Einführung in die Vektor- und Matrizenrechnung. Matrizen

Größe: px
Ab Seite anzeigen:

Download "Einführung in die Vektor- und Matrizenrechnung. Matrizen"

Transkript

1 Einführung in die Vektor- und Matrizenrechnung Matrizen

2 Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind: a 12 a 13 a 1n a 22 a 23 a 2n A = a m1 a m2 a m3 a mn Die Ausdrücke a ik der Matrix heißen Elemente der Matrix Erster Index: Zeilenindex; zweiter Index: Spaltenindex Ein Vektor aus R n kann rein formal auch als n x 1 Matrix aufgefasst werden Eine andere gebräuchliche Schreibweise für eine m x n Matrix ist (m,n) Matrix 2

3 Spezielle Matrizen 1) Nullmatrix: Einträge bestehen ausschließlich aus Nullen 2) Transponierte Matrix: Ausgehend von der m x n Matrix A A = a 12 a 1n a 22 a 2n definieren wir die n x m Matrix A T a m1 a m2 a mn A T = a m1 a 12 a 22 a m2 a 1n a 2n a nm dh, wenn für die Einträge a kit von A T gilt a ik = a ki T 3

4 Spezielle Matrizen 3) Quadratische Matrix Für quadratische Matrizen ist die Zeilen- und Spaltenanzahl identisch (m = n), und es gilt weiter: Unter der Hauptdiagonale der (n x n) Matrix versteht man die Matrixelemente, a 22, a 33, a 44, a nn Hauptdiagonalelemente: Elemente a ii von links oben nach rechts unten Nebendiagonalelemente: Elemente a i(n-i+1) (i = 1 n) von rechts oben nach links unten Auch bei nicht-quadratischen (m,n)-matrizen nennt man die Elemente a ii Hauptdiagonalelemente 4

5 Spezielle Matrizen 3) Quadratische Matrix Eine quadratische Matrix heißt regulär, wenn ihre Determinante von null verschieden ist, und singulär, wenn die Determinante gleich null ist linke untere Dreiecksmatrix Nullen rechte obere Dreiecksmatrix Nullen 5

6 Spezielle Matrizen 3) Quadratische Matrix Diagonalmatrix Nullen Nullen Eine Diagonalmatrix genügt den Kriterien sowohl einer linken unteren als auch einer rechten oberen Dreiecksmatrix Sie besitzt lediglich auf der Hauptdiagonalen Einträge Kurzschreibweise: D = diag(,a 22, a 33,, a nn ) Eine spezielle Diagonalmatrix ist die (n-dimensionale) Einheitsmatrix E n E n =

7 Spezielle Matrizen 4) Symmetrische Matrix: Quadratische n x n Matrix, für deren Einträge gilt: a ik = a ki (i,k = 1,, n) 7

8 Elementare Matrizenalgebra 1) Gleichheit von Matrizen Zwei Matrizen A = (a ik ) vom Typ (p,q) und B = (b ik ) vom Typ (r,s) heißen gleich genau dann, wenn sie vom selben Typ sind und in allen an gleichen Stellen stehenden Elementen übereinstimmen, dh wenn p = r und q = s und a ik = b ik für alle i und k Man schreibt dann A = B 2) Summen typengleicher Matrizen Die Summe A + B zweier typengleicher Matrizen A = (a ik ) und B = (b ik ) ist die Matrix C = (c ik ) desselben Typs mit c ik = a ik + b ik für alle i und k Die Addition typengleicher Matrizen geschieht somit elementweise Die Addition typengleicher Matrizen ist assoziativ, kommutativ und distributiv 3) Multiplikation einer Matrix mit einer reellen Zahl Das Produkt einer Matrix A = (a ik ) mit einer reellen Zahl λ ist die Matrix λ A = (λ a ik ), dh die Multiplikation einer Matrix mit einer reellen Zahl geschieht elementweise 8

9 Elementare Matrizenalgebra 4) Verkettete Matrizen - Matrizenmultiplikation Zwei Matrizen A = (a ik ) vom Typ (m x n) und B = (b ik ) vom Typ (n x p) heißen in dieser Reihenfolge verkettet, wenn die Spaltenzahl der ersten Matrix gleich der Reihenzahl der zweiten Matrix ist Das Produkt A B zweier in dieser Reihenfolge verketteten Matrizen ist die Matrix vom Typ (m x p) mit n c ik = a ij b jk j=1 dh das in der i-ten Zeile und k-ten Spalte der Produktmatrix stehenden Element ergibt sich als Skalarprodukt des i-ten Zeilenvektors von A mit dem k-ten Spaltenvektor von B Um von den Matrizen A und B das Matrizenprodukt A B zu bilden, ist es strikt notwendig, dass die Matrix A so viele Spalten aufweist wie B Zeilen besitzt Beispielsweise lässt sich eine 3 x 2 Matrix A nicht mit einer 3 x 3 Matrix B in der oben beschriebenen Weise multiplizieren 9

