Visualisierung der Imperfektion in multidimensionalen Daten

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Visualisierung der Imperfektion in multidimensionalen Daten"

Transkript

1 Visualisierung der Imperfektion in multidimensionalen Daten Horst Fortner Imperfektion und erweiterte Konzepte im Data Warehousing Betreuer: Heiko Schepperle

2 2 Begriffe (1) Visualisierung [Wikipedia] abstrakte Daten in eine angebrachte, verstehbare Form zu bringen. Dabei können Details weggelassen werden, die im Kontext vernachlässigbar sind. Visualisierte Daten müssen daher korrekt interpretiert werden.

3 3 Begriffe (2) Imperfektion Unsicherheit w/f nicht möglich => Wahrscheinlichkeit Unschärfe linguistische Variablen, z.b. schnelles Auto Ungenauigkeit z.b. Messungen in Intervallen

4 4 Begriffe (3) Information Interpretierte Daten, Daten + Semantik Systematische Informationsgewinnung aus großen Datenmengen = Aufgabe des Data Mining Multidimensionale Daten Auswertungsperspektive eines Anwendungsbereiches erlauben eindeutige und orthogonale Strukturierung des Datenraumes Beispiele: Kunde, Produkt, Zeit, Filiale,... Data Cube

5 5 Visualisierung im Verkehr* Benutzergruppen Verkehrsteilnehmer On-Trip Verkehrsteilnehmer Pre-Trip Verkehrsingenieur Verkehrswissenschaftler *Quelle: Studienarbeit Visualisierung imperfekter Informationen in einem Analyse-Werkzeug von Oliver Forster

6 6 Visualisierungstechniken Kategorien

7 7 Visualisierungstechniken Bewertungskriterien für Visualisierungstechniken Übersichtlichkeit Möglichkeit zur Interaktion Vollständigkeit Anwendbarkeit auf ein Verkehrsszenario

8 8 Parallele Koordinaten (1) Prinzip der parallelen Koordinaten R. Spence, Information Visualization, Addison-Wesley, 2001.

9 9 Parallele Koordinaten (2) Funktionsprinzip Abbildung n 2 Dimensionen (Papier, Monitor) Achsen werden nebeneinander parallel angeordnet Linie = n-tupel Achsen flexibel verschiebbar/ausblendbar (-) erfordert meist geschultes Auge (Experten) (-) schnell unübersichtlich bei vielen Tupeln

10 10 Parallele Koordinaten (3) Bsp:

11 11 Table Lens (1) Funktionsprinzip Jede Spalte ist Histogramm Jeder Zeile ist ein Name zugeordnet (+) tabellarische Darstellung bekannt (+) interaktive Umordnung der Zeilen möglich

12 12 Table Lens (2) Bsp:

13 13 Erweiterung um Imperfektion Kriterien bei der Erweiterung Verhältnismäßigkeit Hauptinformation im Vordergrund Imperfektionsabgrenzung perfekt <-> imperfekt Unterscheidbarkeit Imperfektionsarten unterscheidbar Mächtigkeitserhaltung keine Einschränkung der Möglichkeiten

14 14 Erweiterung um Imperfektion a) Unsicherheit b) Unschärfe a) + Ungenauigkeit

15 15 Erweiterung um Imperfektion Unsicherheit Ungenauigkeit Unschärfe

16 16 Visualisierungswerkzeug

17 17 Übersicht Bisher gelernt: 2 Visualisierungstechniken, erweitert um Imperfektion Parallele Koordinaten Table Lens Jetzt: Visual Data Mining 2 Verfahren: Data Mining Kooperative Klassifikation Visual Data Mining Interaktives temporales Data Mining Beispiel-VDM-Anwendungen Information Visualization

18 18 Visual Data Mining (VDM) Ankerst, M., Visual Data Mining, Dissertation: Visuelles Data Mining ist ein Teil des KDD-Prozesses, der Visualisierung als Kommunikationsmittel zwischen Mensch und Computer nutzt, um neue und interpretierbare Muster zu erkennen und Wissen zu generieren. Schritte des KDD (Knowledge Discovery in Databases)

19 19 Visual Data Mining (VDM) VDM-Ansätze Quelle: Soukup, T.; Davidson, I., Visual Data Mining sowie Ankerst Dissertation

20 20 Kooperatives Data-Mining Kooperatives Data-Mining Integration von Data-Mining-Algorithmen und Visualisierungstechniken Vorteil: Kreativität + Verständnis des Menschen, der den Prozess der Datenanalyse steuert Hypothesen aufstellt und sie interaktiv verifiziert => besseres Verständnis der Ergebnisse Automatische Analyse weiterhin möglich Auch von Nicht-Spezialisten durchführbar Einsatz lohnt besonders, wenn Explorationsziele nicht genau spezifiziert stark inhomogene und verrauschte Daten vorliegen

21 21 Kooperative Klassifikation (1) Konkretes Verfahren aus dem kooperativen DM: Kooperative Klassifikation Kooperativ = Interaktiv (d.h. mit Benutzer nimmt an der Klassifikation teil) 1. Schritt: Datenanalyse von Trainingsdaten Ergebnis: Modell Modellerstellung z.b. durch Entscheidungsbaumklassifikator

22 22 Kooperative Klassifikation (2) Wie wird ein Entscheidungsbaum erstellt? Knoten = Teilmenge der Trainingsdaten Kanten = Test auf Attribut des Vaterknotens Blätter = Zugehörigkeit zu einer Klasse Algorithmus Von der Wurzel beginnend 1) Welcher Sensor separiert die Trainingsdaten am besten? Hier: Sensor 1 => Neuer Wurzelknoten 2) Rekursive Fortsetzung bei Kindknoten 3) Terminierung, wenn alle Knoten einen ausreichenden Anteil an einer einzigen Klasse haben, z.b. über 80% => Quelle von Imperfektion

