Glossar zum Brückenkurs "Mathematik für Wirtschaftswissenschaftler" 1

Größe: px
Ab Seite anzeigen:

Download "Glossar zum Brückenkurs "Mathematik für Wirtschaftswissenschaftler" 1"

Transkript

1 Glossr zum Brückekurs "Mthemtik für Wirtschftswisseschftler" GLOSSAR Abbildug Eie eideutige Zuordug f zwische zwei Mege X ud Y heißt Abbildug oder Fuktio us X i Y. M schreibt: f: X Y. f heißt Abbildug vo X i Y, we jedes Elemet x X Urbild eies y Y ist, d.h. we X mit dem Defiitiosbereich vo f übereistimmt. Eie Abbildug ordet jedem Urbild x X ei Bild y = f(x) Y zu; dher et m y die bhägige Vrible, x die ubhägige Vrible. rithmetische Folge Eie Folge { } N heißt rithmetische Folge, we es eie Kostte d R gibt, so dss für lle N gilt: + = d. Ds Bildugsgesetz eier rithmetische Folge k stets i der Form = + ( ) d, N geschriebe werde. rithmetische Reihe Die zu eier rithmetische Folge { } N gehörige Folge der Prtilsumme {s } N et m rithmetische Reihe. Ihre -te Prtilsumme s berechet sich ch der Formel s = + ( ) d, wobei ds Afgsglied ud d die kostte Differez der zugrudeliegede rithmetische Folge { } N ist. bijektive Abbildug Eie Abbildug f, die sowohl ijektiv ls uch surjektiv ist, heißt bijektiv. Defiitiosbereich Gegebe sei eie Abbildug f zwische zwei Mege X ud Y der Form f : X Y. Die Mege ller x X, dee ei y Y zugeordet wird, heißt Defiitiosbereich D f vo f. Die Elemete vo D f heiße Argumete oder uch Urbildelemete, Urbilder, Urbildpukte. Differetilquotiet Existiert zu eier gegebee Fuktio f uf ihrem Defiitiosbereich der Grezwert f ( x) f ( ) lim, x x so et m diese de Differetilquotiete vo f der Stelle oder uch (erste) Ableitug vo f der Stelle. Differetitio spezieller Fuktioe f(x) x si x cos x t x cot x f' (x) x - cos x - si x cos x si x x e x l x log x x e x x l x x l

2 Glossr zum Brückekurs "Mthemtik für Wirtschftswisseschftler" Differetitiosregel Ketteregel: hx b g = gc fbxgh h' bxg = g' c fbxgh f' bxg Kostteregel: fbxg = c, c R f ' bxg = 0 Potezregel: x = x f ' bg x = x Produktregel: hx = f x gx h ' x = f ' x gx+ f x g ' x Quotieteregel: f x f x g x f x g x hx b g ' h x gx b g b g b g b g b g ' b g = ' = cgx b gh Regel für eie kost. Fktor: hx b g = fbxg hbxg = fbxg ' ' Reziprokeregel: f x hx bg h x bg b g = = x c ' ' xh Summe- ud Differezregel: hx = f x± gx h ' x = f ' x± g ' x b g b g b g b g b g b g b g b g b g b g b g b g b g b g Differezequotiet Ist eie Fuktio f im Itervll [, x] bzw. [x, ] defiiert, so heißt x x Differezequotiet vo f der Stelle. Differezierbrkeit Eie Fuktio f heißt eier Stelle ihres Defiitiosbereiches differezierbr, flls dort der Differetilquotiet x lim x x existiert. Existiert der Differetilquotiet der Stelle icht, so heißt f der Stelle icht differezierbr. gzrtiole Fuktio siehe Polyom gebrochertiole Fuktio siehe rtiole Fuktio

3 Glossr zum Brückekurs "Mthemtik für Wirtschftswisseschftler" 3 geometrische Folge Eie reelle Zhlefolge heißt geometrische Folge, we es eie Kostte q R gibt, so dss für lle N je zwei ufeiderfolgede Folgeglieder die Bedigug + = q erfülle. Ds Bildugsgesetz eier geometrische Folge k i der Form = q geschriebe werde, wobei ds Afgsglied ud q der kostte Quotiet der geometrische Folge ist. geometrische Reihe Ist { } N eie geometrische Folge, so heißt die zugehörige Folge der Prtilsumme {s } N geometrische Reihe. Die -te Prtilsumme eier geometrische Reihe berechet sich ch der Formel q s q q =, 0,, wobei ds Afgsglied ud q de kostte Quotiete der zugrudeliegede geometrische Folge { } N bezeichet. Ifimum Die größte utere Schrke eier uf A D f ch ute beschräkte Fuktio f wird ls Ifimum vo f uf A bezeichet, bgekürzt: if f x b g. x A ijektive Abbildug Eie Abbildug f : X Y heißt ijektiv (oder eideutig), we es zu jedem y Y höchstes ei Urbild x X gibt. Logrithmusfuktio Die Fuktio log: mx x R ud x > 0r R, y = log x heißt Logrithmusfuktio zur Bsis. Logrithme-Gesetze logbx xg = log x+ log x x log = log x log x x log x = log x mximler Defiitiosbereich Der Defiitiosbereich D f eier Fuktio f heißt mximl, we jedes x R, für ds f (x) = y eie reelle Zhl ist, uch Elemet vo D f ist. Ist vo eier Fuktio f eie Fuktiosgleichug bekt, ohe dss ähere Agbe über de Defiitiosbereich gemcht werde, so soll D f mximl gewählt werde. Wir ee D f d uch de türliche Defiitiosbereich.

4 Glossr zum Brückekurs "Mthemtik für Wirtschftswisseschftler" 4 Polyom Eie Fuktio f, dere Fuktiosgleichug die Form i y = x + x x+ = x, x R 0 i= 0 i besitzt, heißt Polyom -te Grdes ( N {0}). Dbei sid 0,..., mit 0 reelle Zhle; sie heiße Koeffiziete des Polyoms. M schreibt für Polyome häufig P, P m, Q usw., wobei der Idex uf de Grd des Polyoms hiweist. Isbesodere werde Polyome uch ls gzrtiole Fuktioe bezeichet. rtiole Fuktio Eie Fuktio R, dere Fuktiosgleichug die Form P x x + + x+ y = Rbg b g... 0 x = = m Pmbg x bx m bx + b0 ht, wobei P ud P m Polyome vom Grd bzw. m sid, heißt rtiole Fuktio. Die Polyome P bzw. P m heiße Zähler- bzw. Neerpolyom vo R. Eie rtiole Fuktio wird uch ls gebrochertiole Fuktio bezeichet. Lässt sich eie Fuktio icht ls Quotiet zweier Polyome drstelle, ist sie ichtrtiol. Reihe Zur eier Folge { } N bildet m die edliche Summe s = =. i i= Die Folge {s } N heißt die zu { } N gehörige Reihe. Ds -te Glied s et m -te Prtilsumme oder -te Teilsumme der Reihe. Schittmege Es seie M ud N Mege. D heißt M N = mxx M x Nr die Schittmege vo M ud N. Sius-Fuktio Der Pukt P = (x, y) sei ei Pukt des Eiheitskreises mit dem Mittelpukt O = {0, 0} ud dem Afgspukt A = (, 0). Ds Bogemß des Wikels AOP sei b. D gilt: si b= y für 0 b π, cosb= x fü r 0 b π. Die Fuktio mit der Fuktiosgleichug y = si b heißt Siusfuktio, die Fuktio mit der Fuktiosgleichug x = cos b heißt Kosiusfuktio. Steigug Uter der Steigug eier Fuktio f der Stelle D f verstehe wir de Wert der Ableitug f '(), flls er existiert. Der Wert f ( b) f ( ), < b b heißt mittlere Steigug der Fuktio f im Itervll [, b].

