1) Mit welcher Zahl muss 18 multipliziert werden, um 234 zu erhalten? Kontrolliere! 2) Finde die Zahl, mit der 171 multipliziert werden muss, um 4104

Größe: px
Ab Seite anzeigen:

Download "1) Mit welcher Zahl muss 18 multipliziert werden, um 234 zu erhalten? Kontrolliere! 2) Finde die Zahl, mit der 171 multipliziert werden muss, um 4104"

Transkript

1 1) Mit welcher Zahl muss 18 multipliziert werden, um 234 zu erhalten? Kontrolliere! 2) Finde die Zahl, mit der 171 multipliziert werden muss, um 4104 zu erhalten? Probe! 3) Von zwei Zahlen ist die eine um 20 größer als die andere. Bildet man die Summe dieser Zahlen, so erhält man 180. Wie heißen die beiden Zahlen? Kontrolliere durch Einsetzen! 4) Karins Großmutter ist 76 Jahre alt. Karin ist 16 Jahre alt. Mit wie vielen Jahren wird die Großmutter 4-mal so alt wie Karin sein? 5) Addiere das 2fache einer Zahl zum 4fachen dieser Zahl, so erhält man 36. Wie heißt diese Zahl? Kontrolliere! 6) Vermindert man das 4fache einer Zahl um 12, so erhält man das 2fache dieser Zahl. Wie heißt diese Zahl? Probe! 7) Wenn man zur Zahl a, die um 6 größere Zahl addiert, so erhält man 38. Welche Zahl kann man für a einsetzen? Probe! 8) Subtrahiert man von der Hälfte einer Zahl ein Drittel dieser Zahl, so erhält man 54. Wie heißt diese Zahl? (Probe!) 9) Die Summe von vier aufeinanderfolgenden natürlichen Zahlen beträgt 98. Gib diese vier natürlichen Zahlen an! 10) Friedrich ist um 22 Jahre jünger als sein Vater. Wie alt ist Friedrich, wenn sein Vater 38 Jahre alt ist? Kontrolliere die Lösung! 11) Addiert man zum Doppelten einer Zahl die Zahl 24, so erhält man die Differenz vom 8fachen der Ausgangszahl und 6. Ermittle diese Zahl mit einer Gleichung und führe die Probe 12) Die Summe zweier Zahlen beträgt 244. Berechne die Summanden, wenn der 1. Summand 3-mal so groß sein soll wie der 2. Summand! Probe!

2 13) Friedrich ist um 18 Jahre jünger als sein Vater. Wie alt ist Friedrich, wenn sein Vater 42 Jahre alt ist? Löse dieses Beispiel mit einer Gleichung und führe die Probe 14) Wie heißt die Zahl, wenn folgende Bedingungen gelten? Das 3-fache einer Zahl, vermehrt um das 5-fache dieser Zahl, ergibt 168. Löse mit einer Gleichung und kontrolliere das Ergebnis! 15) Wie heißt die Zahl, für die folgende Bedingungen gelten? Das 4fache einer Zahl, vermehrt um das 7fache dieser Zahl, ergibt 176. Kontrolliere die Lösung durch eine Probe! 16) Löse folgende Gleichung mit Umkehroperationen und führe die Probe 2y - 3y + 5y ) Löse folgende Gleichung nach dem Waagemodell und führe die Probe 3y - 4y + 5y ) Verwende das Umkehrmodell zum Lösen folgender Gleichung und führe die Probe ) Löse folgende Gleichung nach dem Umkehrmodell und führe die Probe 3n n n ) Berechne die Unbekannte x nach dem Waagemodell und führe die Probe

3 21) Löse folgende Gleichung nach dem Waagemodell und führe die Probe 5 x x x ) Löse folgende Gleichung nach dem Waagemodell und führe die Probe a a 23) Berechne x nach dem Waagemodell und führe die Probe 9x x 24) Löse folgende Gleichung nach dem Waagemodell und führe die Probe 4n n + 4 n n ) Die Zahl 23 ist genauso groß wie das Fünffache einer Zahl um 8 vermehrt. Wie lautet diese Zahl? 26) Das Dreifache einer Zahl, vermindert um 11, ergibt 13. Stelle eine Gleichung auf und berechne die Zahl! 27) In einer Klasse sind 28 Schüler. Allerdings um 4 Mädchen mehr als Burschen. Schreib eine Gleichung an und berechne die Anzahl der Mädchen und Burschen! 28) Verdreifacht man eine Zahl und subtrahiert 23, so erhält man das 2-fache der um 7 verminderten Zahl. Wie lautet diese Zahl? 29) Wenn man das Dreifache einer Zahl um 23 vermindert, so erhält man das 2-fache der Zahl um 7 vermindert. Wie lautet diese Zahl?

4 1) Lösung zu 7A2.34-S / 003-e 18 x 234 x muss mit 13 multipliziert werden. Pr.: ) Lösung zu 7A2.34-S / 005-e 171. x 4104 Pr.: x muss mit 24 multipliziert werden. 3) Lösung zu 7A2.34-S / 008-e 1. Zahl: x 2. Zahl: x Summe: 180 x + x x 80 Die beiden Zahlen heißen 80 und 100. Probe: 1. Zahl: Zahl: Summe: 180 4) Lösung zu 7A2.34-S / 009-e Großmutter Karin Großm.: 76 + x Karin: (16 + x) x ( 16 + x) x x 12 3x 4 x Mit 80 Jahren ist die Großmutter 4-mal so alt wie Karin. 5) Lösung zu 7A2.34-S / 010-e x 36 x 6 Diese Zahl heißt 6. Pr.:

5 6) Lösung zu 7A2.34-S / 013-m x 6 Diese Zahl heißt 6. Pr.: ) Lösung zu 7A2.34-S / 002-e a + a a a 32 a 16 Für a kann man die Zahl 16 einsetzen. Pr.: ) Lösung zu 7A2.34-S / 011-m / x x x 324 x 324 Diese Zahl heißt 324. Pr.: ) Lösung zu 7A2.34-S / 022-s 1. Zahl: x x + x x x Zahl: x Zahl: x Zahl: x x 23 Diese vier Zahlen heißen 23, 24, 25 und ) Lösung zu 7A1.14-S / 006-e Friedrich: x x Pr.: Vater: 38 Jahre x Friedrich ist 16 Jahre alt.