23 23 Kooperative Klassifikation (3) 2. Schritt: Einteilung neuer Daten in Klassen unter Verwendung des Modells aus Schritt 1 Kritik Klassen-Abgrenzung durch Greedy-Algorithmus => schnell, aber suboptimal Grenzziehung problematisch => siehe 80% bei Schritt 1 Nicht erkennbar, welche Attribute nicht verwendet wurden Imperfektion

24 24 Kooperative Klassifikation Beispiel: Space-Shuttle- Heizkörpersystem

25 25 Interaktives temporales Data Mining Beispieltechnik: DataJewel-System Visualisierungs-, Algorithmus- und Datenbank-Komponente

26 26 DataJewel-System CalendarView, Visualisierungstechnik von DataJewel

27 27 DataJewel Images by Boeing Company, Bellevue, Washington

28 28 Klassifikation von VDM-Techniken

29 29 VDM Anwendungen Konkrete Business-Anwendungen Marketing Target-Marketing Cross-Marketing Customer Profiling (Konsumverhalten) Bedürfnisse ermitteln Finanz- und Ressourcenplanung uvm.

30 30 Zusammenfassung Was haben wir gelernt? Anforderungen im Verkehr 2 Visualisierungstechniken 2 Verfahren des Visual Data Mining Inwieweit ist die Integration der Imperfektion in Visualisierungstechniken sinnvoll? Welche Anwendungsgebiete gibt es?

31 31 Danke! Danke für Ihre Aufmerksamkeit! Fragen?

Visualisierung der Imperfektion in multidimensionalen Daten

Visualisierung der Imperfektion in multidimensionalen Daten Universität Karlsruhe (TH) Fakultät für Informatik Institut für Programmstrukturen und Datenorganisation (IPD) Hauptseminar Imperfektion und erweiterte Konzepte im Data Warehousing Visualisierung der Imperfektion

Mehr

Seminar Visual Analytics and Visual Data Mining

Seminar Visual Analytics and Visual Data Mining Seminar Visual Analytics and Visual Data Mining Dozenten:, AG Visual Computing Steffen Oeltze, AG Visualisierung Organisatorisches Seminar für Diplom und Bachelor-Studenten (max. 18) (leider nicht für

Mehr

Seminar Business Intelligence Teil II. Data Mining & Knowledge Discovery

Seminar Business Intelligence Teil II. Data Mining & Knowledge Discovery Seminar Business Intelligence Teil II Data Mining & Knowledge Discovery Was ist Data Mining? Sabine Queckbörner Was ist Data Mining? Data Mining Was ist Data Mining? Nach welchen Mustern wird gesucht?

Mehr

Visual Business Analytics Visueller Zugang zu Big Data

Visual Business Analytics Visueller Zugang zu Big Data Visual Business Analytics Visueller Zugang zu Big Data Dr.-Ing. Jörn Kohlhammer Fraunhofer-Institut für Graphische Datenverarbeitung (IGD) Fraunhoferstraße 5 64283 Darmstadt Tel.: +49 6151 155-646 Fax:

Mehr

3. Entscheidungsbäume. Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002)

3. Entscheidungsbäume. Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002) 3. Entscheidungsbäume Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002) (aus Wilhelm 2001) Beispiel: (aus Böhm 2003) Wann sind Entscheidungsbäume

Mehr

Künstliche Intelligenz Maschinelles Lernen

Künstliche Intelligenz Maschinelles Lernen Künstliche Intelligenz Maschinelles Lernen Stephan Schwiebert Sommersemester 2009 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Maschinelles Lernen Überwachtes Lernen

Mehr

Grundlagen der Informatik II. Teil I: Formale Modelle der Informatik

Grundlagen der Informatik II. Teil I: Formale Modelle der Informatik Grundlagen der Informatik II Teil I: Formale Modelle der Informatik 1 Einführung GdInfoII 1-2 Ziele/Fragestellungen der Theoretischen Informatik 1. Einführung abstrakter Modelle für informationsverarbeitende

Mehr

Moderne Methoden der KI: Maschinelles Lernen

Moderne Methoden der KI: Maschinelles Lernen Moderne Methoden der KI: Maschinelles Lernen Prof. Dr.Hans-Dieter Burkhard Vorlesung Entscheidungsbäume Darstellung durch Regeln ID3 / C4.5 Bevorzugung kleiner Hypothesen Overfitting Entscheidungsbäume

Mehr

Motivation. Themenblock: Klassifikation. Binäre Entscheidungsbäume. Ansätze. Praktikum: Data Warehousing und Data Mining.

Motivation. Themenblock: Klassifikation. Binäre Entscheidungsbäume. Ansätze. Praktikum: Data Warehousing und Data Mining. Motivation Themenblock: Klassifikation Praktikum: Data Warehousing und Data Mining Ziel Item hat mehrere Attribute Anhand von n Attributen wird (n+)-tes vorhergesagt. Zusätzliches Attribut erst später

Mehr

Visualisierung in Natur- und Technikwissenschaften. 0. Einführung. Vorlesung: Mi, 11:15 12:45 + Fr, 9:15 10:45, INF 368 532 Prof. Dr.