5 Glossr zum Brückekurs "Mthemtik für Wirtschftswisseschftler" 5 Supremum Die kleiste obere Schrke eier Folge heißt Supremum der Folge ud wird mit sup lqbgekürzt. N surjektive Abbildug Eie Abbildug f : X Y heißt surjektiv (oder Abbildug ud Y), we jedes Elemet y Y ls Bild eies x X vorkommt, d.h. we Y mit dem Wertebereich vo f übereistimmt: W f = Y. Tgesfuktio Gegebe sei ds Bogemß x R. Die Fuktio si x t: R \ mx x R ud cos x = 0r R, t x = cos x heißt Tgesfuktio. Die Fuktio cos x cot: R \ mx x R ud si x = 0r R, cot x = si x heißt Kotgesfuktio. Tgete Als Tgete de Grphe vo f im Pukte P = (, f ()) bezeiche wir diejeige Gerde durch P, die die Steigug f ' () besitzt. Eie Tgete ist lso ur für die Stelle us dem Differezierbrkeitsbereich eier Fuktio defiiert. Ermittlug der Fuktiosgleichug mit Hilfe der Pukt-Steigugsform der Gerdegleichug: t( x)= f ( ) + f '( ) ( x- ). Teilmege Eie Mege N heißt Teilmege eier Mege M, we jedes Elemet vo N uch Elemet vo M ist. Als Abkürzug schreibt m: N M für "N ist Teilmege vo M", N M für "N ist icht Teilmege vo M". Astelle vo "N ist Teilmege vo M", sgt m uch: "N ist Utermege vo M", oder vo der Mege M us betrchtet: "M ist Obermege vo N". Gilt: N M ud N M, so heißt N echte Teilmege vo M. Flls N = M, gilt uch N M. I diesem Fll et m N eie uechte Teilmege vo M. Umkehrbbildug Es sei f : X Y eie bijektive Abbildug. D heißt die Abbildug, die jedem y Y sei Urbild x D f zuordet, die Umkehrbbildug vo f. Sie wird mit dem Symbol f - bezeichet: f - : Y X. Vereiigugsmege Es seie M ud N Mege. D heißt M N = mxx M x Nr die Vereiigugsmege vo M ud N.

6 Glossr zum Brückekurs "Mthemtik für Wirtschftswisseschftler" 6 Wertebereich Gegebe sei eie Abbildug f zwische zwei Mege X ud Y der Form f : X Y. Alle y Y, die midestes ei Urbild besitze, heiße Bilder, die Mege ller Bilder ergibt de Wertebereich W f. Die Elemete us W f werde uch Bildelemete, Bildpukte oder Fuktioswerte vo f get. Zerlegug eies Polyoms Ei Polyom P vom Grd besitzt höchstes reelle Nullstelle, etw x,..., x r, r, die icht lle verschiede zu sei bruche. Die zugehörige Fuktiosgleichug lässt sich bis uf die Reihefolge der Fktore eideutig schreibe i der Form: y = bx xgb x xg... bx xrg P rbxg, wobei P -r ei Polyom vom Grd - r ist, ds i R keie Nullstelle besitzt. Die Fktore (x - x i ), i r heiße dbei Lierfktore. zusmmegesetzte Abbildug Es seie f ud g zwei Abbilduge, für die gilt: Wf Dg. D heißt die Abbildug h, die jedem x D f ei z W g mittels der Vorschrift z = hbxg = gc fbxgh zuordet, die us f ud g zusmmegesetzte Abbildug. M sgt uch: h etsteht durch Hitereiderusführug vo f ud g.

Eine Folge ist eine durchnummerierte (Index) Abfolge von Zahlen die eine Abbildung der natürlichen Zahlen auf eine andere Zahlenmenge darstellt.

Eine Folge ist eine durchnummerierte (Index) Abfolge von Zahlen die eine Abbildung der natürlichen Zahlen auf eine andere Zahlenmenge darstellt. . Kovergez.. Eiführug i ds Prizip der Folge Eie Folge ist eie durchummerierte (Idex) Abfolge vo Zhle die eie Abbildug der türliche Zhle uf eie dere Zhlemege drstellt. Beispiel: : = k uch ls Abbildug: f

Mehr

Kapitel I Zahlenfolgen und -reihen

Kapitel I Zahlenfolgen und -reihen Kpitel I Zhlefolge ud -reihe D (Zhlefolge) Ist jeder Zhl geu eie Zhl R,,,, eie (reelle) Zhlefolge bilde M schrieb: Die heiße Glieder der Zhlefolge zugeordet, so sgt m, dss die Zhle B Eie Zhlefolge ist

Mehr

Mathematik für VIW - Prof. Dr. M. Ludwig. Def. 6.1 Eine (reelle) Zahlenfolge ist eine unendliche Menge von (reellen) Zahlen a1, a2,, a n

Mathematik für VIW - Prof. Dr. M. Ludwig. Def. 6.1 Eine (reelle) Zahlenfolge ist eine unendliche Menge von (reellen) Zahlen a1, a2,, a n Mthemti für VIW - Prof. Dr. M. Ludwig 6. Zhlefolge ud Reihe 6. Zhlefolge 6.. Grudbegriffe Def. 6. Eie (reelle Zhlefolge ist eie uedliche Mege vo (reelle Zhle,,,, i eier bestimmte Reihefolge geordet sid.

Mehr

Ableitungsregeln. Produkte- und Quotientenregel. Ableitung einiger wichtiger Funktionen. Kettenregel. Vorkurs Mathematik DIFFERENTIATION

Ableitungsregeln. Produkte- und Quotientenregel. Ableitung einiger wichtiger Funktionen. Kettenregel. Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik DIFFERENTIATION Ableitugsregel (f + g) = f + g (cf) = c f, c R ( ) = (c) =, c R Dmit köe wir Polyome bleite: Beispiel. ( 5 + 3 + ) = ( 5 ) + 3( ) + () = 5 4 + 3 = 5 4 + 6 Produkte- ud

Mehr

Taylor Formel: f(x)p(x)dx = f(c)

Taylor Formel: f(x)p(x)dx = f(c) Tylor Formel Die Tylorsche Formel liefert eie Approximtio eier Fuktio durch ei Polyom, gemeism mit eier Abschätzug des Fehlerterms. Zwischewertstz: Eie stetige Fuktio f : [, b] R immt jede Wert γ zwische

Mehr

Analysis II für Studierende der Ingenieurwissenschaften

Analysis II für Studierende der Ingenieurwissenschaften Fchbereich Mthemtik der Uiversität Hmburg SoSe 2015 Dr. K. Rothe Alysis II für Studierede der Igeieurwisseschfte Hörslübug mit Beispielufgbe zu Bltt 3 Recheregel für Potezreihe Stz: Die Potezreihe g(z

Mehr

Definition (Supremum und Infimum). s R heißt Supremum der Menge M R, falls s die kleinste obere Schranke von M ist, d.h.

