Bestimmen der Wahrscheinlichkeiten mithilfe von Zählstrategien

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Bestimmen der Wahrscheinlichkeiten mithilfe von Zählstrategien"

Transkript

1 R. Brinmann Seite Bestimmen der Wahrscheinlicheiten mithilfe von Zählstrategien Die bisherigen Aufgaben zur Wahrscheinlicheitsrechnung onnten im Wesentlichen mit übersichtlichen Ergebnisbäumen bearbeitet werden. Doch diese Methode hat ihre Grenzen. Das zeigt schon allein das Beispiel des mehrmaligen Wurfes eines Würfels. Geordnete Stichprobe mit Zurüclegen. Beispiel: Ein Würfel wird mal geworfen. Nach dem Urnenmodell bedeutet das, dass aus einer Urne, die Kugeln mit den Nummern bis enthält, mal mit Zurüclegen eine Kugel gezogen wird. A: Mit jedem Wurf, bzw. Zug erhält man eine 4. a) Wie groß ist die Wahrscheinlicheit bei jedem der Würfe bzw. Züge eine 4 zu erhalten? b) Wie viele Elemente enthält die Ergebnismenge (Anzahl aller Möglicheiten)? / Stufe Äste / Stufe 2 = Äste = 2 / / Stufe 3 3 = Äste 2 3 / 4 P( A ) =... mal 5 Stufe... = Äste mal Erstellt von R. Brinmann p9_w_rechnung_09.doc :27 Seite von 2

2 R. Brinmann Seite a) Da es sich bei dem Versuch um ein Laplace Experiment handelt, wo für alle Ergebnisse die gleiche Wahrscheinlicheit angenommen werden ann, gilt für die Wahrscheinlicheit nach jeder Stufe eine 4 zu erhalten: P( A ) =... = = mal b) Da die Anzahl der Äste im Baumdiagramm sich mit jeder Stufe versechsfachen, gilt für die te Stufe:... = Äste, das ist genau die Anzahl aller Möglicheiten. mal Die Anzahl der Möglicheiten lässt sich auch über die Wahrscheinlicheit der Einzelergebnisse finden. Für jedes Einzelergebnis gilt: P( e i ) = Da aber die Summe der Wahrscheinlicheiten aller Einzelergebnisse sein muss, lässt sich daraus auch die Anzahl aller Möglicheiten berechnen: x = x = Verallgemeinert man diese Gesetzmäßigeit derart, dass man sagt: In einer Urne befinden sich n gleichartige Kugeln mit den Nummern, 2,..., n, wobei mal mit zurüclegen gezogen wird, dann ist die Anzahl der Möglicheiten n. Mere: Aus n verschiedenen Elementen einer Menge erhält mandurch - faches Ziehen * n n... n= n n, N geordnete Stichproben mit Zurüclegen. mal ( ) Beispiel: Bei der Fußballwette (Toto) muss man für Spiele an einem Wochenende vorhersagen, ob die Heimmannschaft gewinnt (Tipp: ) oder die Gastmannschaft (Tipp: 2) oder ob beide Mannschaften unentschieden spielen (Tipp: 0). a) Wie viele Möglicheiten gibt es, einen Toto Tippzettel auszufüllen? b) Wie groß ist die Wahrscheinlicheit für einen Tipp mit richtigen? Lösung: a) Modellierung mit dem Urnenmodell: Eine Urne enthält drei Kugeln mit den Nummern 0; und 2. Es wird mal gezogen mit Zurüclegen. n = 3 Ergebnismenge für einen Zug: E = { 0;;2} = Das Zufallsexperiment ist - stufig. Anzahl der möglichen Ergebnisse: x = n = 3 = 7747 b) Da es nur einen möglichen Tipp mit richtigen gibt, ist die Wahrscheinlicheit hierfür: 7747 Erstellt von R. Brinmann p9_w_rechnung_09.doc :27 Seite 2 von 2

3 R. Brinmann Seite Übung: Ein Fahrradschloss (Zahlenschloss) besteht aus vier unabhängig voneinander beweglichen Rädern, die jeweils Ziffern ( von bis ) enthalten. Das Schloss öffnet sich nur bei einer ganz bestimmten Zahlenombination. Wie viele Stellungen (Zahlenombinationen) hat das Fahrradschloss und wie groß ist die Wahrscheinlicheit, bei der ersten Einstellung das Schloss zu öffnen? Lösung: Modellierung mit dem Urnenmodell: Eine Urne enthält n = Kugeln mit den Nummern bis. Es wird = 4 mal gezogen mit Zurüclegen. 4 Die Anzahl der Zahlenonbinationen beträgt: n = = 29 Die Wahrscheinlicheit mit einem Versuch die richtige Kombination zu finden ist 0, Übung: Aus den 2 Buchstaben des Alphabets werden nacheinander blind drei Buchstaben mit Zurüclegen entnommen. Wie groß ist die Wahrscheinlicheit dreimal denselben Buchstaben zu ziehen? Lösung: Modellierung mit dem Urnenmodell: Eine Urne enthält n = 2 Kugeln mit den Buchstaben A bis Z. Es wird = 3 mal gezogen mit Zurüclegen. 3 Die Anzahl der Buchstabenonbinationen beträgt: n = 2 = 757 Die Wahrscheinlicheit bei drei Ziehungen z. B. 3 mal den Buchstaben A zu ziehen ist mal B, bzw. C oder irgend einen anderen Buchstaben zu ziehen hat jeweils die gleiche Wahrscheinlicheit. Es gibt mit den 2 Buchstaben des Alpabets insgesamt 2 günstige Fälle. Damit ist die Wahrscheinlicheit, drei gleiche Buchstaben zu ziehen: ,0048 Geordnete Stichprobe ohne Zurüclegen. Beispiel: In einer Urne liegen 4 Kugeln mit den Farben rot, gelb, grün und blau. Man zieht eine Kugel, registriert die Nummer, legt die Kugel zur Seite und wiederholt den Vorgang. Insgesamt sind 4 Züge möglich, dann ist die Urne leer. Wie viele Elemente enthält die Ergebnismenge (Anzahl aller Möglicheiten)? Erstellt von R. Brinmann p9_w_rechnung_09.doc :27 Seite 3 von 2

4 R. Brinmann Seite Stufe 4 Äste Stufe 2 ( ) 4 4 Äste Stufe Äste ( ) ( ) Stufe Äste ( ) ( ) ( ) Wie aus dem Baumdiagramm leicht abzulesen ist, verringert sich von Stufe zu Stufe die Anzahl der Äste um. Die Anzahl der Möglicheiten ist 4 ( 4 ) ( 4 2) ( 4 3) = = 24 Die aus dem Baumdiagramm abzulesende Gesetzmäßigeit lässt sich verallgemeinern. Betrachtet man nun eine Urne mit n Kugeln nummeriert von bis n und führt Züge ohne zurüclegen durch, so gilt für die Anzahl der Möglicheiten: n n n 2 n 3... n + ( ) ( ) ( ) ( ) Ein Produt, bei dem jeder Folgefator um erniedrigt wird, nennt man Faultät nennt man 4 - Faultät und schreibt 4! Für die Zahl n gilt somit n! = n n n 2 n n! lies n - Faultät ( n )! = ( n ) ( n ) ( n 2 ) oder in Kurzform ( n )! = ( n ) Der Ausdruc n ( n ) ( n 2) ( n 3 )... ( n + ) lässt sich wir folgt umformen: n ( n ) ( n 2) ( n 3 )... ( n + ) ( n ) n! = n n! ( ) ( ) ( ) ( ) ( ) ( ) Erstellt von R. Brinmann p9_w_rechnung_09.doc :27 Seite 4 von 2