10 Elementare Matrizenalgebra (5 x 6) (6 x 3) (5 x 3) = ) Eigenschaften der Matrizenmultiplikation Die Multiplikation verketteter Matrizen ist assoziativ Sie ist nicht kommutativ Es gibt Nullteiler, dh Matrizen A 0, B 0, deren Produkt die Nullmatrix ist 10

11 Elementare Matrizenalgebra 6) Matrix Vektor Multiplikation (m x n) (n x 1) (m x 1) (m x 1) a 12 a 1n a 22 a 2n a m1 a m2 a mn x 1 x 2 x n = x 1 + a 12 x a 1n x n x 1 + a 22 x a 2n x n a m1 x 1 + a m2 x a mn x n = b 1 b 2 b n (1 x n) (n x 1) (1 x 1) a 1 a 2 a 3 a n x 1 x 2 x n = a 1 x 1 + a 2 x a n x n = c 11

12 Lineare Gleichungssysteme Jedes lineare Gleichungssystem, bestehend aus m Gleichungen mit n Unbekannten x 1 + a 12 x a 1n x = n b 1 x 1 + a 22 x a 2n x n = b 2 a m1 x 1 + a m2 x a mn x n = b m läßt sich auch gleichwertig in der Schreibweise Ax = b mit der m x n Koeffizientenmatrix A = b 1 b 2 Seite b = darstellen a 12 a 1n a 22 a 2n a m1 a m2 a mn und der rechten b m 12

13 Quadratisches lineares Gleichungssystem a 12 a 1n a 22 a 2n a n1 a n2 a nn x 1 x 2 x n = b 1 b 2 b n a 12 a 22 x 1 + x x n a n1 a n2 a 1n a 2n a nn = b 1 b 2 b n s 1 s 2 s n Diese Gleichung besitzt genau dann für jede rechte Seite b eine Lösung (x 1,, x n ), wenn jeder Vektor b als Linearkombination der Spalten s 1, s n dargestellt werden kann Dies ist äquivalent zu der Bedingung, dass die Determinante der Matrix A null ist: det A 0 13

14 Determinante einer Matrix Jeder n-reihigen quadratischen Matrix A = (a ik ) mit reellen bzw komplexen Elementen läßt sich auf eindeutige Weise eine reelle bzw komplexe Zahl zuordnen, die man als Determinante von A bezeichnet a 12 a 13 a 1n D = det A = det a 22 a 23 a 2n = a n1 a n2 a n3 a nn a 12 a 13 a 1n a 22 a 23 a 2n a n1 a n2 a n3 a nn 14 D = π (-1) j(π) a 1,i1 a 2,i2 a 3,i3 a n,in wobei die Summe über alle Permutationen π der Zahlen 1,2, n zu erstrecken ist Man bildet also zunächst aus den Elementen von A alle möglichen Produkte a 1,i1 a 2,i2 a 3,i3 a n,in zu je n Faktoren in der Weise, daß jedes der Produkte aus jeder Zeile und aus jeder Spalte genau ein Element als Faktor enthält Der Wert des Ausdrucks (-1) j(π) ergibt sich aus der Anzahl j(π) der Inversionen der Permuation π Alle diese n! Summanden werden aufaddiert; die Summe ist det A

15 Einschub: Permutationen Jede Aneinanderreihung von n voneinander verschiedenen Dingen unter Beachtung der Reihenfolge heißt eine Permutation ohne Wiederholung dieser Dinge (Bronstein) Für die Anzahl A(P n ) aller Permutationen von n Elementen gilt: A(P n ) = n! Beispiel: Es gibt 10! = verschiedene Möglichkeiten, 10 Bücher auf einem Regal anzuordnen Schreibweise (n = 3): π = Mögliche Permutationen: n! = i 1 i 2 i 3 15

16 Einschub: Permutationen Inversion j(π) einer Permutation: Treten in der Matrix einer Permutation der Elemente von (1,,n) zwei Spalten s i s j t i t j auf, für die entweder s i < s j und t i > t j oder aber s i > s j und t i < t j gelten, so heißt ein solches Spaltenpaar eine Inversion von P n 16

17 Determinante einer Matrix Regel von Sarrus Determinante einer 1 x 1 Matrix: Interpretieren wir eine Zahl c als eine 1 x 1 Matrix, so erklären wir die Determinante dieser Matrix als die Zahl selbst: det(c) = c Determinante einer 2 x 2 Matrix: a det A = 12 = a a 22 a

18 Determinante einer Matrix Regel von Sarrus Determinante einer 3 x 3 Matrix: a 12 a 13 det A = a 22 a 23 = a 22 a 33 + a 12 a 23 a 31 + a 13 a 32 a 31 a 32 a 33 a 31 a 22 a 13 a 32 a 23 a 33 a 12 18