6 11) Lösung zu 7A1.14-S / 015-m 2 x x x x 5 x Pr.: Die Zahl heißt 5. 12) Lösung zu 7A1.14-S / 018-m 1. Summand: 3 x 3 x + x 244 Pr.: 1. Summand: Summand: x 4 x Summand: 61 Summe 244 x 61 Summe: 244 Die Summanden heißen 183 und ) Lösung zu 7A1.14-S / 001-e Friedrich: x Vater: 42 Jahre x x 24 Pr.: Friedrich ist 24 Jahre alt. 14) Lösung zu 7A1.14-S / 003-e 3 x + 5 x x 168 x 21 Pr.: Die Zahl heißt ) Lösung zu 7A1.14-S / 008-e 4 x + 7 x x 176 x 16 Pr.: Die Zahl heißt 16.

7 16) Lösung zu 7A1.11-E / 011-m 2y 3y + 5y 24 0 Pr.: y y y 6 17) Lösung zu 7A1.11-E / 016-m 3y 4y + 5y y 24 0 / y 24/: 4 y 6 Pr.: ) Lösung zu 7A1.11-E / 001-e Pr.: x ) Lösung zu 7A1.11-E / 005-e 3n 9 + 2n n + 8 5n 5 3n n 3n n 70 n 35 Pr.: ) Lösung zu 7A1.11-E / 006-e / 10 48/: 4 x 12 Pr.:

8 21) Lösung zu 7A1.11-E / 007-e 5 x x x x 4 5 x + 24 / 5 x 4 x 4 24 / x 28 /: 4 x 7 Probe: ) Lösung zu 7A1.11-E / 008-e a a 3 a a / 12 3 a 6 a 12/ 6 a 3 a 12 /:( 3) a 4 Pr.: ) Lösung zu 7A1.11-E / 009-e 9x x 3x 18 / x 18 0 / + 18 x 18 Pr.: ) Lösung zu 7A1.11-E / 010-e 4n 9 + n + 4 n n + 8 5n 5 3n + 65 / 3n 2n 5 65 / + 5 2n 70 /: 2 n 35 Probe:

9 25) Lösung zu 8A1.01-E / 003-e Gleichung : 23 5x + 8 x 3 26) Lösung zu 8A1.01-E / 002-e Gleichung : 3x x 8 27) Lösung zu 8A1.01-E / 001-e b... Burschen b Mädchen b + (b + 4) 28 b Burschen 16 Mädchen 28) Lösung zu 8A1.01-E / 014-m 3x (x - 7) x 9 29) Lösung zu 8A1.01-E / 015-m 3x x 16

Orientierungstest für angehende Industriemeister. Vorbereitungskurs Mathematik

Orientierungstest für angehende Industriemeister. Vorbereitungskurs Mathematik Orientierungstest für angehende Industriemeister Vorbereitungskurs Mathematik Weiterbildung Technologie Erlaubte Hilfsmittel: Formelsammlung Taschenrechner Maximale Bearbeitungszeit: 1 Stunde Provadis

Mehr

Primzahlen zwischen 50 und 60. Primzahlen zwischen 70 und 80. Primzahlen zwischen 10 und 20. Primzahlen zwischen 40 und 50. den Term 2*x nennt man

Primzahlen zwischen 50 und 60. Primzahlen zwischen 70 und 80. Primzahlen zwischen 10 und 20. Primzahlen zwischen 40 und 50. den Term 2*x nennt man die kleinste Primzahl zwischen 0 und 60 zwischen 0 und 10 zwischen 60 und 70 zwischen 70 und 80 zwischen 80 und 90 zwischen 90 und 100 zwischen 10 und 20 zwischen 20 und 0 zwischen 0 und 40 zwischen 40

Mehr

Inhalt. 01 Lehrplanübersicht 02 Sequenzkarte Terme Sequenzkarte Gleichungen

Inhalt. 01 Lehrplanübersicht 02 Sequenzkarte Terme Sequenzkarte Gleichungen Inhalt Seminarbuch 37 Wie war das doch gleich wieder? Seminarbuch 38 Wir lösen Gleichungen - Lösungsmodelle 1 Seminarbuch 39 Lösungsmodelle 2 Seminarbuch 40 Lösungsmodelle 3 Seminarbuch 41 Rechenregeln

Mehr

Mathematik-Dossier. Die lineare Funktion

Mathematik-Dossier. Die lineare Funktion Name: Mathematik-Dossier Die lineare Funktion Inhalt: Lineare Funktion Lösen von Gleichungssystemen und schneiden von Geraden Verwendung: Dieses Dossier dient der Repetition und Festigung innerhalb der

Mehr

Aufgabenbeispiele/ Schwerpunkte zur Vorbereitung auf die Eignungsprüfung im Fach Mathematik

Aufgabenbeispiele/ Schwerpunkte zur Vorbereitung auf die Eignungsprüfung im Fach Mathematik Aufgabenbeispiele/ Schwerpunkte zur Vorbereitung auf die Eignungsprüfung im Fach Mathematik. Bruchrechnung (ohne Taschenrechner!!!) a) Mache gleichnamig! 4 und ; und ; 4 7 b) Berechne! 8 7 8 + 4 9 8 4

Mehr

Mathe-Übersicht INHALTSVERZEICHNIS

Mathe-Übersicht INHALTSVERZEICHNIS S. 1/13 Mathe-Übersicht V. 1.1 2004-2012 by Klaus-G. Coracino, Nachhilfe in Berlin, www.coracino.de Hallo, Mathe-Übersicht Diese Datei enthält verschiedene Themen, deren Überschriften im INHALTSVERZEICHNIS

Mehr

MATHE - CHECKER 6. Klasse L Ö S U N G E N. by W. Rasch

MATHE - CHECKER 6. Klasse L Ö S U N G E N. by W. Rasch MATHE - CHECKER 6. Klasse L Ö S U N G E N by W. Rasch 1. Aufgabe Ein Auto verbraucht 8 Liter Benzin auf 100 km. Wie viele Liter braucht es für 350 km? A: 32 Liter B: 24 Liter C: 28 Liter D: 36 Liter 2.