5 R. Brinmann Seite Mere: Aus n verschiedenen Elementen einer Menge erhält mandurch - faches Ziehen ( n ) ( n 2) ( n 3 )... ( n ) + = geordnete Stichproben ohne Zurüclegen. Festlegung: 0! = und! = n! ( n )! Beispiel: Ein Computerprogramm ist durch ein Passwort geschützt. Dieses Passwort besteht aus 4 unterschiedlichen Buchstaben. a) Wie viele Passwörter sind möglich? b) Mit welcher Wahrscheinlicheit ann der Code mit einem Versuch genact werden? Lösung: a) Es stehen alle 2 Buchstaben des Alphabets genau einmal zur Verfügung. Für den ersten Buchstaben des Wortes ommen alle 2 Buchstaben des Alphabets, für den zweiten nur noch 25 Buchstaben in Frage usw. Es handelt sich um eine geordnete Stichprobe ohne Zurüclegen. Aus n = 2 Buchstaben werden = 4 Buchstaben gezogen. n! 2! Anzahl der Möglicheiten: = = = ( n )! 22! b) Da es nur einen richtigen Code gibt, wird die Erfolgswahrscheinlicheit unmittelbar berechnet: P( A) = 0, Übung: In einer Lostrommel befinden sich Lose mit den Nummern bis. Ein Spieler zieht nacheinander drei Lose. Zieht er in der Reihenfolge die Nummern 2, 4 und, so hat er gewonnen. Berechnen Sie die Wahrscheinlicheit für einen Gewinn. Lösung: Zuerst wird die Anzahl der Möglicheiten berechnet, von diesen gibt es nur eine, die zum Gewinn führt, nämlich die Zahlenfolge 2, 4,. Es handelt sich um eine geordnete Stichprobe ohne Zurüclegen. Aus n = Zahlen werden = 3 Zahlen gezogen. n!! Anzahl der Möglicheiten: = = = 5 4 = 20 ( n )! 3! 3 2 P( A) = 0, Erstellt von R. Brinmann p9_w_rechnung_09.doc :27 Seite 5 von 2

6 R. Brinmann Seite Ungeordnete Stichprobe ohne Zurüclegen. Beispiel: Bei der Ziehung der Lottozahlen werden Zahlen aus insgesamt 49 Zahlen gezogen. Dabei handelt es sich um ein Ziehen ohne zurüclegen. n! 49! Die Anzahl der Möglicheiten als geordnete Stichprobe ist: = ( n )! 43! Da es bei der Ziehung nicht auf die Reihenfolge der gezogenen Zahlen anommt, verringert sich die Anzahl der Möglicheiten um den Teil, wie oft sich die gezogenen Zahlen anordnen lassen. Werden z. B. die Zahlen 3, 2, 7, 22, 3 und 4 gezogen, so ann man sie auch in der Form 7, 22, 4, 3, 3 und 2 anordnen. Das hat für den Gewinn eine Bedeutung. Um die Anzahl der Möglicheiten beim Lotto herauszufinden, müssen wir Anzahl der möglichen Vertauschungen der Zahlen herausfinden. Oder anders ausgedrüct, wir müssen herausfinden, auf wie viele verschiedene Arten sich diese Zahlen anordnen lassen. Die Lösung lässt sich leicht durch ein Urnenexperiment finden. In einer Urne befinden sich n = Kugeln mit den Nummern von bis. Zieht man nun der Reihe nach (Ziehen ohne Zurüclegen) = mal, bis die Urne leer ist, dann hat man alle Möglicheiten gefunden, die Zahlen anzuordnen. n!!!!! ( n )! = ( )! = 0! = = Wird aus einer Urne mit n Elementen solange gezogen (Ziehen ohne Zurüclegen), bis die Urne leer ist, dann ist, dann spricht man von einer geordneten Vollerhebung. In diesem Fall ist n =. Mere: Für n verschiedene Elemente gibt es n! Vollerhebungen. Mit anderen Worten: Eine Menge aus n unterschiedlichen Elementen lässt sich auf n! verschiedene Arten anordnen. Kommen wir zurüc zu unserem Lotto Beispiel. Bisher haben wir ermittelt wie viele Möglicheiten es gibt, aus 49 Zahlen Zahlen zu ziehen. Da es bei der Auswertung nicht auf die Reihenfolge der gezogenen Zahlen anommt, muss die Anzahl der Möglicheiten durch! geteilt werden. Damit wird die Anzahl der Möglicheiten im Lotto richtige zu haben: n! 49! = = = ! n!! 43! ( ) Mere: Wählt man aus einer Menge mit n verschiedenen Elementen Elemente aus, dann ist die Anzahl der ungeordneten Stichproben ohne Zurüclegen n n! =! ( n )! n Der Ausdruc ( lies n über ) heißt Binomialoeffizient. Erstellt von R. Brinmann p9_w_rechnung_09.doc :27 Seite von 2

7 R. Brinmann Seite Beispiel: Aus einem Kartenspiel mit 32 Karten werden 4 Karten gezogen. Wie groß ist die Wahrscheinlicheit dafür, dass dies 4 Buben sind? Lösung: Ungeordnete Stichprobe ohne Zurüclegen. n = 32; = 4 Anzahl der Möglicheiten: n n! 32! = = = = 3590! ( n )! 4! 28! P( A) = 0, Übung: Aus einem Kartenspiel mit 32 Karten werden 8 Karten gezogen. Wie groß ist die Wahrscheinlicheit dafür, dass dies 8 Karo Karten sind? Lösung: Aus einem Kartenspiel mit 32 Karten werden 8 Karten gezogen.<br> Wie groß ist die Wahrscheinlicheit dafür, dass dies 8 Karo - Karten sind? n = 32; = 8 Anzahl der Möglicheiten: n n! 32! = = = = ! ( n )! 8! 24! P( A) = Etwas anspruchsvollere Taschenrechner haben für die oben genannten Formeln Funtionstasten, mit denen der Rechenvorgang sehr vereinfacht werden ann. Für den TI 30 eco RS von Texas Instruments gilt beispielsweise: Speziell Allgemein 8 x 2 2 y 8 = 25 n n y =... 2! n! 2 2nd npr 4 = n 2nd npr =... 4! n! 32 n 32 2nd ncr 4 = 3590 n 2nd ncr = ! 4 x! = 24 n! n x! =... ( 2 ) ( ) x Erstellt von R. Brinmann p9_w_rechnung_09.doc :27 Seite 7 von 2

8 R. Brinmann Seite Zusammenfassung: Anordnung von Elementen: Anzahl der Möglicheiten:! Geordnete Stichprobe mit Zurüclegen: Anzahl der Möglicheiten: n mal ziehen ( ) Geordnete Stichprobe ohne Zurüclegen: n! Anzahl der Möglicheiten: mal ziehen n! ( ) ( ) Ungeordnete Stichprobe ohne Zurüclegen: n n! Anzahl der Möglicheiten: =! ( n )! mal ziehen n n Eas gilt: 0! =! = und = = 0 Lotto aus 49 Wahrscheinlicheit für weniger als richtige und Zusatzzahl. Vorüberlegung: Die Definition der Wahrscheinlicheit für das Eintreten eines Ereignisses A ist wie folgt definiert: ( ) ( ) P A = Anzahl aller Möglicheiten, die zu A gehören Anzahl aller Möglicheiten des Zufallsversuchs Beim deutschen Lotto werden aus 49 Zahlen angereuzt. Die Anzahl der Möglicheiten diese zu tun ist 49! = = = 39838! 43! Die Anzahl der Möglicheiten von Gewinnzahlen genau anzureuzen ist! = =! 0! Das Ereignis, dessen Wahrscheinlicheit bestimmt werden soll lautet: A: sechs richtige im Lotto Zu A gehört genau eine Möglicheit von insgesamt Möglicheiten. Erstellt von R. Brinmann p9_w_rechnung_09.doc :27 Seite 8 von 2