19 Determinante einer Matrix Regel von Sarrus

20 Determinante einer Matrix Regel von Sarrus Determinante einer n x n Matrix: Es sei A eine n x n Matrix Ferner sei M ij die (n-1) x (n-1) Matrix, die aus A durch Streichen der i-ten Zeile und der j-ten Spalte hervorgeht Wir bezeichnen mit A ij = (-1) i+j det M ij die Adjunkte von A zum Doppelindex (ij) Dann sei die Determinante von A definiert durch det A = a i1 A i1 + + a in A in für jeden Zeilenindex i mit 1 i n oder Entwicklung nach der i-ten Zeile det A = a 1j A 1j + + a nj A nj für jeden Spaltenindex j mit 1 j n Entwicklung nach der j-ten Spalte 20

21 Die Inverse Matrix Ist A eine n-reihige Matrix, so ist ihre Regularität notwendig und hinreichend für die Existenz einer Matrix A -1 mit der Eigenschaft A A -1 = E n Unter diesen Bedingungen ist die Inverse A -1 von A eindeutig bestimmt, und es gilt auch A -1 A= E n Berechnung der Inversen von A A -1 = (1 / det A) A 11 A 12 A 13 A 1n A 21 A 22 A 23 A 2n A n1 A n2 A n3 A nn T wobei A ik die zum Element a ik von A gehörende Adjunkte ist 21

22 Eine quadratische Matrix A heißt symmetrische Matrix, wenn gilt A T = A schiefsymmetrische Matrix, wenn gilt A T = A orthogonale Matrix, wenn A regulär und A T = Ā 1 Eine quadratische Matrix A mit komplexen Elementen heißt hermitesche Matrix, wenn gilt A T = A schiefhermitesche Matrix, wenn gilt A T = A unitäre Matrix, wenn A regulär und A T = Ā 1 Weitere Matrizeneigenschaften Transponierte Matrix A T : Die Zeilenvektoren der zu A transponierten Matrix A T sind die Spaltenvektoren von A A ist die zu A konjugiert komplexe Matrix A entsteht aus A, indem jedes Element durch die zu ihm konjugiert komplexe Zahl ersetzt wird Komplexe Zahl: a = x + iy; konjugiert komplexe Zahl: a = x - iy 22 Für orthogonale Matrizen ist det A = ± 1

4 Vorlesung: 21.11. 2005 Matrix und Determinante

4 Vorlesung: 21.11. 2005 Matrix und Determinante 4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer

Mehr

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer. Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Matrizenrechnung 2 11 Matrixbegri 2 12 Spezielle Matrizen 3 13 Rechnen

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

A Matrix-Algebra. A.1 Definition und elementare Operationen

A Matrix-Algebra. A.1 Definition und elementare Operationen A Matrix-Algebra In diesem Anhang geben wir eine kompakte Einführung in die Matrizenrechnung bzw Matrix-Algebra Eine leicht lesbare Einführung mit sehr vielen Beispielen bietet die Einführung in die Moderne

Mehr

Kapitel 15. Lösung linearer Gleichungssysteme

Kapitel 15. Lösung linearer Gleichungssysteme Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren

Mehr

Leitfaden Lineare Algebra: Determinanten

Leitfaden Lineare Algebra: Determinanten Leitfaden Lineare Algebra: Determinanten Die symmetrische Gruppe S n. Eine Permutation σ der Menge S ist eine bijektive Abbildung σ : S S. Ist S eine endliche Menge, so reicht es zu verlangen, dass σ injektiv

Mehr

Vektorräume und Rang einer Matrix

Vektorräume und Rang einer Matrix Universität Basel Wirtschaftswissenschaftliches Zentrum Vektorräume und Rang einer Matrix Dr. Thomas Zehrt Inhalt:. Lineare Unabhängigkeit 2. Vektorräume und Basen 3. Basen von R n 4. Der Rang und Rangbestimmung

Mehr

7 Die Determinante einer Matrix

7 Die Determinante einer Matrix 7 Die Determinante einer Matrix ( ) a11 a Die Determinante einer 2 2 Matrix A = 12 ist erklärt als a 21 a 22 det A := a 11 a 22 a 12 a 21 Es ist S 2 = { id, τ}, τ = (1, 2) und sign (id) = 1, sign (τ) =

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

1.9 Eigenwerte und Eigenvektoren

1.9 Eigenwerte und Eigenvektoren .9. EIGENWERTE UND EIGENVEKTOREN 0.9 Eigenwerte und Eigenvektoren Alles in diesem Abschnitt bezieht sich auf quadratische reelle oder komplexe n n-matrizen. Statt E n (n n-einheitsmatrix) wird kurz E geschrieben..