Mehr

3. LINEARE GLEICHUNGSSYSTEME

3. LINEARE GLEICHUNGSSYSTEME 176 3. LINEARE GLEICHUNGSSYSTEME 90 Vitamin-C-Gehalt verschiedener Säfte 18,0 mg 35,0 mg 12,5 mg 1. a) 100 ml + 50 ml + 50 ml = 41,75 mg 100 ml 100 ml 100 ml b) : Menge an Kirschsaft in ml y: Menge an

Mehr

2 Lineare Gleichungen mit zwei Variablen

2 Lineare Gleichungen mit zwei Variablen 2 Lineare Gleichungen mit zwei Variablen Die Klasse 9 c möchte ihr Klassenzimmer mit Postern ausschmücken. Dafür nimmt sie 30, aus der Klassenkasse. In Klasse 7 wurden lineare Gleichungen mit einer Variablen

Mehr

n 0 1 2 3 4 5 6 7 8 9 10 11 12 S n 1250 1244, 085 1214, 075 1220, 136 1226, 167 Nach einem Jahr beträgt der Schuldenstand ca. 1177,09.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 S n 1250 1244, 085 1214, 075 1220, 136 1226, 167 Nach einem Jahr beträgt der Schuldenstand ca. 1177,09. Gymnasium Leichlingen 10a M Lö 2007/08.2 2/2 Aufgaben/Lösungen der Klassenarbeit Nr. 4 von Fr., 2008-04-25 2 45 Aufgabe 1: Die A-Bank bietet Kredite zu einem Zinssatz von 6% pro Jahr an. Ein privater Keditvermittler

Mehr

Eingangstest lineare Gleichungssysteme

Eingangstest lineare Gleichungssysteme Eingangstest lineare Gleichungsssteme Lineare Gleichung mit einer Variablen Löse die Gleichung. 7 + = 0 ( + 9) = 5 8 c) ( 7) = ( + 8) = = = 5 Stelle zu den Sachproblemen geeignete Gleichungen auf und löse

Mehr

Lösen von linearen Gleichungssystemen mit zwei Unbekannten:

Lösen von linearen Gleichungssystemen mit zwei Unbekannten: Lösen von linearen Gleichungssystemen mit zwei Unbekannten: 1. Additions- und Subtraktionsverfahren 3x = 7y 55 + 5x 3x = 7y 55 7y 5x + 2y = 4 3 5 werden, dass die Variablen links und die Zahl rechts vom

Mehr

DHBW Karlsruhe, Vorlesung Programmieren, Klassen (2)

DHBW Karlsruhe, Vorlesung Programmieren, Klassen (2) DHBW Karlsruhe, Vorlesung Programmieren, Klassen (2) Aufgabe 3 Bankkonto Schreiben Sie eine Klasse, die ein Bankkonto realisiert. Attribute für das Bankkonto sind der Name und Vorname des Kontoinhabers,

Mehr

Zählstatistik. Peter Appel. 31. Januar 2005

Zählstatistik. Peter Appel. 31. Januar 2005 Zählstatistik Peter Appel 31. Januar 2005 1 Einleitung Bei der quantitativen Analyse im Bereich von Neben- und Spurenelementkonzentrationen ist es von Bedeutung, Kenntnis über die möglichen Fehler und

Mehr

Inhalt: Binärsystem 7.Klasse - 1 -

Inhalt: Binärsystem 7.Klasse - 1 - Binärsystem 7.Klasse - 1 - Inhalt: Binärarithmetik... 2 Negative Zahlen... 2 Exzess-Darstellung 2 2er-Komplement-Darstellung ( two s complement number ) 2 Der Wertebereich vorzeichenbehafteter Zahlen:

Mehr

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert:

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: Beispiel: Wir untersuchen die rekursiv definierte Folge a 0 + auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: ( ) (,, 7, 5,...) Wir können also vermuten, dass die Folge monoton fallend

Mehr

Leitung 1 Leitung 2 0 0 0 1 1 0 1 1

Leitung 1 Leitung 2 0 0 0 1 1 0 1 1 1 1 Vorbetrachtungen Wie könnte eine Codierung von Zeichen im Computer realisiert werden? Der Computer arbeitet mit elektrischem Strom, d. h. er kann lediglich zwischen den beiden Zuständen Strom an und

Mehr

1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen:

1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen: Zahlensysteme. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis darstellen: n n n n z a a... a a a Dabei sind die Koeffizienten a, a, a,... aus der

Mehr

Teilbarkeit von natürlichen Zahlen

Teilbarkeit von natürlichen Zahlen Teilbarkeit von natürlichen Zahlen Teilbarkeitsregeln: Die Teilbarkeitsregeln beruhen alle darauf, dass man von einer Zahl einen grossen Teil wegschneiden kann, von dem man weiss, dass er sicher durch

Mehr

3 Berechnungen und Variablen

3 Berechnungen und Variablen 3 Berechnungen und Variablen Du hast Python installiert und weißt, wie man die Python-Shell startet. Jetzt kannst Du etwas damit machen. Wir fangen mit ein paar einfachen Berechnungen an und wenden uns

Mehr

Linearen Gleichungssysteme Anwendungsaufgaben

Linearen Gleichungssysteme Anwendungsaufgaben Linearen Gleichungssysteme Anwendungsaufgaben Lb S. 166 Nr.9 Im Jugendherbergsverzeichnis ist angegeben, dass in der Jugendherberge in Eulenburg 145 Jugendliche in 35 Zimmern übernachten können. Es gibt

Mehr

2-er Komplement: Schritt 1 von 3

2-er Komplement: Schritt 1 von 3 2-er Komplement: Schritt 1 von 3 Umwandlung ins Binärsystem (wir rechnen nur mit 8- oder 16-Bit) 34 10 = 100010 2 13 10 = 1101 2 312 10 = 101000 2 (9-Bit, gewählt 16-Bit!) Technische Universität Ilmenau,

Mehr

Theoretische Informatik SS 04 Übung 1

Theoretische Informatik SS 04 Übung 1 Theoretische Informatik SS 04 Übung 1 Aufgabe 1 Es gibt verschiedene Möglichkeiten, eine natürliche Zahl n zu codieren. In der unären Codierung hat man nur ein Alphabet mit einem Zeichen - sagen wir die

Mehr

GLEICH WEIT WEG. Aufgabe. Das ist ein Ausschnitt aus der Tausenderreihe:

GLEICH WEIT WEG. Aufgabe. Das ist ein Ausschnitt aus der Tausenderreihe: GLEICH WEIT WEG Thema: Sich orientieren und operieren an der Tausenderreihe Klasse: 3. Klasse (Zahlenbuch nach S. 26-27) Dauer: 3-4 Lektionen Material: Tausenderreihe, Arbeitsblatt, evt. Plättchen Bearbeitung:

Mehr

Übungen lineare Gleichungssysteme - Lösungen 1. Bestimme die Lösungsmenge und führe eine Probe durch! a)

Übungen lineare Gleichungssysteme - Lösungen 1. Bestimme die Lösungsmenge und führe eine Probe durch! a) Übungen lineare Gleichungssysteme - Lösungen. Bestimme die Lösungsmenge und führe eine Probe durch! a) b) c) 2x5y=23 2x 3y= 6x0y=64 6x 2y=6 2x3y=20 5x y=33 2x5y=23 2x 3y= 2x5y=23 2x3y= 8y=24 : 8 y=3 6x0y=64

Mehr

Lektion 1: Von Nullen und Einsen _ Die binäre Welt der Informatik

Lektion 1: Von Nullen und Einsen _ Die binäre Welt der Informatik Lektion 1: Von Nullen und Einsen _ Die binäre Welt der Informatik Helmar Burkhart Departement Informatik Universität Basel Helmar.Burkhart@unibas.ch Helmar Burkhart Werkzeuge der Informatik Lektion 1:

Mehr

Fibonacci Techniken. Oliver Paesler

Fibonacci Techniken. Oliver Paesler Fibonacci Techniken Oliver Paesler Inhaltsverzeichnis: 1 Wer war Fibonacci?... 3 2 Die Fibonacci Zahlenreihe... 4 3 Fibonacci Extensions...6 4 Fibonacci Fanlines... 6 5 Fibonacci Retracements... 8 6 Fibonacci

Mehr

SPIELBESCHREIBUNGEN DART RADIKAL SYSTEM

SPIELBESCHREIBUNGEN DART RADIKAL SYSTEM SPIELBESCHREIBUNGEN DART RADIKAL SYSTEM X01: 301, 501, 701 oder 901 Rundenbegrenzungen: 301 (15); 501 (20); 701 (25); 901 (30) In diesem Spiel beginnen alle Spieler mit 301, 501, 701 oder 901 Punkten.

Mehr

Die quadratische Gleichung und die quadratische Funktion

Die quadratische Gleichung und die quadratische Funktion Die quadratische Gleichung und die quadratische Funktion 1. Lösen einer quadratischen Gleichung Quadratische Gleichungen heißen alle Gleichungen der Form a x x c = 0, woei a,, c als Parameter elieige reelle

Mehr

Willkommen in der Buchhaltung des Kaufmanns von Venedig!

Willkommen in der Buchhaltung des Kaufmanns von Venedig! Willkommen in der Buchhaltung des Kaufmanns von Venedig! Der einfachste Weg In dem einfachsten Level wird die Strafgebühr vom Finanzamt nur von der Differenz des gemeldeten Ergebnisses und der richtigen

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

Realschulabschluss Schuljahr 2008/2009. Mathematik

Realschulabschluss Schuljahr 2008/2009. Mathematik Prüfungstag: Mittwoch, 20. Mai 2009 Prüfungsbeginn: 8.00 Uhr Realschulabschluss Schuljahr 2008/2009 Mathematik Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit beträgt 150 Minuten.

Mehr

SQL. strukturierte Datenbankabfragesprache eine Datenbanksprache zur. Structured Query Language:

SQL. strukturierte Datenbankabfragesprache eine Datenbanksprache zur. Structured Query Language: SQL Structured Query Language: strukturierte Datenbankabfragesprache eine Datenbanksprache zur Definition, Abfrage und Manipulation von Daten in relationalen Datenbanken In der SQL-Ansicht arbeiten In

Mehr

Deckungskapital. Proseminar Versicherungsmathematik. TU Graz. 11. Dezember 2007

Deckungskapital. Proseminar Versicherungsmathematik. TU Graz. 11. Dezember 2007 Deckungskapital Gülnur Adanç Proseminar Versicherungsmathematik TU Graz 11. Dezember 2007 1 Inhaltsverzeichnis 1 Deckungskapital 2 1.1 Prospektive und Retrospektive Methode.................... 3 1.1.1

Mehr

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 )

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 ) Aufgabe 65. Ganz schön span(n)end. Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 aus Aufgabe P 6: M = v =, v =, v =, v 4 =, v 5 =, v 6 = Welche der folgenden Aussagen sind wahr? span(v,

Mehr

Probabilistische Datenbanken

Probabilistische Datenbanken Probabilistische Datenbanken Seminar Intelligente Datenbanken AG Intelligente Datenbanken Prof. Dr. Rainer Manthey 26.04.05 Maarten van Hoek - 1 - Inhaltsverzeichnis 1.0 Einleitung...3 2.0 Modell probabilistischer

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Zahlenmauern. Dr. Maria Koth. Ausgehend von dieser einfachen Bauvorschrift ergibt sich eine Vielzahl an möglichen Aufgabenstellungen.

Zahlenmauern. Dr. Maria Koth. Ausgehend von dieser einfachen Bauvorschrift ergibt sich eine Vielzahl an möglichen Aufgabenstellungen. Zahlenmauern Dr. Maria Koth Zahlenmauern sind nach einer einfachen Regel gebaut: In jedem Feld steht die Summe der beiden darunter stehenden Zahlen. Ausgehend von dieser einfachen Bauvorschrift ergibt

Mehr

Komplexe. Zahlen. Ein Leitprogramm in Mathematik. Verfasst von Christina Diehl Marcel Leupp. Du weißt. Instinkt. Bei uns Tigern ist das angeboren.

Komplexe. Zahlen. Ein Leitprogramm in Mathematik. Verfasst von Christina Diehl Marcel Leupp. Du weißt. Instinkt. Bei uns Tigern ist das angeboren. Komplexe Hier ist noch eine Matheaufgabe, die ich nicht lösen kann. Was ist 9+4? Oh, die ist schwer. Dafür brauchst du Analysis und imaginäre Zahlen. Imaginäre Zahlen?! Du weißt schon. Elfzehn, zwölfunddreißig,

Mehr

2. Zahlendarstellung und Rechenregeln in Digitalrechnern

2. Zahlendarstellung und Rechenregeln in Digitalrechnern Zahlendarstellung und Rechenregeln in Digitalrechnern Folie. Zahlendarstellung und Rechenregeln in Digitalrechnern. Zahlensysteme Dezimales Zahlensystem: Darstellung der Zahlen durch Ziffern 0,,,..., 9.

