Technische Universität München Fakultät für Mathematik Algorithmische Diskrete Mathematik WS 2014/2015 Prof. Dr. Peter Gritzmann 07.

Größe: px
Ab Seite anzeigen:

Download "Technische Universität München Fakultät für Mathematik Algorithmische Diskrete Mathematik WS 2014/2015 Prof. Dr. Peter Gritzmann 07."

Transkript

1 Note: Name Vorname Matrikelnummer Studiengang Unterchrift der Kandidatin/de Kandidaten Höraal Reihe Platz Techniche Univerität München Fakultät für Mathematik Algorithmiche Dikrete Mathematik WS 1/1 Prof. Dr. Peter Gritzmann. Februar 1 Hinweie: Überprüfen Sie die Angabe: E gibt inkluive Deckblatt und Überichtblatt ingeamt 9 Seiten mit Aufgaben. Vergleichen Sie die Angaben mit dem Überichtblatt. Jede Aufgabe it in dem unmittelbar anchließenden Platz zu bearbeiten. Alle Antworten ind orgfältig zu begründen. Verwenden Sie einen dokumentenechten Stift. Verwenden Sie nicht die Farben Rot und Grün. Die Arbeitzeit beträgt Minuten. Zum Betehen ind vorauichtlich mindeten 1 Punkte nötig. Da letzte Blatt mit der Aufgabenübericht kann zur Bearbeitung abgetrennt werden. Bei vorzeitiger Abgabe ind alle Blätter einchließlich de Überichtblatte abzugeben! E ind keinerlei Hilfmittel zugelaen. Nur von der Auficht auzufüllen: 1 Ertkorrektur () Zweitkorrektur () Höraal verlaen von: bi: Vorzeitig abgegeben um: Beondere Bemerkungen:

2 Aufgabe 1 (ca. Punkte) Seite Berechnen Sie mit dem Algorithmu von Prim au der Vorleung einen minimalen Spannbaum auf dem unten abgebildeten Graphen. Stellen Sie dabei jeden Zwichenchritt nachvollziehbar dar, indem Sie jeden Schritt in einen neuen Graphen eintragen. Wie groß it da Gewicht de minimalen Spannbaum? v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v

3 Aufgabe (ca. 8 Punkte) Seite n der Abbildung unten it ein Digraph und der Ablauf de Dijktra-Algorithmu zur Berechnung eine kürzeten Wege von nach t dargetellt. Die Menge S der bereit bearbeiteten Knoten it jeweil grau eingefärbt, neben jedem Knoten v teht da aktuelle Knotenlabel ξ(v). n dem Graphen fehlen aber die Kantenlängen. Ergänzen Sie paende Werte für die Kantenlängen, die tatächlich zum dargetellten Ablauf de Dijktra-Algorithmu führen! v v v t v v v v v v v t v t v t v v v v v v v t 1 v t 8 v t

4 Aufgabe (ca. Punkte) Seite Ein Knapack-Problem mit Gegentänden ei gegeben durch den Gewichtvektor w = (1, 1,, ) T, den Nutzenvektor c = (, 11, 1, 9) T und die Gewichtchranke ρ =. Berechnen Sie mit dem Algorithmu au der Vorleung eine Optimallöung und geben Sie diee owie den Wert eine optimalen Knapack an. Stellen Sie hre Rechnung in einem geeigneten Schichtgraphen o dar, da jeder Einzelchritt nachvollziehbar it.

5 Aufgabe (ca. 9 Punkte) Seite Sei a N n ein Vektor natürlicher Zahlen. Die Einträge a i1, a i,..., a ik bezeichnet man al Zick-Zack-Teilfolge der Länge k in a, fall entweder (a i1 a i > ) (a i a i < ) (a i a i > )... oder (a i1 a i < ) (a i a i > ) (a i a i < )... gilt. Die Größen (a ij a ij+1 ) heißen j-te Differenzen. Da folgende Problem bezeichnet man al Längte Zick-Zack-Teilfolge-Problem: Eingabe: Eine natürliche Zahl n, ein Vektor a N n. Aufgabe: Betimme die Länge einer längten Zick-Zack-Teilfolge in a. Beipiel: Für die Eingabe n =, a = (,, 8,, ) it die Länge einer längten Zick-Zack-Teilfolge. (Eine olche Folge der Länge wäre a 1 =, a =, a =, a =, die Teilfolge elbt it aber nicht verlangt.) Verwenden Sie dynamiche Programmierung, um einen Algorithmu zu entwerfen, der Längte Zick-Zack- Teilfolge löt, indem Sie folgende Größen betrachten: L + (j) := Länge einer längten Zick-Zack-Teilfolge, die in j endet und deren letzte Differenz poitiv it L (j) := Länge einer längten Zick-Zack-Teilfolge, die in j endet und deren letzte Differenz negativ it a) Ergänzen Sie (ohne Begründung) folgende Rekurionen korrekt: L + (j) = 1 + min / max : und 1 i < j (falche Angaben treichen!) L (j) = 1 + min / max : und 1 i < j (falche Angaben treichen!) b) Wie müen Sie in obiger Rekurion den Wert von min bzw. max fetetzen, damit die Rekurion auch dann den korrekten Wert liefert, wenn über die leere Menge minimiert/maximiert wird?

6 Fortetzung von Aufgabe Seite c) Ergänzen Sie den folgenden Algorithmu o, da er Längte Zick-Zack-Teilfolge korrekt löt. (Sie müen die Korrektheit nicht beweien.) L + (1) L (1) for j do L + (j) end L (j) L + max L max return max {L + max, L max}

7 Aufgabe (ca. Punkte) Seite Sind die folgenden Auagen richtig oder falch? Geben Sie jeweil eine kurze Begründung bzw. ein Gegenbeipiel an! a) Seien B, B zwei Baen eine Matroid. Dann it B B. b) Sei B eine Bai und C ein Krei maximaler Kardinalität eine Matroid. Dann it B C. c) Sei M = (E, ) ein Matroid und ei r := rang(m). t C E ein Krei von M, o gilt C r + 1.

8 Aufgabe (ca. Punkte) Seite 8 Sei E eine endliche, nichtleere Menge, M = (E, ) ein Matroid und B B zwei verchiedene Baen von M. Zeigen Sie: Für jede x B \ B gibt e ein y B \ B, o da (B {x}) \ {y} wieder eine Bai von M it.