Mehr

Vorlesung 12 22. bzw. 23. Januar 2014. Determinanten 1. Cramersche Regel

Vorlesung 12 22. bzw. 23. Januar 2014. Determinanten 1. Cramersche Regel Vorlesung 2 22 bzw 23 Januar 204 Lineares Gleichungssystem a a 2 b b 2 = F a a 2 a 3 b b 2 b 3 c c 2 c 3 = V V =< a, b c > c b a b a F V Seite 70 a x + a 2 x 2 + a 3 x 3 b = 0 < a x + a 2 x 2 + a 3 x 3

Mehr

Ausgleichungsrechnung I

Ausgleichungsrechnung I Ausgleichungsrechnung I oder Die Anwendung statistischer Methoden in Vermessungswesen und GIS Gerhard Navratil mit Beiträgen von Martin Staudinger Institute for Geoinformation Technical University Vienna

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

Statistische Methoden

Statistische Methoden Statistische Methoden Dr CJ Luchsinger 6 Repetition: Rechnen mit Matrizen für die Statistik Matrizen sind aus zwei Gründen für die Statistik sehr wichtig: Sie ermöglichen uns einerseits eine sehr elegante

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Vektoren und Matrizen Einführung: Wie wir gesehen haben, trägt der R 2, also die Menge aller Zahlenpaare, eine Körperstruktur mit der Multiplikation (a + bi(c + di ac bd + (ad + bci Man kann jedoch zeigen,

Mehr

Einführung in die Tensorrechnung

Einführung in die Tensorrechnung 1. Definition eines Tensors Tensoren sind Grössen, mit deren Hilfe man Skalare, Vektoren und weitere Grössen analoger Struktur in ein einheitliches Schema zur Beschreibung mathematischer und physikalischer

Mehr

KAPITEL 0. Einführung

KAPITEL 0. Einführung Lineare Algebra KAPITEL 0 Einführung Dieses Skript zur Vorlesung Lineare Algebra an der Goethe Universität Frankfurt im Sommersemester 2011 befindet sich noch in der Entstehung und wird fortlaufend aktualisiert

Mehr

Inhaltsverzeichnis 1 Lineare Gleichungssysteme I

Inhaltsverzeichnis 1 Lineare Gleichungssysteme I Inhaltsverzeichnis 1 Lineare Gleichungssysteme I 3 1.1 Mengen und Abbildungen....................................... 3 1.1.1 Mengen und ihre Operationen.............................. 3 1.1.2 Summen- und

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme KAPITEL 2 Lineare Gleichungssysteme Lernziele dieses Abschnitts sind: Begrie: Matrix, Vektor spezielle Matrix, transponierte Matrix, inverse Matrix nur fur quadratische Matrizen erklart, Determinante,

Mehr

6 Lösung linearer Gleichungssysteme I: LR-Zerlegung und Verwandte

6 Lösung linearer Gleichungssysteme I: LR-Zerlegung und Verwandte Numerik I Version: 240608 40 6 Lösung linearer Gleichungssysteme I: LR-Zerlegung und Verwandte Die zwei wichtigsten Aufgaben der linearen Algebra: Lösung linearer Gleichungssysteme: Ax = b, wobei die n

Mehr

Erinnerung/Zusammenfassung zu Abbildungsmatrizen

Erinnerung/Zusammenfassung zu Abbildungsmatrizen Erinnerung/Zusammenfassung zu Abbildungsmatrizen Thomas Coutandin (cthomas@student.ethz.ch) 7. November 2 Abbildungsmatrizen Im Folgenden betrachten wir stets endlich dimensionale K-Vektorräume (K irgend

Mehr

Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung

Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung Artur Trzewik sw562@uni-essen.de v1., 26.3.1998 korrigiert 16. Februar 2 Zusammenfassung Warnung: für die Richtigkeit der Definitionnen

Mehr

Mathematik III für Ingenieure

Mathematik III für Ingenieure Mathematik III für Ingenieure im Bachelor-Studiengang Maschinenbau Vorlesung Wintersemester 21/211 B. Schuster aktualisert am 27. Januar 211 Inhalt I. Eigenwerte und Eigenvektoren 1 1. Komplexe Matrizen

Mehr

KAPITEL 3. Lineare Gleichungssysteme, direkte Lösungsverfahren

KAPITEL 3. Lineare Gleichungssysteme, direkte Lösungsverfahren KAPITEL 3. Lineare Gleichungssysteme, direkte Lösungsverfahren Beispiel 3.2. Gesucht u(x), das eine Differentialgleichung vom Typ u (x) + λ(x)u(x) = f(x), x [0,], mit den Randbedingungen u(0) = u() = 0

Mehr

Matrizen und Vektoren

Matrizen und Vektoren Kapitel Matrizen und Vektoren Eine Matrix ist ein rechteckiges Schema, in dem Zahlen zusammengefasst werden Matrizen haben vielfältige Anwendungen, etwa bei der Beschreibung von Produktionsprozessen oder

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Matrixalgebra. mit einer Einführung in lineare Modelle. Stefan Lang Institut für Statistik Ludwigstrasse 33 email: lang@stat.uni-muenchen.

