Innenraumprobleme 1.1.1 Schwache Formulierung

Mehr

Einleitung Scilab/Octave/Maxima Gnuplot Beispiel. Scientific Linux. Wissenschaftliche Software für Linux. Frank BokWolfgang Fütterer 17.01.

Einleitung Scilab/Octave/Maxima Gnuplot Beispiel. Scientific Linux. Wissenschaftliche Software für Linux. Frank BokWolfgang Fütterer 17.01. Wissenschaftliche Software für Linux Frank Bok Wolfgang Fütterer 17.01.2008 Freie Software als Alternative zu komerzieller Software Vorstellung von 3 Softwarepaketen die als Alternative für komerziell

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Typische Prüfungsfragen Die folgenden Fragen dienen lediglich der Orientierung und müssen nicht den tatsächlichen Prüfungsfragen entsprechen. Auch Erkenntnisse aus den

Mehr

Finite Elemente I 2. 1 Variationstheorie

Finite Elemente I 2. 1 Variationstheorie Finite Elemente I 2 1 Variationstheorie 1 Variationstheorie TU Bergakademie Freiberg, SoS 2007 Finite Elemente I 3 1.1 Bilinearformen Definition 1.1 Sei V ein reeller normierter Vektorraum. Eine Bilinearform

Mehr

Inhaltsverzeichnis. TEIL I: Einführung in EXCEL

Inhaltsverzeichnis. TEIL I: Einführung in EXCEL Inhaltsverzeichnis TEIL I: Einführung in EXCEL 1 Das Tabellenkalkulationsprogramm EXCEL... 1 1.1 Tabellenkalkulation... 1 1.2 Anwendungsgebiete... 1 1.3 Hilfefunktionen... 2 2 Benutzeroberflächen der Versionen

Mehr

Finite Elemente Modellierung

Finite Elemente Modellierung Finite Elemente Modellierung Modellerstellung Diskretisierung des Kontinuums Methode der Finite Elemente Anwendungsbeispiele der FEM Zugstab: Kraftmethode Zugstab: Energiemethode Zugstab: Ansatzfunktion

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie

Mehr

Numerische Fluidmechanik

Numerische Fluidmechanik Numerische Fluidmechanik Vorlesungsumdruck 1 mit Übersichten und ausgewählten Vorlesungsfolien sowie Übungsaufgaben und kompakter Einführung in die CFD Inhaltsverzeichnis Übersichten... 1 Inhaltsübersicht

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 8 Dimensionstheorie Ein endlich erzeugter Vektorraum hat im Allgemeinen ganz unterschiedliche Basen. Wenn

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

Numerische Simulation mit finiten Elementen. O. Rheinbach

Numerische Simulation mit finiten Elementen. O. Rheinbach Numerische Simulation mit finiten Elementen O. Rheinbach Numerische Simulation mit finiten Elementen INHALT 0.1 Finite Differenzen in 2D 1. Einleitung 1.1 Vorbemerkungen 1.2 Rand- und Anfangswertaufgaben

Mehr

Eine Kurzanleitung zu Mathematica

Eine Kurzanleitung zu Mathematica MOSES Projekt, GL, Juni 2003 Eine Kurzanleitung zu Mathematica Wir geben im Folgenden eine sehr kurze Einführung in die Möglichkeiten, die das Computer Algebra System Mathematica bietet. Diese Datei selbst

Mehr

FEM-Anwendungen in der maritimen Branche

FEM-Anwendungen in der maritimen Branche Familie STRAK, 2009-10-15 FEM-Anwendungen in der maritimen Branche Ronald Horn - FEM GmbH Vita Dr. Ronald Horn seit 10/08 S.M.I.L.E.-FEM GmbH, Heikendorf Geschäftsführer 04/08-09/08 Lindenau GmbH, Schiffswerft