9 Aufgabe 1 Berechnen Sie mit dem Algorithmu von Prim au der Vorleung einen minimalen Spannbaum auf dem unten abgebildeten Graphen. Stellen Sie dabei jeden Zwichenchritt nachvollziehbar dar, indem Sie jeden Schritt in einen neuen Graphen eintragen. Wie groß it da Gewicht de minimalen Spannbaum? v v v1 v v v Aufgabe n der Abbildung unten it ein Digraph und der Ablauf de Dijktra-Algorithmu zur Berechnung eine kürzeten Wege von nach t dargetellt. Die Menge S der bereit bearbeiteten Knoten it jeweil grau eingefärbt, neben jedem Knoten v teht da aktuelle Knotenlabel ξ(v). n dem Graphen fehlen aber die Kantenlängen. Ergänzen Sie paende Werte für die Kantenlängen, die tatächlich zum dargetellten Ablauf de Dijktra-Algorithmu führen! Aufgabe Ein Knapack-Problem mit Gegentänden ei gegeben durch den Gewichtvektor w = (1, 1,, ) T, den Nutzenvektor c = (, 11, 1, 9) T und die Gewichtchranke ρ =. Berechnen Sie mit dem Algorithmu au der Vorleung eine Optimallöung und geben Sie diee owie den Wert eine optimalen Knapack an. Stellen Sie hre Rechnung in einem geeigneten Schichtgraphen o dar, da jeder Einzelchritt nachvollziehbar it. Aufgabe Sei a N n ein Vektor natürlicher Zahlen. Die Einträge ai1, ai,..., ai k bezeichnet man al Zick-Zack-Teilfolge der Länge k in a, fall entweder (ai1 ai > ) (ai ai < ) (ai ai > )... oder (ai1 ai < ) (ai ai > ) (ai ai < )... gilt. Die Größen (ai j ai j+1 ) heißen j-te Differenzen. Da folgende Problem bezeichnet man al Längte Zick-Zack-Teilfolge-Problem: Eingabe: Eine natürliche Zahl n, ein Vektor a N n. Aufgabe: Betimme die Länge einer längten Zick-Zack-Teilfolge in a. Beipiel: Für die Eingabe n =, a = (,, 8,, ) it die Länge einer längten Zick-Zack- Teilfolge. (Eine olche Folge der Länge wäre a1 =, a =, a =, a =, die Teilfolge elbt it aber nicht verlangt.) Verwenden Sie dynamiche Programmierung, um einen Algorithmu zu entwerfen, der Längte Zick-Zack-Teilfolge löt, indem Sie folgende Größen betrachten: L + (j) := Länge einer längten Zick-Zack-Teilfolge, die in j endet und deren letzte Differenz poitiv i L (j) := Länge einer längten Zick-Zack-Teilfolge, die in j endet und deren letzte Differenz negativ i a) Ergänzen Sie (ohne Begründung) folgende Rekurionen korrekt: b) Wie müen Sie in obiger Rekurion den Wert von min bzw. max fetetzen, damit die Rekurion auch dann den korrekten Wert liefert, wenn über die leere Menge minimiert/maximiert wird? c) Ergänzen Sie den folgenden Algorithmu o, da er Längte Zick-Zack-Teilfolge korrekt löt. (Sie müen die Korrektheit nicht beweien.) Aufgabe Sind die folgenden Auagen richtig oder falch? Geben Sie jeweil eine kurze Begründung bzw. ein Gegenbeipiel an! a) Seien B, B zwei Baen eine Matroid. Dann it B B. b) Sei B eine Bai und C ein Krei maximaler Kardinalität eine Matroid. Dann it B C. c) Sei M = (E, ) ein Matroid und ei r := rang(m). t C E ein Krei von M, o gilt C r + 1. Aufgabe Sei E eine endliche, nichtleere Menge, M = (E, ) ein Matroid und B B zwei verchiedene Baen von M. Zeigen Sie: Für jede x B \ B gibt e ein y B \ B, o da (B {x}) \ {y} wieder eine Bai von M it.

Technische Universität München Fakultät für Mathematik Algorithmische Diskrete Mathematik WS 2012/2013 Prof. Dr. P. Gritzmann 22.

Technische Universität München Fakultät für Mathematik Algorithmische Diskrete Mathematik WS 2012/2013 Prof. Dr. P. Gritzmann 22. Note: Name Vorname Matrikelnummer Studiengang Unterschrift der Kandidatin/des Kandidaten Hörsaal Reihe Platz Technische Universität München Fakultät für Mathematik Algorithmische Diskrete Mathematik WS

Mehr

Technische Universität München Fakultät für Mathematik Algorithmische Diskrete Mathematik WS 2012/2013 Prof. Dr. P. Gritzmann 9.

Technische Universität München Fakultät für Mathematik Algorithmische Diskrete Mathematik WS 2012/2013 Prof. Dr. P. Gritzmann 9. Noe: Name Vorname Marikelnummer Sudiengang Unerchrif der Kandidain/de Kandidaen Höraal Reihe Plaz Techniche Univeriä München Fakulä für Mahemaik Algorihmiche Dikree Mahemaik WS 0/0 Prof. Dr. P. Grizmann

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datentrukturen Prof. Dr. Hanjo Täubig Lehrtuhl für Effiziente Algorithmen (Prof. Dr. Ernt W. Mayr) Intitut für Informatik Techniche Univerität München Sommeremeter H. Täubig

Mehr

23. Kürzeste Wege. Flussüberquerung (Missionare und Kannibalen) Das ganze Problem als Graph. Formulierung als Graph

23. Kürzeste Wege. Flussüberquerung (Missionare und Kannibalen) Das ganze Problem als Graph. Formulierung als Graph Fluüberquerung (Miionare und Kannibalen). Kürzete Wege Problem: Drei Kannibalen und drei Miionare tehen an einem Ufer eine Flue. Ein dort bereittehende Boot fat maimal zwei Peronen. Zu keiner Zeit dürfen

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Grundlagen der Nichtlinearen Optimierung. Klausur zur Vorlesung WS 2008/09

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Grundlagen der Nichtlinearen Optimierung. Klausur zur Vorlesung WS 2008/09 ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 Obige Angaben sind richtig: Unterschrift der Kandidatin/des Kandidaten 3 TECHNISCHE UNIVERSITÄT

Mehr

Übungsaufgaben zur Vorlesung. Lineare Algebra II. Komplex VI: Vektoren, Vektorräume und Lineare Unabhängigkeit

Übungsaufgaben zur Vorlesung. Lineare Algebra II. Komplex VI: Vektoren, Vektorräume und Lineare Unabhängigkeit Übungaufgaben zur Vorleung Lineare Algebra II Komplex VI: Vektoren, Vektorräume und Lineare Unabhängigkeit. Seien p = (, k) und q = (, ). Man betimme k o, daß p und q (a) parallel ind. (b) orthogonal ind.