Visualisierung in Natur- und Technikwissenschaften. 0. Einführung. Vorlesung: Mi, 11:15 12:45 + Fr, 9:15 10:45, INF 368 532 Prof. Dr. Visualisierung in Natur- und Technikwissenschaften 0. Einführung Vorlesung: Mi, 11:15 12:45 + Fr, 9:15 10:45, INF 368 532 Prof. Dr. Heike Leitte Vertiefung Computergraphik und Visualisierung Jürgen Hesser

Mehr

Data Mining und Knowledge Discovery in Databases

Data Mining und Knowledge Discovery in Databases Data Mining und Knowledge Discovery in Databases Begriffsabgrenzungen... Phasen der KDD...3 3 Datenvorverarbeitung...4 3. Datenproblematik...4 3. Möglichkeiten der Datenvorverarbeitung...4 4 Data Mining

Mehr

0 Einführung: Was ist Statistik

0 Einführung: Was ist Statistik 0 Einführung: Was ist Statistik 1 Datenerhebung und Messung 2 Univariate deskriptive Statistik 3 Multivariate Statistik 4 Regression 5 Ergänzungen Explorative Datenanalyse EDA Auffinden von Strukturen

Mehr

Visualisierung großer Datenbanken

Visualisierung großer Datenbanken Business Intelligence 1 Visualisierung großer Datenbanken Prof. Dr. Hans-Peter Kriegel, Institut für Informatik, Universität München und Prof. Dr. Daniel A. Keim, Institut für Informatik, Universität Halle-Wittenberg

Mehr

Data Mining Anwendungen und Techniken

Data Mining Anwendungen und Techniken Data Mining Anwendungen und Techniken Knut Hinkelmann DFKI GmbH Entdecken von Wissen in banken Wissen Unternehmen sammeln ungeheure mengen enthalten wettbewerbsrelevantes Wissen Ziel: Entdecken dieses

Mehr

2. Lernen von Entscheidungsbäumen

2. Lernen von Entscheidungsbäumen 2. Lernen von Entscheidungsbäumen Entscheidungsbäume 2. Lernen von Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch Attribut/Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse

Mehr

9 Resümee. Resümee 216

9 Resümee. Resümee 216 Resümee 216 9 Resümee In der vorliegenden Arbeit werden verschiedene Methoden der Datenreduktion auf ihre Leistungsfähigkeit im sozialwissenschaftlichstatistischen Umfeld anhand eines konkreten Anwendungsfalls

Mehr

Data Cube. Aggregation in SQL. Beispiel: Autoverkäufe. On-line Analytical Processing (OLAP) 1. Einführung. 2. Aggregation in SQL, GROUP BY

Data Cube. Aggregation in SQL. Beispiel: Autoverkäufe. On-line Analytical Processing (OLAP) 1. Einführung. 2. Aggregation in SQL, GROUP BY Data Cube On-line Analytical Processing (OLAP). Einführung Ziel: Auffinden interessanter Muster in großen Datenmengen 2. Aggregation in SQL, GROUP BY 3. Probleme mit GROUP BY 4. Der Cube-Operator! Formulierung

Mehr

Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining

Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining Gliederung 1. Einführung 2. Grundlagen Data Mining Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining 3. Ausgewählte Methoden des Data

Mehr

4. Lernen von Entscheidungsbäumen. Klassifikation mit Entscheidungsbäumen. Entscheidungsbaum

4. Lernen von Entscheidungsbäumen. Klassifikation mit Entscheidungsbäumen. Entscheidungsbaum 4. Lernen von Entscheidungsbäumen Klassifikation mit Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch /Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse zugeordnet werden.

Mehr

Theorien für die Darstellung von Unsicherheit Ein Vergleich der Wahrscheinlichkeits-, Möglichkeits- und Dempster-Shafer Theorie

Theorien für die Darstellung von Unsicherheit Ein Vergleich der Wahrscheinlichkeits-, Möglichkeits- und Dempster-Shafer Theorie Theorien für die Darstellung von Unsicherheit Ein Vergleich der Wahrscheinlichkeits-, Möglichkeits- und Dempster-Shafer Theorie Johannes Leitner Inhalt I Modellierung von Unschärfe Unscharfe Mengen Unscharfe

Mehr

Data/Information Quality Management

Data/Information Quality Management Data/Information Quality Management Seminar WI/Informationsmanagement im Sommersemester 2002 Markus Berberov, Roman Eder, Peter Gerstbach 11.6.2002 Inhalt! Daten und Datenqualität! Einführung und Definition!

Mehr

Visual Business Intelligence Eine Forschungsperspektive

Visual Business Intelligence Eine Forschungsperspektive Visual Business Intelligence Eine Forschungsperspektive Dr. Jörn Kohlhammer Fraunhofer-Institut für Graphische Datenverarbeitung IGD Fraunhoferstraße 5 64283 Darmstadt Tel.: +49 6151 155 646 Fax.: +49

Mehr

Visualisierung vom Zustand des Internets

Visualisierung vom Zustand des Internets Visualisierung vom Zustand des Internets Internet-Fr Frühwarnsystem mit VisiX Visual Internet Sensor Information Sebastian Spooren spooren (at) internet-sicherheit.de Institut für Internet-Sicherheit https://www.internet-sicherheit.de

Mehr

Visuelle Suche in Digitalen Filmarchiven Visual Search in Digital Film Archives. Visuelle Exploration Digitaler Bibliothken

Visuelle Suche in Digitalen Filmarchiven Visual Search in Digital Film Archives. Visuelle Exploration Digitaler Bibliothken Visuelle Suche in Digitalen Filmarchiven Visual Search in Digital Film Archives Visuelle Exploration Digitaler Bibliothken Prof. Dr. am Beispiel des Projektes MedioVis Harald.Reiterer@uni-konstanz.de Kurzvorstellung

Mehr

MythMiner. Ein Empfehlungssystem für Fernsehprogramme auf Basis von RapidMiner. Balázs Bárány. Linuxwochen Wien, 7. 5. 2011

MythMiner. Ein Empfehlungssystem für Fernsehprogramme auf Basis von RapidMiner. Balázs Bárány. Linuxwochen Wien, 7. 5. 2011 Voraussetzungen für Data Mining und Text Mining Schluÿ Ein Empfehlungssystem für Fernsehprogramme auf Basis von RapidMiner Linuxwochen Wien, 7. 5. 2011 Voraussetzungen für Data Mining und Text Mining Schluÿ

Mehr

Jan Parthey, Christin Seifert. 22. Mai 2003

Jan Parthey, Christin Seifert. 22. Mai 2003 Simulation Rekursiver Auto-Assoziativer Speicher (RAAM) durch Erweiterung eines klassischen Backpropagation-Simulators Jan Parthey, Christin Seifert jpar@hrz.tu-chemnitz.de, sech@hrz.tu-chemnitz.de 22.