Definition (Supremum und Infimum). s R heißt Supremum der Menge M R, falls s die kleinste obere Schranke von M ist, d.h. Vorlesug 15 Itegrlrechug 15.1 Supremum ud Ifimum Zuächst ei pr grudlegede, wichtige Defiitioe. Defiitio 15.1.1. Eie Mege M R heißt ch obe beschräkt, we es ei s R gibt, so dss x s für lle x M. M ist ch

Mehr

Kapitel 3. Kapitel 3: Aus der Natur und Technik: Funktionen

Kapitel 3. Kapitel 3: Aus der Natur und Technik: Funktionen Kpitel 3 Kpitel 3: Aus der Ntur ud Techik: Fuktioe Der Fuktiosbegriff Mthemtisch Polyome Rtiole Fuktioe Trigoometrische Fuktioe Iverse Fuktio Epoetilfuktio ud Logrithmus Notize zur Vorlesug Mthemtik für

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VM Schuljhr 7/8 Zusmmefssug Folge ud Kovergez Ihltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 6 Für Experte 7 Defiitioe ud Beispiele für

Mehr

118 7 Potenzreihen. eine Folge von (reellen) Funktionen mit Definitionsgebieten D(f j), j N, und. = M D(f j ) R. j=1

118 7 Potenzreihen. eine Folge von (reellen) Funktionen mit Definitionsgebieten D(f j), j N, und. = M D(f j ) R. j=1 8 7 Potezreihe 7 Potezreihe 7. Fuktioefolge ud -reihe Puktweise ud gleichmäßige Kovergez vo Fuktioefolge Sei f j ) j= eie Folge vo reelle) Fuktioe mit Defiitiosgebiete Df j), j N, ud = Df j ) R. j= D bilde

Mehr

Grundlagen der Mathematik (LPSI/LS-M1) WiSe 2010/11 - Curilla/Koch/Ziegenhagen

Grundlagen der Mathematik (LPSI/LS-M1) WiSe 2010/11 - Curilla/Koch/Ziegenhagen Fchbereich Mthemtik Algebr ud Zhletheorie Christi Curill Grudlge der Mthemtik LPSI/LS-M) Lösuge Bltt WiSe 00/ - Curill/Koch/Ziegehge Präsezufgbe P3)-d) Für jede der vier Mege gilt, dss die dri ethltee

Mehr

Kapitel VI. Eigenschaften differenzierbarer Funktionen

Kapitel VI. Eigenschaften differenzierbarer Funktionen Kpitel VI Eigeschfte differezierbrer Fuktioe S 6 (Fermt, 6-665) Die Fuktio f sei uf dem Itervll I defiiert ud ehme der iere Stelle ξ vo I eiem bsolute Extremum Ist f der Stelle ξ differezierbr, d gilt

Mehr

Übersicht Integralrechnung

Übersicht Integralrechnung Vorbemerkug Übersicht Itegrlrechug Diese Übersicht fßt wesetliche Pukte der Vorlesug zusmme. Sie ersetzt icht die usführliche Vorlesugsmitschrift, weil die dort behdelte Beispiele ud Erläuteruge für die

Mehr

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer vo Prof. Dr. Ig. Dirk Rbe FH Emde/Leer Überblick: Folge ud Reihe Folge: Zhlefolge ( ) ; ; ; ist eie geordete Liste vo Zhle ( IN) : Glieder der Folge f(): Bildugsgesetz (eplizit i oder rekursiv) z.b.: (

Mehr

Kapitel 6 Differenzierbarkeit

Kapitel 6 Differenzierbarkeit Kapitel 6 Differezierbarkeit Ihalt 6.1 6.1Die Defiitio 6.2 6.2Die Eigeschafte 6.3 6.3Extremwerte Seite 2 Was heißt differezierbar? Differezierbare Fuktioe sid sid glatte Fuktioe. Wir Wir beschreibe diese

Mehr

Angewandte Mathematik und Programmierung

Angewandte Mathematik und Programmierung Agewdte Mthemtik ud Progrmmierug Eiführug i ds Kozept der objektorietierte Aweduge zu mthemtische Reches WS 2012/13 Ihlt Wiederholug (Eigeschfte vo Folge zusmmegefsst) Zhlereihe Kovergez vo Reihe Beweis

Mehr

Mathematik für die Physik II, Sommersemester 2018 Lösungen zu Serie 6

Mathematik für die Physik II, Sommersemester 2018 Lösungen zu Serie 6 Mthemtik für die Physik II, Sommersemester 2018 Lösuge zu Serie 6 26 Utersuche die folgede Fuktioefolge uf puktweise beziehugsweise gleichmäßige Kovergez, d.h. bestimme jeweils ob diese vorliegt ud gebe

Mehr

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer vo Prof. Dr. Ig. Dirk Rbe FH Emde/Leer Überblick: Folge ud Reihe Folge: Zhlefolge ( ) ; ; ; ist eie geordete Liste vo Zhle ( IN) : Glieder der Folge f(): Bildugsgesetz (eplizit i oder rekursiv) z.b.: (

Mehr

Jetzt ändert sich die dritte Stelle nach dem Komma nicht mehr, man hat also vier zählende Stellen

Jetzt ändert sich die dritte Stelle nach dem Komma nicht mehr, man hat also vier zählende Stellen 9. M setze = ud bereche mit Hilfe der Folge (9.5) die dritte Wurzel us uf vier zählede Stelle geu. = + + =,, =,, =.75, 4 =,48889, =,449, =,4478 Jetzt ädert sich die dritte Stelle ch dem Komm icht mehr,

Mehr

1 Funktionen und Flächen

1 Funktionen und Flächen Fuktioe ud Fläche. Fläche Defiitio: Die Ebee R ist defiiert als Mege aller geordete Paare vo reelle Zahle: R = {(,, R} Der erste Eitrag heißt da auch Koordiate ud der zweite Koordiate. Für zwei Pukte (,,

Mehr

HTBLA VÖCKLABRUCK STET

HTBLA VÖCKLABRUCK STET HTBLA VÖCKLABRUCK STET Folge ud Reihe INHALTSVERZEICHNIS 1. EINFÜHRUNG... 3. DARSTELLUNG EINER FOLGE... 3 3. BEISPIELE... 4 4. ENDLICHE REIHE... 4 5. ARITHMETISCHE FOLGEN UND REIHEN... 4 6. GEOMETRISCHE

Mehr

D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler. Lösung 2

D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler. Lösung 2 D-MATH, D-PHYS, D-CHAB Alysis II FS 28 Prof. Mfred Eisiedler Lösug 2 Hiweise. Gehe Sie log zum Kochrezept zur Treug der Vrible i liere Differetilgleichuge vor (siehe Abschitt 7.5.3 im Skript). 2. Bemerke