Mehr

Technische Universität München Fakultät für Mathematik Mathematik 1 (Elektrotechnik) Probeklausur Prof. Dr. Anusch Taraz 24.

Technische Universität München Fakultät für Mathematik Mathematik 1 (Elektrotechnik) Probeklausur Prof. Dr. Anusch Taraz 24. Note: Name Vorname Lerngruppen-Nummer Tutorübung-Nr. Hiermit bestätige ich, dass ich vor Prüfungsbeginn darüber in Kenntnis gesetzt wurde, dass ich im Falle einer plötzlich während der Prüfung auftretenden

Mehr

Lösungsvorschlag TECHNISCHE UNIVERSITÄT MÜNCHEN. Fakultät für Informatik ... Midterm-Klausur Final-Klausur

Lösungsvorschlag TECHNISCHE UNIVERSITÄT MÜNCHEN. Fakultät für Informatik ... Midterm-Klausur Final-Klausur Name Studiengang (Hauptfach) Vorname Fachrichtung (Nebenfach)... Note Matrikelnummer Unterchrift der Kandidatin/de Kandidaten 1 I II TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Informatik Midterm-Klauur

Mehr

Wintersemester 2004/ Januar 2005

Wintersemester 2004/ Januar 2005 Lehrtuhl für Praktiche Informatik III Norman May B,, Raum C0.0 8 Mannheim Telefon: (0) 8 Email: norman@pi.informatik.uni-mannheim.de Matthia Brantner B,, Raum C0.0 8 Mannheim Telefon: (0) 8 Email: mb@pi.informatik.uni-mannheim.de

Mehr

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung Gliederung der Vorleung. Falltudie Bipartite Graphen. Grundbegriffe 3. Elementare Graphalgorithmen und Anwendungen 4. Minimal pannende Bäume 5. Kürzete Pfade 6. Traveling Saleman Problem 7. Flüe in Netzwerken

Mehr

Beispiel-Schulaufgabe 2

Beispiel-Schulaufgabe 2 Anregungen zur Ertellung von Aufgaben Aufgaben für Leitungnachweie Die zeichnet ich durch eine augewogene Berückichtigung der allgemeinen mathematichen Kompetenzen au. Aufgaben, deren Bearbeitung in auffallendem

Mehr

Diskrete Strukturen. Name Vorname Studiengang Matrikelnummer. Hörsaal Reihe Sitzplatz Unterschrift ... Allgemeine Hinweise

Diskrete Strukturen. Name Vorname Studiengang Matrikelnummer. Hörsaal Reihe Sitzplatz Unterschrift ... Allgemeine Hinweise Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 7 Prof. Dr. Javier Esparza Wintersemester 2008/09 Abschlussklausur 7. Februar 2009 Diskrete Strukturen Name Vorname Studiengang

Mehr

Lösungen zu Übungs-Blatt Differentialgleichungen 2. Ordnung und PBZ

Lösungen zu Übungs-Blatt Differentialgleichungen 2. Ordnung und PBZ Prof.Dr. B.Grabowki Mathematik III/MST Übung Löungen Löungen zu Übung-Blatt Differentialgleichungen. Ordnung und PBZ Zu Aufgabe ) Geben Sie jeweil mindeten eine Löung folgender Differentialgleichung an

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretiche Grundlagen der Informatik Andrea Schumm 21.1.21 INSTITUT FÜR THEORETISCHE INFORMATIK KIT Univerität de Lande Baden-Württemberg und nationale Forchungzentrum in der Helmholtz-Gemeinchaft www.kit.edu

Mehr

Dijkstras Algorithmus: Pseudocode

Dijkstras Algorithmus: Pseudocode Dijktra Algorithmu: Peudocode initialize d, parent all node are non-canned while 9 non-canned node u with d[u] < u := non-canned node v with minimal d[v] relax all edge (u,v) out of u u i canned now Behauptung:

Mehr

Analysis 1 Informationsblatt zur Klausur

Analysis 1 Informationsblatt zur Klausur Analysis 1 Informationsblatt zur Klausur Prof. Dr. B. Kümmerer Fachbereich Mathematik W. Reußwig, K. Schwieger 25. März 2010 Der Klausurtermin Die Klausur zur Veranstaltung Analysis I beginnt am Montag,

Mehr

Prisma und Pyramide 10

Prisma und Pyramide 10 Prima und Pyramide 10 1 4 mathbuch 3 LU 10 Arbeitheft weitere Aufgaben «Grundanforderungen» (Löungen) Körper in Würfeln 101 Körper 1 Körper 2 Körper 3 Körper 4 Die Namen der Körper lauten: Quader Prima

Mehr

2.6.1 Definition und Darstellung Ausspähen von Graphen Minimal spannende Bäume Kürzeste Pfade 2.6.

2.6.1 Definition und Darstellung Ausspähen von Graphen Minimal spannende Bäume Kürzeste Pfade 2.6. .6 Graphen.6. Definition und Dartellung.6. Aupähen von Graphen.6.3 Minimal pannende Bäume.6.4 Kürzete Pfade.6.5 Maximaler Flu .6.5 Maximaler Flu.6.5. Flunetzwerke.6.5. Ford-Fulkeron-Methode.6.5.3 Algorithmu

Mehr

Klausur Algorithmentheorie

Klausur Algorithmentheorie Prof. Dr. G. Schnitger Frankfurt, den 13.02.2009 Klausur Algorithmentheorie WS 2008/2009 Name: Vorname: Studiengang: BITTE GENAU LESEN Die Klausur besteht aus 4 Aufgaben, in denen maximal 100 Punkte erreicht

Mehr

Technische Universität München Zentrum Mathematik. Optimierung 2, WS 2008/09 Übungsblatt 12