9 R. Brinmann Seite Damit ist P( A) = 0, die Wahrscheinlicheit bei einem Tipp genau richtige zu haben. Als neues Ereignis definieren wir B: 4 richtige im Lotto. Das bedeutet, von den Gewinnzahlen wurden 4 angereuzt, 2 der angereuzten Zahlen gehören zu den 49 = 43 nicht Gewinnzahlen. Die Anzahl der Möglicheiten von Gewinnzahlen 4 anzureuzen ist! 5 30 = = = = 5 4 4! 2! 2 2 Die Anzahl der Möglicheiten von den 43 nicht Gewinnzahlen 2 anzureuzen ist: 43 43! = = = = ! 4! 2 2 Damit ist die Anzahl der Möglicheiten für 4 richtige im Lotto: 43 = = Zu B gehören also insgesamt 3545 Möglicheiten von insgesamt Möglicheiten Damit ist P( B) = 0, die Wahrscheinlicheit bei einem Tipp genau 4 richtige zu haben. Folgendes Schema soll noch mal die Notwendigeit der Multipliation von 5 mit 903 veranschaulichen: aus 43 In einer Zeile bleiben die angereuzten ggggnn... ggggnn Gewinnzahlen (gggg) gleich, die angereuzten nicht Gewinnzahlen (nn) ändern sich ggggnn... ggggnn 4 aus In einer Spalte bleiben die angereuzten nicht Gewinnzahlen (nn) gleich, die angereuzten Gewinnzahlen (gggg) ändern sich. Erstellt von R. Brinmann p9_w_rechnung_09.doc :27 Seite 9 von 2

10 R. Brinmann Seite Als neues Ereignis definieren wir C: 5 richtige mit Zusatzzahl. Anzahl der Möglicheiten für: 5 Gewinnzahlen angereuzt ( 5 aus ) = 5 Zusatzzahl angereuzt ( aus ) = 42 0 nicht Gewinnzahlen angereuzt ( 0 aus 42) = PC ( ) = = = 0, Ist die Wahrscheinlicheit bei einem Tipp genau 5 richtige mit Zusatzzahl zu haben. Zusatzinformationen zum Lotto In Deutschland betreibt der Deutsche Lotto- und Totobloc Zusammenschluss der Landes-Lotteriegesellschaften das Lottospiel. Man ann zusätzlich am Spiel Super und Spiel 77 teilnehmen. Zu den Zahlen werden zudem noch eine Zusatzzahl und eine Superzahl gezogen. Die Zusatzzahl wird aus den restlichen 43 Kugeln als siebte, nach den ersten Zahlen, gezogen. Sie erhöht bei den niedrigeren Gewinnlassen den Gewinn um eine Stufe. Demgegenüber ergibt sich die Superzahl (nur) für den Jacpot aus den Zahlen 0 bis 9 aus der letzten Ziffer, der auf der Spielquittung bereits eingedructen Spiel 77 - beziehungsweise Super -Nummer. Das ist sozusagen ein weiteres Los - allerdings mit der Auswirung, dass diese Chance um das Zehnfache niedriger wird. Erstellt von R. Brinmann p9_w_rechnung_09.doc :27 Seite 0 von 2

11 R. Brinmann Seite Gewinnlassen: Gewinnlasse Anz. der richtigen Wahrscheinlicheit bei einem Tipp Klasse mit Superzahl = 0, Klasse 2 = 0, Klasse 3 5 mit Zusatzzahl = 0, Klasse = 0, Klasse 5 4 mit Zusatzzahl = 0, Erstellt von R. Brinmann p9_w_rechnung_09.doc :27 Seite von 2

12 R. Brinmann Seite Klasse = 0, Klasse 7 3 mit Zusatzzahl = 0, Klasse = 0, = 0, = 0, = 0, Erstellt von R. Brinmann p9_w_rechnung_09.doc :27 Seite 2 von 2

KAPITEL 2. Kombinatorik

KAPITEL 2. Kombinatorik KAPITEL 2 Kombinatori In der Kombinatori geht es um das Abzählen von Kombinationen 21 Geburtstagsproblem Beispiel 211 (Geburtstagsproblem In einem Raum befinden sich 200 Studenten Wie groß ist die Wahrscheinlicheit,

Mehr

(für Grund- und Leistungskurse Mathematik) 26W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP

(für Grund- und Leistungskurse Mathematik) 26W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP .RPELQDWRULN (für Grund- und Leistungsurse Mathemati) 6W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP Nach dem Studium dieses Sripts sollten folgende Begriffe beannt sein: n-menge, Kreuzprodut, n-tupel Zählprinzip

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Abiturvorbereitung Wahrscheinlichkeitsrechnung S. 1 von 9 Wahrscheinlichkeitsrechnung Kombinatorik Formeln für Wahrscheinlichkeiten Bedingte Wahrscheinlichkeiten Zusammenfassung wichtiger Begriffe Übungsaufgaben

Mehr

Modul: Stochastik. Zufallsexperimente oder Wahrscheinlichkeit relative Häufigkeit Variation Permutation Kombinationen Binomialverteilung

Modul: Stochastik. Zufallsexperimente oder Wahrscheinlichkeit relative Häufigkeit Variation Permutation Kombinationen Binomialverteilung Modul: Stochastik Ablauf Vorstellung der Themen Lernen Spielen Wiederholen Zusammenfassen Zufallsexperimente oder Wahrscheinlichkeit relative Häufigkeit Variation Permutation Kombinationen Binomialverteilung

Mehr

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen?

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen? 1 Kombinatorik Aus einer Grundgesamtheit mit n Elementen wird eine Stichprobe k Elementen entnommen. Dabei kann die Stichprobe geordnet oder ungeordnet sein. "Geordnet" bedeutet, dass die Reihenfolge der

Mehr

mathphys-online Zahlenlotto 6 aus 49 Quelle: Akademiebericht 470 Dillingen

mathphys-online Zahlenlotto 6 aus 49 Quelle: Akademiebericht 470 Dillingen Zahlenlotto aus Quelle: Aademiebericht 470 Dillingen Spielregeln Beim Spiel Sechs aus Neunundvierzig werden jeden Mittwoch und Samstag sechs Gewinnzahlen gezogen. Dazu befinden sich nummerierte Kugeln

Mehr

Zusammenfassung Stochastik

Zusammenfassung Stochastik Zusammenfassung Stochastik Die relative Häufigkeit Ein Experiment, dessen Ausgang nicht vorhersagbar ist, heißt Zufallsexperiment (ZE). Ein Würfel wird 40-mal geworfen, mit folgendem Ergebnis Augenzahl

Mehr

Variationen Permutationen Kombinationen

Variationen Permutationen Kombinationen Variationen Permutationen Kombinationen Mit diesen Rechenregeln lässt sich die Wahrscheinlichkeit bestimmter Ereigniskombinationen von gleichwahrscheinlichen Elementarereignissen ermitteln, und erleichtert

Mehr

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier Disrete Struturen und Logi WiSe 2007/08 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Disrete Struturen und Logi Gesamtübersicht Organisatorisches Einführung Logi & Mengenlehre Beweisverfahren

Mehr

Kombinatorische Abzählverfahren - LÖSUNGEN

Kombinatorische Abzählverfahren - LÖSUNGEN Kombinatorische Abzählverfahren - LÖSUNGEN TEIL C: Lösungen 1. Produtregel das einfache Verfahren Aufgabe 1: Auto-Ausstattung Aufgabe 2: Tanzstunde Aufgabe 3: Menüplanung Aufgabe 4: Atenzeichen Aufgabe

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 12. Dezember 2012 1 Kombinatorik Fakultät Binomialkoeffizienten Urnenmodelle 2 Definition Fakultät Die Zahl n! =

Mehr

Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein Element aus,

Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein Element aus, V. Stochastik ================================================================== 5.1 Zählprinzip Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein

Mehr

An die Zweige schreibt man jeweils die Wahrscheinlichkeit, die für dieses Ereignis gilt.