Mehr

Vorkurs Mathematik für Informatiker Folgen

Vorkurs Mathematik für Informatiker Folgen Vorkurs Mathematik für Iformatiker -- 9 Folge -- 6.1.215 1 Folge: Defiitio Eie (uedliche) Folge im herkömmliche Sie etsteht durch Hitereiaderschreibe vo Zahle 1,2,3,4,5, Dabei ist die Reihefolge wichtig,

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB 2004 Ihltsverzeichis Ihltsverzeichis... Folge ud Grezwerte... 2 Aäherug eie Grezwert... 2 Die Fläche des 5 Ecks... 3 Nährugsweise Berechug vo Pi... 4 Die Folge... 5 Defiitio der Folge... 5 Beispiele

Mehr

Analysis I Probeklausur 2

Analysis I Probeklausur 2 WS /2 Mriescu/ Ert Alysis I Probeklusur 2. Aufgbe Die Folge (x ) N sei rekursiv defiiert durch x =, x + = 2+x. () Beweise, dss die Folge (x ) N streg mooto wchsed ist. (b) Beweise, dss (x ) N durch 2 ch

Mehr

Zusammengesetzte Funktionen

Zusammengesetzte Funktionen Nr7-2204 Zusmmegesetzte Fuktioe Aus Fuktioe g ud h werde eue Fuktioe gebildet: ) f = gh, mit f() = g() h() ; Summe b) f = g-h, mit f() = g() - h() ; Differez c) f = g h, mit f() = g() h() ; Produkt d)

Mehr

Herzlich Willkommen zur Vorlesung. Analysis I SoSe 2014

Herzlich Willkommen zur Vorlesung. Analysis I SoSe 2014 Herzlich Willkomme zur Vorlesug Aalysis I SoSe 2014 Prof. Dr. Berd Dreseler Lebediges Lere: Aufgabe Ich Wir 2 Reelle Zahle 2.1 Körperstruktur vo (K1) Additio ud Multiplikatio kommutativ: a b b a, ab ba.

Mehr

7.1 Einführung Unter der n-ten Wurzel aus a versteht man eine Zahl x, die mit n potenziert a ergibt.

7.1 Einführung Unter der n-ten Wurzel aus a versteht man eine Zahl x, die mit n potenziert a ergibt. Rdiziere 7 Rdiziere 7.1 Eiführug Uter der -te Wurzel us versteht eie Zhl x, die it poteziert ergibt. x x für 0 9 3 3 9 * : Wurzelexpoet, N ud 1 : Rdikd, 0 x: Wurzel(wer) t Poteziere: Bsis ud Expoet sid

Mehr

1 Mengen, reelle Zahlen, Gleichungen

1 Mengen, reelle Zahlen, Gleichungen - - Mege, reelle Zhle, Gleichuge. Grudbegriffe der Megelehre.. Megebildugsprizip Def.: Uter eier Mege verstehe wir die Zusmmefssug gewisser, uterschiedlicher Objekte, Elemete get, zu eier Eiheit. Drstellugsforme:

Mehr

Mathematik für VIW - Prof. Dr. M. Ludwig. 4. Differentialrechnung für Funktionen einer reellen Veränderlichen. wird in Umgebung von x0 D f

Mathematik für VIW - Prof. Dr. M. Ludwig. 4. Differentialrechnung für Funktionen einer reellen Veränderlichen. wird in Umgebung von x0 D f 4. Dieretilrechug ür Fuktioe eier reelle Veräderliche 4. Begri des Dieretilquotiete :D, D wird i Umgebug vo D bzgl. ihrer "Veräderug" utersucht. De. 4. Dieretilquotiet Die i eier Umgebug vo deiierte Fuktio

Mehr

Terme. Kapitel 2. Terme. Wertebereich. Summensymbol. Summensymbol Rechnen. Summensymbol. Aufgabe 2.1. Summensymbol Rechnen.

Terme. Kapitel 2. Terme. Wertebereich. Summensymbol. Summensymbol Rechnen. Summensymbol. Aufgabe 2.1. Summensymbol Rechnen. Terme Kpitel Terme Ei mthemtischer Ausdruck wie B R q q (q ) oder (x + )(x ) x heißt eie Gleichug. Die Ausdrücke uf beide Seite des -Zeiches heiße Terme. Sie ethlte Zhle, Kostte (ds sid Symbole, die eie

Mehr

1. Übungsblatt zur Analysis II

1. Übungsblatt zur Analysis II Fchereich Mthemtik Prof Dr Steffe Roch Nd Sissouo WS 9/ 69 Üugsltt zur Alysis II Gruppeüug Aufge G Bestimme Sie für jede der folgede Fuktioe f : [, ] R ds utere ud oere Itegrl ud etscheide Sie, o die Fuktio

Mehr

Expertentipps für die Prüfung:

Expertentipps für die Prüfung: Epertetipps für die Prüfug: Alle Aufgbestelluge im Überblick! Wertvolle Hiweise uf Stolperflle! Elegte Rechetipps! Übersicht ller wichtige Formel! Mthemtik Bde-Württemberg Ihlt:. Pflichtteilufgbe........................................

Mehr

Logarithmus - Übungsaufgaben. I. Allgemeines

Logarithmus - Übungsaufgaben. I. Allgemeines Eie Gleichug höhere Grdes wie z. B. Gymsium / Relschule Logrithmus - Üugsufge Klsse 0 I. Allgemeies k ch ufgelöst werde, idem m die Wurzel zieht. Tritt die Uekte jedoch im Epoete eier Potez uf, spricht

Mehr

1.3 Funktionen. Seien M und N Mengen. f : M N x M : 1 y N : y = f(x) nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig.

1.3 Funktionen. Seien M und N Mengen. f : M N x M : 1 y N : y = f(x) nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig. 1.3 Fuktioe Seie M ud N Mege f : M N x M : 1 y N : y fx et ma Fuktio oder Abbildug. Beachte: Zuordug ist eideutig. Bezeichuge: M : Defiitiosbereich N : Bildbereich Zielmege vo f Der Graph eier Fuktio:

Mehr

n=1 b n, deren Summe n=1 (a n + b n ) eine konvergente Reihe ist. Die Aussage ist WAHR, ein mögliches Beispiel sind die divergenten Reihen 1

n=1 b n, deren Summe n=1 (a n + b n ) eine konvergente Reihe ist. Die Aussage ist WAHR, ein mögliches Beispiel sind die divergenten Reihen 1 ANALYSIS WS 08/09 Vorlesug: Prof. Dr. P. Ullrich Übuge: Dr. I. Kharif/ Dr. M. Steihauer 9. ÜBUNGSBLATT- LÖSUNGSHINWEISE/Ergebisse Die folgede Bearbeituge sid - zum Teil - keie ausführliche Musterlösuge,

Mehr

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10. 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.000, 1 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Defiitio: Eie

Mehr

Folgen, Reihen und Grenzwert. Vorlesung zur Didaktik der Analysis

Folgen, Reihen und Grenzwert. Vorlesung zur Didaktik der Analysis Folge, Reihe ud Grezwert Vorlesug zur Didktik der Alysis Ihlt Motivtio Folge Spezielle Folge Grezwertdefiitio Wichtige Zusmmehäge ud Strtegie der Kovergezutersuchug Fuktioegrezwert Reihe Prdoxie ud Zusmmefssug

Mehr

FORMELSAMMLUNG ARITHMETIK. by Marcel Laube

FORMELSAMMLUNG ARITHMETIK. by Marcel Laube FORMELSAMMLUNG ARITHMETIK y Mrcel Lue EINFÜHRUNG... DIE OPERATIONS-STUFEN... OPERATIONE 1. STUFE: ADDITION UND SUBTRAKTION... BEZEICHNUNGEN... VORZEICHENREGEL... RECHENOPERATION. STUFE... MULTIPLIKATION:...