Mehr

10.2 Linearkombinationen

10.2 Linearkombinationen 147 Vektorräume in R 3 Die Vektorräume in R 3 sind { } Geraden durch den Ursprung Ebenen durch den Ursprung R 3 Analog zu reellen Vektorräumen kann man komplexe Vektorräume definieren. In der Definition

Mehr

Einführung in Scheduling

Einführung in Scheduling Einführung in Scheduling Dr. Julien Bidot Sommersemester 28 Institut für Künstliche Intelligenz Inhalt I. Definition und Formulierung des Scheduling- Problems II. Projektplanung III. Produktionsplanung

Mehr

Inhaltsverzeichnis 1 Matrizenrechnung 2 Grundgleichungen der Elastizitätstheorie 3 Finite-Element-Methode für Stabwerke

Inhaltsverzeichnis 1 Matrizenrechnung 2 Grundgleichungen der Elastizitätstheorie 3 Finite-Element-Methode für Stabwerke IX Inhaltsverzeichnis 1 Matrizenrechnung... 1 1.1 Matrizen und Vektoren... 1 1.2 Matrizenalgebra... 3 1.2.1 Addition und Subtraktion... 3 1.2.2 Multiplikation... 4 1.2.3 Matrizeninversion... 6 1.3 Gleichungssysteme...

Mehr

3-D Finite Elemente zur Diskretisierung der Maxwell-Gleichungen

3-D Finite Elemente zur Diskretisierung der Maxwell-Gleichungen 3-D Finite Elemente zur Diskretisierung der Maxwell-Gleichungen Christoph Schwarzbach (TU Bergakademie Freiberg) schwarzb@geophysik.tu-freiberg.de Abstract Elektromagnetische Phänomene können mathematisch-physikalisch

Mehr

Sudoku-Informatik oder wie man als Informatiker Logikrätsel löst

Sudoku-Informatik oder wie man als Informatiker Logikrätsel löst Sudoku-Informatik oder wie man als Informatiker Logikrätsel löst Peter Becker Hochschule Bonn-Rhein-Sieg Fachbereich Informatik peter.becker@h-brs.de Kurzvorlesung am Studieninformationstag, 13.05.2009

Mehr

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2015/16 4. Homogene lineare Dierentialgleichungen 4.1. Grundbegrie 4.1.1. Denition. Es sei J R ein Intervall und a 0 ; : :

Mehr

Rapid Control Prototyping

Rapid Control Prototyping Dirk Abel Alexander Bollig Rapid Control Prototyping Methoden und Anwendungen Mit 230 Abbildungen und 16 Tabellen Springer Inhaltsverzeichnis Einführung und Überblick 1 1.1 Allgemeines 1 1.2 Entwicklungsprozesse

Mehr

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume

Mehr

Ritz-Galerkin-Verfahren Courant Element

Ritz-Galerkin-Verfahren Courant Element Ritz-alerkin-Verfahren Courant Element Moritz Scherrmann LMU München Zillertal am 09.01.2015 Moritz Scherrmann Ritz-alerkin-Verfahren Courant Element 1/15 Erinnerung Sei R n beschränktes ebiet, f C 0 ()

Mehr

Finite Elemente in der Baustatik

Finite Elemente in der Baustatik Horst Werkle Finite Elemente in der Baustatik Statik und Dynamik der Stab- und Flachentragwerke 3., aktualisierte und erweiterte Auflage mit 305 Abbildungen und 43 Tabellen vieweg IX Inhaltsverzeichnis

Mehr

Digitale Bildverarbeitung und Bildanalyse - PDEs und Variationsmethoden

Digitale Bildverarbeitung und Bildanalyse - PDEs und Variationsmethoden Digitale Bildverarbeitung und Bildanalyse - PDEs und Variationsmethoden Michael Pippig Fakultät für Mathematik Technische Universität Chemnitz 6. Mai 2008 Michael Pippig Digitale Bildverarbeitung und Bildanalyse