An die Zweige schreibt man jeweils die Wahrscheinlichkeit, die für dieses Ereignis gilt. . Mehrstufige Zufallsversuche und Baumdiagramme Entsprechend der Anmerkung in. wollen wir nun auf der Basis von bekannten Wahr- scheinlichkeiten weitere Schlüsse ziehen. Dabei gehen wir immer von einem

Mehr

Stochastik (Laplace-Formel)

Stochastik (Laplace-Formel) Stochastik (Laplace-Formel) Übungen Spielwürfel oder Münzen werden ideal (oder fair) genannt, wenn jedes Einzelereignis mit gleicher Wahrscheinlichkeit erwartet werden kann. 1. Ein idealer Spielwürfel

Mehr

SS 2016 Torsten Schreiber

SS 2016 Torsten Schreiber SS 01 Torsten Schreiber 15 Ein lineares Gleichungssystem besteht immer aus einer Anzahl an Variablen und Gleichungen. Die Zahlen vor den Variablen werden in der sogenannten zusammen gefasst und die Zahlen

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 3. November 2010 1 Kombinatorik Fakultät Binomialkoeffizienten Urnenmodelle 2 Definition Tabellen Fakultät, Beispiel

Mehr

P X =3 = 2 36 P X =5 = 4 P X =6 = 5 36 P X =8 = 5 36 P X =9 = 4 P X =10 = 3 36 P X =11 = 2 36 P X =12 = 1

P X =3 = 2 36 P X =5 = 4 P X =6 = 5 36 P X =8 = 5 36 P X =9 = 4 P X =10 = 3 36 P X =11 = 2 36 P X =12 = 1 Übungen zur Stochastik - Lösungen 1. Ein Glücksrad ist in 3 kongruente Segmente aufgeteilt. Jedes Segment wird mit genau einer Zahl beschriftet, zwei Segmente mit der Zahl 0 und ein Segment mit der Zahl

Mehr

Aufgabe 1 (mdb632540): Murat hat zehn Spielkarten verdeckt auf den Tisch gelegt: Buben, Könige, Asse, Zehn.

Aufgabe 1 (mdb632540): Murat hat zehn Spielkarten verdeckt auf den Tisch gelegt: Buben, Könige, Asse, Zehn. Wahrscheinlichkeiten Aufgabe 1 (mdb632540): Murat hat zehn Spielkarten verdeckt auf den Tisch gelegt: Buben, Könige, Asse, Zehn. Bestimme die Wahrscheinlichkeit, dass Anna a) ein Ass, b) einen Buben, c)

Mehr

Übungsaufgaben Wahrscheinlichkeit

Übungsaufgaben Wahrscheinlichkeit Übungsaufgaben Wahrscheinlichkeit Aufgabe 1 (mdb500405): In einer Urne befinden sich gelbe (g), rote (r), blaue (b) und weiße (w) Kugel (s. Bild). Ohne Hinsehen sollen aus der Urne in einem Zug Kugeln

Mehr

Wahrscheinlichkeit Klasse 8 7

Wahrscheinlichkeit Klasse 8 7 7 Wahrscheinlichkeit Klasse 8 Ereignisse Seite 8 a) Ω {Herz 7; Herz 8; Herz 9; Herz 0; Herz Unter; Herz Ober; Herz König; Herz Ass; Eichel 7; Eichel 8; Eichel 9; Eichel 0; Eichel Unter; Eichel Ober; Eichel

Mehr

3. Anwendungen aus der Kombinatorik

3. Anwendungen aus der Kombinatorik 3. Anwendungen aus der Kombinatorik 3.1. Ziehen mit Zurücklegen 1) Würfeln Wie gross ist die Wahrscheinlichkeit für genau 2 Sechser in 7 Würfen? 2) Glücksrad Ein Glücksrad zeigt "1" mit Wahrscheinlichkeit

Mehr

1.1 Ergebnisräume einfacher Zufallsexperimente. 2) Es gibt mindestens zwei mögliche Ausgänge des Experiments.

1.1 Ergebnisräume einfacher Zufallsexperimente. 2) Es gibt mindestens zwei mögliche Ausgänge des Experiments. Übungsmaterial 1 1 Zufallsexperimente 1.1 Ergebnisräume einfacher Zufallsexperimente Damit ein Experiment ein Zufallsexperiment ist, müssen folgende Eigenschaften erfüllt sein: 1) Das Experiment lässt

Mehr

3.7 Wahrscheinlichkeitsrechnung II

3.7 Wahrscheinlichkeitsrechnung II 3.7 Wahrscheinlichkeitsrechnung II Inhaltsverzeichnis 1 bedingte Wahrscheinlichkeiten 2 2 unabhängige Ereignisse 5 3 mehrstufige Zufallsversuche 7 1 Wahrscheinlichkeitsrechnung II 28.02.2010 Theorie und

Mehr

1 Bestimme mit Hilfe eines Baumdiagramms die Wahrscheinlichkeit, beim dreimaligen Werfen einer Münze a) zweimal Kopf und einmal Zahl zu erhalten.

1 Bestimme mit Hilfe eines Baumdiagramms die Wahrscheinlichkeit, beim dreimaligen Werfen einer Münze a) zweimal Kopf und einmal Zahl zu erhalten. 1 Bestimme mit Hilfe eines Baumdiagramms die Wahrscheinlichkeit, beim dreimaligen Werfen einer Münze a) zweimal Kopf und einmal Zahl zu erhalten. b) erst Zahl, dann zweimal Kopf zu erhalten. c**) mindestens

Mehr

Permutation und Kombination

Permutation und Kombination Permutation und Kombination Aufgaben Aufgabe 1 Wie viele verschiedene Wörter lassen sich durch Umstellen der Buchstaben aus den Wörtern a. Mississippi, b. Larissa, c. Stuttgart, d. Abrakadabra, e. Thorsten,

Mehr

Kombinatorik. Cusanus-Gymnasium Wittlich Permutationen. Wie viele Möglichkeiten gibt es 10 Personen in eine Reihe auf 10 Sitze zu setzen?