Technische Universität München Zentrum Mathematik. Optimierung 2, WS 2008/09 Übungsblatt 12 Technische Universität München Zentrum Mathematik Prof. Dr. P. Gritzmann, Dipl.-Inf. Dipl.-Math. S. Borgwardt, Dr. M. Ritter Optimierung 2, WS 2008/09 Übungsblatt 12 Aufgabe 12.1 Betrachten Sie die folgenden

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale Lineare Algebra 1 Prof. Dr. F. Roesler

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale Lineare Algebra 1 Prof. Dr. F. Roesler ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 Unterschrift der Kandidatin/des Kandidaten 3 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datentrukturen Teil IV Peter F. Stadler & Kontantin Klemm Bioinformatic Group, Dept. of Computer Science & Interdiciplinary Center for Bioinformatic, Univerity of Leipzig 7. April

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik ................ Note Name Vorname I II Matrikelnummer Studiengang 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik Klausur Funktionentheorie MA2006

Mehr

Klausur. Diskrete Mathematik I. Donnerstag, den um 14 Uhr

Klausur. Diskrete Mathematik I. Donnerstag, den um 14 Uhr , Klausur Diskrete Mathematik I Donnerstag, den 29.02.2008 um 14 Uhr Aufgabenblätter Füllen Sie das Deckblattvollständigaus. Prüfen Sie, ob die Klausur 8 Aufgaben enthält.. Kennzeichnen Sie alle verwendeten

Mehr

Diskrete Strukturen. Name Vorname Studiengang Matrikelnummer. Hörsaal Reihe Sitzplatz Unterschrift ... Allgemeine Hinweise

Diskrete Strukturen. Name Vorname Studiengang Matrikelnummer. Hörsaal Reihe Sitzplatz Unterschrift ... Allgemeine Hinweise Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 15 Computergraphik & Visualisierung Prof. Dr. Rüdiger Westermann Dr. Werner Meixner Wintersemester 2007/08 Wiederholungsklausur

Mehr

Klausur Algorithmentheorie

Klausur Algorithmentheorie Prof. Dr. G. Schnitger Frankfurt, den 24.02.2011 M. Poloczek Klausur Algorithmentheorie WS 2010/2011 Name: Vorname: Geburtsdatum: Studiengang: BITTE GENAU LESEN Die Klausur besteht aus 4 Aufgaben, in denen

Mehr

Name:... Vorname:... Matr.-Nr.:... Studiengang:...

Name:... Vorname:... Matr.-Nr.:... Studiengang:... Technische Universität Braunschweig Sommersemester 2013 IBR - Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Dr. Christiane Schmidt Stephan Friedrichs Klausur Netzwerkalgorithmen 16.07.2013 Name:.....................................

Mehr

MODULPRÜFUNG MODUL MA 1302 Einführung in die Numerik

MODULPRÜFUNG MODUL MA 1302 Einführung in die Numerik ................ Note Name Vorname 1 I II Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 Obige Angaben sind richtig: Unterschrift der Kandidatin/des Kandidaten 3 TECHNISCHE UNIVERSITÄT

Mehr

MATHEMATIK-WETTBEWERB 2016/2017 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2016/2017 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 206/207 DES LANDES HESSEN 3. RUNDE LÖSUNGEN AUFGABENGRUPPE A. a) L { 2; ; 0; ;...}, denn b) L Z G, denn. Fall: 3 (x 7) (x 3)(x 7) x 7 oder 3 x 3 x 7 oder x 6 2. Fall: 3 (x 7) < (x

Mehr

Übungsblatt - Stabilität des Standardregelkreises

Übungsblatt - Stabilität des Standardregelkreises Prof. Dr.-Ing. Jörg Raich Dr.-Ing. Thoma Seel Fachgebiet Regelungyteme Fakultät IV Elektrotechnik und Informatik Techniche Univerität Berlin Integrierte Verantaltung Mehrgrößenregelyteme Übungblatt - Stabilität

Mehr

Klausur Algorithmentheorie

Klausur Algorithmentheorie Prof. Dr. G. Schnitger Frankfurt, den 06.04.2009 Klausur Algorithmentheorie WS 2008/2009 Name: Vorname: Geburtsdatum: Studiengang: BITTE GENAU LESEN Die Klausur besteht aus 4 Aufgaben, in denen maximal

Mehr

Vorbereitung Mathematik Cusanus-Gymnasium Wittlich Fachlehrer : W. Zimmer

Vorbereitung Mathematik Cusanus-Gymnasium Wittlich Fachlehrer : W. Zimmer Vorbereitung Mathematik Cuanu-Gymnaium Wittlich Fachlehrer W. Zimmer Den folgenden Katalog habe ich bei www.lehrer.uni-karlruhe.de gefunden. Er oll Beipiele dafür aufzeigen, wa konkret verlangt werden

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Wiederholungsklausur Mathematik für Physiker 3 (Analysis 2) I... II...

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Wiederholungsklausur Mathematik für Physiker 3 (Analysis 2) I... II... ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Datenstrukturen und Algorithmen (SS 2013)

Datenstrukturen und Algorithmen (SS 2013) Datenstrukturen und Algorithmen (SS 2013) Übungsblatt 10 Abgabe: Montag, 08.07.2013, 14:00 Uhr Die Übungen sollen in Gruppen von zwei bis drei Personen bearbeitet werden. Schreiben Sie die Namen jedes

Mehr

Regelungstechnik (A)

Regelungstechnik (A) Intitut für Elektrotechnik und Informationtechnik Aufgabenammlung zur Regelungtechnik (A) Prof. Dr. techn. F. Gauch Dipl.-Ing. C. Balewki Dipl.-Ing. R. Berat 08.01.2014 Übungaufgaben in Regelungtechnik

Mehr

KAPITEL 2 KÜRZESTE WEGE

KAPITEL 2 KÜRZESTE WEGE KAPITEL 2 KÜRZESTE WEGE F. VALLENTIN, A. GUNDERT Da Ziel diee Kapiel i e kürzee Wege in einem gegebenen Nezwerk zu verehen und zu berechnen. Ein einführe Beipiel für ein Nezwerk zwichen den vier Säden

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datentrukturen Teil 4 Prof. Peter F. Stadler & Sebatian Will Bioinformatik/IZBI Intitut für Informatik & Interdiziplinäre Zentrum für Bioinformatik Univerität Leipzig 0. April 04 /

Mehr

Verschiebungssatz: Ist F (s) die Laplace-Transformierte von f (t), dann gilt für t 0 > 0

