Musterlösung. 120 Minuten + 15 Minuten Lesezeit am Anfang! 36 (unterschiedlich gewichtet, total 47 Punkte)

Größe: px
Ab Seite anzeigen:

Download "Musterlösung. 120 Minuten + 15 Minuten Lesezeit am Anfang! 36 (unterschiedlich gewichtet, total 47 Punkte)"

Transkript

1 BSc - Sessionsprüfung Regelungstechnik I ( Ochsner Musterlösung Dauer der Prüfung: Anzahl der Fragen: Bewertung: 120 Minuten + 15 Minuten Lesezeit am Anfang! 36 (unterschiedlich gewichtet, total 47 Punkte Um die Note 6 zu erlangen, müssen nicht alle Fragen richtig beantwortet werden. Bei jeder Frage ist die Punktezahl angegeben. Bei Mehrfachwahlfragen gibt es die Hälfte der Punkte, wenn alle ausser einer Antwort richtig sind. Bei allen anderen Fragen gibt es nur Punkte, wenn die Antwort vollständig richtig ist. Nicht eindeutige Lösungen werden als falsch bewertet. Erlaubte Hilfsmittel: 20 A4-Blätter (40 Seiten Taschenrechner (zur Verfügung gestellt Die Assistenten dürfen keine Hilfe geben. Zur Beachtung: Die Lösungen sind nicht zu begründen. Es zählt ausschliessich das Endresultat. Zu einer korrekten Lösung gehört auch die richtige Masseinheit. Geben Sie die Lösungen ausschliesslich an den dafür vorbereiteten Stellen an.

2 Seite 2 Sessionsprüfung Regelungstechnik I Einführung in die Regelungstechnik 0 F1 F2 Das gleichmässige Giessen der Pflanzen (d konstant entspricht einer Folgeregelung. Da das System nicht instabil ist und keine Störungen erwähnt werden, lautet die Lösung: Folgeregelung Störungsunterdrückung Stabilisierung einer instabilen Strecke Die Führungsgrösse r entspricht dem Sollwert, was in diesem Fall der Ort ist, wo man bewässern möchte (d. Mit der Stellgrösse u wirkt der Regler (Sie direkt auf die Strecke (Bewässerungsanlage, somit ist α die Stellgrösse. Die Regelgrösse y ist jene Grösse, die auf die Führungsgrösse geregelt werden soll und nur indirekt beeinflusst werden kann, in diesem Fall ist w die Regelgrösse. Signal Grösse aus Abbildung 1 Regelgrösse (y w Führungsgrösse (r d Stellgrösse (u α F3 Die Bewässerungsanlage ist die Regelstrecke und entspricht deshalb dem Block 3. Der Regler (Block 2 ist die Person, welche den Wasserhahn bedient. Über die Augen nutzt die Person Feedback. Block 1 repräsentiert eine Vorsteuerung, welche anhand der Beschreibung dem Notizzettel entspricht. Block Element aus obiger Liste Block 1 b Block 2 a Block 3 c

3 Sessionsprüfung Regelungstechnik I Seite 3 Systemmodellierung F4 Bei konstanten Bedingungen ändern sich die Temperaturen nicht. Deshalb gilt d dt ϑ T(t = d dt ϑ S(t = 0. Daraus folgt P B (t = Q T (t = Q S (t, und schliesslich γ α(t = h S A S ( ϑs (t ϑ, Nach α aufgelöst findet man die korrekte Lösung als ˆα = h S A S γ ( ˆϑS ϑ F5 Gleichungen (11 (12 der Aufgabenstellung beschreiben die Dynamik des Systems. Aufgelöst nach den zeitlichen Ableitungen der Zustandsvariablen und (8 (10 eingesetzt, ergeben sich ẋ 1 = 1 ( PB Q T = γ α h T A T ( x1 x 2 = h T A T x 1 + h T A T x 2 + γ α und ẋ 2 = 1 m S c S ( QT Q S = h T A T m S c S ( x1 x 2 h S A S m S c S x 2 = h T A T m S c S x 1 h T A T + h S A S m S c S x 2, wobei die zeitlichen Abhängigkeiten aus Gründen der Übersichtlichkeit weggelassen wurden. Die Zustandsraumdarstellung sieht demnach wie folgt aus.

4 Seite 4 Sessionsprüfung Regelungstechnik I (ẋ1 = ẋ 2 h T A T h T A T m S c S h T A T h T A T h S A S m S c S ( x1 x 2 + γ 0 u y = 0 1 ( x1 x u Anmerkung: Für die richtige Antwort des oberen Teils der Box erhält man einen Punkt und für die richtige Antwort des unteren Teils der Box erhält man ebenfalls einen Punkt. Es gibt keine Teilpunkte in den jeweiligen Teilen der Box. F6 Anhand der Grafik ist ersichtlich, dass sich die zwei Temperaturen sehr ähnlich verhalten. Es ist deshalb möglich, den Kochtopf und die Suppe als einen Wärmespeicher zu modellieren. Das ist der Fall, weil der Wärmeübertragungskoeffizient zwischen dem Kochtopf und der Suppe so gross ist. Die Wärmekapazitäten der Suppe und des Kochtopfs sind dabei von sekundärer Bedeutung. Die richtige Lösung lautet deshalb wie folgt: Ja, weil die Wärmekapazität der Suppe viel grösser ist als jene des Kochtopfs. Ja, weil der Wärmeübertragungskoeffizient des Kochtopfs sehr gross ist. Nein, weil die Masse des Topfes ein Sechstel der Masse der Suppe ist. Nein, weil der Topf sich wegen der kleinen Wärmekapazität schnell aufwärmt.

5 Sessionsprüfung Regelungstechnik I Seite 5 Analyse linearer Systeme F7 F8 Die beiden Systeme unterscheiden sich in der Verstärkung k aber die Zeitkonstante τ ist für beide Systeme identisch. Nur Diagramm A zeigt eine Impulsantwort von System 2 welche bei t 0 + dem korrekten Wert von k τ = 3 entsprcht und dabei die korrekte Zeitkonstante von τ = 5s aufweist. Diagramm A Diagramm B Diagramm C Diagramm D Die Zustandsraumdarstellung des gegebenen Signalflussbildes lautet: A = b = 0 c = ( d = F9 Zur Bestimmung der Beobachtbarkeit und Steuerbarkeit des Systems werden die Ränge der entsprechenden Matrizen berechnet: ˆ Rang(O = 2 vollständig beobachtbar und somit auch detektierbar ˆ Rang(C = 1 nicht vollständig steuerbar Da das System Lyapunov asymptotisch stabil ist (λ 1 = 1, λ 2 = 1 ist das System unabhängig von der Steuerbarkeit stabilisierbar. Eigenschaften trifft zu trifft nicht zu Vollständig steuerbar Vollständig beobachtbar Stabilisierbar Detektierbar F10 Zuerst berechnet man die Eigenwerte der A-Matrix. Beide Eigenwerte λ 1,2 = 3 ± j 6 haben einen negativen Realteil, woraus geschlossen werden kann, dass das System Lyapunov asymptotisch stabil ist. F11 Lyapunov asymptotisch stabil. Lyapunov stabil (grenzstabil. Lyapunov instabil. Das System Σ(s hat einen Pol bei π = 1 b. Für π < 0 muss folglich gelten: 0 < b <

6 Seite 6 Sessionsprüfung Regelungstechnik I Laplace 0 F12 Zuerst wird die Gleichung Laplace-transformiert, wodurch man ( s s + 5 Y (s = ( 3 s 1 U(s erhält. Nach Y (s/u(s aufgelöst ergibt das die Lösung: Σ(s = 3 s 1 s 2 +3 s+5 F13 Der Bruch ist bereits so normiert, dass a 4 = 1 ist. Die Ordnung des Systems ist 4 und der relative Grad ist 2. Somit können die Eintrage aus der Übertragungsfunktion einfach abgelesen werden A = b = 0 0 c = ( d = F14 Das System Σ 3 weist ein nichtminimalphasiges Verhalten auf und ist somit das System mit kleinstem (sprich negativem Parameter a 3. Die Sprungantwort von Σ 2 hat zum Zeitpunkt t 0 + eine zeitliche Ableitung von 0. Dieses Verhalten lässt einen relativen Grad von 2 schliessen und somit auf a 2 = 0. System Σ 1 mit dem höchsten Überschwinger weist schliesslich den grössten Parameter a 1 auf. F15 a 1 < a 2 < a 3 a 2 < a 1 < a 3 a 3 < a 2 < a 1 a 1 < a 3 < a 2 Für den Einheitsprung am Eingang U(s = 1 s gilt am Ausgang Y (s = Σ(s U(s = s 4 (s + 3 (s s Die Parameter A, B und C der Partialbruchzerlegung findet man mit dem Ansatz als Y (s = A s B s C s A = 7 3 B = 3 C = 2 3.