Mehr

so spricht man von einer kommutativen Gruppe oder auch abelschen Gruppe.

so spricht man von einer kommutativen Gruppe oder auch abelschen Gruppe. Defiitioe ud Aussage zu ruppe Michael ortma Eie ruppe ist ei geordetes Paar (, ). Dabei ist eie icht-leere Mege, ist eie Verküpfug (Abbildug), wobei ma i.a. a b oder gar ur ab statt ( a, b) schreibt. Es

Mehr

Aufgaben zur Analysis I

Aufgaben zur Analysis I Aufgabe zur Aalysis I Es werde folgede Theme behadelt:. Logik, Iduktio, Mege, Abbilduge 2. Supremum, Ifimum 3. Folge, Fuktioefolge 4. Reihe, Potezreihe 5. Mootoie ud Stetigkeit 6. Differetialrechug 7.

Mehr

3 Funktion einer reellen Variablen

3 Funktion einer reellen Variablen - - 3 Fuktio eier reelle Variable 3. Abbildugsbegriff ud Fuktiosbegriff Fuktioe diee zur Darstellug ud Beschreibug vo Zusammehäge ud Abhägigkeite zwische zwei phsikalisch-techische Meßgröße 3.. Abbildugsbegriff

Mehr

7 Ungleichungen und Intervalle

7 Ungleichungen und Intervalle Mthemtik. Klsse 7 Ugleichuge ud Itervlle Aufgbe 0 Löse Sie folgede Ugleichuge > + 8 < 5 + + 7. Itervlle Um gze Bereiche vo reelle Zhle zugebe, wird die Schreibweise mit Itervlle verwedet. Beispiele [,

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12 Mthemtisches Istitut der Uiversität Müche Prof. Dr. Peter Otte WiSe 203/4 Lösug 2 2.0.204 Aufgbe 2. [8 Pute] Übuge zur Alysis für Iformtier ud Sttistier Lösug zu Bltt 2 Für eie Teilmege Ω R, sei {, flls

Mehr

Zusammenfassung: Komplexe Zahlen

Zusammenfassung: Komplexe Zahlen Zusmmefssug: Komplexe Zhle Ihltsvereichis Komplexe Zhleeee che mit komplexe Zhle Polrform komplexer Zhle 4 Wurel komplexer Zhle 6 Formel vo Crdo 8 Nullstelle ud Fktorisierug vo Polyome 9 Für Experte Komplexe

Mehr

Klasse 10 Graphen von ganzrationalen Funktionen skizzieren

Klasse 10 Graphen von ganzrationalen Funktionen skizzieren Klsse 0 Grphe vo grtiole Fuktioe skiiere Nr.3-4.4.06 Ausggslge Vorwisse Die SuS kee Grudfuktioe ud ihre Grphe: f() = ²; ³; ⁴ f() = ; f() = Die SuS kee bei Grudfuktioe folgede Veräderuge: g() = f() Der

Mehr

Algebra/Arithmetik. Eine Variable ist ein Platzhalter oder ein Stellvertreter für eine Zahl.

Algebra/Arithmetik. Eine Variable ist ein Platzhalter oder ein Stellvertreter für eine Zahl. Algebr/Arithmetik 1. Grudbegriffe Geometrie: Lehre vo de Rumgrösse Algebr: Lehre vo de Gleichuge Arithmetik: Lehre vo de Zhlegrösse (Zhle, Vrible) Defiitio: Eie Vrible ist ei Pltzhlter oder ei Stellvertreter

Mehr

Im Rahmen des Seminars Extremal Combinatorics. Anna Lea Dyckhoff

Im Rahmen des Seminars Extremal Combinatorics. Anna Lea Dyckhoff Abzähle Im Rhme des Semirs Extreml Combitorics A Le Dyckhoff 23. April 2004 Abzähle Fortgeschrittees Abzähle Die Kombitorik beschäftigt sich mit dem Abzähle vo Elemete. Dbei versucht m Strtegie, Methode

Mehr

Grundbegriffe der Differentialrechnung

Grundbegriffe der Differentialrechnung Wirtschaftswisseschaftliches Zetrum Uiversität Basel Mathematik für Ökoome 1 Dr. Thomas Zehrt Grudbegriffe der Differetialrechug Referez: Gauglhofer, M. ud Müller, H.: Mathematik für Ökoome, Bad 1, 17.

Mehr

Analysis I. Carsten Schütt WS 2010/11

Analysis I. Carsten Schütt WS 2010/11 . Falls Christa Purzelbäume schlägt, da isst Bruo Torte. Christa ist geau da übel, we Ato Likör trikt ud Christa Purzelbäume schlägt. Falls Christa übel ist, da ist Bruo besorgt ud isst Torte. Etweder

Mehr

ZAHLENFOLGEN Teil 1. Einführende Beispiele Arithmetische Folgen INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Datei Nr

ZAHLENFOLGEN Teil 1. Einführende Beispiele Arithmetische Folgen INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Datei Nr ZAHLENFOLGEN Teil Eiführede Beispiele Arithmetische Folge Dtei Nr. 400 Friedrich Buckel Std: August 006 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mthe-cd.de Ihlt Eiführede Beispiele. Erste Defiitio. Beispiele:

Mehr

Zusammenfassung: Komplexe Zahlen

Zusammenfassung: Komplexe Zahlen LGÖ Ks VM Schuljhr 06/07 Zusmmefssug: Komplexe Zhle Ihltsvereichis Komplexe Zhleeee che mit komplexe Zhle Polrform komplexer Zhle 4 Wurel komplexer Zhle 6 Formel vo Crdo 8 Nullstelle ud Fktorisierug vo

Mehr

Analysis 1 für Informatiker und Statistiker Beispielslösungen, Woche 13

Analysis 1 für Informatiker und Statistiker Beispielslösungen, Woche 13 Mathematisches Istitut der LMU WS 016/17 Prof. Dr. S. Morozov Olie am: Dr. H. Hogreve 1. 01. 017 Aalysis 1 für Iformatiker ud Statistiker Beispielslösuge, Woche 1 1.1 (a Um festzustelle, ob die utestehede

Mehr

Reelle Folgen. Definition. Eine reelle Folge ist eine Abbildung f : N R. liefert ( 7 9, 37

Reelle Folgen. Definition. Eine reelle Folge ist eine Abbildung f : N R. liefert ( 7 9, 37 Reelle Folge Der Begriff der Folge ist ei grudlegeder Baustei der Aalysis, weil damit u.a. Grezprozesse defiiert werde köe. Er beschreibt de Sachverhalt eier Abfolge vo Elemete, wobei die Reihefolge bzw.