Mehr

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $ Mathematik für Ingenieure I, WS 8/9 Freitag 9. $Id: linabb.tex,v.3 9//9 3:7:34 hk Exp hk $ II. Lineare Algebra 9 Lineare Abbildungen 9. Lineare Abbildungen Der folgende Satz gibt uns eine einfachere Möglichkeit

Mehr

Ferienkurs Mathematik für Physiker I Skript Teil 2 ( )

Ferienkurs Mathematik für Physiker I Skript Teil 2 ( ) Ferienkurs Mathematik für Physiker I WS 206/7 Ferienkurs Mathematik für Physiker I Skript Teil 2 (28.03.207) Vektorräume Bevor wir zur Definition eines Vektorraumes kommen erinnern wir noch einmal kurz

Mehr

Angewandte Umweltsystemanalyse: Finite-Elemente-Methode (FEM)

Angewandte Umweltsystemanalyse: Finite-Elemente-Methode (FEM) Angewandte Umweltsystemanalyse: Finite-Elemente-Methode (FEM) Prof. Dr.-Ing. habil. Olaf Kolditz 1 Helmholtz Centre for Environmental Research UFZ, Leipzig 2 Technische Universität Dresden TUD, Dresden

Mehr

Vertiefungsrichtung Angewandte Mathematik und Mechanik Wahlpflichtbereich A (Mathematik)

Vertiefungsrichtung Angewandte Mathematik und Mechanik Wahlpflichtbereich A (Mathematik) Vertiefungsrichtung Angewandte Mathematik und Mechanik Wahlpflichtbereich A (Mathematik) Prof. Dr. Stefan Ulbrich FG Nichtlineare Optimierung Fachbereich Mathematik Orientierungsveranstaltung CE, Ulbrich,

Mehr

6 Lösungsverfahren für lineare Gleichungssysteme

6 Lösungsverfahren für lineare Gleichungssysteme 6 Lösungsverfahren für lineare Gleichungssysteme Jörn Loviscach Versionsstand:. März 04, :07 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.jl7h.de/videos.html

Mehr

Polynominterpolation

Polynominterpolation Polynominterpolation In der numerischen Mathematik versteht man unter Polynominterpolation die Suche nach einem Polynom, welches exakt durch vorgegebene Punkte (z. B. aus einer Messreihe) verläuft. Dieses

Mehr

Wenn der Druck aus der reibungsfreien Außenströmung aufgeprägt wird, dann gilt wegen der Bernoulli-Gleichung

Wenn der Druck aus der reibungsfreien Außenströmung aufgeprägt wird, dann gilt wegen der Bernoulli-Gleichung Wenn der Druck aus der reibungsfreien Außenströmung aufgeprägt wird, dann gilt wegen der Bernoulli-Gleichung ρ p ( x) + Uδ ( x) = const Damit kann die Druckänderung in Strömungsrichtung auch durch die

Mehr

Integral-Iterationsverfahren und die exakten Lösungen der partiellen Differentialgleichungen

Integral-Iterationsverfahren und die exakten Lösungen der partiellen Differentialgleichungen Integral-Iterationsverfahren und die exakten Lösungen der partiellen Differentialgleichungen Dr. rer. nat. Kuang-lai Chao Göttingen, den 16. Juni 2007 Abstract The integral iterative ethod and exact solutions

Mehr

Eine divergenzfreie Rekonstruktion für eine nicht-konforme Diskretisierung der inkompressiblen Stokes-Gleichungen

Eine divergenzfreie Rekonstruktion für eine nicht-konforme Diskretisierung der inkompressiblen Stokes-Gleichungen Eine divergenzfreie Rekonstruktion für eine nicht-konforme Diskretisierung der inkompressiblen Stokes-Gleichungen von Christian Brennecke Bachelorarbeit in Mathematik vorgelegt der Fakultät für Mathematik

