1 Ordnung muß sein. 1.1 Angeordnete Körper. 1.2 Folgerungen aus den Anordnungsaxiomen. ( c) (b a) > 0. Somit a c b c > 0.

Größe: px
Ab Seite anzeigen:

Download "1 Ordnung muß sein. 1.1 Angeordnete Körper. 1.2 Folgerungen aus den Anordnungsaxiomen. ( c) (b a) > 0. Somit a c b c > 0."

Transkript

1 1 Ordnung uß sein 1.1 Angeordnete Körper Wir nehen einal an, daß es in eine Körper Eleente gibt, die wir positiv nennen. Welche Eigenschaften sollen diese haben? O1) Wenn x und y positiv sind, dann auch x + y und x y O2) Für jede Zahl x = 0 ist entweder x positiv oder x positiv aber nicht beides) O3) 0 ist nicht positiv Definition: Besitzt ein Körper positive Eleente it den Eigenschaften O1-O3, so heißt der Körper angeordnet. Definition: x < y bedeutet y x ist positiv y > x bedeutet x < y x y bedeutet x < y oder x = y y x bedeutet x y Kurzschreibweise: x y z heißt x y und y z 1.2 Folgerungen aus den Anordnungsaxioen OF1) Für beliebige Zahlen a, b gilt: Genau eine der folgenden drei Dinge gilt: a < b, b < a, a = b Grund: Sei x := b a. Nach O2 gilt genau eines der drei folgenden: x > 0, x < 0, x = 0. Das entspricht der Behauptung. OF2) Wenn a < b und b < c, dann a < c Grund: a < b bedeutet b a > 0 und b < c bedeutet c b > 0. Also ist b a) + c b) > 0. Und dait c a > 0 also a < c. OF3) Wenn a < b, dann a + c < b + c Grund: Sei x := a + c, y := b + c. Dann ist y x = b a > 0, also y > x. OF4) Wenn a < b und c > 0, dann ist a c < b c Grund: a < b bedeutet b a > 0. Dann ist für c > 0 : c b a) = c b c a > 0 OF5) Wenn a = 0, dann ist a 2 > 0 Grund: Ist a > 0, so ist a 2 > 0. Ist a < 0, dann ist a) > 0 also a) a) = 1) 1) a a = a 2 > 0. OF6) 1 > 0 Grund: Voriger Satz it a = 1 OF7) Wenn a < b und c < 0, dann a c > b c Grund: a < b bedeutet b a > 0 und c < 0 bedeutet c) > 0. Also ist c) b a) > 0. Soit a c b c > 0.

2 OF8) Wenn a < b, dann a > b. Speziell: Wenn a < 0, dann a) > 0 Grund: Folgt aus vorige Satz durch c = 1 OF9) Ist a b > 0, dann sind entweder a und b beide positiv oder a und b beide negativ. Grund: Sei z.b a > 0 und b < 0. Dann wäre a b) = a b > 0 OF10) Wenn a < c und b < d, dann a + b < c + d Grund: Mit c a > 0 und d b > 0 ist c a + d b = c + d) a + b) > 0 OF11) Wichtige Tatsache : Es ist a 2 0 für alle a. Ist a 2 + b 2 = 0, so gilt a = b = 0. Grund: Für a = 0 ist a 2 > 0 und 0 2 = 0, also a 2 0. Daher ist a 2 + b 2 0 für alle a, b. Ist nun a = 0 oder b = 0, so ist a 2 + b 2 > 0. OF12) Es gibt, in eine angeordneten Körper, keine Zahl i it i 2 = 1 denn i = 0. F 2 ist nicht angeordnet: = 0. OF13) Ist 0 < a < b, so gilt 0 < a n < b n und ugekehrt. Grund: Es ist b n a n = b a)b n 1 + b n 2 a ba n 2 + a n 1 ) = b a) n 1 k=0 ak b n k 1. Da die Ausdrücke der zweiten Klaer alle positiv sind, ist das Vorzeichen der rechten Seite identisch it de Vorzeichen von b a > 0, also b n a n > 0. a n > 0 ist wegen a > 0 klar. Die Ukehrung folgt ebenso aus der Tatsache, daß die beiden Seiten der obigen Gleichung dasselbe Vorzeichen haben. Beerkung: OF11 sichert, daß = 0, = 0 usw. Dait ist aber auch 1 1 = 0, = 0 usw. Dait liegen die ganzen Zahlen Z in jede angeordneten Körper. Weiter sieht an daß dait die rationalen Zahlen p q it p Z und q N in jede angeordneten Körper liegen. Für F 2 ist das offenbar falsch, denn = 0. Beispiel: Der Körper Q = { p q p Z und q N} ist ein angeordneter Körper. Es gilt: und dait p q > r s p q r s > 0 p s r q q s p q > 0 p > 0 > 0 p s r q > 0 p s > r q Definition Intervalle):i) Für einen angeordneten Körper it Eleenten a b definieren wir: a, b) := {x a < x < b} [a, ) := {x a x} a, b] := {x a < x b} a, ) := {x a < x} [a, b) := {x a x < b}, b] := {x x b} [a, b] := {x a x b}, b) := {x x < b} dabei heißt a, b) offenes Intervall und [a, b] abgeschlossenes Intervall. Die anderen beiden Intervalltypen heißen halboffen. Übungen: 1) Die Sue zweier negativer Zahlen ist negativ 2) Wenn a > 0, dann 1 a > 0; wenn a < 0, dann 1 a < 0 3) Wenn 0 < a < b, dann 0 < b 1 < a 1 4) Wenn a b und b c, dann a c 5) Wenn a b und b c und a = c, dann b = c