Mehr

Foundations of uncertain data integration

Foundations of uncertain data integration Foundations of uncertain data integration Seminar Informationsintegration Stephan Barnert IT Management & Consulting 11.09.2015 Agenda Problemstellung Einleitung Beispiel zur Integration Wiederholung LAV

Mehr

Kapitel IR:I. I. Einführung. Retrieval-Szenarien Begriffsbildung Einordnung Information Retrieval

Kapitel IR:I. I. Einführung. Retrieval-Szenarien Begriffsbildung Einordnung Information Retrieval Kapitel IR:I I. Einführung Retrieval-Szenarien Begriffsbildung Einordnung Information Retrieval IR:I-1 Introduction STEIN 2005-2010 Retrieval-Szenarien Liefere Dokumente, die die Terme «Information» und

Mehr

Data Mining als Arbeitsprozess

Data Mining als Arbeitsprozess Data Mining als Arbeitsprozess Hagen Knaf Studiengang Angewandte Mathematik Hochschule RheinMain 31. Dezember 2015 In Unternehmen werden umfangreichere Aktivitäten oder Projekte im Bereich des Data Mining

Mehr

Erhalt von Imperfektion in einem Data Warehouse

Erhalt von Imperfektion in einem Data Warehouse Erhalt von Imperfektion in einem Data Warehouse Heiko Schepperle, Andreas Merkel, Alexander Haag {schepperle,merkela,haag}@ipd.uni-karlsruhe.de Abstract: Üblicherweise werden in einem Data-Warehouse-System

Mehr

Daten- visualisierung. (und wie man diese vermeidet)

Daten- visualisierung. (und wie man diese vermeidet) 5Fallen der Daten- visualisierung (und wie man diese vermeidet) Seit Jahrzehnten nutzen wir Diagramme, um Business-Daten besser zu verstehen. Aber selbst wenn die Daten unterschiedlich waren, blieben die

Mehr

ML-Werkzeuge und ihre Anwendung

ML-Werkzeuge und ihre Anwendung Kleine Einführung: und ihre Anwendung martin.loesch@kit.edu (0721) 608 45944 Motivation Einsatz von maschinellem Lernen erfordert durchdachtes Vorgehen Programmieren grundlegender Verfahren aufwändig fehlerträchtig

Mehr

Neuerungen Analysis Services

Neuerungen Analysis Services Neuerungen Analysis Services Neuerungen Analysis Services Analysis Services ermöglicht Ihnen das Entwerfen, Erstellen und Visualisieren von Data Mining-Modellen. Diese Mining-Modelle können aus anderen

Mehr

4. Lernen von Entscheidungsbäumen

4. Lernen von Entscheidungsbäumen 4. Lernen von Entscheidungsbäumen Entscheidungsbäume 4. Lernen von Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch Attribut/Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse

Mehr

Fachgruppe Statistik, Risikoanalyse & Computing. STAT672 Data Mining. Sommersemester 2007. Prof. Dr. R. D. Reiß

Fachgruppe Statistik, Risikoanalyse & Computing. STAT672 Data Mining. Sommersemester 2007. Prof. Dr. R. D. Reiß Fachgruppe Statistik, Risikoanalyse & Computing STAT672 Data Mining Sommersemester 2007 Prof. Dr. R. D. Reiß Überblick Data Mining Begrifflichkeit Unter Data Mining versteht man die Computergestützte Suche

Mehr

Entscheidungsbäume. Minh-Khanh Do Erlangen,

Entscheidungsbäume. Minh-Khanh Do Erlangen, Entscheidungsbäume Minh-Khanh Do Erlangen, 11.07.2013 Übersicht Allgemeines Konzept Konstruktion Attributwahl Probleme Random forest E-Mail Filter Erlangen, 11.07.2013 Minh-Khanh Do Entscheidungsbäume

Mehr

Web Mining und Farming

Web Mining und Farming Web Mining und Farming Shenwei Song Gliederung Übersicht über Web Mining und Farming Web Mining Klassifikation des Web Mining Wissensbasierte Wrapper-Induktion Web Farming Übersicht über Web-Farming-Systeme

Mehr

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria Analyse von unstrukturierten Daten Peter Jeitschko, Nikolaus Schemel Oracle Austria Evolution von Business Intelligence Manuelle Analyse Berichte Datenbanken (strukturiert) Manuelle Analyse Dashboards

Mehr

tfacet: Hierarchisch-facettierte Exploration semantischer Daten mit Hilfe bekannter Interaktionskonzepte

tfacet: Hierarchisch-facettierte Exploration semantischer Daten mit Hilfe bekannter Interaktionskonzepte IVDW-Workshop 2011, Berlin (6. Oktober) Institut für Visualisierung und Interaktive Systeme tfacet: Hierarchisch-facettierte Exploration semantischer Daten mit Hilfe bekannter Interaktionskonzepte Philipp

Mehr

AutoSPARQL. Let Users Query Your Knowledge Base

AutoSPARQL. Let Users Query Your Knowledge Base AutoSPARQL Let Users Query Your Knowledge Base Christian Olczak Seminar aus maschinellem Lernen WS 11/12 Fachgebiet Knowledge Engineering Dr. Heiko Paulheim / Frederik Janssen 07.02.2012 Fachbereich Informatik

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Es war einmal... "StudyING: Welten bewegen - Welten gestalten"

Es war einmal... StudyING: Welten bewegen - Welten gestalten Computer, generiere! Christian Schröder Fachbereich Elektrotechnik und Informationstechnik Fachhochschule Bielefeld christian.schroeder@fh-bielefeld.de Es war einmal... Es war einmal... ein Bauvorhaben!