Mehr

Kapitel 15: Differentialgleichungen

Kapitel 15: Differentialgleichungen FernUNI Hagen WS 00/03 Kapitel 15: Differentialgleichungen Differentialgleichungen = Gleichungen die Beziehungen zwischen einer Funktion und mindestens einer ihrer Ableitungen herstellen. Kommen bei vielen

Mehr

Adaptive Finite Elemente Simulationen Software-Entwicklung Anwendung Analyse

Adaptive Finite Elemente Simulationen Software-Entwicklung Anwendung Analyse Software-Entwicklung Anwendung Analyse Institut für Mathematik Universität Augsburg 1. TopMath-Workshop Iffeldorf 6. 9. Januar 2005 Inhalt Einführung in adaptive Finite Elemente Methoden Adaptive Diskretisierungen

Mehr

Finite Elemente Methode für elliptische Differentialgleichungen

Finite Elemente Methode für elliptische Differentialgleichungen Finite Elemente Methode für elliptische Differentialgleichungen Michael Pokojovy 8. Oktober 2007 Das Ritzsche Verfahren Sei R n ein beschränktes offenes Gebiet mit abschnittsweise glattem Rand S. Betrachte

Mehr

Finite Element Approximation auf der Basis geometrischer Zellen

Finite Element Approximation auf der Basis geometrischer Zellen Finite Element Approximation auf der Basis geometrischer Zellen Peter Milbradt, Axel Schwöppe Institut für Bauinformatik, Universität Hannover Die Methode der Finiten Elemente ist ein numerisches Verfahren

Mehr

(1) In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt.

(1) In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt. () In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt. a) Es seien A und B beliebige n n-matrizen mit Einträgen in einem Körper K.

Mehr

Klausur zur Vorlesung Lineare Algebra und Geometrie I

Klausur zur Vorlesung Lineare Algebra und Geometrie I Klausur zur Vorlesung Lineare Algebra und Geometrie I Ruhr-Universität Bochum Prof. Dr. Peter Eichelsbacher 3. April 2007, 9.00-13.00 Uhr, 240 Minuten Name und Geburtsdatum: Matrikelnummer: Hinweise: Überprüfen

Mehr

Wolfgang Kohn Riza Öztürk. Mathematik für Ökonomen. Ökonomische Anwendungen der linearen. Algebra und Analysis mit Scilab

Wolfgang Kohn Riza Öztürk. Mathematik für Ökonomen. Ökonomische Anwendungen der linearen. Algebra und Analysis mit Scilab Wolfgang Kohn Riza Öztürk Mathematik für Ökonomen Ökonomische Anwendungen der linearen Algebra und Analysis mit Scilab 3., erweiterte und überarbeitete Auflage ^ Springer Gabler Inhaltsverzeichnis Teil

Mehr

Parallelrechnern. 12. März Technische Universität Chemnitz. Der Jacobi-Davidson Algorithmus auf. Parallelrechnern. Patrick Kürschner.

Parallelrechnern. 12. März Technische Universität Chemnitz. Der Jacobi-Davidson Algorithmus auf. Parallelrechnern. Patrick Kürschner. Technische Universität Chemnitz 12. März 2008 - sweise Gliederung - sweise - sweise Eigenwertprobleme Ziel: Lösung von Eigenwertproblemen Dabei: Ax = λx Matrix A C n n sehr groß, dünnbesetzt (sparse) Gesucht:

Mehr

5 Interpolation und Approximation

5 Interpolation und Approximation 5 Interpolation und Approximation Problemstellung: Es soll eine Funktion f(x) approximiert werden, von der die Funktionswerte nur an diskreten Stellen bekannt sind. 5. Das Interpolationspolynom y y = P(x)

Mehr

9. Übung zur Linearen Algebra II -

9. Übung zur Linearen Algebra II - 9. Übung zur Linearen Algebra II - en Kommentare an Hannes.Klarner@Fu-Berlin.de FU Berlin. SS 00. Aufgabe 33 (i) Beweise oder widerlege: In einem euklidischen VR gilt x + y = x + y x y (Satz von Pythagoras).