3 1.3 Die Betragsfunktion In eine angeordneten Körper können wir den Betrag eines Eleentes wie folgt definieren: x falls x positiv ist x := 0 falls x = 0 x falls x negativ ist Kürzer geht das durch s.u.) x := x 2 Definition: Der Abstand zweier Zahlen x, y ist x y. Satz: x y = x y Grund Wenn x und y gleiches Vorzeichen haben, ist x y positiv, also x y = x y. Wenn beide negativ sind ist x y = x) y) = x y = x y. Sind beide positiv, so gilt: x y = x y = x y. Ist x negativ und y positiv, so gilt: x y = x y) = x y = x y, da dann das Produkt negativ ist. Analog geht der letzte verbliebene Fall. Satz Dreiecksungleichung): x + y x + y Grund: Für x gilt x x und für y gilt y y. Also folgt x + y x + y. Außerde gilt x x und y y und soit x + y) = x + y) x + y. Insgesat also die Behauptung. 1.4 Das Supreusaxio Bei Q handelt es sich zwar u einen angeordneten Körper, er hat aber noch Lücken. Die Zahl 2, als die Länge der Diagonale eines Quadrates it Seitenlänge 1 ist keine rationale Zahl. Grund: Wir nehen an: 2 = p q it teilerfreden p und q. Dann folgt q 2 = p und nach Quadrieren: 2q 2 = p 2. Dann ist aber die rechte Seite ein Quadrat. Dann uß aber p durch 2 teilbar sein, also p = 2k, für ein k N. Dann ist aber 2q 2 = 4k 2 ithin q 2 = 2k 2. Mit de gleichen Arguent wie oben ist dann aber auch q eine gerade Zahl und p und q haben den geeinsaen Teiler 2. Definition: Sei S eine Menge von Zahlen eines angeordneten Körpers. Eine Zahl s heißt obere Schranke vo S, falls für ALLE Zahlen a in S gilt a s. Gibt es eine obere Schranke für S, so heißt S nach oben beschränkt. Definition Supreu: Eine Zahl s 0 ist kleinste obere Schranke Supreu) einer Menge S =, wenn gilt: i) s 0 ist obere Schranke für S ii) Keine Zahl kleiner als s 0 ist obere Schranke für S, d.h. s < s 0 a S : a > s. Anders gesagt: Ist s obere Schranke von S, so gilt s s 0. Beerkung: i) Wenn Sie sich einen Pegelstandsanzeiger a Rhein ansehen, sehen Sie lauter obere Schranken für den tatsächlichen Pegelstand. Dieser tatsächliche Pegelstand ist das Supreu dieser.

4 ii) Analog zu Supreu ist das Infiu die größte untere Schranke einer nicht leeren, nach unten beschränkten Menge. Die Eigenschaften von Suprea gelten sinngeäß auch für Infia. Satz: Suprea und Infia sind eindeutig. Grund: Wir nehen an, daß s 0 und s 1 beide Suprea der nach oben beschränkten Menge S sind. Weil s 0 kleinste obere Schranke ist, gilt s 0 s 1. Da s 1 kleinste obere Schranke ist, gilt: s 1 s 0. Also insgesat s 0 = s 1 Beerkung: Wir betrachten in eine angeordneten Körper für ein Eleent a die Mengen S 0 := {x x a} und S 1 := {x x < a} Offenbar sind beide Mengen nicht leer, da z.b. x 1 in beiden liegt. Die beiden Mengen sind verschieden a S 0 und a / S 1 ) haben aber das gleiche Supreu a. I ersten Falle nennt an das Supreu auch Maxiu. Lea: Ist sup A = s, so gibt es zu jede N ein x A, it s 1 < x s. Grund: Es ist A = A\s 1, s] s 1, s] A ). Jedes Eleent x der ersten Menge erfüllt also x s 1. Wäre die zweite Menge leer, so wäre s 1 eine kleinere obere Schranke von A. Definition: Ein angeordneter Körper erfüllt das Supreusaxio, wenn jede nach oben beschränkte, nichtleere Teilenge ein Supreu hat. Satz: Die reellen Zahlen R sind ein angeordneter Körper der das Supreusaxio erfüllt. Beerkung: Die reellen Zahlen sind sogar, in eine vernünftigen Sinne, der einzige angeordnete Körper it Supreusaxio. Lea: Seien A, B zwei nichtleere Teilengen von R it a < b für alle a A und b B. Dann existieren sup A und inf B und es gilt: sup A inf B Grund: Sei zunächst b B fest. Dann gilt a < b, also auch a b, für alle a A. Also ist A nach oben durch b beschränkt, also existiert sup A R. Nun ist sup A kleinste obere Schranke und b obere Schranke von A, also gilt sup A b. Da diese Arguentation für beliebiges b B gilt, folgt sup A b für alle b B. Daher ist sup A untere Schranke von B. Daher ist B ist B nach unten beschränkt und besitzt eine größte untere Schranke: inf B R. Annahe: sup A > inf B. Dann existiert x A, it sup A 1 < x sup A. Für genügend große ist x > inf B z.b. für 1 sup A+inf B < 2 ). Also haben wir inf B < x sup A Also ist x keine untere Schranke von B. Daher gibt es ein y B, it y < x, i Widerspruch zu A < B. 1.5 Archiedizität In diese Abschnitt sei K ein angeordneter Körper, der das Supreusaxio erfüllt. Satz: Die Menge der natürlichen Zahlen 1, 1 + 1, ,...ist in K nach oben unbeschränkt. D.h., daß es zu jede x K ein n N gibt, it x < n.