Mehr

Name: Vorname: Straße: Ort:

Name: Vorname: Straße: Ort: Weiterbildender Studiengang Wirtschafts- und Steuerrecht - Prüfungsausschuss - Ruhr-Universität Bochum, GC 8/143, Universitätsstr. 150, 44780 Bochum Tel.: +49 (0)234 / 32-28358, Fax.: +49 (0)234 / 32-14614,

Mehr

Abitur Vorschriften Niedersachsen

Abitur Vorschriften Niedersachsen Abitur Vorschriften Niedersachsen Johannes Nolte Campe Gymnasium Holzminden 06. Februar 2014 Einbringungsverpflichtung Zur Zulassung zum Abitur sind einzubringen: sämtliche Kurse der Prüfungsfächer P1

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Ausgabe: 2005-02-21 Abgabe: 2005-02-21 Technische Informatik - Eine

Mehr

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Einführung in die Vektor- und Matrizenrechnung. Matrizen Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

Stochastik Abitur 2009 Stochastik

Stochastik Abitur 2009 Stochastik Abitur 2009 Stochastik Beilage ea (erhöhtes Anforderungsniveau) ga (grundlegendes Anforderungsniveau) ISBN 978-3-8120-0108-3 und ISBN 978-3-8120-0223-3 1 Aufgabe 2 (ea) Rauchen ist das größte vermeidbare

Mehr

Repetitionsaufgaben: Lineare Funktionen

Repetitionsaufgaben: Lineare Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Funktionen Zusammengestellt von Irina Bayer-Krakvina, KSR Lernziele: - Wissen, was ein Steigungsdreieck einer Geraden ist und wie die Steigungszahl

Mehr

Stefan Lucks Krypto und Mediensicherheit (2009) 4: Stromchiffren

Stefan Lucks Krypto und Mediensicherheit (2009) 4: Stromchiffren 4: Stromchiffren Zwei Grundbausteine der symmetrischen Kryptographie: Stromchiffren Verschlüsseln beliebig langer Klartexte, interner Zustand Blockchiffren Verschlüsseln von Blocks einer festen Größe,

Mehr

Tabellenkalkulation Microsoft Excel 2011

Tabellenkalkulation Microsoft Excel 2011 Tabellenkalkulation Microsoft Excel 2011 www.ict-schule.ch Inhaltsverzeichnis 1.! Einstieg... 2! 1.1! Benutzeroberfläche... 2! 1.2! Einstiegsübungen... 2! 2.! Rechnen mit Excel: Klassenlager-Abrechnung...

Mehr

Übungsaufgabe 3 - Goodwill

Übungsaufgabe 3 - Goodwill Übungsaufgabe 3 - Goodwill Teilaufgabe 1 Gegeben: Die Aktien haben einen Nennwert von 5. Das Unternehmen hat liquide Mittel über 4.500.000. Die Eigenkapitalquote liegt in der Branche bei 22% Gesucht: Wie

Mehr

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis Abitur - Grundkurs Mathematik Sachsen-Anhalt Gebiet G - Analsis Aufgabe.. Der Graph einer ganzrationalen Funktion f dritten Grades mit einer Funktionsgleichung der Form f a b c d a,b,c,d, R schneidet die

Mehr

Niedersächsisches Kultusministerium. Name: Klasse / Kurs: Schule: Allgemeiner Teil Hauptteil Wahlaufgaben Summe. Mögliche Punkte 28 36 20 84

Niedersächsisches Kultusministerium. Name: Klasse / Kurs: Schule: Allgemeiner Teil Hauptteil Wahlaufgaben Summe. Mögliche Punkte 28 36 20 84 Niedersächsisches Abschlussprüfung zum Erwerb des Sekundarabschlusses I Hauptschulabschluss Schuljahrgang 9, Schuljahr 2012/2013 Mathematik G- und E-Kurs Prüfungstermin 30. April 2013 Name: Klasse / Kurs:

Mehr

Errata. Grundlagen der Finanzierung. verstehen berechnen entscheiden. Geyer/Hanke/Littich/Nettekoven 1. Auflage, Linde Verlag, Wien, 2003

Errata. Grundlagen der Finanzierung. verstehen berechnen entscheiden. Geyer/Hanke/Littich/Nettekoven 1. Auflage, Linde Verlag, Wien, 2003 Errata in Grundlagen der Finanzierung verstehen berechnen entscheiden Geyer/Hanke/Littich/Nettekoven 1. Auflage, Linde Verlag, Wien, 2003 Stand 10. April 2006 Änderungen sind jeweils fett hervorgehoben.

Mehr

Bruchzahlen. Zeichne Rechtecke von 3 cm Länge und 2 cm Breite. Dieses Rechteck soll 1 Ganzes (1 G) darstellen. von diesem Rechteck.

Bruchzahlen. Zeichne Rechtecke von 3 cm Länge und 2 cm Breite. Dieses Rechteck soll 1 Ganzes (1 G) darstellen. von diesem Rechteck. Bruchzahlen Zeichne Rechtecke von cm Länge und cm Breite. Dieses Rechteck soll Ganzes ( G) darstellen. Hinweis: a.) Färbe ; ; ; ; ; ; 6 b.) Färbe ; ; ; ; ; ; 6 von diesem Rechteck. von diesem Rechteck.

Mehr

Berechne 40 % von 320. Wenn 1% = 0,01 ist, dann entspricht 40 % = 40 0,01 = 0,40; also: 320 0,4 = 128 ; oder mit Dreisatzschluss:

Berechne 40 % von 320. Wenn 1% = 0,01 ist, dann entspricht 40 % = 40 0,01 = 0,40; also: 320 0,4 = 128 ; oder mit Dreisatzschluss: 2 2. Prozentrechnung Was du schon können musst: Du solltest proportionale Zusammenhänge kennen und wissen, wie man damit rechnet. Außerdem musst du Dreisatzrechnungen rasch und sicher durchführen können.