Mehr

Text-Mining: Einführung

Text-Mining: Einführung Text-Mining: Einführung Claes Neuefeind Fabian Steeg 22. April 2010 Organisatorisches Was ist Text-Mining? Definitionen Anwendungsbeispiele Textuelle Daten Aufgaben u. Teilbereiche Literatur Kontakt Sprechstunde:

Mehr

Visualisierung hochdimensionaler Daten. Hauptseminar SS11 Michael Kircher

Visualisierung hochdimensionaler Daten. Hauptseminar SS11 Michael Kircher Hauptseminar SS11 Inhalt Einführung zu hochdimensionalen Daten Visualisierungsmöglichkeiten dimensionale Teilmengen dimensionale Schachtelung Achsenumgestaltung Algorithmen zur Dimensionsreduktion Zusammenfassung

Mehr

Data Mining-Projekte

Data Mining-Projekte Data Mining-Projekte Data Mining-Projekte Data Mining stellt normalerweise kein ei nmaliges Projekt dar, welches Erkenntnisse liefert, die dann nur einmal verwendet werden, sondern es soll gewöhnlich ein

Mehr

Knowledge Discovery. Lösungsblatt 1

Knowledge Discovery. Lösungsblatt 1 Universität Kassel Fachbereich Mathematik/nformatik Fachgebiet Wissensverarbeitung Hertie-Stiftungslehrstuhl Wilhelmshöher Allee 73 34121 Kassel Email: hotho@cs.uni-kassel.de Tel.: ++49 561 804-6252 Dr.

Mehr

Data Mining Standards am Beispiel von PMML. Data Mining Standards am Beispiel von PMML

Data Mining Standards am Beispiel von PMML. Data Mining Standards am Beispiel von PMML Data Mining Standards am Beispiel von PMML Allgemeine Definitionen im Data Mining Data Mining (DM) Ein Prozess, um interessante neue Muster, Korrelationen und Trends in großen Datenbeständen zu entdecken,

Mehr

Binäre Bäume Darstellung und Traversierung

Binäre Bäume Darstellung und Traversierung Binäre Bäume Darstellung und Traversierung Name Frank Bollwig Matrikel-Nr. 2770085 E-Mail fb641378@inf.tu-dresden.de Datum 15. November 2001 0. Vorbemerkungen... 3 1. Terminologie binärer Bäume... 4 2.

Mehr

Anpassung von Data-Warehouse-Techniken für den Einsatz unsicherer Verkehrsdaten

Anpassung von Data-Warehouse-Techniken für den Einsatz unsicherer Verkehrsdaten Diplomvortrag Anpassung von Data-Warehouse-Techniken für den entstanden im Rahmen des OVID-Projektes Institut für Programmstrukturen und Datenorganisation Verantwortlicher Betreuer: Prof. Dr.-Ing. Klemens

Mehr

plusvalue COMMUNICATION Wintersemester 2012/13 Birger Schnepp

plusvalue COMMUNICATION Wintersemester 2012/13 Birger Schnepp plusvalue COMMUNICATION Wintersemester 2012/13 Birger Schnepp Inhalt und Struktur + Online Marketing/-Kommunikation + Werbeformen allgemein + Strategischer Einsatz von Werbeformen nach OnWW + Creative

Mehr

THREAD ARCS: An Email Thread Visualization

THREAD ARCS: An Email Thread Visualization THREAD ARCS: An Email Thread Visualization Eine Technik zur Visualisierung der Email Threads Wladimir Emdin Seminar Visualisierung verteilter Systeme Gliederung 1. Einführung: Email Threads und Ziele deren

Mehr

ER-Modell. Entity-Relationship-Model

ER-Modell. Entity-Relationship-Model + ER-Modell Entity-Relationship-Model + Was ist ein Modell? Worte/Zitat aus einem Physikbuch: "Modelle sind also Vorstellungshilfen und Wirklichkeitshilfen, nicht die Wirklichkeit selbst." (Metzler Physik).

Mehr

Dreidimensionale Visualisierung von ober- und unterirdischen Konstruktionen in DeepCity3D

Dreidimensionale Visualisierung von ober- und unterirdischen Konstruktionen in DeepCity3D Dreidimensionale Visualisierung von ober- und unterirdischen Konstruktionen in DeepCity3D Programme Inter Carnot Fraunhofer PICF 2010 M.Sc. Inf. Michel Krämer Fraunhofer-Institut für Graphische Datenverarbeitung

Mehr

2.5.2 Primärschlüssel

2.5.2 Primärschlüssel Relationale Datenbanken 0110 01101110 01110 0110 0110 0110 01101 011 01110 0110 010 011011011 0110 01111010 01101 011011 0110 01 01110 011011101 01101 0110 010 010 0110 011011101 0101 0110 010 010 01 01101110

Mehr

Visuelle Analyse und Entscheidungsunterstützung

Visuelle Analyse und Entscheidungsunterstützung Visuelle Analyse und Entscheidungsunterstützung Dr. Jörn Kohlhammer Fraunhofer IGD 5.-7. November 2007 EpiGrid, FernUniversität in Hagen Überblick Visuelle Analyse Aktuelle Ansätze Vorstellung Fraunhofer

Mehr

Diplomarbeit: Visualisierung konzeptioneller Beschreibungen von Programmieraktivitäten. Arbeitsgruppe: Software-Engineering Nicolas Ngandeu

Diplomarbeit: Visualisierung konzeptioneller Beschreibungen von Programmieraktivitäten. Arbeitsgruppe: Software-Engineering Nicolas Ngandeu Diplomarbeit: Visualisierung konzeptioneller Beschreibungen von Programmieraktivitäten Arbeitsgruppe: Software-Engineering Nicolas Ngandeu Gliederung Einführung Visualisierung Die Akteure Die Inputdaten

Mehr

Text Mining und CRM. Hans Hermann Weber Univ. Erlangen IMMD 8, den 12.09.03

Text Mining und CRM. Hans Hermann Weber Univ. Erlangen IMMD 8, den 12.09.03 Text Mining und CRM Hans Hermann Weber Univ. Erlangen IMMD 8, den 12.09.03 Was ist Textmining Unstrukturierte Daten (Text) anreichern mit Strukturinformation: Metadaten hinzufügen Struktur (Segmentinformation)