Matrixalgebra. mit einer Einführung in lineare Modelle. Stefan Lang Institut für Statistik Ludwigstrasse 33 email: lang@stat.uni-muenchen. Matrixalgebra mit einer Einführung in lineare Modelle Stefan Lang Institut für Statistik Ludwigstrasse 33 email: lang@statuni-muenchende 25 August 24 Vielen Dank an Christiane Belitz, Manuela Hummel und

Mehr

2 Die Darstellung linearer Abbildungen durch Matrizen

2 Die Darstellung linearer Abbildungen durch Matrizen 2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )

Mehr

Numerisches Programmieren

Numerisches Programmieren Technische Universität München SoSe 213 Institut für Informatik Prof. Dr. Thomas Huckle Dipl.-Inf. Christoph Riesinger Dipl.-Math. Jürgen Bräckle Numerisches Programmieren 2. Programmieraufgabe: Lineare

Mehr

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

Lineare Gleichungssysteme und Gauß'scher Algorithmus

Lineare Gleichungssysteme und Gauß'scher Algorithmus Zurück Letzter Update 7... Lineare Gleichungssysteme und Gauß'scher Algorithmus In der Mathematik bezeichnet man mit Matrix ein rechteckiges Schema, in dem Zahlen oder Funktionen angeordnet werden. Hier

Mehr

3.1. Die komplexen Zahlen

3.1. Die komplexen Zahlen 3.1. Die komplexen Zahlen Es gibt viele Wege, um komplexe Zahlen einzuführen. Wir gehen hier den wohl einfachsten, indem wir C R als komplexe Zahlenebene und die Punkte dieser Ebene als komplexe Zahlen

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Wiederholung Eine Menge von Vektoren a 1, a 2,, a k heisst linear unabhängig, wenn eine Linearkombination c 1 a 1 + c 2 a 2 + + c k a k = k c i a i (1) i=1 nur dann Null sein

Mehr

Beispiel zur Lösung eines Gleichungssystems : 6 y + z = 15 0 6 1. 15 12 x + 3 y 3 z = 15 12 3 3. 15 2 x 3 y = 4 2 3 0.

Beispiel zur Lösung eines Gleichungssystems : 6 y + z = 15 0 6 1. 15 12 x + 3 y 3 z = 15 12 3 3. 15 2 x 3 y = 4 2 3 0. Beispiel zur Lösung eines Gleichungssystems : 6 y + z = 5 0 6 5 2 x + 3 y 3 z = 5 2 3 3 5 2 x 3 y = 4 2 3 0 4 z2 /3 z : 3 2 x 3 y = 4 2 3 0 4 4 x + y z = 5 4 5 6 y + z = 5 0 6 5 z2 + 2 z 2 x 3 y = 4 2

Mehr

Numerische Behandlung des Eigenwertproblems

Numerische Behandlung des Eigenwertproblems Numerische Behandlung des Eigenwertproblems Zusammenfassung Das Ziel dieses Vortrages ist, zwei gute Methoden für die numerische Bestimmung der Eigenwerte zu zeigen und wie man diese mit Matlab anwenden

Mehr

Skript zur Vorlesung Höhere Mathematik für Bachelorstudiengänge. Prof. Dr. R. Herzog. gehalten im SS2013 Technische Universität Chemnitz

Skript zur Vorlesung Höhere Mathematik für Bachelorstudiengänge. Prof. Dr. R. Herzog. gehalten im SS2013 Technische Universität Chemnitz Skript zur Vorlesung Höhere Mathematik für Bachelorstudiengänge Prof. Dr. R. Herzog gehalten im SS2013 Technische Universität Chemnitz Auszug aus den Studienordnungen zu den Ausbildungszielen der mit dieser

Mehr

2 Lineare Algebra. 6 Tupel und Matrizen. Vektorräume. 6.1 Tupel. 6.1.1 Definition der Tupel. Auftreten von Tupeln

2 Lineare Algebra. 6 Tupel und Matrizen. Vektorräume. 6.1 Tupel. 6.1.1 Definition der Tupel. Auftreten von Tupeln 5 Lineare Algebra 6 Tupel und Matrizen Vektorräume 6 Tupel 6 Definition der Tupel Auftreten von Tupeln Definition : Sei n N Eine Folge von n reellen Zahlen in festgelegter Reihenfolge heißt ein n-tupel

Mehr

Lineare Gleichungssysteme I (Matrixgleichungen)

Lineare Gleichungssysteme I (Matrixgleichungen) Lineare Gleichungssysteme I (Matrigleichungen) Eine lineare Gleichung mit einer Variable hat bei Zahlen a, b, die Form a b. Falls hierbei der Kehrwert von a gebildet werden darf (a 0), kann eindeutig aufgelöst

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Übersicht Lineare Gleichungssystem mit 2 Variablen 1 Lineare Gleichungssystem mit 2 Variablen Beispiele 2 Fakultät Grundlagen Folie: 2 Beispiel I Lineare

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

Übungsaufgaben LAAG I. für Lehramtsstudenten GS, MS, BS

Übungsaufgaben LAAG I. für Lehramtsstudenten GS, MS, BS Doz.Dr. Norbert Koksch TU DRESDEN Fachrichtung Mathematik, Institut für Analysis Übungsaufgaben LAAG I für Lehramtsstudenten GS, MS, BS Logik: Übungsaufgabe 1. Begründen Sie, ob es sich um eine Aussage

Mehr

Lineare Gleichungssysteme. Lineare Gleichungssysteme. LR Zerlegung ohne Pivotsuche. Zerlegung regulärer Matrizen