Mehr

Grundlagen der Computertechnik

Grundlagen der Computertechnik Grundlagen der Computertechnik Aufbau von Computersystemen und Grundlagen des Rechnens Walter Haas PROLOG WS23 Automation Systems Group E83- Institute of Computer Aided Automation Vienna University of

Mehr

Freiherr-vom-Stein Schule Fach: Mathematik Herr Pfaffenbach. Logistisches Wachstum. am Beispiel einer Hefekultur

Freiherr-vom-Stein Schule Fach: Mathematik Herr Pfaffenbach. Logistisches Wachstum. am Beispiel einer Hefekultur Freiherr-vom-Stein Schule Fach: Mathematik Herr Pfaffenbach Logistisches Wachstum am Beispiel einer Hefekultur 16.04.2012 Inhaltsverzeichnis 1.0 Vorwort...3 2.0 Logistisches Wachstum allgemein...4 2.1

Mehr

TEAM GENESYS. Wie arbeitet ein PC? Sein Aufbau und die Verarbeitung von Zahlen. Intel Leibnitz Challenge 08. Aufgabe

TEAM GENESYS. Wie arbeitet ein PC? Sein Aufbau und die Verarbeitung von Zahlen. Intel Leibnitz Challenge 08. Aufgabe TEAM GENESYS Aufgabe Intel Leibnitz Challenge 08 Wie arbeitet ein PC? Sein Aufbau und die Verarbeitung von Zahlen Inhalt INHALT... AUFGABE A: EVA-PRINZIP... 3 A) Beschreibung des EVA-Prinzips... 3 A) Beispiele

Mehr

XONTRO Newsletter. Makler. Nr. 16

XONTRO Newsletter. Makler. Nr. 16 XONTRO Newsletter Makler Nr. 16 Seite 1 In XONTRO werden zum 24. Januar 2005 folgende Änderungen eingeführt: Inflationsindexierte Anleihen Stückzinsberechnung für französische und italienische Staatsanleihen

Mehr

3 FORMELN. 3.1. Formeln erzeugen

3 FORMELN. 3.1. Formeln erzeugen Formeln Excel effektiv 3 FORMELN 3.1. Formeln erzeugen Übungen: Quittung... 136 Kalkulation... 138 Bestellung... 128 Kassenbuch.. 132 Aufmaß... 152 Zum Berechnen verwendet Excel Formeln. Diese sind in

Mehr

Vom goldenen Schnitt zum Alexanderplatz in Berlin

Vom goldenen Schnitt zum Alexanderplatz in Berlin Vom goldenen Schnitt zum Alexanderplatz in Berlin Mathematik von 1200 bis 2004 Stefan Kühling, Fachbereich Mathematik skuehling @ fsmath.mathematik.uni-dortmund.de Schnupper Uni 26. August 2004 1 1 Goldener

Mehr

3. RUNDE 7.5.2003. Beachte: Die Ergebnisse können als Produkt, Summe oder Potenz angegeben werden!

3. RUNDE 7.5.2003. Beachte: Die Ergebnisse können als Produkt, Summe oder Potenz angegeben werden! MTHEMTIK-WETTBEWERB 2002/2003 DES LNDES HESSEN Hinweis: Von jeder Schülerin / jedem Schüler werden vier ufgaben gewertet. Werden mehr als vier ufgaben bearbeitet, so werden die mit der besten Punktzahl

Mehr

Bsp. 12% = 100. W- Prozentwert p-prozentsatz G- Grundwert. oder Dreisatz 100% 30 : 100 15% 4,50

Bsp. 12% = 100. W- Prozentwert p-prozentsatz G- Grundwert. oder Dreisatz 100% 30 : 100 15% 4,50 Prozent- und Zinsrechnung Grundgleichung der Prozentrechnung 1 1% = 100 % = 100 12 Bs. 12% = 100 W G W- Prozentwert -Prozentsatz G- Grundwert 1. Berechnung von Prozentwerten W = G Bs. Wie viel sind 15%

Mehr

1. Informationen zur Qualifikationsphase Abendgymnasium

1. Informationen zur Qualifikationsphase Abendgymnasium 1. Informationen zur Qualifikationsphase Abendgymnasium 1. Fächerangebot am Hanse Kolleg: - Aufgabenfeld I: Deutsch, Englisch, Französisch, Kunstgeschichte - Aufgabenfeld II: Erdkunde, Geschichte, Philosophie,

Mehr

Das Berliner Testament

Das Berliner Testament Das Berliner Testament Besonderheiten und Fallstricke Von RA Dr. Ulrich Zacharias Berlin - Adlershof Das klassische Berliner Testament: Wir setzen uns gegenseitig zum Alleinerben ein. Erben des Überlebenden

Mehr

Spatial Analyst Math Tools. 1. Allgemeines. 2. Math Bitwise. Beispiel : bitwise and

Spatial Analyst Math Tools. 1. Allgemeines. 2. Math Bitwise. Beispiel : bitwise and Spatial Analyst Math Tools Aufsteller: Martin Ermert & Jörn Treichel. Allgemeines. Math Bitwise. Math Logical. Math Trigonometric. Math Grundwerkzeuge. Allgemeines Wichtig im Umgang mit den Math Tools:

Mehr

Charakteristikenmethode im Beispiel

Charakteristikenmethode im Beispiel Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)

Mehr

FH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Binäre Rechenoperationen WS 11/12

FH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Binäre Rechenoperationen WS 11/12 FB ET/IT Binäre Rechenoperationen WS /2 Name, Vorname: Matr.-Nr.: Zugelassene Hilfsmittel: beliebiger Taschenrechner eine selbsterstellte Formelsammlung Wichtige Hinweise: Ausführungen, Notizen und Lösungen

Mehr

3. Rechnen mit natürlichen Zahlen

3. Rechnen mit natürlichen Zahlen 3. Rechnen mit natürlichen Zahlen 3.1 Inhaltliches Verstehen von Rechenoperationen 3.2 Die Grundaufgaben: Das 1+1 und 1x1 3.3 Lösungsstrategien für mündliches und halbschriftliches Rechnen 3.4 Die schriftlichen

Mehr

Alles oder Nichts. Auseinandersetzung mit der Größe Geld im Rahmen mathematischer Früherziehung. Referentin: Kathrin Schnorbusch

Alles oder Nichts. Auseinandersetzung mit der Größe Geld im Rahmen mathematischer Früherziehung. Referentin: Kathrin Schnorbusch Alles oder Nichts Auseinandersetzung mit der Größe Geld im Rahmen mathematischer Früherziehung Referentin: Kathrin Schnorbusch Mathematik im Kindergarten Mathematics, you know, is the gate of science,

Mehr

Lehrstuhl für Betriebswirtschaftslehre mit Schwerpunkt Finanzierung. Klausur "Finanzmanagement" 14. März 2002