5 Grund: Wäre N beschränkt, so gäbe es nach de Supreusaxio s = sup N. Nun ist s 1 < s keine obere Schranke für N. Also gibt es ein n N, it n > s 1. Also ist n + 1 > s i Widerspruch dazu, daß s obere Schranke vo N ist. Folgerung: Ist x K und x > 0, dann existiert ein n N, it 1 n < x. Grund: Nach vorangehende Satz gibt es ein n N, it 1 x < n, also x > n 1 Folgerung: Ist 0 x < n 1 für alle n N, so ist x = 0. Folgerung: Ist b a < n 1 für alle n N, so ist b = a. 1.6 Wurzeln Sei K ein angeordneter Körper, der das Supreusaxio erfüllt. Satz: Sei a > 0. Dann gibt es genau ein positives Eleent b, it b 2 = a. Grund Skizze): Die exakte Begründung ist technisch schwierig. Die Idee s.u.) ist, daß eine der drei Möglichkeiten b 2 > a, b 2 < a, b 2 = a gelten uß. Die Annahe von b 2 > a bzw. b 2 < a führen auf einen Widerspruch, so daß b 2 = a gelten uß. Eine ausführliche Begründung finden Sie auf Übungsblatt 3) Sei K ein angeordneter Körper, der das Supreusaxio erfüllt. Satz: Sei a > 0. Dann gibt es zu jede n N genau ein positives Eleent b, it b n = a. Grund: Ist 0 < y < z, so gilt 0 < y n < z n. Zwei verschiedene positive Zahlen können also potenziert it n nicht gleich werden. Dies zeigt die Eindeutigkeit. *) Existenz: Sei zunächst a > 1. Wir betrachten die Menge S = {x > 0 x n a}. Zunächst gilt 1 n = 1 < a, also 1 S und soit ist S nicht leer. Weiter gilt für x S: x n < a < a n und soit a n x n > 0. Dait ist nach OF13) x < a. Die Menge S ist also durch a beschränkt. Nach de Supreusaxio gibt es also s = sup S in K. Wegen 1 S ist s 1. Wegen s 1 < s < s + 1 für alle N it 2 gilt: s ) 1 n < s n < s + 1 ) n Wegen der Supreuseigenschaft von s und wegen s 1 < s gibt es ein b S it s 1 < b. Dann gilt aber s 1 ) n < b n a Da s + 1 > s, ist s + 1 / S also s + 1 ) n > a. Insgesat gilt also: s ) 1 n < b n a < s + 1 ) n Daher ist b n a < s + 1 ) n s 1 ) n

6 ) 2 n 1 = s + 1 ) k s 1 ) ) n k 1 k=0 Wegen 0 < s 1 < s + 1 < s + 1 ist dieser Ausdruck kleiner als n 1 2 k=0 s + 1) k s + 1) n k 1 = 1 2ns + 1)n 1 wird also beliebig klein für große. Daher gilt b n = a. Ist nun a < 1, so gibt es ein b, it b n = 1 a > 1. Dann ist 1 b ) n = 1 b n = 1 1 a = a. Definition: a 1 n = n a = b, a n = a n ) 1. Die reellen Zahlen eine Übersicht): Die reellen Zahlen sind ein angeordneter Körper, der das Supreusaxio erfüllt. Insbesondere gilt: i) Die reellen Zahlen erfüllen, it der Addition und Multiplikation, die Axioe und dait deren Folgerungen) eines Körpers ii) Die reellen Zahlen sind angeordnet durch <, isbesondere ist jedes Eleent ungleich 0 entweder positiv oder negativ. iii) In reellen Zahlen hat jedes positive Eleent eine Quadratwurzel. i) Die reellen Zahlen sind archiedisch geordnet, d.h. zu jeder reellen Zahl x gibt es eine natürliche Zahl n, it x < n

3. Zusammenhang. 22 Andreas Gathmann

3. Zusammenhang. 22 Andreas Gathmann 22 Andreas Gathmann 3. Zusammenhang Eine der anschaulichsten Eigenschaften eines topologischen Raumes ist wahrscheinlich, ob er zusammenhängend ist oder aus mehreren Teilen besteht. Wir wollen dieses Konzept

Mehr

Vorbemerkungen zur Optionsscheinbewertung

Vorbemerkungen zur Optionsscheinbewertung Vorbeerkungen zur Optionsscheinbewertung Matthias Groncki 24. Septeber 2009 Einleitung Wir wollen uns it den Grundlagen der Optionsscheinbewertung beschäftigen. Dazu stellen wir als erstes einige Vorraussetzungen

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

Zahlenbereiche. Jörn Loviscach. Versionsstand: 20. Oktober 2009, 17:43

Zahlenbereiche. Jörn Loviscach. Versionsstand: 20. Oktober 2009, 17:43 Zahlenbereiche Jörn Loviscach Versionsstand: 20. Oktober 2009, 17:43 1 Natürliche, ganze und rationale Zahlen Zum Zählen benötigt man die positiven natürlichen Zahlen 1, 2, 3,... In der Informatik zählt