Kombinatorik. Cusanus-Gymnasium Wittlich Permutationen. Wie viele Möglichkeiten gibt es 10 Personen in eine Reihe auf 10 Sitze zu setzen? Permutationen Wie viele Möglichkeiten gibt es 10 Personen in eine Reihe auf 10 Sitze zu setzen? 1. Sitz : 10 Möglichkeiten 2. Sitz : 9 Möglichkeiten 3. Sitz : 8 Möglichkeiten. 9. Sitz : 2 Möglichkeiten

Mehr

( ) ( ) ( ) Mehrstufige Zufallsversuche

( ) ( ) ( ) Mehrstufige Zufallsversuche R. Brinkmann http://brinkmann-du.de Seite 1 19.11.2009 Mehrstufige Zufallsversuche Häufig müssen Zufallsversuche untersucht werden, die aus mehr als einem einzigen Experiment bestehen. Diese Versuche setzen

Mehr

P A P( A B) Definition Wahrscheinlichkeit

P A P( A B) Definition Wahrscheinlichkeit Unabhaengige Ereignisse edingte Wahrscheinlichkeit Definition Wahrscheinlichkeit Die Wahrscheinlichkeit eines Ereignisses ist das Verhältnis der günstigen Ergebnisse zur Gesamtmenge der Ergebnisse nzahl

Mehr

Kombinatorik. Kombinatorik ist die Lehre vom Bestimmen der Anzahlen

Kombinatorik. Kombinatorik ist die Lehre vom Bestimmen der Anzahlen Kombinatorik Kombinatorik ist die Lehre vom Bestimmen der Anzahlen 1 Man benötigt Kombinatorik, um z.b. bei Laplace-Experimenten die große Anzahl von Ergebnissen zu bestimmen. Bsp: Beim Lotto 6 aus 49

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Was du wissen musst: Die Begriffe Zufallsexperiment, Ereignisse, Gegenereignis, Zufallsvariable und Wahrscheinlichkeit sind dir geläufig. Du kannst mehrstufige Zufallsversuche

Mehr

Stochastik - Kapitel 2

Stochastik - Kapitel 2 " k " h(a) n = bezeichnet man als die relative Häufigkeit des Ereignisses A bei n Versuchen. n (Anmerkung: für das kleine h wird in der Literatur häufig auch ein r verwendet) k nennt man die absolute Häufigkeit

Mehr

Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten

Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten Kugel-Fächer-Modell n Kugeln (Rosinen) sollen auf m Fächer (Brötchen) verteilt werden, zunächst 3 Kugeln auf 3 Fächer. 1fach 3fach Für die Einzelkugel gibt es 3 Möglichkeiten } 6fach 3! Möglichkeiten Es

Mehr

A B A B A B C. Beispiel 1 Wie viele Möglichkeiten gibt es 3 verschiedene Kugeln: A, B und C auf verschiedene Arten auf 3 Plätze anzuordnen?

A B A B A B C. Beispiel 1 Wie viele Möglichkeiten gibt es 3 verschiedene Kugeln: A, B und C auf verschiedene Arten auf 3 Plätze anzuordnen? eispiel 1 Wie viele Möglicheiten gibt es 3 verschiedene Kugeln:, und auf verschiedene rten auf 3 Plätze anzuordnen? Lösung Es gibt also 6 Möglicheiten, 3 verschiedene Kugeln auf 3 verschiedene Plätze anzuordnen.

Mehr

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente Mehrstufige Zufallsexperimente Inhalt 6.1 6.1 Mehrstufige Experimente 6.2 6.2 Bedingte Wahrscheinlichkeiten Seite 2 6.1 Mehrstufige Experimente Grundvorstellung: Viele Viele Experimente werden der der

Mehr

Wahrscheinlichkeitsrechnung 1. Was verstehen Sie unter einem Zufallsexperiment? Nennen Sie die wichtigsten Eigenschaften.

Wahrscheinlichkeitsrechnung 1. Was verstehen Sie unter einem Zufallsexperiment? Nennen Sie die wichtigsten Eigenschaften. Wahrscheinlichkeitsrechnung 1. Was verstehen Sie unter einem Zufallsexperiment? Nennen Sie die wichtigsten Eigenschaften. 2. Geben Sie vier Zufallsexperimente mit ihrer jeweiligen an. 3. In einer Obstkiste

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 30.11.2013 Schriftliche Übung Mathematik Stochastik II (Nachschreiber) Jan. 2007

R. Brinkmann http://brinkmann-du.de Seite 1 30.11.2013 Schriftliche Übung Mathematik Stochastik II (Nachschreiber) Jan. 2007 R. Brinkmann http://brinkmann-du.de Seite 1 30.11.2013 Schriftliche Übung Mathematik Stochastik II (Nachschreiber) Jan. 2007 SG15/25D NAME: Lösungen 1. In einer Packung sind Glühbirnen, davon sind zwei

Mehr

Elemente der Stochastik (SoSe 2016) 5. Übungsblatt

Elemente der Stochastik (SoSe 2016) 5. Übungsblatt Dr. M. Weimar 02.05.2016 Elemente der Stochasti (SoSe 2016) 5. Übungsblatt Aufgabe 1 (4 Punte) Beweisen sie, dass die Potenzmenge P(A) einer beliebigen endlichen Menge A genau P(A) 2 A Elemente enthält!

Mehr

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy.

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy. R. Brinkmann http://brinkmann-du.de Seite 08..2009 Von der relativen Häufigkeit zur Wahrscheinlichkeit Es werden 20 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 20 Schülern

Mehr

Aufgabe 2.1. Ergebnis, Ergebnismenge, Ereignis

Aufgabe 2.1. Ergebnis, Ergebnismenge, Ereignis Aufgabe 2. Ergebnis, Ergebnismenge, Ereignis Ergebnis und Ergebnismenge Vorgänge mit zufälligem Ergebnis, oft Zufallsexperiment genannt Bei der Beschreibung der Ergebnisse wird stets ein bestimmtes Merkmal

Mehr

Ein Würfel wird geworfen. Einsatz: Fr Gewinn: Fr. 6.--

Ein Würfel wird geworfen. Einsatz: Fr Gewinn: Fr. 6.-- 1 Ein Würfel wird geworfen. : Fr. 1.-- : Fr. 6.-- Der Spieler hat gewonnen falls eine 6 erscheint. 2 Zwei Würfel werden geworfen. : Fr. 1.-- : Fr. 7.-- Der Spieler hat gewonnen falls die Augensumme gleich

Mehr

Kombinatorik: Einführung. Vorlesung Mathematische Strukturen. Sommersemester Ziehen aus Urnen. Ziehen aus Urnen

Kombinatorik: Einführung. Vorlesung Mathematische Strukturen. Sommersemester Ziehen aus Urnen. Ziehen aus Urnen Kombinatorik: Einführung Vorlesung Mathematische Strukturen Sommersemester 04 Prof. Barbara König Übungsleitung: Henning Kerstan Es folgt eine Einführung in die Kombinatorik. Dabei geht es darum, die Elemente

Mehr

3 Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen

3 Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen.1 Pfadregeln.1.1 Pfadmultiplikationsregel Eine faire Münze und

Mehr

Kurs 2 Stochastik EBBR Vollzeit (1 von 2)

Kurs 2 Stochastik EBBR Vollzeit (1 von 2) Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 281 Bremen Kurs 2 Stochastik EBBR Vollzeit (1 von 2) Name: Ich 1. 2. 3. 4.. 6. 7. So schätze ich meinen Lernzuwachs ein.