7 Sessionsprüfung Regelungstechnik I Seite 7 Die einzelnen Terme können nun mithilfe der entsprechenden Tabelle in den Zeitbereich transformiert werden. y(t = h(t ( 7 3 e 3t + 3 e 2t 2 3 F16 Eine Möglichkeit diese Aufgabe zu lösen führt über die Verwendung des Anfangswerttheorems sowie des Endwerttheorems. Anfangswerttheorem Endwerttheorem lim x(t = lim s (s t 0 + s (1 lim x(t = lim s (s t + (2 s 0 Werden diese Theoreme auf die Systeme Σ A (s und Σ B (s angewendet, resultieren folgende Merkmale bei den Impulsantworten Y a (s = Σ a (s 1 und Y b (s = Σ b (s 1: y a (t y b (t lim t lim t Bei den Sprungantworten Y a (s = Σ a (s 1 s und Y b(s = Σ b (s 1 s derselben Theoreme folgende Merkmale: gelten unter Verwendung y a (t y b (t lim t lim t 4 3 Beachten Sie, dass die Impulsantwort von System B exakt der Sprungantwort von System A enspricht (da Σ B (s = Σ A (s 1/s. Systeme Sprungantwort Impulsantwort Σ A (s 1 2 Σ B (s 3 1

8 Seite 8 Sessionsprüfung Regelungstechnik I Frequenzantworten F17 Anhand der Totzeit lässt sich Σ 2 (s sofort dem Diagramm C zuordnen. Da Diagramm D als einziges bei tiefen Frequenzen eine Phase von -90 hat, ist klar dass es zur Übertragungsfunktion Σ 4 (s gehört, welche einen offenen Integrator hat. Diagramm B mit -180 Phase bei tiefen Frequenzen gehört zur Übertragungsfunktion Σ 1 (s, welche eine negative statische Verstärkung hat. Diagramm A zeigt ein System mit relativem Grad 3 (-270 Phasenabfall und gehört folgerichtig zu Σ 3 (s. Die richtige Lösung lautet somit: Nyquist Diagramm A B C D Übertragungsfunktion F18 Das im Bodediagramm dargestellte System gehört zur Übertragungsfunktion Σ B (s. Das System hat einen Pol bei 0.01 rad /s, eine Nullstelle bei 0.1 rad /s, einen weiteren Pol bei 10 rad /s und eine Totzeit bei rad /s. F19 Σ A Σ B Σ C Σ D Bei hohen Frequenzen zeigt das Bodediagramm einen Verstärkungsabfall von 20 db /dec, weshalb der relative Grad r = 1 ist. Bei tiefen Frequenzen beträgt die Phase 0, somit hat die Übertragungsfunktion keinen offenen Integrator und ist vom Typ k = 0. r = 1 k = 0 F20 Bei den ersten zwei Fragen zum Phasenverlauf verhält es sich genau andersrum. Sowohl der stabile Pol, als auch die nichtminimalphasige Nullstelle senken die Phase ab. Eine Totzeit beeinflusst ausschliesslich die Phase eines Systems. Es ist eine fundamentale Eigenschaft von linearen Systemen, dass der Ausgang mit der gleichen Frequenz schwingt wie der Eingang. Die richtige Lösung lautet somit: Aussage richtig falsch Ein stabiler Pol hebt die Phase um 90 an. Eine nichtminimalphasige Nullstelle hebt die Phase um 90 an. Eine Totzeit hat keinen Einfluss auf den Verlauf der Verstärkung. Wenn ein lineares System mit einer periodischen Schwinung angeregt wird, schwingt der Ausgang (im eingeschwungenen Zustand mit der selben Frequenz wie der Eingang.

9 Sessionsprüfung Regelungstechnik I Seite 9 Analyse geschlossener Regelkreise F21 T (s lässt sich wie folgt berechnen: T (s = C(s P (s 1 + C(s P (s = k p (s (s + 2(s 1 + k p (s = k p (s s 2 + (1 + k p s + (0.5k p 2 T (s = k p(s+0.5 s 2 +(1+k ps+(0.5k p 2 F22 Damit der geschlossene Regelkreis asymptotisch stabil ist, müssen alle Pole des geschlossenen Regelkreises T (s einen negativen Realteil haben. Die Pole werden wie folgt berechnet: π 1/2 = 0.5(1 + k p ± 0.5 (1 + k p 2 4(0.5k p 2 = 0.5(1 + k p ± 0.5 kp Da der Term in der Wurzel immer positiv ist, sind beide Pole rein reell und müssen somit kleiner als null sein: 0 > 0.5(1 + k p ± 0.5 kp (1 + k p > kp k 2 p + 2k p + 1 > k 2 p + 9 k p > 4 Zur Überprüfung können nun die Pole berechnet werden. Sie liegen bei π 1/2 = { 5, 0}, d.h. das System ist genau bei k p = 4 an der Stabilitätsgrenze. Somit lautet die Lösung: k p,min = 4 F23 Die Kreisverstärkung in Diagramm A umkreist den Punkt -1 einmal im Gegenuhrzeigersinn (n c = 1. Die Übertragungsfunktion hat hat zwei positive Pole (n + = 2 und keinen Pol im Ursprung (n 0 = 0. Laut dem Nyquisttheorem ist der geschlossene Regelkreis somit nicht stabil. n 0 n + n c asymptotisch stabil? (ja/nein System A nein

10 Seite 10 Sessionsprüfung Regelungstechnik I F24 F25 Die Kreisverstärkung in Diagramm B umkreist den Punkt mal im Uhrzeigersinn (n c = 1.5. Die Übertragungsfunktion hat keinen positiven Pol (n + = 0 und einen keinen Pol im Ursprung (n 0 = 1. Laut dem Nyquisttheorem ist der geschlossene Regelkreis somit nicht stabil. n 0 n + n c asymptotisch stabil? (ja/nein System B nein Die Grössen können direkt aus der Grafik abgelesen werden. Bei der Durchtrittsfrequenz kreuzt L(jω die 0 db linie. Die Phasenreserve berechnet sich als 180 minus die Phase bei der Durchtrittsfrequenz. Und die Verstärkungsreserve berechnet sich als 1 dividiert durch die Verstärkung bei der Frequenz wo die Phase -180 beträgt. ω c = 10 [9, 11] rad/s, ϕ = 30 [25, 35], γ = 15 [14, 16] db = 5.62 [5.01, 6.31]