Lineare Gleichungssysteme. Lineare Gleichungssysteme. LR Zerlegung ohne Pivotsuche. Zerlegung regulärer Matrizen Heinrich Voss voss@tu-harburg.de Hamburg University of Technology Institute for Numerical Simulation Betrachte ein lineares Gleichungssystem Ax = b (1) Es sei A C n n eine gegebene regulär Matrix. Dann

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Bundesrealgymnasium Fadingerstraße 4, 4020 Linz Mathematische Grundlagen der 3D-Grafik Fachbereichsarbeit aus Mathematik 2008/2009 vorgelegt von David Nadlinger eingereicht bei OStR. Mag. Herbert Lenz

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

Analysis II. Vorlesung 48. Die Hesse-Form

Analysis II. Vorlesung 48. Die Hesse-Form Prof. Dr. H. Brenner Osnabrück SS 2014 Analysis II Vorlesung 48 Die Hesse-Form Wir sind natürlich auch an hinreichenden Kriterien für das Vorliegen von lokalen Extrema interessiert. Wie schon im eindimensionalen

Mehr

7 Lineare Abbildungen und Lineare Gleichungssysteme

7 Lineare Abbildungen und Lineare Gleichungssysteme 7 LINEARE ABBILDUNGEN UND LINEARE GLEICHUNGSSYSTEME 5 7 Lineare Abbildungen und Lineare Gleichungssysteme 7 Lineare Abbildungen 7 Abbildungen: Eine Verallgemeinerungen des Funktionsbegriffs Bemerkung:

Mehr

1 Lineare Gleichungssysteme

1 Lineare Gleichungssysteme MLAN1 1 LINEARE GLEICHUNGSSYSTEME 1 Literatur: K Nipp/D Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4 Auflage, 1998, oder neuer 1 Lineare Gleichungssysteme Zu den grundlegenden

Mehr

2 Lineare Gleichungssysteme

2 Lineare Gleichungssysteme Beispiel.5: Funktion von Runge (V) Beispiel Martin-Luther-Universität Halle-Wittenberg, NWF III, Institut für Mathematik Martin Arnold: Grundkurs Numerische Mathematik (WiS 27/8) Abbildung.3: Interpolation

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

Materialverflechtung

Materialverflechtung Materialverflechtung In einem Unternehmen mit mehrstufigem Fertigungsablauf seien die festen Mengenbeziehungen zwischen Rohstoffen, Zwischen- und Endprodukten durch folgenden Graph gegeben: 00 0 6 E E

Mehr

2 Matrizen. 2.1 Definition A = a 32... Element in der 3. Zeile und 2. Spalte RP =

2 Matrizen. 2.1 Definition A = a 32... Element in der 3. Zeile und 2. Spalte RP = Matrizen James Joseph Sylvester 97 war ein britischer Mathematiker. Eines seiner vielseitigen Arbeitsgebiete war die Theorie von Matrizen und Determinanten. Die ezeichnung Matrix wurde von ihm eingeführt.

Mehr

Zur Numerik linearer Gleichungssysteme. Werner Vogt Technische Universität Ilmenau Institut für Mathematik Postfach 100565 98684 Ilmenau

Zur Numerik linearer Gleichungssysteme. Werner Vogt Technische Universität Ilmenau Institut für Mathematik Postfach 100565 98684 Ilmenau Zur Numerik linearer Gleichungssysteme Werner Vogt Technische Universität Ilmenau Institut für Mathematik Postfach 100565 98684 Ilmenau Ilmenau, den 1.11.2004 1 Direkte Verfahren für lineare Gleichungssysteme

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow INHALT Eigenwerte und Eigenvektoren. asiswechsel.2 Eigenwertgleichung 2.3 Diagonalisierbarkeit 5.4 Trigonalisierung 8.5 Zusatzmaterial 8 Aufgaben 9

Mehr

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume

Mehr

Lineare Algebra II 5. Übungsblatt

Lineare Algebra II 5. Übungsblatt Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross / Mai Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Algebraisch abgeschlossener Körper) Ein Körper heißt algebraisch abgeschlossen,

Mehr

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64

Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64 1/64 VEKTORRECHNUNG Prof. Dr. Dan Eugen Ulmet Hochschule Esslingen März 2011 2/64 Overview Vektoralgebra 1 Vektoralgebra 2 Was sind Vektoren? 3/64 Vektoren werden geometrisch definiert als Pfeilklassen:

Mehr

Einführung in MATLAB

Einführung in MATLAB Kapitel 4 Einführung in MATLAB 41 Allgemeines MATLAB ist eine kommerzielle mathematische Software zur Lösung mathematischer Probleme und zur graphischen Darstellung der Ergebnisse Die Verfahren in MATLAB

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

6 Lösungsverfahren für lineare Gleichungssysteme

6 Lösungsverfahren für lineare Gleichungssysteme 6 Lösungsverfahren für lineare Gleichungssysteme Jörn Loviscach Versionsstand:. März 04, :07 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.jl7h.de/videos.html