Lehrstuhl für Betriebswirtschaftslehre mit Schwerpunkt Finanzierung. Klausur Finanzmanagement 14. März 2002 1 Lehrstuhl für Betriebswirtschaftslehre mit Schwerpunkt Finanzierung Klausur "Finanzmanagement" 14. März 2002 Bearbeitungshinweise: - Die Gesamtbearbeitungsdauer beträgt 60 Minuten. - Schildern Sie ihren

Mehr

Zuschuss zur privaten Krankenversicherung. Zuschuss zur privaten Pflegeversicherung

Zuschuss zur privaten Krankenversicherung. Zuschuss zur privaten Pflegeversicherung Zuschuss zur privaten Krankenversicherung Für die Berechnung des Zuschusses zur privaten Krankenversicherung werden der allgemeine Beitragssatz und das monatliche sozialversicherungspflichtige Entgelt

Mehr

Probeunterricht 2013 an Wirtschaftsschulen in Bayern. Mathematik 7. Jahrgangsstufe

Probeunterricht 2013 an Wirtschaftsschulen in Bayern. Mathematik 7. Jahrgangsstufe M 7 Zahlenrechnen Probeunterricht 2013 an Wirtschaftsschulen in Bayern Mathematik 7. Jahrgangsstufe Arbeitszeit Teil I (Zahlenrechnen) Seiten 1 bis 8: Arbeitszeit Teil II (Textrechnen) Seiten 9 bis 13:

Mehr

Die Wiedergabe dieser Ordnung als PDF-Datei im WWW erfolgt in Ergänzung ihrer amtlichen Veröffentlichung im Verkündungsblatt der Universität Erfurt.

Die Wiedergabe dieser Ordnung als PDF-Datei im WWW erfolgt in Ergänzung ihrer amtlichen Veröffentlichung im Verkündungsblatt der Universität Erfurt. Zugangs- und Verfahrensbestimmungen der Universität Erfurt für das weiterbildende Studium Staatswissenschaften- Sozialwissenschaften vom 21. August 2005 Diese Satzung ist dem Thüringer Kultusministerium

Mehr

Tutorial: Homogenitätstest

Tutorial: Homogenitätstest Tutorial: Homogenitätstest Eine Bank möchte die Kreditwürdigkeit potenzieller Kreditnehmer abschätzen. Einerseits lebt die Bank ja von der Vergabe von Krediten, andererseits verursachen Problemkredite

Mehr

Codierungsverfahren SS 2011. Reed-Solomon-Codes zur Mehrblock-Bündelfehler-Korrektur

Codierungsverfahren SS 2011. Reed-Solomon-Codes zur Mehrblock-Bündelfehler-Korrektur Reed-Solomon-Codes zur Mehrblock-Bündelfehler-Korrektur Wie die zyklischen BCH-Codes zur Mehrbitfehler-Korrektur eignen sich auch die sehr verwandten Reed-Solomon-Codes (= RS-Codes) zur Mehrbitfehler-Korrektur.

Mehr

Lernfeld/Fach: RW Rechnungswesen Thema: Privatentnahmen / Privateinlagen

Lernfeld/Fach: RW Rechnungswesen Thema: Privatentnahmen / Privateinlagen Übungsaufgaben Aufgabe 1 Aufgabe 1 a) Aufgabe 1 b) Anfangsbestand des Eigenkapitalkontos 300.000,00 400.000,00 Aufwendungen insgesamt 250.000,00 280.000,00 Erträge insgesamt 320.000,00 250.000,00 Privatentnahmen

Mehr

Sportwetten. Wettarten

Sportwetten. Wettarten Sportwetten Bei der Sportwette werden Einsätze auf den Ausgang eines Sportereignisses getätigt. Dies geschieht in der Regel zu festen Gewinnquoten; d.h. sie wissen bei der Wettabgabe bereits, wie hoch

Mehr

Zahlensysteme. von Christian Bartl

Zahlensysteme. von Christian Bartl von Inhaltsverzeichnis Inhaltsverzeichnis... 2 1. Einleitung... 3 2. Umrechnungen... 3 2.1. Dezimalsystem Binärsystem... 3 2.2. Binärsystem Dezimalsystem... 3 2.3. Binärsystem Hexadezimalsystem... 3 2.4.

Mehr

ERGEBNISSE DER CW-MARKTSTUDIE COLLABORATION AUS DER CLOUD IM UNTERNEHMENSEINSATZ IN TABELLARISCHER FORM

ERGEBNISSE DER CW-MARKTSTUDIE COLLABORATION AUS DER CLOUD IM UNTERNEHMENSEINSATZ IN TABELLARISCHER FORM ERGEBNISSE DER CW-MARKTSTUDIE COLLABORATION AUS DER CLOUD IM UNTERNEHMENSEINSATZ IN TABELLARISCHER FORM 10 Frage 1: Werden in Ihrem Unternehmen Collaboration-Tools eingesetzt, und wenn ja, wie viele? Anm.:

Mehr

Rekuperative Wärmerückgewinnung mit Plattenwärmeaustauschern KLINGENBURG KLINGENBURG ENERGIERÜCKGEWINNUNG

Rekuperative Wärmerückgewinnung mit Plattenwärmeaustauschern KLINGENBURG KLINGENBURG ENERGIERÜCKGEWINNUNG Rekuperative Wärmerückgewinnung mit Plattenwärmeaustauschern ENERGIERÜCKGEWINNUNG Kreuzstrom-Plattenwärmeaustauscher Typ PWT 400-1 Einsatz raumlufttechnische nlagen industrielufttechnische nlagen vollständige

Mehr

Fehler in numerischen Rechnungen

Fehler in numerischen Rechnungen Kapitel 1 Fehler in numerischen Rechnungen Analyse numerischer Rechnungen: - Welche möglichen Fehler? - Einfluss auf Endergebnis? - Nicht alles in der Comp.Phys./Numerical Analysis dreht sich um Fehler

Mehr

Abiturverordnung. 1. Allgemeines 2.Einführungsphase 3.Qualifikationsphase 4.Abitur

Abiturverordnung. 1. Allgemeines 2.Einführungsphase 3.Qualifikationsphase 4.Abitur Abiturverordnung 1. Allgemeines 2.Einführungsphase 3.Qualifikationsphase 4.Abitur 1. Gliederung und Dauer - Einführungsphase ( 10.Klasse ) - Qualifikationsphase ( Klassen 11 und 12 ) - Verweildauer: 3

Mehr

(2) (x 2 1 + x 2 2 + + x 2 n)(y 2 1 + y 2 2 + + y 2 n) = z 2 1 + z 2 2 + + z 2 n

(2) (x 2 1 + x 2 2 + + x 2 n)(y 2 1 + y 2 2 + + y 2 n) = z 2 1 + z 2 2 + + z 2 n Über die Komposition der quadratischen Formen von beliebig vielen Variablen 1. (Nachrichten von der k. Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse, 1898, S. 309 316.)