11 Sessionsprüfung Regelungstechnik I Seite 11 Spezifikationen und Beschränkungen geschlossener Regelkreise F26 Aus der Vorlesung ist folgende Formel bekannt: [ ( ζ ω c max(10 ω d, 2 π + +, min 2, ω T 2, ω 2 5, ω ] n 10 Setzt man die gegebenen Werte ein, ergibt dies: ω c [max(50, 40, min (, 62.5, 60, 100] Die Lösung lautet somit: 50 rad/s ω c 60 rad/s F27 Aus der gegebenen Sprungantwort des geschlossenen Regelkreises lassen sich das Überschwingen (ˆɛ und die Ansteigszeit (t 90 ermitteln. ˆɛ 0.2 t s Unter der Annahme, dass sich der geschlossene Regelkreis wie ein System 2. Ordnung verhält, lassen sich anhand der Faustregeln die Phasenreseve (ϕ und die Durchtrittsfrequenz (ω c bestimmen. ϕ = ˆɛ 48 ω c 1.7 = 1 rad t 90 s Für die Kreisverstärkung muss folgendes gelten. (L(ω c = ϕ = 132 L(ω c = 1 = 0 db Daraus kann bestimmt werden, dass Kreisverstärkung C zur gegebenen Sprungantwort gehören muss. A B C D F28 Der statische Nachlauffehler wird folgendermassen berechnet. e = lim t 0 e(t = S(0 Damit e = 0 muss also gelten S(0 = 1 = 0 L(0 = 1 + L(0 Da dies bei der Kreisverstärkung A nicht der Fall ist, führt diese zu einem statischen Nachlauffehler

12 Seite 12 Sessionsprüfung Regelungstechnik I A B C D

13 Sessionsprüfung Regelungstechnik I Seite 13 Reglerauslegung 0 F29 Um die Parameter T i und T d des PID-Reglers nach Ziegler-Nichols zu bestimmen wird die Periodendauer T der kritischen Schwingung benötigt. Diese kann aus der Übertragungsfunktion der Regelstrecke P (s berechnet werden. Für die Frequenz der selbsterhaltenden Schwingung gilt (k p P (jω = π. Daraus wird nun die Periodendauer T berechnet. (k p P (jω = 0 4 (jω + 2 = 4 arctan( ω 2 = π ω = 2 tan( π 4 = 2 rad /s T = 2 π ω = π s Die Parameter T i und T d des PID-Reglers werden nach Ziegler-Nichols folgendermassen gewählt. T i = 0.5 T = π 2 s T d = T = π 8 s T i = π 2 s = s T d = π 8 s = s F30 Um den Parameter k p des PID-Reglers nach Ziegler-Nichols zu bestimmen wird zusätzlich die kritische Verstärkung k p benötigt. Diese kann ebenfalls mit der Übertragungsfunktion der Regelstrecke P (s berechnet werden. k p P (jω = 1 Daraus wird nun k p berechnet. (Es wird ω aus der vorhergehenden Aufgabe benötigt. k p P (jω = k p k p = 64 1 jω = k p = k p 1 64 = 1 Der Parameter k p des PID-Reglers wird nach Ziegler-Nichols folgendermassen gewählt. k p = 0.6 k p = 38.4 k p = 38.4

14 Seite 14 Sessionsprüfung Regelungstechnik I F31 Die Regler mit I-Anteil führen zu einem verschwindenden Regelfehler (Sprungantworten A und C. Regler mit D-Anteil reagieren schneller auf einen Sprung in der Führungsgrösse r und überschwingen weniger (Sprungantworten C und D. Aus der Kombination dieser beiden Feststellungen wird klar, dass A die Sprungantwort eines PI-Reglers, B die Sprungantwort eines P-Reglers, C die Sprungantwort eines PID-Reglers und D die Sprungantwort eines PD-Reglers ist. Reglerstruktur Sprungantwort P B PI A PD D PID C

15 Sessionsprüfung Regelungstechnik I Seite 15 F32 Im Folgenden wird erläutert warum die Aussagen richtig oder falsch sind. Aussage 1 falsch Die Verwendung eines Lag Elementes führt zur Absenkung der Phase der Kreisverstärkung in einem beschränkten Frequenzband. Ausserhalb dieses Frequenzbandes hat das Lag Element keinen Einfluss auf die Phase. Die Phase kann somit durch ein Lag Element bei keiner Frequenz angehoben werden. Zur Anhebung der Phase in einem beschränkten Frequenzband könnte zum Beispiel ein Lead Element verwendet werden. Aussage 2 richtig Ein Lead Element führt zu einem Anstieg der Amplitude für alle Frequenzen um und oberhalb der Mittelfrequenz ˆω. Das schliesst auch hochfrequentes Messrauschen ein. Aussage 3 falsch Ein Lead (Lag Element führt zu einem Anstieg (Abfall der Amplitude für alle Frequenzen um und oberhalb von ˆω und zu einer Phasenerhöhung (Phasenabsenkung im Bereich von ˆω. Wenn ω c folglich nicht deutlich kleiner ist als ˆω wird die Durchtrittsfrequenz vom Lead/Lag Element verändert. Aussage 4 richtig Ein Anheben des Parameters ɛ führt zu einer Verbreiterung des Frequenzbandes. Ein Absenken Verschmälert dieses. Aussage richtig falsch Die Phase der Kreisverstärkung eines Regelkreises kann mit Hilfe eines Lag Elementes angehoben werden. Das Hinzufügen eines Lead Elementes verstärkt hochfrequentes Messrauschen. Das Hinzufügen eines Lead/Lag Elementes hat keinen Einfluss auf die Durchtrittsfrequenz der Kreisverstärkung. Durch Verändern des Parameter ɛ von Lead/Lag Elementen 2. Ordnung, kann die Breite des Frequenzbandes um die Mittelfrequenz ˆω angepasst werden.

16 Seite 16 Sessionsprüfung Regelungstechnik I Matlab/Simulink 0 F33 Die Sprungantwort von System 1 wird im Plot mit jener von System 2 überschrieben. Um dies zu verhindern, muss der Befehl hold verwendet werden. 13 hold on; oder hold; F34 Um eine Legende einzufügen, muss der Befehl legend(... verwendet werden. 15 legend( 'system 1', 'system 2'; F35 Um das System in der Zustandsraumdarstellung zu definieren muss der Befehl ss(... verwendet werden. 11 sys = ss(a,b,c,d; F36 Wird das Modell von Simulink aus gestartet muss in der Lücke I der Block a sein. Wird das Modell von Matlab aus gestartet kann der Eingang u auch mit dem Befehl sim(... ans Modell übergeben werden und in der Lücke I kann entweder der Block a oder der Block i verwendet werden. Da in der Aufgabenstellung nicht weiter darauf eingegangen wird wie das Modell gestartet wird, sind beide Antworten richtig. Lücke I II III IV Block a oder i e b d

Prüfungsbedingungen. Vorname:... Name:... Leginummer: Minuten + 15 Minuten Lesezeit am Anfang! 36 (unterschiedlich gewichtet, total 47 Punkte)

Prüfungsbedingungen. Vorname:... Name:... Leginummer: Minuten + 15 Minuten Lesezeit am Anfang! 36 (unterschiedlich gewichtet, total 47 Punkte) BSc - Sessionsprüfung 8.8.26 Regelungstechnik I (5-59-) Ochsner Prüfungsbedingungen Vorname:... Name:... Leginummer:... Dauer der Prüfung: Anzahl der Fragen: Bewertung: 2 Minuten + 5 Minuten Lesezeit am

Mehr

120 Minuten + 15 Minuten Lesezeit am Anfang! 42 (unterschiedlich gewichtet, total 58 Punkte)

120 Minuten + 15 Minuten Lesezeit am Anfang! 42 (unterschiedlich gewichtet, total 58 Punkte) BSc - Sessionsprüfung 22.8.25 Regelungstechnik I (5-59-) Guzzella, Nüesch, Ochsner Prüfungsbedingungen Dauer der Prüfung: Anzahl der Fragen: Bewertung: 2 Minuten + 5 Minuten Lesezeit am Anfang! 42 (unterschiedlich

Mehr

Musterlösung. 120 Minuten + 15 Minuten Lesezeit am Anfang! 47 (unterschiedlich gewichtet, total 57 Punkte)