Mehr

Einführung in die Fuzzy Logic

Einführung in die Fuzzy Logic Einführung in die Fuzzy Logic Entwickelt von L. Zadeh in den 60er Jahren Benutzt unscharfe (fuzzy) Begriffe und linguistische Variablen Im Gegensatz zur Booleschen Logik {0,} wird das ganze Intervall [0,]

Mehr

Konzepte der Informatik

Konzepte der Informatik Konzepte der Informatik Vorkurs Informatik zum WS 2011/2012 26.09. - 30.09.2011 17.10. - 21.10.2011 Dr. Werner Struckmann / Christoph Peltz Stark angelehnt an Kapitel 1 aus "Abenteuer Informatik" von Jens

Mehr

Bestandskundenmanagement Wo drückt bei Ihnen der Schuh?

Bestandskundenmanagement Wo drückt bei Ihnen der Schuh? Bestandskundenmanagement Wo drückt bei Ihnen der Schuh? best-reactions GmbH Hirschberger Straße 33 D 90559 Burgthann Alle Rechte vorbehalten HRB 23679, Amtsgericht Nürnberg Geschäftsführer Alexander P.

Mehr

Visuelle Exploration und semantikbasierte Fusion multivariater Datenbestände

Visuelle Exploration und semantikbasierte Fusion multivariater Datenbestände Visuelle Exploration und semantikbasierte Fusion multivariater Datenbestände Stefan Audersch, Guntram Flach, Tom Klipps Zentrum für Graphische Datenverarbeitung e.v., Rostock Joachim-Jungius-Str. 11, 18059

Mehr

Data Mining (ehem. Entscheidungsunterstützungssysteme)

Data Mining (ehem. Entscheidungsunterstützungssysteme) Data Mining (ehem. Entscheidungsunterstützungssysteme) Melanie Pfoh Anja Tetzner Christian Schieder Übung WS 2014/15 AGENDA TEIL 1 Aufgabe 1 (Wiederholung OPAL / Vorlesungsinhalte) ENTSCHEIDUNG UND ENTSCHEIDUNGSTHEORIE

Mehr

The integration of business intelligence and knowledge management

The integration of business intelligence and knowledge management The integration of business intelligence and knowledge management Seminar: Business Intelligence Ketevan Karbelashvili Master IE, 3. Semester Universität Konstanz Inhalt Knowledge Management Business intelligence

Mehr

Quellen: Towards a Human Computer InteractionPerspective. Übersicht. Warum visuelle Sprachen? Begriffsdefinitionen: Hinderungsgründe bisher:

Quellen: Towards a Human Computer InteractionPerspective. Übersicht. Warum visuelle Sprachen? Begriffsdefinitionen: Hinderungsgründe bisher: Quellen: Towards a Human Computer InteractionPerspective von B.K. & B.K. LV: Visuelle Sprachen (03-763) Universität Bremen WS 2001/02 Visual Language Theory: Towards a Human- Computer Perspective; N. Hari

Mehr

4 Greedy-Algorithmen (gierige Algorithmen)

4 Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine

Mehr

Visualisierung sozialwissenschaftlicher Daten. Karl H. Müller Armin Reautschnig WISDOM (Wien) 25. März 2010 Innsbruck

Visualisierung sozialwissenschaftlicher Daten. Karl H. Müller Armin Reautschnig WISDOM (Wien) 25. März 2010 Innsbruck Visualisierung sozialwissenschaftlicher Daten Karl H. Müller Armin Reautschnig WISDOM (Wien) 25. März 2010 Innsbruck Übersicht zum Vortrag Der autobiografische Bezugspunkt: Otto Neurath (1881 1945) 0.29"2

Mehr

INTERAKTIVE GRAPHENVISUALISIERUNG ZUR UNTERSTÜTZUNG DER ENTWICKLUNG VON FUNKTIONSNETZEN IM FAHRZEUG

INTERAKTIVE GRAPHENVISUALISIERUNG ZUR UNTERSTÜTZUNG DER ENTWICKLUNG VON FUNKTIONSNETZEN IM FAHRZEUG DIPLOMARBEIT INTERAKTIVE GRAPHENVISUALISIERUNG ZUR UNTERSTÜTZUNG DER ENTWICKLUNG VON FUNKTIONSNETZEN IM FAHRZEUG KORBINIAN ZOLLNER BETREUER: MICHAEL SEDLMAIR VERANTWORTL. HOCHSCHULLEHRER: PROF. DR. ANDREAS

Mehr

Null-Werte in Relationalen Datenbanken

Null-Werte in Relationalen Datenbanken Seminar: Imperfektion in Datenbanken WS03/04 Null-Werte in Relationalen Datenbanken Thomas Bierhance Einführung Null-Werte in DBen sind notwendiges Übel, da... (1) das Wissen über die tatsächliche Welt

Mehr

Rechtzeitig mit SAS ein Bild über die Qualität der Analysedaten erhalten

Rechtzeitig mit SAS ein Bild über die Qualität der Analysedaten erhalten Rechtzeitig mit SAS ein Bild über die Qualität der Analysedaten erhalten Datenqualität / Validierung Gerhard Svolba SAS Austria Mariahilfer Straße 116 A-1070 Wien gerhard.svolba@sas.com Zusammenfassung

Mehr

4 Architektur-Perspektiven (WO)

4 Architektur-Perspektiven (WO) 4 Architektur-Perspektiven (WO) Abb. 4-1: Positionierung des Kapitels im Ordnungsrahmen. Dieses Kapitel befasst sich mit der WO-Dimension des architektonischen Ordnungsrahmens. Es erläutert, auf welchen

Mehr

Projekt AGB-10 Fremdprojektanalyse

Projekt AGB-10 Fremdprojektanalyse Projekt AGB-10 Fremdprojektanalyse 17. Mai 2010 1 Inhaltsverzeichnis 1 Allgemeines 3 2 Produktübersicht 3 3 Grundsätzliche Struktur und Entwurfsprinzipien für das Gesamtsystem 3 3.1 Die Prefuse Library...............................