Mehr

4.2 Das bestimmte Integral

4.2 Das bestimmte Integral 4.. DAS BESTIMMTE INTEGRAL 63 4. Ds bestimmte Itegrl Die geometrische Iterprettio eies bestimmte Itegrls ist die Fläche uter eiem Fuktiosgrphe ft. M zerlege ei Itervl [, b] uf der t-achse äquidistt i Teilitervlle

Mehr

Grundlagen Mathematik 9. Jahrgangsstufe

Grundlagen Mathematik 9. Jahrgangsstufe Grudlge Mthetik 9. Jhrggsstufe ALGEBRA. Uter der (Qudrt-)Wurzel Zhl, die qudriert ergit : der positive Zhl versteht diejeige positive heißt dei der Rdikd.. Rtiole Zhle Q = lle Brüche zw. edliche oder uedlich

Mehr

8.3. Komplexe Zahlen

8.3. Komplexe Zahlen 8.. Komplee Zhle Wie bereits i 8.. drgestellt, wurde die fortlufede Erweiterug der Zhlbereiche durch die Eiführug immer kompleerer Recheopertioe otwedig:. Auf de türliche Zhle führte der Wusch ch iverse

Mehr

A 2 Die Cramersche Regel

A 2 Die Cramersche Regel Die Crmersche egel Mtrixschreibweise eies liere Gleichugssystems Die Crmersche egel 5 Wir gehe vo der llgemei Gestlt eies liere Gleichugssystems us : Gegebe seie m (reelle oder komplexe) Zhle ik (i,,,

Mehr

Analysis I. Prof. Dr. H. Brenner Osnabrück WS 2014/2015. Vorlesung 20. Konvexe Funktionen

Analysis I. Prof. Dr. H. Brenner Osnabrück WS 2014/2015. Vorlesung 20. Konvexe Funktionen Prof. Dr. H. Breer Osabrück WS 2014/2015 Aalysis I Vorlesug 20 Kovexe Fuktioe Eie kovexe Teilmege. Eie ichtkovexe Teilmege. Defiitio 20.1. Eie Teilmege T R heißt kovex, we mit je zwei Pukte P, Q T auch

Mehr

Herzlich Willkommen zur Vorlesung. Analysis I SoSe 2013

Herzlich Willkommen zur Vorlesung. Analysis I SoSe 2013 Herzlich Willkomme zur Vorlesug Aalysis I SoSe 2013 Prof. Dr. Berd Dreseler Lebediges Lere: Aufgabe Ich Wir Überblick Mittelwertsatz Differetialrechug Natürliche Zahle Iduktiosprizip Kombiatorik Körper

Mehr

Diesen Grenzwert nennt man partielle Ableitung von f nach x i und

Diesen Grenzwert nennt man partielle Ableitung von f nach x i und Bevor wir zum ächste Kapitel übergehe, werde wir de Begri eier Fuktio i mehrere Variable eiführe. Eie Fuktio vo Variable ist eie Vorschrift, die jedem Pukt (x 1,x,...,x ) eier Teilmege D des IR eie bestimmte

Mehr

Aufgaben für Klausuren und Abschlussprüfungen

Aufgaben für Klausuren und Abschlussprüfungen Techikerschule Aufge für Klusure ud Aschlussprüfuge Epoetilgleichuge, Logrithmusgleichuge Grudlgewisse: Recheregel zur Epoetil- ud Logrithmusrechug. Hiweise ud Formelsmmlug siehe Seite - 5. Bereche Sie.

Mehr

Münchner Volkshochschule. Themen

Münchner Volkshochschule. Themen Theme Logik ud Megelehre Zhlesysteme ud Arithmetik Gleichuge ud Ugleichuge Li. Gleichugssysteme ud spez. Aweduge Geometrie ud Trigoometrie Vektore i der Ebee ud Puktemege Fuktioe eier Veräderliche Zhlefolge

Mehr

4. Reihen Definitionen

4. Reihen Definitionen 4. Reihe 4.1. Defiitioe Addiere wir die Glieder eier reelle Zahlefolge (a k ), so heißt diese Summe S (uedliche) (Zahle-) Reihe S (Folge: Fuktio über N; Reihe: 1 Zahl): S := a 1 + a 2 + a 3 +... := Σ a

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 6 Für Experte 8 Defiitioe ud Beispiele für Folge Defiitio Eie

Mehr

Grenzwertberechnungen

Grenzwertberechnungen Katosschule Solothur Grezwertberechuge Grezwertberechuge Grezwertberechuge bei Folge ud Reihe Folge sid Fuktioe; die Begriffe beschräkt ud mooto trete daher auch bei Folge auf. Isbesodere habe sie eie

Mehr

Thema 8 Konvergenz von Funktionen-Folgen und - Reihen

Thema 8 Konvergenz von Funktionen-Folgen und - Reihen Them 8 Kovergez vo Fuktioe-Folge ud - Reihe Defiitio Sei (f ) eie Folge vo Fuktioe vo D R i R. Wir sge, dß f puktweise gege eie Fuktio f kovergiert, flls gilt: f () f() für jedes D. Dies ist der türliche

Mehr

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2 1

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2 1 Vorkurs Mthemtik Fchhochschule Frkfurt, Fchbereich 1 Reche mit Poteze N bezeichet die Mege der türliche Zhle, Q die Mege der rtiole Zhle ud R die Mege der reelle Zhle. N bedeutet: ist eie türliche Zhl.

Mehr

Kompaktheit und gleichgradige Stetigkeit. 1 Einführung in die Kompaktheit in C 0

Kompaktheit und gleichgradige Stetigkeit. 1 Einführung in die Kompaktheit in C 0 Kompaktheit ud gleichgradige Stetigkeit Vortrag zum Prosemiar zur Aalysis, 14.06.2010 Mao Wiescherma Matthias Klupsch Dieser Vortrag beschäftigt sich mit Kompaktheit vo Teilräume vom Raum der stetige Abbilduge

Mehr

Marek Kubica, Diskrete Strukturen Übungsblatt 13 Gruppe 11

Marek Kubica, Diskrete Strukturen Übungsblatt 13 Gruppe 11 Mrek Kubic, kubic@i.tum.de Diskrete Strukture Übugsbltt Gruppe Pukteverteilug: Σ Aufgbe () 8 () 7 Der Grph B ht de Prüfer-Code,,,,, der zustde kommt, we m de kleiste Kote vom Grd streicht ud de dere, übrig

Mehr

Vorkurs Mathematik für Informatiker Folgen

Vorkurs Mathematik für Informatiker Folgen Vorkurs Mathematik ür Iormatiker -- 8 Folge -- 11.10.2015 1 Folge: Deiitio Eie (uedliche) Folge im herkömmliche Sie etsteht durch Hitereiaderschreibe vo Zahle 1,2,3,4,5, Dabei ist die Reiheolge wichtig,