Verschiebungssatz: Ist F (s) die Laplace-Transformierte von f (t), dann gilt für t 0 > 0 3.6 Tranformationätze 853 3.6 Tranformationätze In dieem Abchnitt werden weitere Eigenchaften der Laplace-Tranformation vorgetellt, die in vielen technichen Bechreibungen ihre Anwendung finden. Oftmal

Mehr

Themen der Übung. Rekursion. Dateien einlesen Sudokus. Assertions

Themen der Übung. Rekursion. Dateien einlesen Sudokus. Assertions Themen der Übung Rekurion CoMa-Übung X TU Berlin.0.0 Themen heute Evaluation Aertion Einleen von Dateien Queue und Breitenuche Rekurion Wegrekontruktion Tiefenuche Backtracking Evaluation Diee Woche bekommt

Mehr

Diplomhauptprüfung. "Regelung linearer Mehrgrößensysteme" 17. März Aufgabenblätter

Diplomhauptprüfung. Regelung linearer Mehrgrößensysteme 17. März Aufgabenblätter Diplomhauptprüfung "Regelung linearer Mehrgrößenyteme" 7. Mär 008 Aufgabenblätter Die Löungen owie der volltändige und nachvolliehbare Löungweg ind in die dafür vorgeehenen Löungblätter einutragen. Nur

Mehr

Kapitel 1. Globale Beleuchtung. 1.1 Ray Tracing Schatten, Reflexion und Brechung

Kapitel 1. Globale Beleuchtung. 1.1 Ray Tracing Schatten, Reflexion und Brechung Kapitel 1 Globale Beleuchtung Biher haben wir nur Licht von Lichtquellen berückichtigt. Gegentände werden aber auch durch indirekte Licht beleuchtet, da durch diffue oder direkte Reflexion entteht. Effekte

Mehr

Karlsruher Institut für Technologie. Klausur Algorithmen I

Karlsruher Institut für Technologie. Klausur Algorithmen I Klausur-ID: Vorname: Matrikelnummer: Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Jörn Müller-Quade 11. April 2018 Klausur Algorithmen I Aufgabe 1. Kleinaufgaben 15 Punkte

Mehr

8.4 Digraphen mit negativen Kantengewichten Grundsätzliches Betrachte Startknoten s und einen Kreis C mit Gesamtlänge < 0.

8.4 Digraphen mit negativen Kantengewichten Grundsätzliches Betrachte Startknoten s und einen Kreis C mit Gesamtlänge < 0. 8.4 Digraphen mit negativen Kantengewichten 8.4.1 Grundsätzliches Betrachte Startknoten s und einen Kreis C mit Gesamtlänge < 0. k 4 5 1 s 1 3 2 C k 0 k 3 1 1 1 k 1 k 2 v Sollte ein Pfad von s nach C und

Mehr

2. Klausur Datenstrukturen und Algorithmen SS 2014

2. Klausur Datenstrukturen und Algorithmen SS 2014 Prof. aa Dr. E. Ábrahám F. Corzilius, S. Schupp, T. Ströder 2. Klausur Datenstrukturen und Algorithmen SS 2014 Vorname: Nachname: Studiengang (bitte genau einen markieren): Informatik Bachelor Informatik

Mehr

2. Übungsblatt zu Algorithmen II im WS 2016/2017

2. Übungsblatt zu Algorithmen II im WS 2016/2017 Karlruher Intitut für Technologie Intitut für Theoretiche Informatik Prof. Dr. Peter Sander Dr. Chritian Schulz, Dr. Simon Gog Michael Axtmann. Übungblatt zu Algorithmen II im WS 06/07 http://algo.iti.kit.edu/algorithmenii

Mehr

Zentralabitur 2014 Physik Schülermaterial Aufgabe II ga Nachschreibtermin Bearbeitungszeit: 220 min

Zentralabitur 2014 Physik Schülermaterial Aufgabe II ga Nachschreibtermin Bearbeitungszeit: 220 min Thema: Interferenz In Aufgabe 1 wird Interferenz von Licht am Gitter behandelt. In Aufgabe 2 geht e um die Eigenchaften verchiedener Quantenobjete. Aufgabe 3 befat ich mit Michelon-Interferometern. Aufgabentellung

Mehr

Lösungsvorschläge zum 9. Übungsblatt.

Lösungsvorschläge zum 9. Übungsblatt. Übung zur Anali III W / Löungvorchläge zum 9. Übungblatt. Wir zeigen zunächt, da die u.u. au Vorleung/Übung noch nicht bekannt it: It A BR p und B BR q, o it A B BR p+q. Die läßt ich z.b. wie in Aufgabe

Mehr

Klausur Strömungsmaschinen I SoSe 2012

Klausur Strömungsmaschinen I SoSe 2012 Klauur Strömungmachinen I SoSe 01. Augut 01, Beginn 13:30 Uhr Prüfungzeit: 90 Minutenn Zugelaene Hilfmittel ind: Tachenrechner, Geodreieck, Zeichenmaterial Andere Hilfmittel, inbeondere: Alte Klauuren

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I... ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretiche Grundlagen der Informatik KIT 24.1.211 Univerität de Dorothea Lande Baden-Württemberg Wagner - Theoretiche und Grundlagen der Informatik nationale Forchungzentrum Vorleung in am der 2.Oktober

Mehr

Diskrete Strukturen Abschlussklausur

Diskrete Strukturen Abschlussklausur Modul BSInf-132/10 RWTH Aachen, WS 2015/16 26.02.2016 Diskrete Strukturen Abschlussklausur Name: Matrikelnummer: Bitte beachten Sie die auf der Rückseite dieses Blattes angegebenen Regeln und Hinweise.

Mehr

Technische Universität München Zentrum Mathematik. Optimierung 2, WS 2008/09 Übungsblatt 10

Technische Universität München Zentrum Mathematik. Optimierung 2, WS 2008/09 Übungsblatt 10 Technische Universität München Zentrum Mathematik Prof. Dr. P. Gritzmann, Dipl.-Inf. Dipl.-Math. S. Borgwardt, Dr. M. Ritter Optimierung 2, WS 2/9 Übungsblatt 1 Aufgabe 1.1 Betrachten Sie das Problem Subset

Mehr

Seien u, v V, u v. Da G zusammenhängend ist, muss mindestens ein Pfad zwischen u und v existieren.