Mehr

Mathematik: Mag. Schmid Wolfgang & LehrerInnenteam Arbeitsblatt 7-9 7. Semester ARBEITSBLATT 7-9. Was ist Wahrscheinlichkeit

Mathematik: Mag. Schmid Wolfgang & LehrerInnenteam Arbeitsblatt 7-9 7. Semester ARBEITSBLATT 7-9. Was ist Wahrscheinlichkeit ARBEITSBLATT 7-9 Was ist Wahrscheinlichkeit "Ein guter Mathematiker kann berechnen, welche Zahl beim Roulette als nächstes kommt", ist eine Aussage, die einfach falsch ist. Zwar befassen sich Mathematiker

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http://brinkmann-du.de Seite 1 17.09.2012 Lösungen Stichproben und Zählstrategien II : A1 A1 Aus schwarzen und weißen Mühlsteinen werden Türme gebaut, indem immer acht Steine übereinander

Mehr

4. Schularbeit/7C/2-stündig Schularbeit. 7C am

4. Schularbeit/7C/2-stündig Schularbeit. 7C am 4. Schularbeit 7C am 24.5.2017 Name: Note: Beispiel-Nr. 1 2 3 4 5 6 7 8 9 10 11 12 AP Teil 1: Teil 2: Punkte Teil 1 (inkl. AP) Punkte Teil 2 Gesamtpunkte Notenschlüssel: 0 7 P von Teil 1 (inkl. Anrechnungspunkte

Mehr

Orientierungshilfe zum 7. Hausaufgabenblatt

Orientierungshilfe zum 7. Hausaufgabenblatt Orientierungshilfe zum 7. Hausaufgabenblatt 25. Januar 2013 Aufgabe 38 a Urnenmodell: Ziehen mit Zurücklegen. Man stelle sich eine Urne mit zwei Kugeln, die eine weiÿ, die andere schwarz, vor. Für jedes

Mehr

Basiswissen Daten und Zufall Seite 1 von 8 1 Zufallsexperiment Ein Zufallsexperiment ist ein Versuchsaufbau mit zufälligem Ausgang, d. h. das Ergebnis kann nicht vorhergesagt werden. 2 Ergebnis (auch Ausgang)

Mehr

Erfolg im Mathe-Abi 2013

Erfolg im Mathe-Abi 2013 Gruber I Neumann Erfolg im Mathe-Abi 2013 Vorabdruck Pflichtteil Stochastik für das Abitur ab 2013 zum Übungsbuch für den Pflichtteil Baden-Württemberg mit Tipps und Lösungen Vorwort Vorwort Erfolg von

Mehr

2.4. Mehrstufige Zufallsexperimente

2.4. Mehrstufige Zufallsexperimente 2.4. Mehrstufige Zufallsexperimente Zufallsexperimente können einstufig, also einmalig, durchgeführt werden oder auch mehrstufig, also wiederholt. Wirft man einen Würfel z.b. nur einmal, dann ist das Zufallsexperiment

Mehr

Name:... Matrikel-Nr.:... 3 Aufgabe Handyklingeln in der Vorlesung (9 Punkte) Angenommen, ein Student führt ein Handy mit sich, das mit einer Wahrscheinlichkeit von p während einer Vorlesung zumindest

Mehr

WAHRSCHEINLICHKEIT. Erinnere dich

WAHRSCHEINLICHKEIT. Erinnere dich Thema Nr.9 WAHRSCHEINLICHKEIT Erinnere dich Zufallsexperiment Ein Experiment, bei dem verschiedene Ergebnisse möglich sind und bei dem das Ergebnis nur vom Zufall abhängt heißt Zufallsexperiment. Beispiele

Mehr

1.) Wie viele verschiedene Anordnungen mit drei unterschiedlichen Buchstaben lassen sich aus acht verschiedenen Buchstaben bilden?

1.) Wie viele verschiedene Anordnungen mit drei unterschiedlichen Buchstaben lassen sich aus acht verschiedenen Buchstaben bilden? Aufgaben zur Kombinatorik, Nr. 1 1.) Wie viele verschiedene Anordnungen mit drei unterschiedlichen Buchstaben lassen sich aus acht verschiedenen Buchstaben bilden? 2.) Jemand hat 10 verschiedene Bonbons

Mehr

6 Mehrstufige zufällige Vorgänge Lösungshinweise

6 Mehrstufige zufällige Vorgänge Lösungshinweise 6 Mehrstufige zufällige Vorgänge Lösungshinweise Aufgabe 6.: Begründen Sie, warum die stochastische Unabhängigkeit zweier Ereignisse bzw. zufälliger Vorgänge nur ein Modell der Realität darstellen kann.

Mehr

Kontrolle. Themenübersicht

Kontrolle. Themenübersicht Themenübersicht Arbeitsblatt 1 Statistik Arbeitsblatt 2 Erheben und Auswerten von Daten Arbeitsblatt 3 Zufallsexperimente Arbeitsblatt 4 mehrstufige Zufallsexperimente Inhalt, Schwerpunkte des Themas Urliste,

Mehr

D. Ulmet IT 4 Blatt 5 Stochastik I SS 2005

D. Ulmet IT 4 Blatt 5 Stochastik I SS 2005 D. Ulmet IT 4 Blatt 5 Stochastik I SS 2005 Aufgabe 1: Von den Ereignissen A, B und C trete a) nur A ein, b) genau eines ein, c) höchstens eines ein, d) mindestens eines ein, e) mindestens eines nicht ein,

Mehr

Ereignis E: ist ein oder sind mehrere Ergebnisse zusammen genommen. Bsp. E = {2; 4; 6}

Ereignis E: ist ein oder sind mehrere Ergebnisse zusammen genommen. Bsp. E = {2; 4; 6} Laplace-Experimente Begriffsklärung am Beispiel eines Laplace-Würfel mit Augenzahlen (AZ) 1-6: Ergebnis: ist jeder Ausgang eines Zufallsexperimentes heißt ein Ergebnis ω dieses Zufallsexperimentes. Die

Mehr

Maristengymnasium Fürstenzell zuletzt geändert am 10.03.2001 Aufgaben zur Kombinatorik (mit Lösungen)

Maristengymnasium Fürstenzell zuletzt geändert am 10.03.2001 Aufgaben zur Kombinatorik (mit Lösungen) Maristengymnasium Fürstenzell zuletzt geändert am 0.0.00 Aufgaben zur Kombinatorik (mit Lösungen) 0.. Wieviele Möglichkeiten gibt es für Kinder, sich auf einen Schlitten zu setzen, wenn ihn nur davon steuern

Mehr

Das Urnenmodell. Anatoli Maier; Gregor Steinschulte; Mussie Mengstab; Robert Grendysa; Stephane Kom Djike / / / /

Das Urnenmodell. Anatoli Maier; Gregor Steinschulte; Mussie Mengstab; Robert Grendysa; Stephane Kom Djike / / / / Das Urnenmodell Hausarbeit Mathe III (Prof. Kästner, Friedberg) Anatoli Maier; Gregor Steinschulte; Mussie Mengstab; Robert Grendysa; Stephane Kom Djike 876522 / 900265 / 885568 / 875921 / 932424 Wintersemester

Mehr

Kombinatorik. Je nachdem, ob diese Randbedingungen erfüllt sein müssen oder nicht, lassen sich 6 Grundaufgaben unterscheiden: Wiederholung

Kombinatorik. Je nachdem, ob diese Randbedingungen erfüllt sein müssen oder nicht, lassen sich 6 Grundaufgaben unterscheiden: Wiederholung Kombinatorik In der Kombinatorik beschäftigt man sich damit die verschiedenen Möglichkeiten der Auswahl und Anordnung von Elementen aus endlichen Mengen zu untersuchen und insbesondere die Anzahl dieser

Mehr

Kombinatorik: Einführung. Vorlesung Mathematische Strukturen. Sommersemester Ziehen aus Urnen. Ziehen aus Urnen

Kombinatorik: Einführung. Vorlesung Mathematische Strukturen. Sommersemester Ziehen aus Urnen. Ziehen aus Urnen Kombinatorik: Einführung Vorlesung Mathematische Strukturen Sommersemester 05 Prof. Barbara König Übungsleitung: Dennis Nolte Es folgt eine Einführung in die Kombinatorik. Dabei geht es darum, die Elemente