Mehr

Proseminar Lineare Algebra WS 2016/17

Proseminar Lineare Algebra WS 2016/17 Prosemiar Lieare Algebra WS 2016/17 Bachelorstudium Lehramt Sekudarstufe (Allgemeibildug) Lehramtsstudium Uterrichtsfach Mathematik Kapitel 0: Grudlage 1. Wie sid die Begriffe Vereiigug, Durchschitt ud

Mehr

Gegebenenfalls heisst die Zahl s. der Reihe, und man schreibt

Gegebenenfalls heisst die Zahl s. der Reihe, und man schreibt Prof. Dr. Berd Dreseler 6 Reihe 6.1 Kovergez vo Reihe Gegebe sei eie Folge s 1 1, 2 1 2 3 1 2 3... s s, s..., 1 2 1, wird der Folge eie weitere Folge omplexer Zhle. Durch s zugeordet. www.berd-dreseler.de

Mehr

2.3. ZAHLENREIHEN 109. Eine Reihe ist also per Definitionem genau dann konvergent, wenn die Folge ihrer Partialsummen konvergiert.

2.3. ZAHLENREIHEN 109. Eine Reihe ist also per Definitionem genau dann konvergent, wenn die Folge ihrer Partialsummen konvergiert. 2.3. ZAHLENREIHEN 109 2.3 Zhlereihe 2.3.1 Reihe Für IN, 0 sei IR. D ist die Reihe defiiert ls die = 0 m Folge (S m ) der Prtil- oder Teilsumme S m :=. = 0 Eie Reihe ist lso per Defiitioem geu d koverget,

Mehr

Gleichungen und Ungleichungen. Mathematische Grundlagen. Beispiel. Beispiel. Lösung einer quadratischen Gleichung:

Gleichungen und Ungleichungen. Mathematische Grundlagen. Beispiel. Beispiel. Lösung einer quadratischen Gleichung: Gleichuge ud Ugleichuge Mathematische Grudlage Das Hadout ist Bestadteil der Vortragsfolie zur Höhere Mathemati; siehe die Hiweise auf der Iteretseite wwwimgui-stuttgartde/lstnumgeomod/vhm/ für Erläuteruge

Mehr

Dann ist die Zahl auf der linken Seite gerade und die auf der rechten Seite ungerade. Also sind sie nicht gleich.

Dann ist die Zahl auf der linken Seite gerade und die auf der rechten Seite ungerade. Also sind sie nicht gleich. Lösuge. Es gibt drei Lösuge.. Lösug: Ato ist traurig ud er trikt keie Likör. Bruo isst Torte ud ist besorgt. Christa ist icht übel ud sie macht Purzelbäume.. Lösug: Ato ist traurig ud trikt keie Likör.

Mehr

Analysis I SS Zusammenfassung Stephan Weller, Juli 2002

Analysis I SS Zusammenfassung Stephan Weller, Juli 2002 Alysis I SS 2 Zusmmefssug Steph Weller, Juli 22 Ihlt. Vollstädige Idutio ud Ugleichuge 2. Folge ud Reihe 3. Kovergez ud Stetigeit 4. Differetitio, lole Extrem, Kovexität 5. Itegrtio, Sustitutiosregel ud

Mehr

Einige Beispiele für Mengen im R n.

Einige Beispiele für Mengen im R n. Eiige Beispiele für Mege im R. Itervalle i R. Seie a, b R mit a < b. [a, b] : {x a x b} abgeschlossees Itervall (a, b : {x a < x < b} offees Itervall [a, b : {x a x < b} halboffees Itervall (a, b] : {x

Mehr

Folgen und Reihen. 23. Mai 2002

Folgen und Reihen. 23. Mai 2002 Folge ud Reihe Reé Müller 23. Mai 2002 Ihaltsverzeichis 1 Folge 2 1.1 Defiitio ud Darstellug eier reelle Zahlefolge.................. 2 1.1.1 Rekursive Defiitio eier Folge......................... 3 1.2

Mehr

BRÜCKENKURS MATHEMATIK

BRÜCKENKURS MATHEMATIK Brückekurs: Elemete der Differetil- ud Itegrlrechug - Prof. Dr. M. Ludwig BRÜCKENKURS MATHEMATIK ELEMENTE DER DIFFERENTIAL- UND INTEGRALRECHNUNG Schwerpukte: Begriff der Aleitug Aleitugsregel Uestimmtes

Mehr

Aufgabe 4.2. (a) lim 7 + = (b) lim. ( 2n 3 6n 2 + 3n 1. (c) lim n n 2 ( 1) n n 3) = lim. (d) n n + 1. lim. (e) n n. Aufgabe 4.3.

Aufgabe 4.2. (a) lim 7 + = (b) lim. ( 2n 3 6n 2 + 3n 1. (c) lim n n 2 ( 1) n n 3) = lim. (d) n n + 1. lim. (e) n n. Aufgabe 4.3. Folge Eie Folge ist eie Aordug vo reelle Zahle. Die eizele Zahle heiße Glieder der Folge. Kapitel 4 Folge ud Reihe Formal: Eie Folge ist eie Abbildug a : N R, a Folge werde mit a i i oder kurz a i bezeichet.

Mehr

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man:

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man: Gleichmäßige Kovergez Wir betrachte im Folgede Abbilduge f : M N, wobei M eie Mege ud N ei metrischer Raum ist. Isbesodere iteressiere ud Folge f vo solche Abbilduge. Eie solche Folge bestimmt für jedes

Mehr

Kapitel 4. Folgen und Reihen. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 4 Folgen und Reihen 1 / 38. a : N R, n a n

Kapitel 4. Folgen und Reihen. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 4 Folgen und Reihen 1 / 38. a : N R, n a n Kapitel 4 Folge ud Reihe Josef Leydold Auffrischugskurs Mathematik WS 2017/18 4 Folge ud Reihe 1 / 38 Folge Eie Folge ist eie Aordug vo reelle Zahle. Die eizele Zahle heiße Glieder der Folge. Formal: Eie

Mehr

sfg Quadratwurzeln a ist diejenige nichtnegative Zahl (a 0), die quadriert a ergibt: Die Zahl a unter der Wurzel heißt Radikand:

sfg Quadratwurzeln a ist diejenige nichtnegative Zahl (a 0), die quadriert a ergibt: Die Zahl a unter der Wurzel heißt Radikand: M 9.1 Quadratwurzel a ist diejeige ichtegative Zahl (a 0), die quadriert a ergibt: a 2 = a Die Zahl a uter der Wurzel heißt Radikad: a Quadratwurzel sid ur für ichtegative Zahle defiiert: a 0 25 = 5; 81

Mehr

Vorkurs. Mathematik für Wirtschaftswissenschaftler

Vorkurs. Mathematik für Wirtschaftswissenschaftler Vorkurs Mathematik für Wirtschaftswisseschaftler Fabia Kleie Lehrstuhl für Agewadte Mikroökoomie fabia.kleie[at]ui-erfurt.de Ihalt 1 Grudlage der Algebra 2 Algebraische Ausdrücke 3 Grudzüge der Megelehre