Mehr

Simulation von räumlich verteilten kontinuierlichen Modellen

Simulation von räumlich verteilten kontinuierlichen Modellen Vorlesungsreihe Simulation betrieblicher Prozesse Simulation von räumlich verteilten kontinuierlichen Modellen Prof. Dr.-Ing. Thomas Wiedemann email: wiedem@informatik.htw-dresden.de HOCHSCHULE FÜR TECHNIK

Mehr

Universität Bonn, Institut für Angewandte Mathematik. WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW

Universität Bonn, Institut für Angewandte Mathematik. WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW Universität Bonn, Institut für Angewandte Mathematik Dr. Antje Kiesel WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW 08.03.2013 Matrikelnummer Platz Name Vorname 1 2 3 4 5 6

Mehr

Vorstellung der Schwerpunkte 6 (Computational Mechanics) und 35 (Modellbildung und Simulation)

Vorstellung der Schwerpunkte 6 (Computational Mechanics) und 35 (Modellbildung und Simulation) Vorstellung der Schwerpunkte 6 (Computational Mechanics) und 35 (Modellbildung und Simulation) Prof. Dr.-Ing. Carsten Proppe, KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Herleitung der Bessel-Funktionen mit dem Integral-Iterationsverfahren

Herleitung der Bessel-Funktionen mit dem Integral-Iterationsverfahren Herleitung der Bessel-Funktionen mit dem Integral-Iterationsverfahren Dr. rer. nat. Kuang-lai Chao Göttingen, den 3. Februar 009 Abstract Derivation of Bessel functions with the integral iterative method

Mehr

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12 Mathematik für Wirtschaftswissenschaftler im WS /3 Lösungen zu den Übungsaufgaben Blatt Aufgabe 5 Welche der folgenden Matrizen sind positiv bzw negativ definit? A 8, B 3 7 7 8 9 3, C 7 4 3 3 8 3 3 π 3

Mehr

2-stündige Ergänzungsvorlesung im Wintersemester 2016/2017 D-moduln und Distributionen. D. van Straten Mittwochs, Uhr,Raum

2-stündige Ergänzungsvorlesung im Wintersemester 2016/2017 D-moduln und Distributionen. D. van Straten Mittwochs, Uhr,Raum 2-stündige Ergänzungsvorlesung im Wintersemester 2016/2017 D-moduln und Distributionen. D. van Straten Mittwochs, 10-12 Uhr,Raum 04-426 D-moduln sind Moduln über den nicht-kommutativen Ring D = C[x 1,

Mehr

Erinnerung/Zusammenfassung zu Abbildungsmatrizen

Erinnerung/Zusammenfassung zu Abbildungsmatrizen Erinnerung/Zusammenfassung zu Abbildungsmatrizen Thomas Coutandin (cthomas@student.ethz.ch) 7. November 2 Abbildungsmatrizen Im Folgenden betrachten wir stets endlich dimensionale K-Vektorräume (K irgend

Mehr

Kolloquium zur Bachelorarbeit Alain-B. Nsiama-Leyame 567830 Bachelorstudiengang Produktentwicklung und Produktion WS 2015 / 2016

Kolloquium zur Bachelorarbeit Alain-B. Nsiama-Leyame 567830 Bachelorstudiengang Produktentwicklung und Produktion WS 2015 / 2016 Strukturanalyse einer mittels Rapid-Prototyping gefertigten Pelton-Turbinenschaufel - grundlegende Festigkeitsanalysen sowie Überlegungen zu Materialkennwerten Kolloquium zur Bachelorarbeit Alain-B. Nsiama-Leyame

Mehr

Vorkurs Mathematik Übungen zu Differentialgleichungen

Vorkurs Mathematik Übungen zu Differentialgleichungen Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)

Mehr

Zeigen Sie, dass der einzige Gruppenhomomorphismus von (G, ) nach (Z 5, +) die Abbildung Φ : G Z 5