Mehr

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!. 040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl

Mehr

Schriftliche Abiturprüfung Mathematik 2013

Schriftliche Abiturprüfung Mathematik 2013 (8) Stochasti Pflichtteil Aufgabe 8.1 In einem Behälter befinden sich 2 rote und 4 blaue Kugeln. Es werden 2 Kugeln mit Zurüclegen gezogen. a) Berechnen Sie die Wahrscheinlicheit, dass mindestens eine

Mehr

SS 2017 Torsten Schreiber

SS 2017 Torsten Schreiber 173 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Wird die Anordnung von unterschiedlichen Objekten eines Experiments untersucht, so handelt es sich um eine. Möchte man die Anzahl der möglichen

Mehr

Stochastik Lehr-und Aufgabenbuch. Skriptum zum Vorbereitungskurs

Stochastik Lehr-und Aufgabenbuch. Skriptum zum Vorbereitungskurs Stochastik Lehr-und Aufgabenbuch Skriptum zum Vorbereitungskurs 1 WICHTIGER HINWEIS: Ich bitte den Eigentümer dieses Skriptes, weder das gesamte Skript noch Teilauszüge daraus zu kopieren, einzuscannen

Mehr

Inhaltsverzeichnis (Ausschnitt)

Inhaltsverzeichnis (Ausschnitt) 6 Diskrete Wahrscheinlichkeitsräume Inhaltsverzeichnis (Ausschnitt) 6 Diskrete Wahrscheinlichkeitsräume Laplacesche Wahrscheinlichkeitsräume Kombinatorik Allgemeine diskrete Wahrscheinlichkeitsräume Deskriptive

Mehr

Vorkurs Mathematik für Informatiker Kombinatorik --

Vorkurs Mathematik für Informatiker Kombinatorik -- Vorkurs Mathematik für Informatiker -- 10 Kombinatorik -- Thomas Huckle Stefan Zimmer 30.09.2014 1 Urnenmodell In der Kombinatorik interessiert man sich dafür, wie viele Möglichkeiten es für die Ergebnisse

Mehr

4 Übungsaufgaben zu Kapitel 4

4 Übungsaufgaben zu Kapitel 4 4 Übungsaufgaben zu Kapitel 4 4.1 Aufgabe. In einer Schachtel liegen vier mit 1 bis 4 nummerierte Kugeln. Wie lautet die Ergebnismenge, wenn zwei Kugeln mit einem Griff gezogen werden? 4.2 Aufgabe. Welche

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Teil V Wahrscheinlichkeitsrechnung Inhaltsangabe 6 Einführung in die Wahrscheinlichkeitsrechnung 125 6.1 Kombinatorik......................... 125 6.2 Grundbegri e......................... 129 6.3 Wahrscheinlichkeiten.....................

Mehr

Basistext - Wahrscheinlichkeitsrechnung

Basistext - Wahrscheinlichkeitsrechnung Basistext - Wahrscheinlichkeitsrechnung Die Wahrscheinlichkeitsrechnung beschäftigt sich mit Vorgängen, die in ihrem Ausgang unbestimmt sind. Sie versucht mögliche Ergebnisse der Vorgänge zu quantifizieren.

Mehr

Mathematik-Dossier 5 Wahrscheinlichkeit Regelmässigkeit des Zufalls (angepasst an das Lehrmittel Mathematik 1)

Mathematik-Dossier 5 Wahrscheinlichkeit Regelmässigkeit des Zufalls (angepasst an das Lehrmittel Mathematik 1) Name: Mathematik-Dossier 5 Wahrscheinlichkeit Regelmässigkeit des Zufalls (angepasst an das Lehrmittel Mathematik 1) Inhalt: Absolute und relative Häufigkeit Wahrscheinlichkeit Voraussagen mit Wahrscheinlichkeit

Mehr

C : Genau ein Wurf ergibt Augenzahl D:.Wenigstens ein Wurf ergibt Augenzahl 2

C : Genau ein Wurf ergibt Augenzahl D:.Wenigstens ein Wurf ergibt Augenzahl 2 Lapace-Experimente ================================================================== 1. a) Wie groß ist die W'keit, beim Werfen eines Laplace-Würfels eine Sechs zu erhalten? b) Wie groß ist die W'keit,

Mehr

Zusammengesetzte Zufallsexperimente - Baumdiagramme und Pfadregeln ==================================================================

Zusammengesetzte Zufallsexperimente - Baumdiagramme und Pfadregeln ================================================================== Zusammengesetzte Zufallsexperimente - Baumdiagramme und Pfadregeln ================================================================== Ein Zufallsexperiment heißt zusammegesetzt, wenn es es die Kombination

Mehr

Wahrscheinlichkeitsrechnung für die Mittelstufe

Wahrscheinlichkeitsrechnung für die Mittelstufe Wahrscheinlichkeitsrechnung für die Mittelstufe Wir beginnen mit einem Beispiel, dem Münzwurf. Es wird eine faire Münze geworfen mit den Seiten K (für Kopf) und Z (für Zahl). Fair heißt, dass jede Seite

Mehr

Aufgabe 1. Übung Wahrscheinlichkeitsrechnung Markus Kessler Seite 1 von 8. Die Ereignisse A, B und C erfüllen die Bedingungen

Aufgabe 1. Übung Wahrscheinlichkeitsrechnung Markus Kessler Seite 1 von 8. Die Ereignisse A, B und C erfüllen die Bedingungen Ü b u n g 1 Aufgabe 1 Die Ereignisse A, B und C erfüllen die Bedingungen P(A) = 0. 7, P(B) = 0. 6, P(C) = 0. 5 P(A B) = 0. 4, P(A C) = 0. 3, P(B C) = 0. 2, P(A B C) = 0. 1 Bestimmen Sie P(A B), P(A C),

Mehr

Vorlesung Statistik WING ASW Melanie Kaspar, Prof. Dr. B. Grabowski 1

Vorlesung Statistik WING ASW Melanie Kaspar, Prof. Dr. B. Grabowski 1 Melanie Kaspar, Prof. Dr. B. Grabowski 1 Aus diesen Eigenschaften lassen sich alle weiteren Eigenschaften ableiten: Beweis zu 1) Melanie Kaspar, Prof. Dr. B. Grabowski 2 Aufgabe Die Wahrscheinlichkeit

Mehr

Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26)

Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26) Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26 Ein Wahrscheinlichkeitsraum (Ω, P ist eine Menge Ω (Menge aller möglichen Ausgänge eines Zufallsexperiments: Ergebnismenge versehen mit einer Abbildung

Mehr

Aufgaben und Lösungen

Aufgaben und Lösungen Aufgaben und Lösungen Aufgabe Aus einer Schulklasse von 3 Schülern soll eine Abordnung von Schülern zum Direktor geschickt werden. Auf wie viele Arten kann diese Abordnung gebildet werden? ( ) 3 = 33.649

Mehr

Ergebnis Ergebnisraum Ω. Ereignis. Elementarereignis

Ergebnis Ergebnisraum Ω. Ereignis. Elementarereignis Stochastik Die Stochastik besteht aus zwei Teilgebieten, der Statistik und der Wahrscheinlichkeitsrechnung. Die Statistik beschreibt die Vergangenheit und verwendet Informationen, die (in realen Versuchen)

Mehr

KAPITEL 5. Erwartungswert

KAPITEL 5. Erwartungswert KAPITEL 5 Erwartungswert Wir betrachten einen diskreten Wahrscheinlichkeitsraum (Ω, P) und eine Zufallsvariable X : Ω R auf diesem Wahrscheinlichkeitsraum. Die Grundmenge Ω hat also nur endlich oder abzählbar