Mehr

Komplexe Zahlen Ac '16

Komplexe Zahlen Ac '16 Komplexe Zhle Ac '16 I der Mege der reelle Zhle ist die Gleichug x² = -1 icht lösr. Ahilfe schfft eie Zhlereichserweiterug vo der Mege uf die Mege der sogete komplexe Zhle. Die Mege der komplexe Zhle esteht

Mehr

Komplexe Zahlen Ac '16

Komplexe Zahlen Ac '16 Komplexe Zhle Ac '16 I der Mege der reelle Zhle ist die Gleichug x² = -1 icht lösr. Ahilfe schfft eie Zhlereichserweiterug vo der Mege uf die Mege der sogete komplexe Zhle. Die Mege der komplexe Zhle esteht

Mehr

Funktion: Grundbegriffe A 8_01

Funktion: Grundbegriffe A 8_01 Fuktio: Grudegriffe A 8_ Eie Fuktio ist eie eideutige Zuordug: Jede Wert us der Defiitiosege wird geu ei Wert us der Werteege zugeordet. Ist f eie Fuktio ud sid ud y eider zugeordete Werte, d schreit kurz:

Mehr

Das Wurzelziehen (Radizieren) ist die Umkehrung des Potenzierens. Durch Berechnung der entsprechenden Wurzel entsteht wieder der Wert der Basis.

Das Wurzelziehen (Radizieren) ist die Umkehrung des Potenzierens. Durch Berechnung der entsprechenden Wurzel entsteht wieder der Wert der Basis. . Wurzel Ds Wurzelziehe (Rdiziere) ist die Umkehrug des Potezieres. Durch Berechug der etsprechede Wurzel etsteht wieder der Wert der Bsis. poteziere Wurzel ziehe. Die Qudrtwurzel Ds Ziehe der Qudrtwurzel

Mehr

Mathematik I für VIW - Prof. Dr. M. Ludwig. A x x n ist eine Abbildung von n in m.

Mathematik I für VIW - Prof. Dr. M. Ludwig. A x x n ist eine Abbildung von n in m. Mthemtik I für VIW - Prof. Dr. M. Ludwig.4 Liere Gleichugssysteme.4. Schreibweise, Liere Abbildug. A x = b, wobei m A... Koeffizietemtrix, T x ( x, x 2,, x ) T (, 2,, =... Vektor der Ubekte,... Azhl der

Mehr

Spezielle Themen der Mathematik: Reelle Zahlen, Folgen, Reihen, Funktionen

Spezielle Themen der Mathematik: Reelle Zahlen, Folgen, Reihen, Funktionen Folge ud Reihe Spezielle Theme der Mthemtik: Reelle Zhle, Folge, Reihe, Fuktioe Folge ud Reihe I diesem Kpitel befsse wir us mit Folge, welche ls spezielle Fuktioe, ämlich solche mit ls Defiitiosbereich,

Mehr

Zufallsvariablen und Wahrscheinlichkeitsverteilungen

Zufallsvariablen und Wahrscheinlichkeitsverteilungen Zufllsvrible ud Whrscheilichkeitsverteiluge Kombitorik Zusmmestellug bzw. Aordug vo Elemete Kombitorik mit Berücksichtigug der Reihefolge ohe Berücksichtigug der Reihefolge Permuttioe Vritioe ohe Wiederholug

Mehr

Aufgabe 8.24 Bestimme das Minimum und das Maximum der stetigen Funktion

Aufgabe 8.24 Bestimme das Minimum und das Maximum der stetigen Funktion 58 II. ANALYSIS Aufgabe 8.24 Bestimme das Miimum ud das Maximum der stetige Fuktio f : [ 2,2] R : x 1 2x x 2. Aufgabe 8.25 Überprüfe, ob die folgede Fuktioe f eie Umkehrfuktio besitze ud bestimme diese

Mehr

mit (a 1 ) (0,0,,0). Dann ist die Menge,,a n,a 2 eine endliche Menge und besitzt ein grösstes Element ggt(a 1

mit (a 1 ) (0,0,,0). Dann ist die Menge,,a n,a 2 eine endliche Menge und besitzt ein grösstes Element ggt(a 1 Kapitel 1: Reste, Teiler, Vielfache Defiitio Es sei a 0. Die Zahl b 0 ist ei Teiler vo a, we es ei u 0 gibt, sodass ub= a. Ist b ei Teiler vo a, so ist a ei Vielfaches vo b. Bezeichug b a für b ist Teiler

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. R. Köig Dr. M. Prähofer Zetrlübug TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mthemtik Mthemtik für Physiker (Alysis ) MA9 Witersem. 7/8 Lösugsbltt http://www-m5.m.tum.de/allgemeies/ma9 7W (9..8) Z..

Mehr

Ubungen zur Analysis 1. Prof. Dr. Kohnen. Dr. O. Delzeith

Ubungen zur Analysis 1. Prof. Dr. Kohnen. Dr. O. Delzeith Ubuge zur Aalysis 1 Prof. Dr. Kohe Dr. O. Delzeith SS 1996 1. Beweise Sie uter Beutzug der i der Vorlesug geate vier Axiome fur N : Sid m; ; p; q 2 N ud gilt m > sowie p > q, so gilt mp > q. (3 Pukte)

Mehr

A. Bertrand sches Sehnenparadoxon, Modellierung V Zwei Punkte zufällig im Kreis (S. 212/213)

A. Bertrand sches Sehnenparadoxon, Modellierung V Zwei Punkte zufällig im Kreis (S. 212/213) A. Bertrd sches Seheprdoxo, Modellierug V Zwei Pukte zufällig i Kreis (S. /) I Abb..58 sid 5 Sehe gezeichet, vo dee 7 kürzer ls die Dreiecksseite sid. Die reltive Häufigkeit ist,8. Bei große Versuchszhle

Mehr

10. Stetigkeit Definition (Stetigkeit) Beispiele. Wir übertragen den Stetigkeitsbegriff für reelle Funktionen auf metrische Räume.

10. Stetigkeit Definition (Stetigkeit) Beispiele. Wir übertragen den Stetigkeitsbegriff für reelle Funktionen auf metrische Räume. 10 Stetigkeit Wir übertrge de Stetigkeitsbegriff für reelle Fuktioe uf metrische Räume 101 Defiitio (Stetigkeit) Seie (X, d x ), (Y,d y ) metrische Räume, f : X Y eie Abbildug Wir sge f ist stetig im Pukt

Mehr

Es gibt verschiedene Möglichkeiten eine Folge zu definieren. Die zwei häufigsten Methoden

Es gibt verschiedene Möglichkeiten eine Folge zu definieren. Die zwei häufigsten Methoden Folge ud Reihe Folge Eie Folge ist eie Abbildug der atürliche Zahle N = {0, 1,,...} i die Mege der (zumidest i de meiste Fälle) reelle Zahle R. I diesem Fall ka ma sich eie Folge als Pukte i eiem Koordiatesystem

Mehr