Musterlösung. 120 Minuten + 15 Minuten Lesezeit am Anfang! 47 (unterschiedlich gewichtet, total 57 Punkte) BSc - Sessionsprüfung 27.01.2016 Regelungstechnik I (151-0591-00) Ochsner Musterlösung Dauer der Prüfung: Anzahl der Fragen: Bewertung: 120 Minuten + 15 Minuten Lesezeit am Anfang! 47 (unterschiedlich

Mehr

BSc PRÜFUNGSBLOCK 2 / D-MAVT VORDIPLOMPRÜFUNG / D-MAVT. Musterlösung

BSc PRÜFUNGSBLOCK 2 / D-MAVT VORDIPLOMPRÜFUNG / D-MAVT. Musterlösung Institut für Mess- und Regeltechnik BSc PRÜFUNGSBLOCK / D-MAVT.. 005. VORDIPLOMPRÜFUNG / D-MAVT REGELUNGSTECHNIK I Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: Zur Beachtung: Erlaubte

Mehr

Stellen Sie für das im folgenden Signalflussbild dargestellte dynamische System ein Zustandsraummodell K

Stellen Sie für das im folgenden Signalflussbild dargestellte dynamische System ein Zustandsraummodell K Aufgaben Aufgabe : Stellen Sie für das im folgenden Signalflussbild dargestellte dnamische Sstem ein Zustandsraummodell auf. u 2 7 5 Aufgabe 2: Wir betrachten das folgende Regelsstem vierter Ordnung: r

Mehr

Gegeben sei folgender Regelkreis mit der Führungsgröße r, dem Regelfehler e und der Ausgangsgröße y: r e R(s) P (s)

Gegeben sei folgender Regelkreis mit der Führungsgröße r, dem Regelfehler e und der Ausgangsgröße y: r e R(s) P (s) 1. Teilklausur SS 16 Gruppe A Name: Matr.-Nr.: Für beide Aufgaben gilt: Gegeben sei folgender Regelkreis mit der Führungsgröße r, dem Regelfehler e und der Ausgangsgröße y: r e R(s) P (s) y Aufgabe 1 (6

Mehr

120 Minuten + 15 Minuten Lesezeit am Anfang! 47 (unterschiedlich gewichtet, total 57 Punkte)

120 Minuten + 15 Minuten Lesezeit am Anfang! 47 (unterschiedlich gewichtet, total 57 Punkte) BSc - Sessionsprüfung 27..26 Regelungstechnik I (5-59-) Ochsner Prüfungsbedingungen Dauer der Prüfung: Anzahl der Fragen: Bewertung: 2 Minuten + 5 Minuten Lesezeit am Anfang! 47 (unterschiedlich gewichtet,

Mehr

Musterlösung. 120 Minuten + 15 Minuten Lesezeit am Anfang! 44 (unterschiedlich gewichtet, total 60 Punkte)

Musterlösung. 120 Minuten + 15 Minuten Lesezeit am Anfang! 44 (unterschiedlich gewichtet, total 60 Punkte) BSc - Sessionsprüfung 9..25 Regelungstechnik I (5-59-) Guzzella, Nüesch, Ochsner Musterlösung Dauer der Prüfung: Anzahl der Fragen: Bewertung: 2 Minuten + 5 Minuten Lesezeit am Anfang! 44 (unterschiedlich

Mehr

Musterlösung. 120 Minuten + 15 Minuten Lesezeit am Anfang! 35 (unterschiedlich gewichtet, total 49 Punkte)

Musterlösung. 120 Minuten + 15 Minuten Lesezeit am Anfang! 35 (unterschiedlich gewichtet, total 49 Punkte) BSc - Sessionsprüfung 12.08.2016 Regelungstechnik II (151-0590-00) Ochsner Musterlösung Dauer der Prüfung: Anzahl der Fragen: Bewertung: 120 Minuten + 15 Minuten Lesezeit am Anfang! 35 (unterschiedlich

Mehr

2. VORDIPLOMPRÜFUNG / D-MAVT Musterlösung. Um die Note 6 zu erlangen, genügen 6 vollständig und richtig gelöste Aufgaben.

2. VORDIPLOMPRÜFUNG / D-MAVT Musterlösung. Um die Note 6 zu erlangen, genügen 6 vollständig und richtig gelöste Aufgaben. Institut für Mess- und Regeltechnik. VORDIPLOMPRÜFUNG / D-MAVT 8.. 3 REGELUNGSTECHNIK I Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: Zur Beachtung: Erlaubte Hilfsmittel: Minuten 8 (gleich

Mehr

Prüfungsbedingungen. Vorname:... Name:... Leginummer: Minuten + 15 Minuten Lesezeit am Anfang! 35 (unterschiedlich gewichtet, total 49 Punkte)

Prüfungsbedingungen. Vorname:... Name:... Leginummer: Minuten + 15 Minuten Lesezeit am Anfang! 35 (unterschiedlich gewichtet, total 49 Punkte) BSc - Sessionsprüfung 12.8.216 Regelungstechnik II (151-59-) Ochsner Prüfungsbedingungen Vorname:... Name:... Leginummer:... Dauer der Prüfung: Anzahl der Fragen: Bewertung: 12 Minuten + 15 Minuten Lesezeit

Mehr

1 Gegenkopplung und Stabilität S107

1 Gegenkopplung und Stabilität S107 Regelungstechnik - Formelsammlung (Revision : 044 - powered by LATEX) Seite von 6 Gegenkopplung und Stabilität S07. LTI-Grundglieder Typ Symbol Gleichung, Dgl Sprungantwort Frequenzgang, Betrag und Argument

Mehr

Seite 1 NAME VORNAME MATRIKEL-NR. Achtung: Schreiben Sie Ihre Antworten für die Aufgaben 1 bis 2 direkt unter den Fragen in den Fragebogen.

Seite 1 NAME VORNAME MATRIKEL-NR. Achtung: Schreiben Sie Ihre Antworten für die Aufgaben 1 bis 2 direkt unter den Fragen in den Fragebogen. 144 Minuten Seite 1 NAME VORNAME MATRIKEL-NR. Achtung: Schreiben Sie Ihre Antworten für die Aufgaben 1 bis 2 direkt unter den Fragen in den Fragebogen. Aufgabe 1 (je 2 Punkte) a) Definieren Sie die Begriffe

Mehr

Gegeben sei folgender Regelkreis mit der Führungsgröße r, der Stellgröße u und der Ausgangsgröße. q r u y. R(s)

Gegeben sei folgender Regelkreis mit der Führungsgröße r, der Stellgröße u und der Ausgangsgröße. q r u y. R(s) 2. Teilklausur WS 17/18 Gruppe A Name: Matr.-Nr.: Aufgabe 1 (6 Punkte) Gegeben sei folgender Regelkreis mit der Führungsgröße r, der Stellgröße u und der Ausgangsgröße y: q r u y V (s) P (s) R(s) Auf den

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 8.7.211 Arbeitszeit: 12 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Schriftliche Prüfung aus Regelungstechnik am

Schriftliche Prüfung aus Regelungstechnik am TU Graz, Institut für Regelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Regelungstechnik am 25.09.2014 Name / Vorname(n): Matrikel-Nummer: Bonuspunkte aus den Matlab-Übungen: ja nein 1

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 8.5.5 Arbeitszeit: min Name: Vorname(n): Matrikelnummer: Note: Aufgabe 3 4

Mehr

x 1 + u y 2 = 2 0 x 2 + 4u 2.

x 1 + u y 2 = 2 0 x 2 + 4u 2. 3. Übung: Regelkreis Aufgabe 3.1. Gegeben sind die beiden linearen zeitkontinuierlichen Systeme 3 2 2 ẋ 1 = 6 5 x 1 + 1 u 1 6 2 3 [ ] y 1 = 2 x 1 (3.1a) (3.1b) und [ ] [ ] 8 15 1 ẋ 2 = x 2 + 6 1 4 [ ]

Mehr

Regelsysteme Übung: Reglerentwurf nach Spezifikation im Zeitbereich. Damian Frick. Herbstsemester Institut für Automatik ETH Zürich