Seien u, v V, u v. Da G zusammenhängend ist, muss mindestens ein Pfad zwischen u und v existieren. Beweis: 1. 2. Seien u, v V, u v. Da G zusammenhängend ist, muss mindestens ein Pfad zwischen u und v existieren. Widerspruchsannahme: Es gibt zwei verschiedene Pfade zwischen u und v. Dann gibt es einen

Mehr

Datenstrukturen und Algorithmen 2. Klausur SS 2001

Datenstrukturen und Algorithmen 2. Klausur SS 2001 UNIVERSITÄT PADERBORN FACHBEREICH 7 (MATHEMATIK INFORMATIK) Datenstrukturen und Algorithmen 2. Klausur SS 200 Lösungsansätze Dienstag, 8. September 200 Name, Vorname:...................................................

Mehr

Was sie für die Klausur brauchen: nicht radierbarer Stift, z.b. Kugelschreiber amtlicher Ausweis mit Lichtbild, Studierendenausweis

Was sie für die Klausur brauchen: nicht radierbarer Stift, z.b. Kugelschreiber amtlicher Ausweis mit Lichtbild, Studierendenausweis Die Aufgaben der folgenden Probeklausur sind auf den Inhalt der Vorlesung bis zum 16. 1. 2015 beschränkt. Die Aufgaben der Klausuren werden den Inhalt der gesamten Vorlesung abdecken. Was sie für die Klausur

Mehr

Übungen zur Vorlesung PN1 Lösung Übungsblatt 12 Besprechung am

Übungen zur Vorlesung PN1 Lösung Übungsblatt 12 Besprechung am Übungen zur Vorleung PN1 Löung Übungblatt 12 Beprechung am 22.1.2013 Aufgabe 1: Gedämpfte Schwingung An einer Feder mit der Federhärte 20 N/m hängt eine Kugel der Mae 100g. Die Kugel wird um 10 cm nach

Mehr

2. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2009/2010

2. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2009/2010 2. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2009/2010 Hier Aufkleber mit Name und Matrikelnummer anbringen Vorname: Nachname: Matrikelnummer: Beachten Sie: Bringen Sie den Aufkleber mit

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale (Wiederholung) HÖHERE MATHEMATIK 3 für Chemieingenieurwesen

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale (Wiederholung) HÖHERE MATHEMATIK 3 für Chemieingenieurwesen ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Prof. Liedl Lösung Blatt 8. Übungen zur Vorlesung PN1. Lösung zum Übungsblatt 8. Besprochen am

Prof. Liedl Lösung Blatt 8. Übungen zur Vorlesung PN1. Lösung zum Übungsblatt 8. Besprochen am 11.12.212 Löung Blatt 8 Übungen zur Vorleung PN1 Löung zum Übungblatt 8 Beprochen am 11.12.212 Aufgabe 1: Moleküle al tarre rotierende Körper Durch Mikrowellen laen ich Rotationen von Molekülen mit einem

Mehr

Diskrete Strukturen. Name Vorname Studiengang Matrikelnummer ... Allgemeine Hinweise

Diskrete Strukturen. Name Vorname Studiengang Matrikelnummer ... Allgemeine Hinweise Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 15 Computergraphik & Visualisierung Prof. Dr. Rüdiger Westermann Dr. Werner Meixner Wintersemester 2007/08 Mittelklausur

Mehr

EDM, Algorithmen und Graphenspeicherung

EDM, Algorithmen und Graphenspeicherung EDM, Algorithmen und Graphenspeicherung 1 Graphenspeicherung Gespeichert werden soll ein Graph G = (V, E) bzw. Digraph D = (V, A). Man beachte: E ( ) V 2 bzw. E V 2 1.1 Adjazenzmatrix Graph G: A = (a vw

Mehr

Ableitungsberechnung mit der Grenzwertmethode. Besonders wichtig ist der Zentraltext über Ableitungen Datei Stand 30.

Ableitungsberechnung mit der Grenzwertmethode. Besonders wichtig ist der Zentraltext über Ableitungen Datei Stand 30. Analyi Ableitungfunktionen Ableitungberechnung mit der Grenzwertmethode Beonder wichtig it der Zentraltet über Ableitungen 400 Datei 40 Stand 0. Dezember 00 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 40 Ableitungfunktionen

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 4 Prof. Dr. Gerhard Heyer Institut für Informatik Abteilung Automatische Sprachverarbeitung Universität Leipzig 24. April 2019 [Letzte Aktualisierung: 24/04/2019,

Mehr

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und Univ.-Prof. Dr.-Ing. Wolfram Frank 04.09.000 Lehrtuhl für Fluiddynamik und Strömungtechnik ufgabe Name:... Vorname:... (Punkte) 1)... Matr.-Nr.:... HS I / HS II / IP / WI )... 3)... Beurteilung:... Platz-Nr.:...

Mehr

Scheinklausur zur Linearen Algebra I, WS 03/04, 1. Teil

Scheinklausur zur Linearen Algebra I, WS 03/04, 1. Teil 12.12.2003 Scheinklausur zur Linearen Algebra I, WS 03/04, 1. Teil Prof. Dr. H. Pahlings Tragen Sie bitte auf diesem Deckblatt leserlich und in Blockbuchstaben Ihren Namen und Ihre Matrikelnummer ein und

Mehr

Randomisiert inkrementelle Konstruktion der Trapezzerlegung. Strecken in der Ebene

Randomisiert inkrementelle Konstruktion der Trapezzerlegung. Strecken in der Ebene Randomiiert inkrementelle Kontruktion der Trapezzerlegung einer Menge von Strecken in der Ebene (Literatur: deberg et al., Kapitel 6) Chritian Knauer 1 Problemtellung Gegeben: Eine Menge von n Strecken

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgechrittene Netzwerk- und Graph-Algorithmen Dr. Hanjo Täubig Lehrtuhl für Effiziente Algorithmen (Prof. Dr. Ernt W. Mayr) Intitut für Informatik Techniche Univerität München Winteremeter 2010/11 H.

Mehr

Informatik II: Algorithmen & Datenstrukturen. Blättern Sie nicht um bevor Sie dazu aufgefordert werden!

Informatik II: Algorithmen & Datenstrukturen. Blättern Sie nicht um bevor Sie dazu aufgefordert werden! Albert-Ludwigs-Universität Institut für Informatik Prof. Dr. F. Kuhn Informatik II: Algorithmen & Datenstrukturen Montag, 29. August, 2014, 14:00 17:00 Name:...........................................................