Mehr

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Einführung in die Vektor- und Matrizenrechnung. Matrizen Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

Beispiellösungen zu Blatt 84

Beispiellösungen zu Blatt 84 µatheaticher κorrepondenz- zirkel Matheatiche Intitut Georg-Augut-Univerität Göttingen Aufgabe 1 Beipiellöungen zu Blatt 84 Welche der folgenden Zahlen it größer? 2009 + 2010 + 2010 + 2009, 2009 + 2009

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

194 Beweis eines Satzes von Tschebyschef. Von P. E RDŐS in Budapest. Für den zuerst von T SCHEBYSCHEF bewiesenen Satz, laut dessen es zwischen einer natürlichen Zahl und ihrer zweifachen stets wenigstens

Mehr

4. Woche Decodierung; Maximale, Perfekte und Optimale Codes. 4. Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140

4. Woche Decodierung; Maximale, Perfekte und Optimale Codes. 4. Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140 4 Woche Decodierung; Maximale, Perfekte und Optimale Codes 4 Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140 Szenario für fehlerkorrigierende Codes Definition (n, M)-Code Sei C {0, 1}

Mehr

Gibt es verschiedene Arten unendlich? Dieter Wolke

Gibt es verschiedene Arten unendlich? Dieter Wolke Gibt es verschiedene Arten unendlich? Dieter Wolke 1 Zuerst zum Gebrauch des Wortes unendlich Es wird in der Mathematik in zwei unterschiedlichen Bedeutungen benutzt Erstens im Zusammenhang mit Funktionen

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

Dieter Suter - 228 - Physik B

Dieter Suter - 228 - Physik B Dieter Suter - 228 - Physik B 4.5 Erzwungene Schwingung 4.5.1 Bewegungsgleichung In vielen Fällen schwingt ein Syste nicht frei, sondern an führt ih von außen Energie zu, inde an eine periodische Kraft

Mehr

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Mehr

4. Relationen. Beschreibung einer binären Relation

4. Relationen. Beschreibung einer binären Relation 4. Relationen Relationen spielen bei Datenbanken eine wichtige Rolle. Die meisten Datenbanksysteme sind relational. 4.1 Binäre Relationen Eine binäre Relation (Beziehung) R zwischen zwei Mengen A und B

Mehr

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0.

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0. 1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem Folg. 2 Sei (Ω, E, P) W.-raum. Seien A, B,A 1,...,A n Ereignisse. Es gelten die folgenden Aussagen: 1. P(A) = 1 P(A). 2. Für das unmögliche Ereignis gilt:

Mehr

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Stefan Lucks Diskrete Strukturen (WS 2009/10) 57 2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32,

Mehr

Vorlesung. Komplexe Zahlen

Vorlesung. Komplexe Zahlen Vorlesung Komplexe Zahlen Motivation Am Anfang der Entwicklung der komplexen Zahlen stand ein algebraisches Problem: die Bestimmung der Lösung der Gleichung x 2 + 1 = 0. 1 Mit der Lösung dieses Problems

Mehr

Über Kommentare und Ergänzungen zu diesen Lösungsbeispielen freuen wir uns!

Über Kommentare und Ergänzungen zu diesen Lösungsbeispielen freuen wir uns! Aufgaben und Lösungen. Runde 04 Über Kommentare und Ergänzungen zu diesen n freuen wir uns!» KORREKTURKOMMISSION KARL FEGERT» BUNDESWETTBEWERB MATHEMATIK Kortrijker Straße, 577 Bonn Postfach 0 0 0, 5 Bonn

Mehr

Karlsruher Institut für Technologie Institut für Algebra und Geometrie

Karlsruher Institut für Technologie Institut für Algebra und Geometrie Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. Stefan Kühnlein Dipl.-Math. Jochen Schröder Einführung in Algebra und Zahlentheorie Übungsblatt 2 Aufgabe 1 (4 Punkte) Seien

Mehr

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin 1 Hausaufgaben vom 12.09.2007 Zahlentheorie 1 Aufgabe 1.1 Berechne die (quadratischen)

Mehr

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens Mathematische Grundlagen der Kryptographie 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe Stefan Brandstädter Jennifer Karstens 18. Januar 2005 Inhaltsverzeichnis 1 Ganze Zahlen 1 1.1 Grundlagen............................

Mehr

PHYSIK Wurfbewegungen 1

PHYSIK Wurfbewegungen 1 PHYSIK Wurfbewegungen 1 Senkrechter Wurf nach unten Senkrechter Wurf nach oben Datei Nr. 9111 Auführliche Löungen und Drucköglichkeit nur auf CD Friedrich W. Buckel Augut Internatgynaiu Schloß Torgelow

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

(2) (x 2 1 + x 2 2 + + x 2 n)(y 2 1 + y 2 2 + + y 2 n) = z 2 1 + z 2 2 + + z 2 n

(2) (x 2 1 + x 2 2 + + x 2 n)(y 2 1 + y 2 2 + + y 2 n) = z 2 1 + z 2 2 + + z 2 n Über die Komposition der quadratischen Formen von beliebig vielen Variablen 1. (Nachrichten von der k. Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse, 1898, S. 309 316.)