Regelsysteme Übung: Reglerentwurf nach Spezifikation im Zeitbereich. Damian Frick. Herbstsemester Institut für Automatik ETH Zürich Regelsysteme 6. Übung: Reglerentwurf nach Spezifikation im Zeitbereich Damian Frick Institut für Automatik ETH Zürich Herbstsemester 205 Damian Frick Regelsysteme Herbstsemester 205 6. Übung: Reglerentwurf

Mehr

Schriftliche Prüfung aus Regelungstechnik am

Schriftliche Prüfung aus Regelungstechnik am U Graz, Institut für Regelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Regelungstechnik am 18. 10. 01 Name / Vorname(n): Matrikel-Nummer: Bonuspunkte aus den MALAB-Übungen: O ja O nein

Mehr

Musterlösung. 120 Minuten + 15 Minuten Lesezeit am Anfang! 42 (unterschiedlich gewichtet, total 58 Punkte)

Musterlösung. 120 Minuten + 15 Minuten Lesezeit am Anfang! 42 (unterschiedlich gewichtet, total 58 Punkte) BSc - Sessionsprüfung 22.8.25 Regelungstechnik I (5-59-) Guzzella, Nüesch, Ochsner Musterlösung Dauer der Prüfung: Anzahl der Fragen: Bewertung: 2 Minuten + 5 Minuten Lesezeit am Anfang! 42 (unterschiedlich

Mehr

Schriftliche Prüfung aus Control Systems 2 am

Schriftliche Prüfung aus Control Systems 2 am TU Graz, Institut für Regelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Control Sstems 2 am 23.01.2014 Name / Vorname(n): Kennzahl / Matrikel-Nummer: Bonuspunkte aus den MATLAB-Übungen:

Mehr

Regelungstechnik I (WS 12/13) Klausur ( )

Regelungstechnik I (WS 12/13) Klausur ( ) Regelungstechnik I (WS 12/13) Klausur (05.03.2013) Prof. Dr. Ing. habil. Thomas Meurer Lehrstuhl für Regelungstechnik Name: Matrikelnummer: Bitte beachten Sie: a) Diese Klausur enthält 4 Aufgaben auf den

Mehr

Bearbeitungszeit: 120 Min

Bearbeitungszeit: 120 Min 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Regelungs- und Systemtechnik 1 - Übungsklausur 6 Bearbeitungszeit: 120 Min Modalitäten Es sind keine Hilfsmittel zugelassen. Bitte schreiben

Mehr

Musterlösung. 8 (unterschiedlich gewichtet, total 69 Punkte)

Musterlösung. 8 (unterschiedlich gewichtet, total 69 Punkte) BSc - Sessionsprüfung 29.8.2 Regelungstechnik I (5-59-) Prof. L. Guzzella Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: 2 Minuten 8 (unterschiedlich gewichtet, total 69 Punkte) Um die

Mehr

Autonome Mobile Systeme

Autonome Mobile Systeme Autonome Mobile Systeme Teil II: Systemtheorie für Informatiker Dr. Mohamed Oubbati Institut für Neuroinformatik Universität Ulm SS 2007 Wiederholung vom letzten Mal! Die Übertragungsfunktion Die Übertragungsfunktion

Mehr

Aufgabe 1 (Unsicherheitsschranke für gemessene Übertragungsfunktion)

Aufgabe 1 (Unsicherheitsschranke für gemessene Übertragungsfunktion) Prof. L. Guzzella Prof. R. D Andrea 5-59- Regelungstechnik II (FS 28) Musterlösung Übung 5 Unsicherheitsschranken, Spezifikationen im Frequenzbereich, Matlab M.B. (michael.benz@imrt.mavt.ethz.ch), 4. April

Mehr

Regelungs- und Systemtechnik 1 - Übungsklausur 2

Regelungs- und Systemtechnik 1 - Übungsklausur 2 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Bearbeitungszeit: 12 Min Modalitäten Es sind keine Hilfsmittel zugelassen. Bitte schreiben Sie mit dokumentenechtem Schreibgerät (Tinte

Mehr

Vorlesung 13. Die Frequenzkennlinien / Frequenzgang

Vorlesung 13. Die Frequenzkennlinien / Frequenzgang Vorlesung 3 Die Frequenzkennlinien / Frequenzgang Frequenzkennlinien geben das Antwortverhalten eines linearen Systems auf eine harmonische (sinusförmige) Anregung in Verstärkung (Amplitude) und Phasenverschiebung

Mehr

Regelungs- und Systemtechnik 1 - Übungsklausur 16

Regelungs- und Systemtechnik 1 - Übungsklausur 16 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Bearbeitungszeit: Min Modalitäten Es sind keine Hilfsmittel zugelassen. Bitte schreiben Sie mit dokumentenechtem Schreibgerät (Tinte

Mehr

Schriftliche Prüfung aus Regelungstechnik am

Schriftliche Prüfung aus Regelungstechnik am U Graz, Institut für Regelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Regelungstechnik am 1.10. 011 Name / Vorname(n): Kennzahl / Matrikel-Nummer: Bonuspunkte aus den MALAB-Übungen: O

Mehr

Regelungs- und Systemtechnik 1 - Übung 6 Sommer 2016

Regelungs- und Systemtechnik 1 - Übung 6 Sommer 2016 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Regelungs- und Systemtechnik - Übung 6 Sommer 26 Vorbereitung Wiederholen Sie Vorlesungs- und Übungsinhalte zu folgenden Themen: Standardregelkreis

Mehr

G S. p = = 1 T. =5 K R,db K R

G S. p = = 1 T. =5 K R,db K R TFH Berlin Regelungstechnik Seite von 0 Aufgabe 2: Gegeben: G R p =5 p 32ms p 32 ms G S p = p 250 ms p 8 ms. Gesucht ist das Bodediagramm von G S, G R und des offenen Regelkreises. 2. Bestimmen Sie Durchtrittsfrequenz

Mehr

Regelungstechnik I (WS 13/14) Klausur ( )

Regelungstechnik I (WS 13/14) Klausur ( ) Regelungstechnik I (WS 13/14) Klausur (13.03.2014) Prof. Dr. Ing. habil. Thomas Meurer Lehrstuhl für Regelungstechnik Name: Matrikelnummer: Bitte beachten Sie: a) Diese Klausur enthält 4 Aufgaben auf den

Mehr

Musterlösung. 8 (unterschiedlich gewichtet, total 62 Punkte)

Musterlösung. 8 (unterschiedlich gewichtet, total 62 Punkte) BSc - Sessionsprüfung.8.2 Regelungstechnik II (5-59-) Prof. L. Guzzella Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: 2 Minuten Prüfungszeit + 5 Minuten Lesezeit 8 (unterschiedlich gewichtet,

Mehr

Übung 4 - Implementierung

Übung 4 - Implementierung Übung 4 - Implementierung 1 PID-Realisierung Das Folgeverhalten eines PID-Reglers durch die Einführung von setpoint weights (a, b und c) verbessert werden kann. 1. P: Sollwertgewichtung a, oft 0 < a

Mehr

Musterlösung. Aufgabe 1 (Regelungstechnik) 6 Punkte. Seite 2 Sessionsprüfung Regelungstechnik I ( )

Musterlösung. Aufgabe 1 (Regelungstechnik) 6 Punkte. Seite 2 Sessionsprüfung Regelungstechnik I ( ) Seite Sessionsprüfung Regelungstechnik I (151-591-) BSc - Sessionsprüfung 1.. 6 Regelungstechnik I (151-591-) () Musterlösung Prof. L. Guzzella Aufgabe 1 (Regelungstechnik) 6 Punkte a) Füllen Sie die Lücken

Mehr

Name: Vorname(n): Matrikelnummer: Aufgabe erreichbare Punkte erreichte Punkte Punkte aus Übungsmitarbeit Gesamtpunktanzahl