Zeigen Sie, dass der einzige Gruppenhomomorphismus von (G, ) nach (Z 5, +) die Abbildung Φ : G Z 5 Aufgabe I (4 Punkte) Es sei G : {e, g, g, g } eine 4-elementige Gruppe mit neutralem Element e Die Verknüpfung auf G werde mit bezeichnet Außerdem seien in G folgende Gleichungen erfüllt: g g g und g g

Mehr

Stationäre Newtonsche Strömung

Stationäre Newtonsche Strömung Stationäre Newtonsche Strömung Bettina Suhr Inhaltsverzeichnis 1 Einleitung 2 2 Die Navier-Stokes-Gleichungen 2 3 Die schwache Formulierung 2 4 Die Ortsdiskretisierung 5 4.1 Taylor-Hood Elemente........................

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 18. April 2016 Übersicht über die Methoden Seien v 1,..., v r Vektoren in K n. 1. Um zu prüfen, ob die Vektoren v 1,...,

Mehr

Das Nédélec-Element für H(curl)-elliptische Aufgaben

Das Nédélec-Element für H(curl)-elliptische Aufgaben Technische Universität Chemnitz Fakultät für Mathematik Handout im Seminar Finite Elemente WS 2009/2010 Das Nédélec-Element für H(curl)-elliptische Aufgaben Judith Will 25. Januar 2010 Inhaltsverzeichnis

Mehr

1. Einführung. Umwelt-Campus Birkenfeld Numerische Mathematik

1. Einführung. Umwelt-Campus Birkenfeld Numerische Mathematik . Einführung Die numerische Mathematik, kur Numerik genannt, beschäftigt sich als Teilgebiet der Mathematik mit der Konstruktion und Analyse von Algorithmen für technisch-naturwissenschaftliche Probleme..

Mehr

Seminar Finite Elemente Implementierung der linearen Elastizitätsgleichungen in Matlab

Seminar Finite Elemente Implementierung der linearen Elastizitätsgleichungen in Matlab Technische Universität Chemnitz Chemnitz, 16.11.2009 G. Wachsmuth Seminar Finite Elemente Implementierung der linearen Elastizitätsgleichungen in Matlab Einführung in die lineare Elastizität Dieses Kapitel

Mehr

Numerik partieller Differentialgleichungen für Ingenieure

Numerik partieller Differentialgleichungen für Ingenieure Numerik partieller Differentialgleichungen für Ingenieure Von ir. J. J.I.M. van Kan und ir. A. Segal Technische Universität Delft Aus dem Niederländischen übersetzt von Burkhard Lau, Technische Universität

Mehr

Vergleich verschiedener Finite-Elemente-Approximationen zur numerischen Lösung der Plattengleichung

Vergleich verschiedener Finite-Elemente-Approximationen zur numerischen Lösung der Plattengleichung Fakultät für Mathematik und Informatik Ruprecht-Karls-Universität Heidelberg Diplomarbeit Vergleich verschiedener Finite-Elemente-Approximationen zur numerischen Lösung der Plattengleichung Bärbel Janssen

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 15 Unterräume und Dualraum Untervektorräume eines K-Vektorraumes stehen in direkter Beziehung zu Untervektorräumen

Mehr

Numerische Verfahren zur Lösung der Monge-Ampère-Gleichung, Teil II

Numerische Verfahren zur Lösung der Monge-Ampère-Gleichung, Teil II für zur Lösung der Monge-Ampère-Gleichung, Teil II Andreas Platen Institut für Geometrie und Praktische Mathematik RWTH Aachen Seminar zur Approximationstheorie im Wintersemester 2009/2010 1 / 27 Gliederung

Mehr

4 Fehlerabschätzungen und Konvergenz der FEM

4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 153 Es sei V der Lösungsraum und V N V ein endlich dimensionaler Unterraum. Weiters sei u V die exakte Lösung und

Mehr