Mehr

GF(2 2 ) Beispiel eines Erweiterungskörpers (1)

GF(2 2 ) Beispiel eines Erweiterungskörpers (1) GF(2 2 ) Beispiel eines Erweiterungskörpers (1) Im Kapitel 2.1 wurde bereits gezeigt, dass die endliche Zahlenmenge {0, 1, 2, 3} q = 4 nicht die Eigenschaften eines Galoisfeldes GF(4) erfüllt. Vielmehr

Mehr

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert:

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: Beispiel: Wir untersuchen die rekursiv definierte Folge a 0 + auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: ( ) (,, 7, 5,...) Wir können also vermuten, dass die Folge monoton fallend

Mehr

368 4 Algorithmen und Datenstrukturen

368 4 Algorithmen und Datenstrukturen Kap04.fm Seite 368 Dienstag, 7. September 2010 1:51 13 368 4 Algorithmen und Datenstrukturen Java-Klassen Die ist die Klasse Object, ein Pfeil von Klasse A nach Klasse B bedeutet Bextends A, d.h. B ist

Mehr

Der Zwei-Quadrate-Satz von Fermat

Der Zwei-Quadrate-Satz von Fermat Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

10. Public-Key Kryptographie

10. Public-Key Kryptographie Stefan Lucks 10. PK-Krypto 274 orlesung Kryptographie (SS06) 10. Public-Key Kryptographie Analyse der Sicherheit von PK Kryptosystemen: Angreifer kennt öffentlichen Schlüssel Chosen Plaintext Angriffe

Mehr

Teilbarkeit von natürlichen Zahlen

Teilbarkeit von natürlichen Zahlen Teilbarkeit von natürlichen Zahlen Teilbarkeitsregeln: Die Teilbarkeitsregeln beruhen alle darauf, dass man von einer Zahl einen grossen Teil wegschneiden kann, von dem man weiss, dass er sicher durch

Mehr

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2 1 2 Notation für Wörter Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg w a is die Anzahl der Vorkommen von a in w Beispiel: abba

Mehr

Also kann nur A ist roter Südler und B ist grüner Nordler gelten.

Also kann nur A ist roter Südler und B ist grüner Nordler gelten. Aufgabe 1.1: (4 Punkte) Der Planet Og wird von zwei verschiedenen Rassen bewohnt - dem grünen und dem roten Volk. Desweiteren sind die Leute, die auf der nördlichen Halbkugel geboren wurden von denen auf

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Wurzeln, Potenzen, reelle Zahlen

Wurzeln, Potenzen, reelle Zahlen 1. Zahlenpartner Wurzeln, Potenzen, reelle Zahlen Wie lassen sich die Zahlen auf dem oberen und unteren Notizzettel einander sinnvoll zuordnen? Quelle: Schnittpunkt 9 (1995) Variationen: (a) einfachere

Mehr

Computerarithmetik ( )

Computerarithmetik ( ) Anhang A Computerarithmetik ( ) A.1 Zahlendarstellung im Rechner und Computerarithmetik Prinzipiell ist die Menge der im Computer darstellbaren Zahlen endlich. Wie groß diese Menge ist, hängt von der Rechnerarchitektur

Mehr

Wie viele Nullstellen hat ein Polynom?

Wie viele Nullstellen hat ein Polynom? Wie viele Nullstellen hat ein Polynom? Verena Pölzl 0812265 Sabine Prettner 8930280 Juni 2013 1 Inhaltsverzeichnis 1 Warum will man wissen, wie viele Nullstellen ein Polynom hat? 3 2 Oligonome 4 3 Die

Mehr

Standardisierte kompetenzorientierte schriftliche Reifeprüfung. Mathematik. Probeklausur März 2014. Teil-1-Aufgaben

Standardisierte kompetenzorientierte schriftliche Reifeprüfung. Mathematik. Probeklausur März 2014. Teil-1-Aufgaben Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik Probeklausur März 2014 Teil-1-Aufgaben Beurteilung Jede Aufgabe in Teil 1 wird mit 0 oder 1 Punkt bewertet, jede Teilaufgabe in

Mehr

34 5. FINANZMATHEMATIK

34 5. FINANZMATHEMATIK 34 5. FINANZMATHEMATIK 5. Finanzmathematik 5.1. Ein einführendes Beispiel Betrachten wir eine ganz einfache Situation. Wir haben einen Markt, wo es nur erlaubt ist, heute und in einem Monat zu handeln.

Mehr

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen .3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt

Mehr

17. Penalty- und Barriere-Methoden

17. Penalty- und Barriere-Methoden H.J. Oberle Optimierung SoSe 01 17. Penalty- und Barriere-Methoden Penalty- und Barriere Methoden gehören zu den ältesten Ansätzen zur Lösung allgemeiner restringierter Optimierungsaufgaben. Die grundlegende

Mehr

Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen

Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen Michael Schaeer 3.04.03 Abstract This seminar is about convex functions and several imortant ineualities. At the beginning the term

Mehr

Lenstras Algorithmus für Faktorisierung

Lenstras Algorithmus für Faktorisierung Lenstras Algorithmus für Faktorisierung Bertil Nestorius 9 März 2010 1 Motivation Die schnelle Faktorisierung von Zahlen ist heutzutage ein sehr wichtigen Thema, zb gibt es in der Kryptographie viele weit

Mehr

Y b 2 - a 2 = p 2 - q 2 (*)

Y b 2 - a 2 = p 2 - q 2 (*) Um den Flächeninhalt eines Dreieckes zu bestimmen, das keinen rechten Winkel besitzt, muss man bekanntlich die Längen einer Seite mit der dazugehörigen Höhe kennen Wir setzen voraus, dass uns alle 3 Seitenlängen