Mehr

Definition Gerichteter Pfad. gerichteter Pfad, wenn. Ein gerichteter Pfad heißt einfach, falls alle u i paarweise verschieden sind.

Definition Gerichteter Pfad. gerichteter Pfad, wenn. Ein gerichteter Pfad heißt einfach, falls alle u i paarweise verschieden sind. 3.5 Gerichteter Pfad Definition 291 Eine Folge (u 0, u 1,..., u n ) mit u i V für i = 0,..., n heißt gerichteter Pfad, wenn ( i {0,..., n 1} ) [ (u i, u i+1 ) A]. Ein gerichteter Pfad heißt einfach, falls

Mehr

30 Vierecke. Zeichne die Figuren in Originalgröße. Quadrat s = 6 cm. Raute s = 5 cm, e = 8 cm. Parallelogramm a = 10 cm, b = 5 cm, h a = 4 cm

30 Vierecke. Zeichne die Figuren in Originalgröße. Quadrat s = 6 cm. Raute s = 5 cm, e = 8 cm. Parallelogramm a = 10 cm, b = 5 cm, h a = 4 cm Vierecke Parallelogramme ind Vierecke mit zwei Paaren paralleler Seiten. Auch Rauten, Quadrate und Rechtecke ind Vierecke, je doch mit weiteren peziellen Eigenchaften. 1 Zeichne die Figuren in Originalgröße.

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen nd Datentrktren (für ET/IT) Sommeremeter 7 Dr. Stefanie Demirci Compter Aided Medical Procedre Techniche Unierität München Programm hete 7 Fortgechrittene Datentrktren Sch-Algorithmen 9 Graph-Algorithmen

Mehr

Aufgabe 1 Bestimmen Sie die Laplace-Transformierte der Rampenfunktion

Aufgabe 1 Bestimmen Sie die Laplace-Transformierte der Rampenfunktion Übung /Grundgebiete der Elektrotechnik 3 (WS7/8 aplace-tranformation Dr Alexander Schaum, ehrtuhl für vernetzte elektroniche Syteme Chritian-Albrecht-Univerität zu Kiel Aufgabe Betimmen Sie die aplace-tranformierte

Mehr

Maximaler Fluss = minimaler Schnitt

Maximaler Fluss = minimaler Schnitt Maximaler Flu = minimaler Schnitt Oliver Junge Fakultät für Mathematik Techniche Univerität München Flüe in Netzwerken Mathematiche Abtraktion Kapazität 3 2 Quelle 5 Senke 1 2 Netzwerk gerichteter Graph

Mehr

Klausur Algorithmen und Datenstrukturen II 01. Agust 2016

Klausur Algorithmen und Datenstrukturen II 01. Agust 2016 Technische Universität Braunschweig Sommersemester 2016 Institut für Betriebssysteme und Rechnerverbund Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Dr. Christian Scheffer Klausur Algorithmen und Datenstrukturen

Mehr

Kooperatives Lernen SINUS Bayern

Kooperatives Lernen SINUS Bayern Kooperative Lernen SINUS Bayern Mathematik Fachoberchule/Berufoberchule Jgt. 11/1 Partnerpuzzle zu quadratichen Funktionen Mit der Methode Partnerpuzzle wird die Betimmung der Nulltellen und de Scheitelpunkte

Mehr

V6.4 - Erzwungene Schwingungen, Resonanz

V6.4 - Erzwungene Schwingungen, Resonanz V6.4 - Erzwungene Schwingungen, Reonanz Michael Baron, Sven Pallu 31. Mai 2006 Zuammenfaung Im folgenden Veruch betrachten wir da Schwingungverhalten eine gedämpften, periodich erregten Ozillator in Form

Mehr

Klausur zur Vorlesung Grundbegriffe der Informatik 31. August 2009

Klausur zur Vorlesung Grundbegriffe der Informatik 31. August 2009 Klausur zur Vorlesung Grundbegriffe der Informatik 31. August 2009 Klausurnummer Vorname: Aufgabe 1 2 3 4 5 6 7 max. Punkte 4 4 8 8 6 8 8 tats. Punkte Gesamtpunktzahl: Note: Aufgabe 1 (1+1+2 = 4 Punkte)

Mehr

Aufgabe 2.4: Temposünder?

Aufgabe 2.4: Temposünder? Idee, Aufgabenentwurf und Foto: Barbara Mathea, Ferdinand Weber Weil da Radargerät defekt war, filmte die Polizei in einer 30-km-Zone alle vorbeifahrenden Auto. Von 4 Auto ind je 5 aufeinander folgende

Mehr

Vorlesung Kombinatorische Optimierung (Wintersemester 2007/08)

Vorlesung Kombinatorische Optimierung (Wintersemester 2007/08) Vorleung Kombinaoriche Opimierung (Wineremeer 007/08) Kapiel : Flüe und Zirkulaionen Volker Kaibel Oo-von-Guericke Univeriä Magdeburg (Verion vom 0. November 007) Definiion. Ein Nezwerk i ein Paar (D,

Mehr

Datenstrukturen (SoSe 12) Klausur (Modulabschlussprüfung)

Datenstrukturen (SoSe 12) Klausur (Modulabschlussprüfung) Goethe-Universität Frankfurt am Main 27. Juli 2012 Institut für Informatik Theorie komplexer Systeme Dr. Mariano Zelke Datenstrukturen (SoSe 12) Klausur (Modulabschlussprüfung) Name: Vorname: Studiengang:

Mehr

Optimale Lösungen mit Greedy-Strategie erfordern Optimalität der Greedy-Wahl. Beispiele für optimale Greedy-Lösungen

Optimale Lösungen mit Greedy-Strategie erfordern Optimalität der Greedy-Wahl. Beispiele für optimale Greedy-Lösungen Wiederholung Optimale Lösungen mit Greedy-Strategie erfordern Optimalität der Greedy-Wahl unabhängig von Subproblemen Optimalität der Subprobleme Beispiele für optimale Greedy-Lösungen Scheduling Problem

Mehr

Lineare Algebra und Analytische Geometrie I Winter 2015/16 Erste Klausur

Lineare Algebra und Analytische Geometrie I Winter 2015/16 Erste Klausur Lineare Algebra und Analytische Geometrie I Winter 25/6 Erste Klausur 9.2.26 Name (deutlich lesbar!):....................................................................... Matrikelnummer (deutlich lesbar!):