Mehr

KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten:

KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten: KAPITEL 4 Lineare Ausgleichsrechnung Beispiel 41 Das Ohmsche Gesetz: Eine Meßreihe von Daten: U = RI (U i, I i ) (Spannung, Stromstärke), i = 1,, m Aufgabe: man bestimme aus diesen Meßdaten den Widerstand

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V

Mehr

ÜBERBLICK ÜBER DAS KURS-ANGEBOT

ÜBERBLICK ÜBER DAS KURS-ANGEBOT ÜBERBLICK ÜBER DAS KURS-ANGEBOT Alle aufgeführten Kurse sind 100 % kostenfrei und können unter http://www.unterricht.de abgerufen werden. ANALYSIS / INFINITESIMALRECHNUNG Nullstellen * Nullstellen einer

Mehr

Gleichungen - Aufgabenstellung und Lösungsstrategien

Gleichungen - Aufgabenstellung und Lösungsstrategien Gleichungen - Aufgabenstellung und Lösungsstrategien Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Österreich. Franz.Pauer@uibk.ac.at 18. Juli 2006 1 Einleitung

Mehr

Suchmaschinen und Markov-Ketten 1 / 42

Suchmaschinen und Markov-Ketten 1 / 42 Suchmaschinen und Markov-Ketten 1 / 42 Zielstellung 1 Wir geben einen kurzen Überblick über die Arbeitsweise von Suchmaschinen für das Internet. Eine Suchmaschine erwartet als Eingabe ein Stichwort oder

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Vorwort. Günter M. Gramlich. Lineare Algebra. Eine Einführung ISBN: 978-3-446-43035-8. Weitere Informationen oder Bestellungen unter

Vorwort. Günter M. Gramlich. Lineare Algebra. Eine Einführung ISBN: 978-3-446-43035-8. Weitere Informationen oder Bestellungen unter Vorwort Günter M. Gramlich Lineare Algebra Eine Einführung ISBN: 978-3-446-43035-8 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-43035-8 sowie im Buchhandel. Carl Hanser

Mehr

Anhang B. Matrixalgebra. B.1 Matrizen. B.2 Spezielle Matrizen

Anhang B. Matrixalgebra. B.1 Matrizen. B.2 Spezielle Matrizen Anhang B Matrixalgebra In der Ökonometrie wie in vielen anderen Wissenschaften spielen lineare Gleichungssysteme eine wichtige Rolle Diese lassen sich mit Hilfe von Matrizen und Vektoren sehr viel einfach

Mehr

Kevin Caldwell. 18.April 2012

Kevin Caldwell. 18.April 2012 im Rahmen des Proseminars Numerische Lineare Algebra von Prof.Dr.Sven Beuchler 18.April 2012 Gliederung 1 2 3 Mathematische Beschreibung von naturwissenschaftlich-technischen Problemstellungen führt häufig

Mehr

7. Ringe und Körper. 7. Ringe und Körper 49

7. Ringe und Körper. 7. Ringe und Körper 49 7. Ringe und Körper 49 7. Ringe und Körper In den bisherigen Kapiteln haben wir nur Gruppen, also insbesondere nur Mengen mit lediglich einer Verknüpfung, untersucht. In der Praxis gibt es aber natürlich

Mehr

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011 Graphen: Einführung Vorlesung Mathematische Strukturen Zum Ende der Vorlesung beschäftigen wir uns mit Graphen. Graphen sind netzartige Strukturen, bestehend aus Knoten und Kanten. Sommersemester 20 Prof.

Mehr

Lineare Algebra für Informatiker TUM Sommersemester 2011 Dozent: Christian Pötzsche

Lineare Algebra für Informatiker TUM Sommersemester 2011 Dozent: Christian Pötzsche Lineare Algebra für Informatiker TUM Sommersemester 20 Dozent: Christian Pötzsche Janosch Maier 3. Juli 20 Herzlichen Dank an Lucas Westermann, Florian Scheibner (https://github. com/lswest/lamitschrift)

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 1, Montag vormittag Vektoralgebra Ein Vektor lässt sich geometrisch als eine gerichtete Strecke darstellen,

Mehr

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen.

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen. Zusätze zum Gelben Rechenbuch LU-Zerlegung Peter Furlan Verlag Martina Furlan Inhaltsverzeichnis Definitionen 2 (Allgemeine) LU-Zerlegung 2 3 Vereinfachte LU-Zerlegung 3 4 Lösung eines linearen Gleichungssystems

Mehr

8 Lineare Abbildungen

8 Lineare Abbildungen 80 8 Lineare Abbildungen In diesem Kapitel untersuchen wir lineare Abbildungen von R n nach R m wie zum Beispiel Spiegelungen, Drehungen, Streckungen und Orthogonalprojektionen in R 2 und R 3 Man nennt

Mehr

Lineare Algebra und analytische Geometrie II (Unterrichtsfach)

Lineare Algebra und analytische Geometrie II (Unterrichtsfach) MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Prof. Dr. D. Rost SS 0 Blatt.06.0 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie II (Unterrichtsfach) Abgabe: Dienstag, 0. Juli 0, bis 4:00