Mehr

Sprechen wir über Zahlen (Karl-Heinz Wolff)

Sprechen wir über Zahlen (Karl-Heinz Wolff) Sprechen wir über Zahlen (Karl-Heinz Wolff) Die Überschrift ist insoweit irreführend, als der Autor ja schreibt und nicht mit dem Leser spricht. Was Mathematik im allgemeinen und Zahlen im besonderen betrifft,

Mehr

Definition 27 Affiner Raum über Vektorraum V

Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V ist die Menge A = Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A,

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

Geometrische Mannigfaltigkeiten

Geometrische Mannigfaltigkeiten Geometrische Mannigfaltigkeiten Thilo Kuessner Abstract Kurzfassung der Vorlesung: Definitionen, Beispiele und Sätze, keine Beweise. Definition 1. Ein topologischer Raum ist eine Menge X mit einer Familie

Mehr

Definition:Eine meromorphe Modulform vom Gewicht k Z ist eine meromorphe. f : H C. (ii) C > 0, so daß f(z) im Bereich Im z > C keine Singularität hat.

Definition:Eine meromorphe Modulform vom Gewicht k Z ist eine meromorphe. f : H C. (ii) C > 0, so daß f(z) im Bereich Im z > C keine Singularität hat. Die k/2 - Formel von Renate Vistorin Zentrales Thema dieses Vortrages ist die k/2 - Formel für meromorphe Modulformen als eine Konsequenz des Residuensatzes. Als Folgerungen werden danach einige Eigenschaften

Mehr

2 Darstellung von Zahlen und Zeichen

2 Darstellung von Zahlen und Zeichen 2.1 Analoge und digitale Darstellung von Werten 79 2 Darstellung von Zahlen und Zeichen Computer- bzw. Prozessorsysteme führen Transformationen durch, die Eingaben X auf Ausgaben Y abbilden, d.h. Y = f

Mehr

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1 3.2 Binäre Suche Beispiel 6.5.1: Intervallschachtelung (oder binäre Suche) (Hier ist n die Anzahl der Elemente im Feld!) Ein Feld A: array (1..n) of Integer sei gegeben. Das Feld sei sortiert, d.h.: A(i)

Mehr

Warum sind die komplexen Zahlen cool? (meiner lieben 7SV gewidmet)

Warum sind die komplexen Zahlen cool? (meiner lieben 7SV gewidmet) Warum sind die komplexen Zahlen cool? (meiner lieben 7SV gewidmet) Intro: Du kennst die reellen Zahlen. Sie entsprechen den Punkten auf einer Strecke bzw. auf dem Zahlenstrahl. - Man kann sie der Größe

Mehr

21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer?

21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer? Vorlesung Programmieren Zahlendarstellung Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Agenda Zahlendarstellung Oder: wie rechnen

Mehr

Primzahlen zwischen 50 und 60. Primzahlen zwischen 70 und 80. Primzahlen zwischen 10 und 20. Primzahlen zwischen 40 und 50. den Term 2*x nennt man

Primzahlen zwischen 50 und 60. Primzahlen zwischen 70 und 80. Primzahlen zwischen 10 und 20. Primzahlen zwischen 40 und 50. den Term 2*x nennt man die kleinste Primzahl zwischen 0 und 60 zwischen 0 und 10 zwischen 60 und 70 zwischen 70 und 80 zwischen 80 und 90 zwischen 90 und 100 zwischen 10 und 20 zwischen 20 und 0 zwischen 0 und 40 zwischen 40

Mehr

1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen:

1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen: Zahlensysteme. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis darstellen: n n n n z a a... a a a Dabei sind die Koeffizienten a, a, a,... aus der

Mehr

Amerikanischen Optionen

Amerikanischen Optionen Die Bewertung von Amerikanischen Optionen im Mehrperiodenmodell Universität-Gesamthochschule Paderborn Fachbereich 17 Seminar Finanzmathematik SS 2001 Referentin: Christiane Becker-Funke Dozent: Prof.

Mehr

Vom goldenen Schnitt zum Alexanderplatz in Berlin

Vom goldenen Schnitt zum Alexanderplatz in Berlin Vom goldenen Schnitt zum Alexanderplatz in Berlin Mathematik von 1200 bis 2004 Stefan Kühling, Fachbereich Mathematik skuehling @ fsmath.mathematik.uni-dortmund.de Schnupper Uni 26. August 2004 1 1 Goldener

Mehr

Rekursionen (Teschl/Teschl 8.1-8.2)

Rekursionen (Teschl/Teschl 8.1-8.2) Rekursionen (Teschl/Teschl 8.1-8.2) Eine Rekursion kter Ordnung für k N ist eine Folge x 1, x 2, x 3,... deniert durch eine Rekursionsvorschrift x n = f n (x n 1,..., x n k ) für n > k, d. h. jedes Folgenglied

Mehr

Folgen. Kapitel 3. 3.1 Zinsrechnung

Folgen. Kapitel 3. 3.1 Zinsrechnung Kapitel 3 Folgen Eine Folge reeller Zahlen ordnet natürlichen Zahlen jeweils eine reelle Zahl zu. Liegen beispielsweise volkswirtschaftliche Daten quartalsweise vor, so kann man diese als Folge interpretieren.