Name: Vorname(n): Matrikelnummer: Aufgabe erreichbare Punkte erreichte Punkte Punkte aus Übungsmitarbeit Gesamtpunktanzahl Universität des Saarlandes, Lehrstuhl für Systemtheorie und Regelungstechnik SCHRIFTLICHE PRÜFUNG aus SYSTEMTHEORIE UND REGELUNGSTECHNIK I am 28.7.26 Name: Vorname(n): Matrikelnummer: Note: Aufgabe 2 3

Mehr

Abt. Maschinenbau, Lehrstuhl Steuerung, Regelung und Systemdynamik

Abt. Maschinenbau, Lehrstuhl Steuerung, Regelung und Systemdynamik Regelungstechnik (Bachelor Wirtschaftsingenieurwesen) 120 Minuten Seite 1 NAME VORNAME MATRIKEL-NR. Aufgabe 1 (je 2 Punkte) a) Beschreiben Sie den Unterschied zwischen der Behandlung eines Signales im

Mehr

Musterlösung. 8 (unterschiedlich gewichtet, total 68 Punkte)

Musterlösung. 8 (unterschiedlich gewichtet, total 68 Punkte) BSc - Sessionsprüfung 26..2 Regelungstechnik I (5-59-) Prof. L. Guzzella Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: 2 Minuten 8 (unterschiedlich gewichtet, total 68 Punkte) Um die

Mehr

Regelungs- und Systemtechnik 1 - Übungsklausur 10

Regelungs- und Systemtechnik 1 - Übungsklausur 10 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Bearbeitungszeit: 2 Min Modalitäten Es sind keine Hilfsmittel zugelassen. Bitte schreiben Sie mit dokumentenechtem Schreibgerät (Tinte

Mehr

Aufgabe 1 (Klassifizierung von Systemen)

Aufgabe 1 (Klassifizierung von Systemen) Prof. L. Guzzella Prof. R. D Andrea 151-0591-00 Regelungstechnik I (HS 07) Musterlösung Übung 3 Systemklassifizierung, Systeme 1. Ordnung im Zeitbereich, Stabilitätsanalyse moritz.oetiker@imrt.mavt.ethz.ch,

Mehr

Hauptseminar SOI Regelalgorithmen für Totzeitsysteme

Hauptseminar SOI Regelalgorithmen für Totzeitsysteme Hauptseminar SOI 6. Juli 2006 Gliederung des Vortrags Motivation Grundlagen Totzeitsysteme und deren Schwierigkeiten Lösungsansätze für Totzeitsysteme Zusammenfassung Gliederung des Vortrags Motivation

Mehr

Regelungs- und Systemtechnik 1 - Übungsklausur 7

Regelungs- und Systemtechnik 1 - Übungsklausur 7 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Bearbeitungszeit: 12 Minuten Modalitäten Es sind keine Hilfsmittel zugelassen. Bitte schreiben Sie mit dokumentenechtem Schreibgerät

Mehr

Musterlösung. 9 (unterschiedlich gewichtet, total 60 Punkte)

Musterlösung. 9 (unterschiedlich gewichtet, total 60 Punkte) Prof. L. Guzzella Prof. R. D Andrea BSc - Sessionsprüfung 5.8.8 Regelungstechnik I (151-591-) Prof. L. Guzzella Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: 1 Minuten 9 (unterschiedlich

Mehr

NANO III - MSR. Steuern Regeln Regelkreis PID-Regler Dimensionierung eines PID Reglers. Themen: Nano III MSR Physics Basel, Michael Steinacher 1

NANO III - MSR. Steuern Regeln Regelkreis PID-Regler Dimensionierung eines PID Reglers. Themen: Nano III MSR Physics Basel, Michael Steinacher 1 NANO III - MSR Themen: Steuern Regeln Regelkreis PID-Regler Dimensionierung eines PID Reglers Nano III MSR Physics Basel, Michael Steinacher 1 Ziele 1. Unterschied Steuern Regeln 2. Was ist ein Regelkreis

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am 12.12.2008 Name: Vorname(n): Matrikelnummer: Note: Aufgabe 1 2 3 4

Mehr

Regelungs- und Systemtechnik 1 - Übung 6 Sommer 2016

Regelungs- und Systemtechnik 1 - Übung 6 Sommer 2016 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Regelungs- und Systemtechnik - Übung 6 Sommer 26 Vorbereitung Wiederholen Sie Vorlesungs- und Übungsinhalte zu folgenden Themen: Zeitkonstantenform

Mehr

a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes.

a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes. 144 Minuten Seite 1 NAME VORNAME MATRIKEL-NR. Aufgabe 1 (je 2 Punkte) a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes. b) Was ist ein Mehrgrößensystem?

Mehr

x 1 + u y 2 = 2 0 x 2 + 4u 2.

x 1 + u y 2 = 2 0 x 2 + 4u 2. 3. Übung: gelkreis Aufgabe 3.. Gegeben sind die beiden linearen zeitkontinuierlichen Systeme 3 ẋ = 6 x + u 6 3 [ ] y = x (3.a) (3.b) und [ ] [ ] 8 ẋ = x + 6 4 [ ] y = x + 4u. u (3.a) (3.b) Berechnen Sie

Mehr

Klausur im Fach: Regelungs- und Systemtechnik 1

Klausur im Fach: Regelungs- und Systemtechnik 1 (in Druckschrift ausfüllen!) Univ.-Prof. Dr.-Ing. habil. Ch. Ament Name: Vorname: Matr.-Nr.: Sem.-Gr.: Anzahl der abgegebenen Blätter: 3 Klausur im Fach: Prüfungstermin: 26.03.2013 Prüfungszeit: 11:30

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 27.9.213 Arbeitszeit: 12 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Regelungstechnik II PVK - Lösungen. Nicolas Lanzetti

Regelungstechnik II PVK - Lösungen. Nicolas Lanzetti Regelungstechnik II PVK - Lösungen Nicolas Lanzetti lnicolas@student.ethz.ch Nicolas Lanzetti Regelungstechnik II FS 6 Inhaltsverzeichnis Wiederholung Regelungstechnik I 3 SISO Reglersynthese 3 3 Realisierung

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 31.03.017 Arbeitszeit: 150 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Musterlösung. 120 Minuten + 15 Minuten Lesezeit am Anfang! 8 (unterschiedlich gewichtet, total 67 Punkte)

Musterlösung. 120 Minuten + 15 Minuten Lesezeit am Anfang! 8 (unterschiedlich gewichtet, total 67 Punkte) BSc - Sessionsprüfung 2..23 Regelungstechnik I (5-59-) Prof. L. Guzzella Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: 2 Minuten + 5 Minuten Lesezeit am Anfang! 8 (unterschiedlich gewichtet,

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 8.6.13 Arbeitszeit: 1 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

A. Modellierung: Standardstrecken anhand der Gleichstrommaschine

A. Modellierung: Standardstrecken anhand der Gleichstrommaschine Bewegungssteuerung durch geregelte elektrische Antriebe Übung 1 (WS17/18) Alle Abbildungen und Übungsunterlagen (Einführungsfolien, Übungsblätter, Musterlösungen, MATLAB-Übungen/Lösungen und Formelsammlung)

Mehr

Prüfung im Modul Grundlagen der Regelungstechnik Studiengänge Medizintechnik / Elektrotechnik

Prüfung im Modul Grundlagen der Regelungstechnik Studiengänge Medizintechnik / Elektrotechnik Brandenburgische Technische Universität Cottbus-Senftenberg Fakultät 1 Professur Systemtheorie Prof. Dr.-Ing. D. Döring Prüfung im Modul Grundlagen der Regelungstechnik Studiengänge Medizintechnik / Elektrotechnik

Mehr

Grundlagen der Regelungstechnik

Grundlagen der Regelungstechnik Grundlagen der Regelungstechnik Dr.-Ing. Georg von Wichert Siemens AG, Corporate Technology, München Termine Dies ist der letzte Termin in diesem Jahr 17.12.2004 fällt aus Nächste Termine: 14.1., 28.1.,

Mehr

b) Stellen Sie die Funktion u(t) = 1(t 1) + 2(t 2) 3(t 3) grafisch dar.

b) Stellen Sie die Funktion u(t) = 1(t 1) + 2(t 2) 3(t 3) grafisch dar. 120 Minuten Seite 1 NAME VORNAME MATRIKEL-NR. Aufgabe 1 (je 2 Punkte) a) Definieren Sie die Begriffe Stellgröße und Führungsgröße. b) Stellen Sie die Funktion u(t) = 1(t 1) + 2(t 2) 3(t 3) grafisch dar.