Mehr

4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung

4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung 4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung In vielen Anwendungen treten lineare Gleichungssysteme auf, die eine unterschiedliche Anzahl von Gleichungen und Unbekannten besitzen: Ax

Mehr

3. LINEARE GLEICHUNGSSYSTEME

3. LINEARE GLEICHUNGSSYSTEME 176 3. LINEARE GLEICHUNGSSYSTEME 90 Vitamin-C-Gehalt verschiedener Säfte 18,0 mg 35,0 mg 12,5 mg 1. a) 100 ml + 50 ml + 50 ml = 41,75 mg 100 ml 100 ml 100 ml b) : Menge an Kirschsaft in ml y: Menge an

Mehr

... a ik) i=1...m, k=1...n A = = ( a mn

... a ik) i=1...m, k=1...n A = = ( a mn Zurück Stad: 4..6 Reche mit Matrize I der Mathematik bezeichet ma mit Matrix im Allgemeie ei rechteckiges Zahleschema. I der allgemeie Darstellug habe die Zahle zwei Idizes, de erste für die Zeileummer,

Mehr

Optimale Steuerung. Sequentielle Quadratische Programmierung. Kevin Sieg. 14. Juli 2010. Fachbereich für Mathematik und Statistik Universität Konstanz

Optimale Steuerung. Sequentielle Quadratische Programmierung. Kevin Sieg. 14. Juli 2010. Fachbereich für Mathematik und Statistik Universität Konstanz Optimale Steuerung Kevin Sieg Fachbereich für Mathematik und Statistik Universität Konstanz 14. Juli 2010 1 / 29 Aufgabenstellung 1 Aufgabenstellung Aufgabenstellung 2 Die zusammengesetzte Trapezregel

Mehr

Lineare Ausgleichsprobleme. Lineare Ausgleichsprobleme. Normalgleichungen. Normalgleichungen

Lineare Ausgleichsprobleme. Lineare Ausgleichsprobleme. Normalgleichungen. Normalgleichungen Wir betrachten in diesem Abschnitt das lineare Ausgleichsproblem Ax b 2 = min! (1) Heinrich Voss voss@tu-harburgde Hamburg University of Technology Institute for Numerical Simulation mit gegebenem A R

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

in den Microsoft Windows Systemen durch einen Doppelklick auf das Icon von MATLAB oder durch Anwählen des Menüs oder Untermenüs in der Abfolge

in den Microsoft Windows Systemen durch einen Doppelklick auf das Icon von MATLAB oder durch Anwählen des Menüs oder Untermenüs in der Abfolge 1 Grundkenntnisse von MATLAB 1.1 Bekanntschaft schließen mit MATLAB 1.1.1 Die Arbeitsoberfläche von MATLAB Der Start der Applikation MATLAB 1 erfolgt abhängig vom Betriebssystem auf unterschiedliche Weise:

Mehr

Formelsammlung Mathematische Grundlagen für die Informatik

Formelsammlung Mathematische Grundlagen für die Informatik Formelsammlung Mathematische Grundlagen für die Informatik Wolfgang Führer wolfgang.fuehrer@web.de August 2007 Inhaltsverzeichnis Lineare Algebra. Vektorräume.................................... Abelsche

Mehr

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu Herleitung der oppenecker-formel (Wiederholung) Für ein System ẋ Ax + Bu (B habe Höchstrang) wird eine Zustandsregelung u x angesetzt. Der geschlossene egelkreis gehorcht der Zustands-Dgl. ẋ (A B)x. Die

Mehr

(2) (x 2 1 + x 2 2 + + x 2 n)(y 2 1 + y 2 2 + + y 2 n) = z 2 1 + z 2 2 + + z 2 n

(2) (x 2 1 + x 2 2 + + x 2 n)(y 2 1 + y 2 2 + + y 2 n) = z 2 1 + z 2 2 + + z 2 n Über die Komposition der quadratischen Formen von beliebig vielen Variablen 1. (Nachrichten von der k. Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse, 1898, S. 309 316.)

Mehr

Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14.

Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14. Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination Vorlesung Computergestützte Mathematik zur Linearen Algebra Lehrstuhl für Angewandte Mathematik Wintersemester 2009/0 4. Januar 200 Instabilitäten

Mehr

Komplexe Zahlen. Kapitel 1. 1.1 Definitionen 18.4.01

Komplexe Zahlen. Kapitel 1. 1.1 Definitionen 18.4.01 Kapitel Komplexe Zahlen Motivation: die Gleichung x = hat offensichtlich keine reellen Lösungen, da x 0 für jedes reelle x gilt Um auch diese Gleichung lösen zu können, muß man neue Zahlen einführen: die

Mehr

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist. Matrizennorm Es seien r,s N Mit M r,s (R bezeichnen wir die Menge der reellen r s- Matrizen (also der linearen Abbildungen R s R r, und setze M s (R := M s,s (R (also die Menge der linearen Abbildungen

Mehr