Mehr

KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten:

KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten: KAPITEL 4 Lineare Ausgleichsrechnung Beispiel 41 Das Ohmsche Gesetz: Eine Meßreihe von Daten: U = RI (U i, I i ) (Spannung, Stromstärke), i = 1,, m Aufgabe: man bestimme aus diesen Meßdaten den Widerstand

Mehr

Investition & Finanzierung. 2. Investitionsrechnung unter Sicherheit

Investition & Finanzierung. 2. Investitionsrechnung unter Sicherheit Investition & Finanzierung 2. Investitionsrechnung unter Univ.-Prof. Dr. Dr. Andreas Löffler (AL@wacc.de) 1 Unter Cashflows verstehen wir Ein- sowie Auszahlungen. Wir konzentrieren uns vollkommen auf diese

Mehr

Komplexe. Zahlen. Ein Leitprogramm in Mathematik. Verfasst von Christina Diehl Marcel Leupp. Du weißt. Instinkt. Bei uns Tigern ist das angeboren.

Komplexe. Zahlen. Ein Leitprogramm in Mathematik. Verfasst von Christina Diehl Marcel Leupp. Du weißt. Instinkt. Bei uns Tigern ist das angeboren. Komplexe Hier ist noch eine Matheaufgabe, die ich nicht lösen kann. Was ist 9+4? Oh, die ist schwer. Dafür brauchst du Analysis und imaginäre Zahlen. Imaginäre Zahlen?! Du weißt schon. Elfzehn, zwölfunddreißig,

Mehr

Primzahlen im Schulunterricht wozu?

Primzahlen im Schulunterricht wozu? Primzahlen im Schulunterricht wozu? FRANZ PAUER, FLORIAN STAMPFER (UNIVERSITÄT INNSBRUCK) 1. Einleitung Eine natürliche Zahl heißt Primzahl, wenn sie genau zwei Teiler hat. Im Lehrplan der Seundarstufe

Mehr

Mathe-Übersicht INHALTSVERZEICHNIS

Mathe-Übersicht INHALTSVERZEICHNIS S. 1/13 Mathe-Übersicht V. 1.1 2004-2012 by Klaus-G. Coracino, Nachhilfe in Berlin, www.coracino.de Hallo, Mathe-Übersicht Diese Datei enthält verschiedene Themen, deren Überschriften im INHALTSVERZEICHNIS

Mehr

DHBW Karlsruhe, Vorlesung Programmieren, Klassen (2)

DHBW Karlsruhe, Vorlesung Programmieren, Klassen (2) DHBW Karlsruhe, Vorlesung Programmieren, Klassen (2) Aufgabe 3 Bankkonto Schreiben Sie eine Klasse, die ein Bankkonto realisiert. Attribute für das Bankkonto sind der Name und Vorname des Kontoinhabers,

Mehr

Klausur in Programmieren

Klausur in Programmieren Studiengang Sensorik/Sensorsystemtechnik Note / normierte Punkte Klausur in Programmieren Winter 2009/2010, 18. Februar 2010 Dauer: 1,5h Hilfsmittel: Keine (Wörterbücher sind auf Nachfrage erlaubt) Name:

Mehr

Zyklen von indefiniten binären quadratischen Formen und die engere Idealklassengruppe reell quadratischer Zahlkörper mit Diskriminante d < 10 6

Zyklen von indefiniten binären quadratischen Formen und die engere Idealklassengruppe reell quadratischer Zahlkörper mit Diskriminante d < 10 6 Zyklen von indefiniten binären quadratischen Formen und die engere Idealklassengruppe reell quadratischer Zahlkörper mit Diskriminante d < 10 6 1. Einleitung. von Daniel C. Mayer. Dem Gedächtnis an Alexander

Mehr

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder Programmieren in PASCAL Bäume 1 1. Baumstrukturen Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder 1. die leere Struktur oder 2. ein Knoten vom Typ Element

Mehr

Martingale. Kapitel 6. 6.1 Martingale in diskreter Zeit. 6.1.1 Definition und Beispiele

Martingale. Kapitel 6. 6.1 Martingale in diskreter Zeit. 6.1.1 Definition und Beispiele Kapitel 6 Martingale In der Statistik modellieren Martingale z.b. Glücksspiele oder Handelsstrategien in Finanzmärkten und sind ein grundlegendes Hilfsmittel für die statistische Inferenz stochastischer

Mehr

3. LINEARE GLEICHUNGSSYSTEME

3. LINEARE GLEICHUNGSSYSTEME 176 3. LINEARE GLEICHUNGSSYSTEME 90 Vitamin-C-Gehalt verschiedener Säfte 18,0 mg 35,0 mg 12,5 mg 1. a) 100 ml + 50 ml + 50 ml = 41,75 mg 100 ml 100 ml 100 ml b) : Menge an Kirschsaft in ml y: Menge an

Mehr

Didaktik der Zahlbereichserweiterungen

Didaktik der Zahlbereichserweiterungen 3.1 vom Hofe, R.; Hattermann, M. (2014): Zugänge zu negativen Zahlen. mathematik lehren 183, S. 2-7 Jürgen Roth Didaktik der Zahlbereichserweiterungen Modul 5: Fachdidaktische Bereiche 3.2 Inhaltsverzeichnis

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Ausgabe: 2005-02-21 Abgabe: 2005-02-21 Technische Informatik - Eine

Mehr

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen 4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.

Mehr

Beweis der Darstellbarkeit irgend eines ganzen invarianten Gebildes einer binären Form als ganze Function einer geschlossenen Anzahl solcher Gebilde.