Mehr

Herzlich Willkommen Bienvenue Welcome. Beispiele zur Mathematik-/Logikfunktion. Manfred Schleicher

Herzlich Willkommen Bienvenue Welcome. Beispiele zur Mathematik-/Logikfunktion. Manfred Schleicher Herzlich Willkommen Bienvenue Welcome Beispiele zur Mathematik-/Logikfunktion Manfred Schleicher Hinweise zur Präsentation Diese Präsentation zeigt Beispiele zur Anwendung der Mathematikfunktion: Mittelwertbildung

Mehr

Zahlendarstellungen und Rechnerarithmetik*

Zahlendarstellungen und Rechnerarithmetik* Zahlendarstellungen und Rechnerarithmetik* 1. Darstellung positiver ganzer Zahlen 2. Darstellung negativer ganzer Zahlen 3. Brüche und Festkommazahlen 4. binäre Addition 5. binäre Subtraktion *Die Folien

Mehr

Berechnung von Trägerrosten mittels Kraftgrößenmethode

Berechnung von Trägerrosten mittels Kraftgrößenmethode Berechnung von Trägerrosten mittels Kraftgrößenmethode Bachelor Projekt eingereicht am Institut für Baustatik der Technischen Universität Graz im Oktober 2010 Verfasser: Betreuer: Novak Friedrich Dipl.-Ing.

Mehr

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen 4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.

Mehr

Übungsaufgaben zur Einführung in die Finanzmathematik. Dr. Sikandar Siddiqui

Übungsaufgaben zur Einführung in die Finanzmathematik. Dr. Sikandar Siddiqui Übungsaufgaben zur Einführung in die Finanzmathematik Übungsaufgaben Aufgabe 1: A hat B am 1.1.1995 einen Betrag von EUR 65,- geliehen. B verpflichtet sich, den geliehenen Betrag mit 7% einfach zu verzinsen

Mehr

Binär- und Hexadezimal-Zahl Arithmetik.

Binär- und Hexadezimal-Zahl Arithmetik. Binär- und Hexadezimal-Zahl Arithmetik. Prof. Dr. Dörte Haftendorn, MuPAD 4, http://haftendorn.uni-lueneburg.de Aug.06 Automatische Übersetzung aus MuPAD 3.11, 24.04.02 Version vom 12.10.05 Web: http://haftendorn.uni-lueneburg.de

Mehr

M ATHEMATIK Klasse 3. Stoffverteilungsplan Sachsen. Der Zahlenraum bis 1000 (S. 14 25)

M ATHEMATIK Klasse 3. Stoffverteilungsplan Sachsen. Der Zahlenraum bis 1000 (S. 14 25) M ATHEMATIK Klasse 3 Stoffverteilungsplan Sachsen Duden Mathematik 3 Lehrplan: Lernziele / Inhalte Der (S. 14 25) Entwickeln von Zahlvorstellungen/Orientieren im Schätzen und zählen, Zählstrategien, Anzahl

Mehr

FH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Binäre Rechenoperationen WS 09/10

FH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Binäre Rechenoperationen WS 09/10 FB ET/IT Binäre Rechenoperationen WS 9/ Name, Vorname: Matr.-Nr.: Zugelassene Hilfsmittel: beliebiger Taschenrechner eine selbst erstellte Formelsammlung Wichtige Hinweise: Ausführungen, Notizen und Lösungen

Mehr

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin 1 Hausaufgaben vom 12.09.2007 Zahlentheorie 1 Aufgabe 1.1 Berechne die (quadratischen)

Mehr

PROZENTRECHNUNG. (Infoblatt)

PROZENTRECHNUNG. (Infoblatt) PROZENTRECHNUNG (Infoblatt) Bei der werden verschiedene Zahlengrößen zueinander in Beziehung gebracht. Die Bezeichnung PROZENT % (ital. = per cento) bedeutet so viel wie für Hundert. Das GANZE bezeichnet

Mehr

anfassen schlafen sprechen trinken fahren wohnen duschen geben

anfassen schlafen sprechen trinken fahren wohnen duschen geben Übung 1 Fülle die Lücken mit dem richtigen Infinitiv aus! 1. Möchtest du etwas, Nic? 2. Niemand darf mein Fahrrad 3. Das ist eine Klapp-Couch. Du kannst hier 4. Nic, du kannst ihm ja Deutsch-Unterricht

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

Hinweise zur Zulassung zum Abitur und zur Berechnung der Gesamtqualifikation

Hinweise zur Zulassung zum Abitur und zur Berechnung der Gesamtqualifikation Hinweise zur Zulassung zum Abitur und zur Berechnung der Gesamtqualifikation Die endgültige Abiturnote setzt sich aus zwei Bereichen zusammen: den Ergebnissen aus den vier Halbjahren der Qualifikationsphase

Mehr

Sollsaldo und Habensaldo

Sollsaldo und Habensaldo ollsaldo und abensaldo Man hört oft die Aussage "Ein ollsaldo steht im aben, und ein abensaldo steht im oll". Da fragt man sich aber, warum der ollsaldo dann ollsaldo heißt und nicht abensaldo, und warum

Mehr

Verwendet man zur Darstellung nur binäre Elemente ( bis lat.: zweimal) so spricht man von binärer Digitaltechnik.

Verwendet man zur Darstellung nur binäre Elemente ( bis lat.: zweimal) so spricht man von binärer Digitaltechnik. Kursleiter : W. Zimmer 1/24 Digitale Darstellung von Größen Eine Meßgröße ist digital, wenn sie in ihrem Wertebereich nur eine endliche Anzahl von Werten annehmen kann, also "abzählbar" ist. Digital kommt

Mehr

Advanced Encryption Standard. Copyright Stefan Dahler 20. Februar 2010 Version 2.0

Advanced Encryption Standard. Copyright Stefan Dahler 20. Februar 2010 Version 2.0 Advanced Encryption Standard Copyright Stefan Dahler 20. Februar 2010 Version 2.0 Vorwort Diese Präsentation erläutert den Algorithmus AES auf einfachste Art. Mit Hilfe des Wissenschaftlichen Rechners

Mehr