Mehr

Semantik-Visualisierung

Semantik-Visualisierung Semantik-Visualisierung Wibaklidama-Herbstworkshop Kawa Nazemi Fraunhofer IGD 3D-Wissenswelten und Semantik-Visualisierung Semantic Visualization semavis: Pipelines Visualization Semantics Layout Presentation

Mehr

Das Knowledge Grid. Eine Architektur für verteiltes Data Mining

Das Knowledge Grid. Eine Architektur für verteiltes Data Mining Das Knowledge Grid Eine Architektur für verteiltes Data Mining 1 Gliederung 1. Motivation 2. KDD und PDKD Systeme 3. Knowledge Grid Services 4. TeraGrid Projekt 5. Das Semantic Web 2 Motivation Rapide

Mehr

Agenda. Grundlagen und Begriffe. Ergebnis und Tendenz. Konzeption eines marketingorientierten Statistik- und Account- 11. Mai 2005.

Agenda. Grundlagen und Begriffe. Ergebnis und Tendenz. Konzeption eines marketingorientierten Statistik- und Account- 11. Mai 2005. eines marketingorientierten Statistik- und Monitoringtools für das B2B Key-Account Account- Management der Jamba!! AG 11. Mai 2005 Agenda eines marketingorientierten Statistik- und Monitoringtools Mobile

Mehr

EXPLORATION VON GEOSPATIALEN AUTOMOTIVE-DATEN VISUALISIERUNG VON FAHRZEUG-SENSORDATEN

EXPLORATION VON GEOSPATIALEN AUTOMOTIVE-DATEN VISUALISIERUNG VON FAHRZEUG-SENSORDATEN Isabella Eckel, BMW Group Dr. Christian Winkler, mgm technology partners GmbH EXPLORATION VON GEOSPATIALEN AUTOMOTIVE-DATEN VISUALISIERUNG VON FAHRZEUG-SENSORDATEN WISSENSEXTRAKTION AUS FAHRZEUG-SENSORDATEN

Mehr

Analyse alt- und mittelpaläolithischer Steinartefaktinventare mittels Parallelkoordinatenplots

Analyse alt- und mittelpaläolithischer Steinartefaktinventare mittels Parallelkoordinatenplots Einleitung Analyse alt- und mittelpaläolithischer Steinartefaktinventare mittels Parallelkoordinatenplots von Irmela Herzog Im Rahmen der Herbsttagung der AG DANK (Datenanalyse und Numerische Klassifikation)

Mehr

Klassifikation von Integrationskonflikten

Klassifikation von Integrationskonflikten Klassifikation von Integrationskonflikten Christiane Telöken 1 Inhaltsverzeichnis 1. Was bedeutet Integration? 2. Strukturelle Heterogenitätskonflikte 2.1 Konflikte bei bilateralen Korrespondenzen 2.2

Mehr

Die Orgadata AG ist ein stark expandierendes Software-Unternehmen aus Leer. Mit unserem System LogiKal

Die Orgadata AG ist ein stark expandierendes Software-Unternehmen aus Leer. Mit unserem System LogiKal HIER DREHT SICH ALLES UM IHRE ZUKUNFT Entwicklung einer Architektur für automatisierte UI-Tests Im Rahmen Ihrer entwickeln Sie eine Software-Lösung, die das automatische Bedienen und Befüllen der graphischen

Mehr

2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung

2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung 2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung Reporting, Analyse und Data Mining André Henkel, initions AG 22. und 23. Oktober 2013 in Hamburg

Mehr

Mining High-Speed Data Streams

Mining High-Speed Data Streams Mining High-Speed Data Streams Pedro Domingos & Geoff Hulten Departement of Computer Science & Engineering University of Washington Datum : 212006 Seminar: Maschinelles Lernen und symbolische Ansätze Vortragender:

Mehr

Data Mining in SAP NetWeaver BI

Data Mining in SAP NetWeaver BI Martin Kießwetter, Dirk Vahl kam p Data Mining in SAP NetWeaver BI Galileo Press Bonn Boston 2.1 Was ist Data Mining? 17 2.2 Data Mining, KDD und Business Intelligence 20 2.3 KDD-Prozessmodelle 22 2.4

Mehr

Personalisierung. Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung. Data Mining.

Personalisierung. Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung. Data Mining. Personalisierung Personalisierung Thomas Mandl Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung Klassifikation Die Nutzer werden in vorab bestimmte Klassen/Nutzerprofilen

Mehr

Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse

Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Ein Data-Warehouse bzw. Datenlager ist eine zentrale Datensammlung (meist eine Datenbank), deren Inhalt sich aus Daten unterschiedlicher

Mehr

Resusci Anne Skills Station

Resusci Anne Skills Station MicroSim Frequently Asked Questions Self-directed learning system 1 Resusci Anne Skills Station Resusci_anne_skills-station_FAQ_DE_sp7032.indd 1 25/01/08 10:53:41 2 Resusci_anne_skills-station_FAQ_DE_sp7032.indd

Mehr

Modellbasierte Diagnosesysteme

Modellbasierte Diagnosesysteme Modellbasierte Diagnosesysteme Diagnose: Identifikation eines vorliegenden Fehlers (Krankheit) auf der Basis von Beobachtungen (Symptomen) und Hintergrundwissen über das System 2 Arten von Diagnosesystemen:

Mehr

Risiko und Symmetrie. Prof. Dr. Andrea Wirth

Risiko und Symmetrie. Prof. Dr. Andrea Wirth Risiko und Symmetrie Prof. Dr. Andrea Wirth Gliederung 1. Einleitung Was ist eigentlich Risiko? 2. Risiko Mathematische Grundlagen 3. Anwendungsbeispiele Wo genau liegt der Schmerz des Risikos? 4. Sie