Mehr

Wahrscheinlichkeit und Zufall

Wahrscheinlichkeit und Zufall Wahrscheinlichkeit und Zufall Rechnen mit Wahrscheinlichkeiten 16. Juni 2009 Dr. Katja Krüger Universität Paderborn 1 Inhalt Ereignisse i und deren Wahrscheinlichkeit h hk i Laplace-Regel Baumdiagramm

Mehr

Didaktik der Stochastik Keven Lass Ü B U N G S B L A T T 2 A U F G A B E 2

Didaktik der Stochastik Keven Lass Ü B U N G S B L A T T 2 A U F G A B E 2 Didaktik der Stochastik Keven Lass Ü B U N G S B L A T T 2 A U F G A B E 2 Aufgabenstellung 1. Aufgabe a.) Definieren Sie den Begriff Wahrscheinlichkeit nach Laplace. b.) Geben Sie die zugehörige Formel

Mehr

SS 2017 Torsten Schreiber

SS 2017 Torsten Schreiber SS 017 Torsten Schreiber 150 Ein lineares Gleichungssystem besteht immer aus einer Anzahl an Variablen und Gleichungen. Die Zahlen vor den Variablen werden in der sogenannten zusammen gefasst und die Zahlen

Mehr

Wahrscheinlichkeitsrechnung Teil 1

Wahrscheinlichkeitsrechnung Teil 1 Wahrscheinlichkeitsrechnung Teil Einführung in die Grundbegriffe Sekundarstufe Datei Nr 30 Stand September 2009 Friedrich W Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK wwwmathe-cdde Inhalt Zufallsexperimente,

Mehr

für eine rote Kugel denn von auf den 100% (da rot, rot rot, blau blau, rot blau, blau

für eine rote Kugel denn von auf den 100% (da rot, rot rot, blau blau, rot blau, blau Berechnung von Wahrscheinlichkeiten beim Ziehen mit und ohne Zurücklegenn Ziehen mit Zurücklegenn Wir betrachten folgendes Beispiel: In einer Urne sind 2 rote und 3 blaue Kugeln.. Wenn man hier eine Kugel

Mehr

8. Wahrscheinlichkeitsrechnung

8. Wahrscheinlichkeitsrechnung Didaktik der Geometrie und Stochastik WS 09/10 Bürker 27. 1. 11 8. Wahrscheinlichkeitsrechnung 8.1 Begriffe 8.1.1 Zufallsexperiment Was ist ein Zufallsexperiment? a) Mehrere Ergebnisse möglich b) Ergebnis

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 6 5 Hilfsmittel aus der Kombinatorik 7 1 Vorbemerkungen

Mehr

Zahlenoptimierung Herr Clever spielt optimierte Zahlen

Zahlenoptimierung Herr Clever spielt optimierte Zahlen system oder Zahlenoptimierung unabhängig. Keines von beiden wird durch die Wahrscheinlichkeit bevorzugt. An ein gutes System der Zahlenoptimierung ist die Bedingung geknüpft, dass bei geringstmöglichem

Mehr

Level 1 Grundlagen Blatt 1. Dokument mit 19 Aufgaben

Level 1 Grundlagen Blatt 1. Dokument mit 19 Aufgaben Level 1 Grundlagen Blatt 1 Dokument mit 19 Aufgaben Aufgabe A1 Ein Glücksrad hat drei Sektoren mit den Farben Rot, Gelb und Grün. Das Rad bleibt mit einer Wahrscheinlichkeit von 0,1 so stehen, dass der

Mehr

Wie viele Möglichkeiten gibt es, n Kinder in einer Reihe zu platzieren, z.b. für n = 5? Für n = 2 gibt es 2 Möglichkeiten.

Wie viele Möglichkeiten gibt es, n Kinder in einer Reihe zu platzieren, z.b. für n = 5? Für n = 2 gibt es 2 Möglichkeiten. n-faultät Wie viele Möglicheiten gibt es, n Kinder in einer Reihe zu platzieren, z.b. für n? Für n gibt es Möglicheiten. Für n 3 hat das 3. Kind 3 Möglicheiten, die beiden restlichen Plätze önnen jeweils

Mehr

A Grundlegende Begriffe

A Grundlegende Begriffe Grundlegende egriffe 1 Zufallsexperimente und Ereignisse Ein Zufallsexperiment besteht aus der wiederholten Durchführung eines Zufallsversuchs. ei einem Zufallsversuch können verschiedene Ergebnisse (chreibweise:

Mehr

Übungen zur Kombinatorik (Laplace)

Übungen zur Kombinatorik (Laplace) 1. In einem Beutel sind 10 Spielmarken enthalten, die von 0 bis 9 nummeriert sind. X sei das Ereignis, dass man zufällig die Marke 5 oder 8 herausholt, Y das Ereignis, dass eine größere Zahl als 5 gezogen

Mehr

Der Binomialkoeffizient (Einführung):

Der Binomialkoeffizient (Einführung): Der Binomialoeffizient (Einführung): ) Wie viele Kombinationsmöglicheiten gibt es, Kugeln in Kästchen anzuordnen? Lösung: ) Beispiel: Fragen sollen beantwortet werden. Die Antwort ann richtig (r) oder

Mehr

9. Elementare Wahrscheinlichkeitsrechnung

9. Elementare Wahrscheinlichkeitsrechnung 9. Elementare Wahrscheinlichkeitsrechnung Beispiel (Einmaliges Würfeln): verbal mengentheoretisch I. Zufällige Ereignisse Beispiel (Einmaliges Würfeln): Alle möglichen Ausgänge 1,,, 6 des Experiments werden

Mehr

Übungsaufgaben zum Kapitel Baumdiagramme - Bernoulli

Übungsaufgaben zum Kapitel Baumdiagramme - Bernoulli BOS 98 S I Im ahmen einer statistischen Erhebung wurden 5 repräsentative Haushalte ausgewählt und im Hinblick auf ihre Ausstattung mit Fernsehern, adiorecordern sowie Homecomputern untersucht. Dabei gaben

Mehr

3.8 Wahrscheinlichkeitsrechnung III

3.8 Wahrscheinlichkeitsrechnung III 3.8 Wahrscheinlichkeitsrechnung III Inhaltsverzeichnis ufallsgrössen Der Erwartungswert 3 3 Die Binomialverteilung 6 4 Die kumulierte Binomialverteilung 8 4. Die Tabelle im Fundamentum (oder Formeln und

Mehr

D. Ulmet IT 4 Blatt 5 Stochastik I SS 2005

D. Ulmet IT 4 Blatt 5 Stochastik I SS 2005 D Ulmet IT Blatt Stochastik I SS 200 Aufgabe : Von den Ereignissen A, B und C trete a nur A ein, A B C ( (Ā (Ā b genau eines ein, A B C B C B C c höchstens eines ein, ( A B C (Ā B C (Ā B C (Ā B C d mindestens

Mehr

perfekt für Klassenarbeiten Videos zu jeder Übungsaufgabe alle Themen sehr übersichtlich alle Anforderungsbereiche StrandMathe GbR

perfekt für Klassenarbeiten Videos zu jeder Übungsaufgabe alle Themen sehr übersichtlich alle Anforderungsbereiche StrandMathe GbR perfekt für Klassenarbeiten Videos zu jeder Übungsaufgabe alle Themen sehr übersichtlich alle Anforderungsbereiche Unsere Übungshefte sind für alle Schülerinnen und Schüler, die keine Lust auf 300-seitige

Mehr