Mehr

Schriftliche Prüfung aus Regelungssysteme am

Schriftliche Prüfung aus Regelungssysteme am TU Graz, Institut für Regelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Regelungssysteme am 12.10.2018 Name / Vorname(n): Matrikel-Nummer: Aufgabe A1 A2 A3 A4 A5 A6 A7 A8 Summe erreichbare

Mehr

ka (s + c 0 )(s + c 1 )s 1 c 0 (c 0 c 1 ) e c 0t + lim = k R k max = π 4T t b2) und aus der Hauptlösung der Phasenbedingung die Reglerverstärkung

ka (s + c 0 )(s + c 1 )s 1 c 0 (c 0 c 1 ) e c 0t + lim = k R k max = π 4T t b2) und aus der Hauptlösung der Phasenbedingung die Reglerverstärkung Aufgabe 1: Systemanalyse a) Sprungantwort des Übertragungssystems: X(s) = ka (s + c 0 )(s + c 1 )s a1) Zeitlicher Verlauf der Sprungantwort: [ 1 x(t) = ka + c 0 c 1 a2) Man erhält dazu den Endwert: 1 c

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 9.05.07 Arbeitszeit: 50 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

MAS Automation Management

MAS Automation Management MAS Automation Management Modul: A-NLE Winterthur, 27.1./ 3.2.217 Ruprecht Altenburger, altb@zhaw.ch Lineare Regelung an einem einfachen Beispiel erstellt für das Frühlingssemester 215; Version vom 12.

Mehr

0 1 = A = f. cos(x 1,R ) 2r3 R βx 2,R 2r 2 R βu R c 1. b = f. c T = h. d = h. = 0 0 Pkt. Lineariserung des Ersatzsystems: 1.5 Pkt.

0 1 = A = f. cos(x 1,R ) 2r3 R βx 2,R 2r 2 R βu R c 1. b = f. c T = h. d = h. = 0 0 Pkt. Lineariserung des Ersatzsystems: 1.5 Pkt. 1 Lösung Aufgabe 1). a) Es existieren zwei mögliche Zustandssätze x = [ ϕt) ϕt) ] T oder x = [ st) ṡt) ] T. Stellgröße u = v W t) und Ausgangsgröße y = st) b) Aus dem Drehimpulserhaltungssatz bzw. der

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 4.3.11 Arbeitszeit: 1 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Klausur: Regelungs- und Systemtechnik 2

Klausur: Regelungs- und Systemtechnik 2 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Klausur: Regelungs- und Systemtechnik 2 Humboldt-Hörsaal Dienstag, den 07. 02. 2012 Beginn: 10.30 Uhr Bearbeitungszeit: 120 Minuten Modalitäten

Mehr

Bearbeitungszeit: 120 Min

Bearbeitungszeit: 120 Min 4 6 Fachgebiet gelungstechnik Leiter: Prof. Dr.-Ing. Johann ger gelungs- und Systemtechnik - Übungsklausur 9 Bearbeitungszeit: Min Modalitäten Es sind keine Hilfsmittel zugelassen. Bitte schreiben Sie

Mehr

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Regelungstechnik B. Prof. Dr. techn. F. Gausch Dipl.-Ing. C.

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Regelungstechnik B. Prof. Dr. techn. F. Gausch Dipl.-Ing. C. Institut für Elektrotechnik und Informationstechnik Aufgabensammlung zur Regelungstechnik B Prof. Dr. techn. F. Gausch Dipl.-Ing. C. Balewski 10.03.2011 Übungsaufgaben zur Regelungstechnik B Aufgabe 0

Mehr

Regelungs- und Systemtechnik 1 - Übungsklausur 1

Regelungs- und Systemtechnik 1 - Übungsklausur 1 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Bearbeitungszeit: 1 Min Modalitäten Es sind keine Hilfsmittel zugelassen. Bitte schreiben Sie mit dokumentenechtem Schreibgerät (Tinte

Mehr

mit unbekannter Systemmatrix A. Die Transitionsmatrix zu obigem System lautet e t. 2 e t u(s) =

mit unbekannter Systemmatrix A. Die Transitionsmatrix zu obigem System lautet e t. 2 e t u(s) = 1. Teilklausur SS 18 Betrachten Sie folgendes mathematische Modell mit der Eingangsgröße u, der Ausgangsgröße und dem Zustandsvektor x [ ] dx 1 = Ax + bu = Ax + u = c T x + du = [ 1 0 ] x dt 0 mit unbekannter

Mehr

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsjahr: 206 Allgemeine Informationen: Der deutschsprachige Eingangstest

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 3.7.8 Arbeitszeit: 5 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe 3

Mehr

Regelungstechnik I. Nicolas Lanzetti

Regelungstechnik I. Nicolas Lanzetti Regelungstechnik I Nicolas Lanzetti lnicolas@student.ethz.ch Vorwort Dieses Skript wurde unter Verwendung des Buches Analysis and Sythesis of Single-Input-Single- Output Control System von Prof. Lino Guzzella

Mehr

Schriftliche Prüfung aus Regelungstechnik 1 am

Schriftliche Prüfung aus Regelungstechnik 1 am TU Graz, Institut für Regelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Regelungstechnik 1 am 24.01.2017 Name / Vorname(n): Matrikel-Nummer: Aufgabe A1 A2 A3 A4 A5 A6 A7 A8 Summe erreichbare

Mehr

Die Sprungantwort ist die Reaktion auf den Einheitssprung: G 2 (s) = 2 (s +1)(s +6) 3 (s +7)(s +2)

Die Sprungantwort ist die Reaktion auf den Einheitssprung: G 2 (s) = 2 (s +1)(s +6) 3 (s +7)(s +2) Aufgabe 1: Die Laplace-Transformierte der Sprungantwort ist: Y (s) = 1 s + (s +3) 3 (s +4) Die Sprungantwort ist die Reaktion auf den Einheitssprung: w(t) =σ(t) W (s) = 1 s Die Übertragungsfunktion des

Mehr

SSYLB2 SS06 Daniel Schrenk, Andreas Unterweger Übung 8. Laborprotokoll SSY. Diskrete Systeme II: Stabilitätsbetrachtungen und Systemantwort

SSYLB2 SS06 Daniel Schrenk, Andreas Unterweger Übung 8. Laborprotokoll SSY. Diskrete Systeme II: Stabilitätsbetrachtungen und Systemantwort SSYLB SS6 Daniel Schrenk, Andreas Unterweger Übung 8 Laborprotokoll SSY Diskrete Systeme II: Stabilitätsbetrachtungen und Systemantwort Daniel Schrenk, Andreas Unterweger, ITS 4 SSYLB SS6 Daniel Schrenk,

Mehr

Ergänzung zur Regelungstechnik

Ergänzung zur Regelungstechnik Ergänzung zur Regelungstechnik mathematische Erfassung Weil die einzelnen Regelkreisglieder beim Signaldurchlauf ein Zeitverhalten haben, muss der Regler den Wert der Regelabweichung verstärken und gleichzeitig

Mehr

1. Laborpraktikum. Abbildung 1: Gleichstrommotor Quanser QET

1. Laborpraktikum. Abbildung 1: Gleichstrommotor Quanser QET Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Stephanie Geist Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte Lehrveranstaltung Grundlagen der Regelungstechnik