Mehr

Das Metamodell der UML und in FUJABA. Vortrag von Alexander Geburzi

Das Metamodell der UML und in FUJABA. Vortrag von Alexander Geburzi Das Metamodell der UML und in FUJABA Vortrag von Alexander Geburzi Gliederung Metamodellierung Metamodell der UML Metamodell in FUJABA Metamodellierung - Metamodell der UML - Metamodell in FUJABA 2/20

Mehr

User-Centered Visual Analytics

User-Centered Visual Analytics User-Centered Visual Analytics Prof. Dr.-Ing. Jörn Kohlhammer Fraunhofer-Institut für Graphische Datenverarbeitung (IGD) Fraunhoferstraße 5 64283 Darmstadt Tel.: +49 6151 155-646 Fax: +49 6151 155-139

Mehr

4 Induktion von Regeln

4 Induktion von Regeln 4 Induktion von egeln Gegeben sei eine Menge von Objekten, die durch Attribut/Wert- aare beschrieben sind. Jedes Objekt kann einer Klasse zugeordnet werden. Ein Entscheidungsbaum liefert eine Entscheidung

Mehr

DATA-FORECASTER. Erich Steiner steiner@softopt.de SoftOpt www.softopt.de. 7. April 2003

DATA-FORECASTER. Erich Steiner steiner@softopt.de SoftOpt www.softopt.de. 7. April 2003 DATA-FORECASTER Erich Steiner steiner@softopt.de SoftOpt www.softopt.de 7. April 2003 Was ist DATA-FORECASTER? 1 Was ist DATA-FORECASTER? 1 eine Software für Datamining Was ist DATA-FORECASTER? 1 eine

Mehr

Übergreifend projektieren in einem Steuerungsprojekt: CODESYS Visualization

Übergreifend projektieren in einem Steuerungsprojekt: CODESYS Visualization public / 03.15 Übergreifend projektieren in einem Steuerungsprojekt: CODESYS Visualization Schwerpunkt: Erstellung, Lokalisierung und Trend Michael Schwarz Automatisierungstreff IT & Automation 2015 CODESYS

Mehr

Data Mining auf Datenströmen Andreas M. Weiner

Data Mining auf Datenströmen Andreas M. Weiner Technische Universität Kaiserslautern Fachbereich Informatik Lehrgebiet Datenverwaltungssysteme Integriertes Seminar Datenbanken und Informationssysteme Sommersemester 2005 Thema: Data Streams Andreas

Mehr

Inhalt Software-Metriken Software-Metriken mit Together FindBugs. Software-Metriken. Raimar Lill Matthias Meitner David Föhrweiser Marc Spisländer

Inhalt Software-Metriken Software-Metriken mit Together FindBugs. Software-Metriken. Raimar Lill Matthias Meitner David Föhrweiser Marc Spisländer Lill, Meitner, Föhrweiser, Spisländer FAU Erlangen-Nürnberg Software-Metriken 1 / 24 Software-Metriken Raimar Lill Matthias Meitner David Föhrweiser Marc Spisländer Lehrstuhl für Software Engineering Friedrich-Alexander-Universität

Mehr

Lars Priebe Senior Systemberater. ORACLE Deutschland GmbH

Lars Priebe Senior Systemberater. ORACLE Deutschland GmbH Lars Priebe Senior Systemberater ORACLE Deutschland GmbH Data Mining als Anwendung des Data Warehouse Konzepte und Beispiele Agenda Data Warehouse Konzept und Data Mining Data Mining Prozesse Anwendungs-Beispiele

Mehr

Erzeugung zufälliger Graphen und Bayes-Netze

Erzeugung zufälliger Graphen und Bayes-Netze Erzeugung zufälliger Graphen und Bayes-Netze Proseminar Algorithmen auf Graphen Georg Lukas, IF2000 2002-07-09 E-Mail: georg@op-co.de Folien: http://op-co.de/bayes/ Gliederung 1. Einleitung 2. einfache

Mehr

Quality Point München Datenqualität

Quality Point München Datenqualität Quality Point München Datenqualität Paul, wie ist denn Eure Datenqualität? Nachdem ich bei der letzten Gehaltszahlung mit Frau... angeredet wurde, bin ich mir nicht mehr so sicher. Autor: W. Ulbrich IT&More

Mehr

neofonie DER SPEZIALIST FÜR IHRE INFORMATIONSARCHITEKTUR

neofonie DER SPEZIALIST FÜR IHRE INFORMATIONSARCHITEKTUR neofonie DER SPEZIALIST FÜR IHRE INFORMATIONSARCHITEKTUR Suchportale der nächsten Generation Dr. Thomas Schwotzer Leiter Forschung, neofonie Suche eine Folien Geschichte 1993: Beginn der HTML-Ära 1993

Mehr

Werkzeuggestützte Softwareprüfungen Statische Analyse und Metriken

Werkzeuggestützte Softwareprüfungen Statische Analyse und Metriken Werkzeuggestützte Softwareprüfungen Statische Analyse und Metriken Dennis Hardt 21.06.2006 Gliederung Statische Analyse Definition, Arbeitsweise, Werkzeuge Angewandt auf ein Projekt Statische Analyse selbst

Mehr

Social Media Analytics Aktuelle Herausforderungen

Social Media Analytics Aktuelle Herausforderungen Lehrstuhl für Informatik 5 Informationssysteme RWTH Aachen Social Media Analytics Aktuelle Herausforderungen Ralf Klamma RWTH Aachen I5-KL-111010-1 Gesellschaft für Informatik Regionalgruppe Köln Themenabend

Mehr

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12 Grundlagen: Folge 19 - Bäume 19.1 Binärbäume - Allgemeines Unter Bäumen versteht man in der Informatik Datenstrukturen, bei denen jedes Element mindestens zwei Nachfolger hat. Bereits in der Folge 17 haben

Mehr