Mehr

Algorithmen & Komplexität

Algorithmen & Komplexität Algorithmen & Komplexität Angelika Steger Institut für Theoretische Informatik steger@inf.ethz.ch Kürzeste Pfade Problem Gegeben Netzwerk: Graph G = (V, E), Gewichtsfunktion w: E N Zwei Knoten: s, t Kantenzug/Weg

Mehr

Einführung in die Programmierung

Einführung in die Programmierung Name, Vorname Matrikelnummer Probeklausur zur Vorlesung Einführung in die Programmierung WS 2008/09 Dauer: 2 Stunden Hinweise: Schreiben Sie Ihren Namen und Ihre Matrikelnummer auf dieses Deckblatt und

Mehr

2. Schriftliche Leistungskontrolle (EK)

2. Schriftliche Leistungskontrolle (EK) TheGI 2: Berechenbarkeit und Komplexität Prof. Dr.-Ing. Uwe Nestmann - 13. Juli 2010 2. Schriftliche Leistungskontrolle EK Punktzahl In dieser schriftlichen Leistungskontrolle sind 100 Punkte erreichbar.

Mehr

Prüfung Informatik D-MATH/D-PHYS :00 11:00

Prüfung Informatik D-MATH/D-PHYS :00 11:00 Prüfung Informatik D-MATH/D-PHYS 9. 8. 2012 09:00 11:00 Dr. Bernd Gartner, Prof. Juraj Hromkovic Kandidat/in: Name:... Vorname:... Stud.-Nr.:... Ich bezeuge mit meiner Unterschrift, dass ich die Prufung

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 4 für die Übung

Mehr

Aufgabe 1 ALOHA und CSMA/CD

Aufgabe 1 ALOHA und CSMA/CD Techniche Univerität München Lehrtuhl Informatik VIII Prof. Dr.-Ing. Georg Carle Dipl.-Ing. Stephan Günther, M.Sc. Johanne Naab, M.Sc. Tutorübung zur Vorleung Grundlagen Rechnernetze und Verteilte Syteme

Mehr

K l a u s u r N r. 2

K l a u s u r N r. 2 17.11.008 K l a u u r N r. Aufgabe 1 Ein Fahrzeug durchfährt eine überhöhte Kurve, die gegenüber der Horizontalen einen Winkel von 5 hat. Da Fahrzeug wird dabei mit der Kraft F ge 1000 N enkrecht auf die

Mehr

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008 Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 15 Computergraphik & Visualisierung Prof. Dr. Rüdiger Westermann Dr. Werner Meixner Wintersemester 2007/08 Lösungsblatt 9

Mehr

Klausur Informatik 2: Algorithmen und Datenstrukturen. Blättern Sie nicht um bevor Sie dazu aufgefordert werden!

Klausur Informatik 2: Algorithmen und Datenstrukturen. Blättern Sie nicht um bevor Sie dazu aufgefordert werden! Albert-Ludwigs-Universität Institut für Informatik Prof. Dr. F. Kuhn Klausur Informatik 2: Algorithmen und Datenstrukturen Donnerstag, 9. März 21, 2017, 9:00 bis 12.00 Uhr Name:.....................................................................

Mehr

Fachhochschule Hannover Übungen zur Klausur im WS0809 am

Fachhochschule Hannover Übungen zur Klausur im WS0809 am Fachhochchule Hannover Übungen zur Klauur im WS0809 am 5.0.09 Fachbereich Machinenbau Zeit: 90 min Fach: Phyik (Prof. Schrewe) Hilfmittel: Formelammlung zur Vorleung Verwenden Sie zur Vereinfachung bei

Mehr

Landeswettbewerb Mathematik Baden-Württemberg. Runde 2

Landeswettbewerb Mathematik Baden-Württemberg. Runde 2 1994 Runde ufgabe 1 Zeige, da 1!! 3!... 1995! mindeten 1 Teiler hat. Hinwei: Unter n! verteht man da Produkt der erten n natürlichen Zahlen. eipiel: 5! = 1 3 4 5 = 10 Löung Die Summe S = 1!! 3!... 1995!

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Wiederholungsklausur Mathematik 4 für Physiker (Analysis 3)

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Wiederholungsklausur Mathematik 4 für Physiker (Analysis 3) ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

1. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2009/2010

1. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2009/2010 . Klausur zur Vorlesung Algorithmentechnik Wintersemester 2009/200 Lösung! Beachten Sie: Bringen Sie den Aufkleber mit Ihrem Namen und Matrikelnummer auf diesem Deckblatt an und beschriften Sie jedes Aufgabenblatt

Mehr

Diskrete Mathematik 1 WS 2008/09

Diskrete Mathematik 1 WS 2008/09 Ruhr-Universität Bochum Lehrstuhl für Kryptologie und IT-Sicherheit Prof. Dr. Alexander May M. Ritzenhofen, M. Mansour Al Sawadi, A. Meurer Lösungsblatt zur Vorlesung Diskrete Mathematik 1 WS 008/09 Blatt

Mehr

Ruhr-Universität Bochum Bau- und Umweltingenieurwissenschaften Statik und Dynamik. Bachelorprüfung Herbst Klausur am

Ruhr-Universität Bochum Bau- und Umweltingenieurwissenschaften Statik und Dynamik. Bachelorprüfung Herbst Klausur am Bachelorprüfung Herbst 2012 Modul 13 (BI) / Modul IV 3b (UTRM) Baustatik I und II Klausur am 27.08.2012 Name: Vorname: Matrikelnummer: (bitte deutlich schreiben) (9stellig!) Aufgabe 1 2 3 4 5 6 Summe mögliche

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 6 Prof. Dr. Gerhard Heyer Institut für Informatik Abteilung Automatische Sprachverarbeitung Universität Leipzig 16. Mai 2018 [Letzte Aktualisierung: 18/05/2018,

Mehr

1.Aufgabe: Minimal aufspannender Baum

1.Aufgabe: Minimal aufspannender Baum 1.Aufgabe: Minimal aufspannender Baum 11+4+8 Punkte v 1 v 2 1 3 4 9 v 3 v 4 v 5 v 7 7 4 3 5 8 1 4 v 7 v 8 v 9 3 2 7 v 10 Abbildung 1: Der Graph G mit Kantengewichten (a) Bestimme mit Hilfe des Algorithmus

Mehr