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 08.07.016 Arbeitszeit: 10 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Aufgabe 1: Laplace-Transformation

Aufgabe 1: Laplace-Transformation Aufgabe 1: Laplace-Transformation (25 Punkte) a) Teilaufgabe: 15 Punkte Gegeben sei die folgende Differenzialgleichung dritter Ordnung: mit den Anfangswerten: y (3) (t) + 4 ÿ(t) + ẏ(t) 6 y(t) = 12 u(t)

Mehr

Labor RT Versuch RT1-1. Versuchsvorbereitung. Prof. Dr.-Ing. Gernot Freitag. FB: EuI, FH Darmstadt. Darmstadt, den

Labor RT Versuch RT1-1. Versuchsvorbereitung. Prof. Dr.-Ing. Gernot Freitag. FB: EuI, FH Darmstadt. Darmstadt, den Labor RT Versuch RT- Versuchsvorbereitung FB: EuI, Darmstadt, den 4.4.5 Elektrotechnik und Informationstechnik Rev., 4.4.5 Zu 4.Versuchvorbereitung 4. a.) Zeichnen des Bode-Diagramms und der Ortskurve

Mehr

Musterlösung. 120 Minuten + 15 Minuten Lesezeit am Anfang! 8 (unterschiedlich gewichtet, total 67 Punkte)

Musterlösung. 120 Minuten + 15 Minuten Lesezeit am Anfang! 8 (unterschiedlich gewichtet, total 67 Punkte) BSc - Sessionsprüfung 7.8.23 Regelungstechnik I (5-59-) Prof. L. Guzzella Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: 2 Minuten + 5 Minuten Lesezeit am Anfang! 8 (unterschiedlich gewichtet,

Mehr

Entwurf eines modellbasierten Regelungssystems für einen totzeitbehafteten Prozess

Entwurf eines modellbasierten Regelungssystems für einen totzeitbehafteten Prozess Fakultät Informatik Institut für angewandte Informatik- Professur Technische Informationssysteme Verteidigung des Großen Beleges Entwurf eines modellbasierten Regelungssystems für einen totzeitbehafteten

Mehr

Musterlösung. 8 (unterschiedlich gewichtet, total 59 Punkte)

Musterlösung. 8 (unterschiedlich gewichtet, total 59 Punkte) BSc - Sessionsprüfung 0..009 Regelungstechnik II 5-0590-00 Prof. Dr. L. Guzzella Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: 0 Minuten 8 unterschiedlich gewichtet, total 59 Punkte Um

Mehr

3. Beschreibung dynamischer Systeme im Frequenzbereich

3. Beschreibung dynamischer Systeme im Frequenzbereich 3. Laplace-Transformation 3. Frequenzgang 3.3 Übertragungsfunktion Quelle: K.-D. Tieste, O.Romberg: Keine Panik vor Regelungstechnik!.Auflage, Vieweg&Teubner, Campus Friedrichshafen --- Regelungstechnik

Mehr

UNIVERSITÄT DUISBURG - ESSEN Fakultät für Ingenieurwissenschaften, Abt. Maschinenbau, Professur für Steuerung, Regelung und Systemdynamik

UNIVERSITÄT DUISBURG - ESSEN Fakultät für Ingenieurwissenschaften, Abt. Maschinenbau, Professur für Steuerung, Regelung und Systemdynamik Regelungstechnik I (PO95), Regelungstechnik (PO02 Schiffstechnik), Regelungstechnik (Bachelor Wi.-Ing.) (180 Minuten) Seite 1 NAME VORNAME MATRIKEL-NR. Aufgabe 1 (je 2 Punkte) a) Erläutern Sie anhand eines

Mehr

Musterlösung. 120 Minuten + 15 Minuten Lesezeit am Anfang! 8 (unterschiedlich gewichtet, total 69 Punkte)

Musterlösung. 120 Minuten + 15 Minuten Lesezeit am Anfang! 8 (unterschiedlich gewichtet, total 69 Punkte) BSc - Sessionsprüfung 2.8.22 Regelungstechnik I 5-59-) Prof. L. Guzzella Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: 2 Minuten + 5 Minuten Lesezeit am Anfang! 8 unterschiedlich gewichtet,

Mehr

Formelsammlung zum Skriptum

Formelsammlung zum Skriptum Systemtheorie und Regelungstechnik I - WS08/09 Formelsammlung zum Skriptum Kapitel 2 Satz 23 (Lokale Existenz und Eindeutigkeit) Es sei f (x, t) stückweise stetig in t und genüge der Abschätzung (Lipschitz-Bedingung)

Mehr

Optimierung von Regelkreisen. mit P-, PI und PID Reglern

Optimierung von Regelkreisen. mit P-, PI und PID Reglern mit P-, PI und PID Reglern Sollwert + - Regler System Istwert Infos: Skript Regelungstechnisches Praktikum (Versuch 2) + Literatur Seite 1 Ziegler und Nichols Strecke: Annäherung durch Totzeit- und PT1-Glied

Mehr

Musterlösung. 8 (unterschiedlich gewichtet, total 68 Punkte)

Musterlösung. 8 (unterschiedlich gewichtet, total 68 Punkte) Prof. Dr. H. P. Geering Prof. Dr. L. Guzzella BSc - Sessionsprüfung 7..8 egelungstechnik II 5-59- Prof. Dr. L. Guzzella Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: Minuten 8 unterschiedlich

Mehr

Lösungen zur 7. Übung

Lösungen zur 7. Übung Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Vladislav Nenchev M.Sc. Arne Passon Dipl.-Ing. Thomas Seel Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 26.06.2015 Arbeitszeit: 120 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

1 Reglerentwurf nach dem Betragsoptimum

1 Reglerentwurf nach dem Betragsoptimum Reglerentwurf nach dem Betragsoptimum Für einfache d.h. einschleifige, lineare Regelungen mit ausgesprägtem Tiefpassverhalten ist der Entwurf nach dem Betragsoptimum relativ leicht anwendbar. w G K (s)

Mehr

Regelungstechnik : Vorlesung 10

Regelungstechnik : Vorlesung 10 Regelungstechnik : Vorlesung 10 Umgang mit Beschränkungen der Aktoren Alle Aktoren haben gewisse Beschränkungen. Sie sind beispielsweise in ihrer Amplitude oder Dynamik beschränkt. Das Missachten von Stellgrößenbegrenzung

Mehr

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsjahr: 205 (Sommersemester) Allgemeine Informationen: Der deutschsprachige

Mehr

Name: Vorname(n): Kenn und Matrikelnummer: Aufgabe erreichbare Punkte erreichte Punkte

Name: Vorname(n): Kenn und Matrikelnummer: Aufgabe erreichbare Punkte erreichte Punkte Johannes Kepler Universität Linz, Institut für Regelungstechnik und elektrische Antriebe Schriftliche Prüfung aus Automatisierungstechnik, Vorlesung am 06. Mai 2005 Name: Vorname(n): Kenn und Matrikelnummer:

Mehr

(s + 3) 1.5. w(t) = σ(t) W (s) = 1 s. G 1 (s)g 2 (s) 1 + G 1 (s)g 2 (s)g 3 (s)g 4 (s) = Y (s) Y (s) W (s)g 1 (s) Y (s)g 1 (s)g 3 (s)g 4 (s)

(s + 3) 1.5. w(t) = σ(t) W (s) = 1 s. G 1 (s)g 2 (s) 1 + G 1 (s)g 2 (s)g 3 (s)g 4 (s) = Y (s) Y (s) W (s)g 1 (s) Y (s)g 1 (s)g 3 (s)g 4 (s) Aufgabe : LAPLACE-Transformation Die Laplace-Transformierte der Sprungantwort ist: Y (s) = 0.5 s + (s + 3).5 (s + 4) Die Sprungantwort ist die Reaktion auf den Einheitssprung: w(t) = σ(t) W (s) = s Die

Mehr