Beweis der Darstellbarkeit irgend eines ganzen invarianten Gebildes einer binären Form als ganze Function einer geschlossenen Anzahl solcher Gebilde. 73 Beweis der Darstellbarkeit irgend eines ganzen invarianten Gebildes einer binären Form als ganze Function einer geschlossenen Anzahl solcher Gebilde. von F. Mertens. 1. Ich habe in dem hundertsten Bande

Mehr

Codierung. Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau

Codierung. Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau Codierung Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau Ein bisschen Informationstheorie Betrachten wir das folgende Problem: Wie lautet eine sinnvolle Definition für das quantitative

Mehr

3 Konvexe Analysis. 3.1 Grundlagen

3 Konvexe Analysis. 3.1 Grundlagen 25 3 Konvee Analsis 3.1 Grundlagen Die konvee Analsis auch Konveitätstheorie genannt untersucht geometrische Eigenschaften von konveen Mengen, Funktionen und Funktionalen in linearen Räumen. Eine tpische

Mehr

ab (a wird gefunden als die Abcisse des Minimums). so erhält man eine

ab (a wird gefunden als die Abcisse des Minimums). so erhält man eine 24 ab (a wird gefunden als die Abcisse des Minimums). so erhält man eine gerade Linie. Die (:~). Kurve (verg I. Fig. 5) ist ein Parabel. Wenn nun d gröszer als a wird. wird die Kurve wieder steigen. Die

Mehr

Hans-Reiner-Schule Bad Kohlgrub

Hans-Reiner-Schule Bad Kohlgrub Hans-Reiner-Schule Bad Kohlgrub Name:... Erreichte Punktzahl:.../14 Note:... Seite 1 von 10 Name:... Punkte 1. Die 1 Tätigkeitsbereiche sind: Verarbeiten von Materialien - Zusammenbauen, Montieren - Gestalten

Mehr

Zur Vereinfachung betrachten wir nun nur noch Funktionen f, die einen Funktionswert f nµberechnen. Sie werden alle in einer Tabelle dargestellt:

Zur Vereinfachung betrachten wir nun nur noch Funktionen f, die einen Funktionswert f nµberechnen. Sie werden alle in einer Tabelle dargestellt: Informatik 13: Gierhardt Theoretische Informatik III Berechenbarkeit Nicht-berechenbare Funktionen Nach der Church-Turing-These kann alles, was berechenbar ist, mit einer Turing-Maschine oder einer While-Maschine

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

Informationen zum Aufnahmetest Mathematik

Informationen zum Aufnahmetest Mathematik Erwachsenenschule Bremen Abendgymnasium und Kolleg Fachvertretung Mathematik Informationen zum Aufnahmetest Mathematik Der Aufnahmetest Mathematik ist eine schriftliche Prüfung von 60 Minuten Dauer. Alle

Mehr

Qualitative Datenanalyse

Qualitative Datenanalyse Qualitative Datenanalyse Prof. Dr. Stefan E. Schmidt Francesco Kriegel TU Dresden Fakultät Mathematik Institut Algebra SS 2007 28. September 2008 Inhaltsverzeichnis Kapitel 1 Formale Begriffsanalyse 1

Mehr

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,

Mehr

Formaler Entwurf mit Event-B Die Eventbank

Formaler Entwurf mit Event-B Die Eventbank Institut für Theoretische Informatik Anwendungsorientierte Formale Verifikation Vorlesung Anwendung Formaler Verifikation SS 2015, 9.6.15 Dr. V. Klebanov, Dr. M. Ulbrich Formaler Entwurf mit Event-B Die

Mehr

Teil II. Nichtlineare Optimierung

Teil II. Nichtlineare Optimierung Teil II Nichtlineare Optimierung 60 Kapitel 1 Einleitung In diesem Abschnitt wird die Optimierung von Funktionen min {f(x)} x Ω betrachtet, wobei Ω R n eine abgeschlossene Menge und f : Ω R eine gegebene

Mehr

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013 Reelle Analysis Vorlesungsskript Enno Lenzmann, Universität Basel 7. November 2013 6 L p -Räume Mit Hilfe der Masstheorie können wir nun die sog. L p -Räume einführen. Diese Räume sind wichtig in vielen

Mehr

Entmischungsgleichgewichte

Entmischungsgleichgewichte ntischungsgleichgewichte Ideale binäre Mischungen Bei der Behandlung von Mischungserscheinungen in binären ysteen geht an von den beiden betreffenden reinen Koponenten aus. Für den jeweiligen toffengenanteil

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SoSe 0 Institut für Informatik Prof Dr Thomas Huckle Dipl-Math Jürgen Bräckle Nikola Tchipev, MSc Numerisches Programmieren, Übungen Musterlösung Übungsblatt: Zahlendarstellung,

Mehr

2 Die Darstellung linearer Abbildungen durch Matrizen

2 Die Darstellung linearer Abbildungen durch Matrizen 2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )

Mehr

Beweis des Satzes, dass eine einwerthige mehr als 2nfach periodische Function von n Veränderlichen unmöglich ist. Bernhard Riemann

Beweis des Satzes, dass eine einwerthige mehr als 2nfach periodische Function von n Veränderlichen unmöglich ist. Bernhard Riemann Beweis des Satzes, dass eine einwerthige mehr als 2nfach periodische Function von n Veränderlichen unmöglich ist. Bernhard Riemann (Auszug aus einem Schreiben Riemann s an Herrn Weierstrass) [Journal für

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr