Einführung in Kompressionstechniken

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Einführung in Kompressionstechniken"

Transkript

1 Einführung in Kompressionstechniken W. Kowarschick 7. Februar 997. November 9 W. Kowarschick

2 Motivation Dateigrößen Text Vektorgraphiken Rasterbilder Tomographien Telephon CD-Stereo Bildfolgen VD7 VD7 KByte/Seite KByte/Seite ( Objekte) MByte/Seite MByte/Aufnahme 8 KByte/sec = 8 MByte/h 7 KByte/sec = 6 MByte/h PAL (TrueColor):. MByte/sec = GByte/h.. Bilder: TByte (. CD-Roms).. Bilder komprimiert: 6 GByte (7 CD-Roms) W. Kowarschick

3 Datenkompression: Was ist das? nicht-redundant redundant relevant irrelevant Multimediaobjekt Abbildung : Redundanz und Irrelevanz W. Kowarschick

4 Ziel der Datenkompression: Multimediaobjekte so zu transformieren, daß der redundante Anteil möglichst gering ist geringerer Platzbedarf, geringere Übertragungskosten Falls das nicht reicht: irrelevanten Anteil auch noch entfernen verlustfreie Kompression (lossless compression): nur der redundante Anteil wird entfernt verlustbehaftete Kompression (lossy compression): auch der irrelevante Anteil wird entfernt ( Datenverlust) W. Kowarschick

5 Formale(re) Definition Gegeben: Datenformate: M, M K Funktionen (Algorithmen): K : M M K, D : M K M K heißt Kompressionsfunktion und D Dekompressionsfunktion, falls folgendes gilt:. Für (fast) alle m M gilt: K(m) < m, besser: K(m) m. Für alle m M gilt: D(K(m)) m Man spricht von einer verlustfreien Kompression, falls sogar immer die Gleichheit gilt: D(K(m)) = m Die Betragsfunktion bezeichnet die Größe eines Datenobjekts. bedeutet sehr viel kleiner als. W. Kowarschick

6 Verlustfreie Kompressionsverfahren, Entropiekodierung Entropie Größe des Nachrichtengehalts einer nach statistischen Gesetzen gesteuerten Nachrichtenquelle (Definition laut Fremdwörterduden) Claude E. Shannon (98): Mathematische Definition der Entropie von Zufallsexperimenten Einzelexperiment ˆ= Zeichen, Wert Folge von Experimenten ˆ= Zeichenfolge, Datenstrom W. Kowarschick 6

7 Ein Ereignis, daß mit großer Wahrscheinlichkeit eintritt, liefert keinen großen Informationsgewinn, umgekehrt schon. log(x) Abbildung : Selbstinformation i(a) Die Selbstinformation liefert die Anzahl der Bits, die im Durchschnitt mindestens notwendig sind, um ein Ereignis zu codieren. W. Kowarschick 7

8 Selbstinformation A sei Ergebnis eines Zufallsexperiments (z. B. ein Zeichen oder Wert) P (A) sei die Wahrscheinlichkeit des Eintretens von A ( P (A) ) Dann heißt i(a) = log x (P (A)) Selbstinformation von A. Hierbei ist x die Größe einer Informationseinheit (z. B., Bits: x = ). Entropie Die durchschnittliche Anzahl der Bits pro Zeichen (bei optimaler Codierung) heißt Entropie des Zufallsexperiments. W. Kowarschick 8

9 Ziel der Entropiekompression: möglichst viel redundante Information zu entfernen, d. h., möglichst nur Entropie (Informationsgehalt) zu speichern Shannons Ergebnisse zeigen: Es gibt (für ein gegebenen Zeichenvorrat ) eine untere Schranke für verlustfrei Kompression. Diese ist berechenbar oder zumindest abschätzbar. W. Kowarschick 9

10 Lauflängenkodierung (runlength encoding, RLE) Einfachste Form der Kodierung: Wiederholungen werden effizient kodiert Vermeidung direkter Redundanz Vorgehen:. Sonderzeichen festlegen (z.b.!, besser: selten benutzter Bytewert). Zeichenfolge kodieren längere Folgen des Zeichens x durch x!<n> kodiert n [, 9] durch ein Byte darstellbar! durch!! kodieren W. Kowarschick

11 Beispiele AAAAABBCCCCCCCCCD (Länge 7) RLE: A!BBC!9D (Länge 9) Achtung: A!B!! (Länge ) RLE: A!!B!!!! (Länge 8) Spezielle Verfahren, falls nur ein oder wenige Zeichen häufig vorkommen (JPEG viele Nullen) W. Kowarschick

12 Huffman-Kodierung berücksichtigt statistische Wahrscheinlichkeit, mit der bestimmte Zeichen in einem Datenstrom vorkommen Grundidee: Länge eines kodierten Zeichens Selbstinformation des Zeichens Beispiel: Morse-Code W. Kowarschick

13 Wetter Binär- Wahrschein- Huffman- Selbstcode lichkeit Code information (A) (P (A)) ( log (P (A))) wolkenlos /. Wolken /8. Regen /6. Schnee /6. Binärcode: Bits/Zeichen Huffman-Code: =, 7 Bits/Zeichen Entropie: =, 86 (Bits/Zeichen) W. Kowarschick

14 Eigenschaften eines Huffman-Codes:. Zeichen häufig Code sehr kurz. Folge von Huffman-Zeichen ist eindeutig dekodierbar ˆ=... ˆ= wolkenlos Wolken Regen wolkenlos aber: Zeichen und nicht eindeutig dekodierbar. Länge eines kodierten Textes nahe bei Optimum. Mindestens ein Bit pro Zeichen Beachte: Es gibt auch Kodierungen mit weniger als Bit/Zeichen: RLE:!8 ˆ= 8 Nullen,6 Bits/Zeichen JPEG: Entropiekodierung = Huffman + RLE (viele Nullen) W. Kowarschick

15 Weitere Entropieverfahren Verfahren mit Wörterbüchern Wörterbücher enthalten kurze Codes für häufig vorkommende Wörter oder Zeichenfolgen. Verallgemeinerung der Huffman-Codierung Adaptive Verfahren Wahrscheinlichkeitstabellen, Wörterbücher, etc. werden während der Kodierung aufgebaut. Vorteil: Nachteil: bessere Kompression ( Xaver Xanten am Xerox-Kopierer ) zusätzliche Information kostet Zeit und Platz W. Kowarschick

16 Interpolierende Kodierung (predictive coding) Kann ein Wert aus bereits übertragenen Werten berechnet (interpoliert) werden, so muß er nicht mehr gespeichert werden, sondern nur noch die Berechnungsvorschrift. Differenzverfahren Unterscheiden sich aufeinanderfolgende Werte i. Allg. nur wenig (Huffman-Codes von) Differenzen abspeichern Spezialfall der interpolierenden Kodierung W. Kowarschick 6

17 Beispiele Lemple-Ziv-Verfahren: Adaptive Verfahren mit Wörterbüchern LZ77: LZ78, LZW: PKZIP, ZIP, GZIP, ZLIB, LHARC, ARJ etc. COMPRESS, GIF, PostScript etc. Die UNISYS Corporation besitzt Patent für LZW PNG: Verwendung von LZ77-Variante keine patentrechtlichen Probleme und besser als LZW (GIF) W. Kowarschick 7

18 Beispiele (Forts.) (MPEG): Group / Fax: JBIG: DPCM: ADPCM: Speicherung von Differenzbildern z. B. Tagesschau viele Nullen differenzielle RLE-Verfahren interpolierendes adaptives Verfahren (S/W) differential puls code modulation adaptive differential puls code modulation W. Kowarschick 8

19 Verlustbehaftete Kompressionsverfahren Quantisierung Das wesentliche Werkzeug der verlustbehafteten Kompression ist die sogenannte Quantisierung: Alle Werte eines Intervalls werden durch einen Wert repräsentiert. [.,.9], [.,.9],... [hellgrün, grün, dunkelgrün] grün,... W. Kowarschick 9

20 Beispiele PCM: Farbreduktion: Auflösungsreduktion: (down sampling) Analogsignal Folge von Bytes (Digitalisierung) True-Color (6 Mio Farben) High-Color (6 Farben), 6 Farben/Graustufen dpi (Druck) dpi (Drucker) dpi (Bildschirm) Stereo Mono. khz (CD-Rom) 8kHz (Telephon) W. Kowarschick

21 JPEG-Kompression JPEG = Joint Photographic Expert Group (ISO, CCITT, IEC) Ein hybrides Verfahren zur Komprimierung von Bildern: Tranformationskodierung + Quantisierung + Entropiekodierung s S Bildaufbereitung Bildverarbeitung Quantisierung Entropiekodierung Ebenen, Blocks FDCT Q SQ RLE, Huffman Bildaufbereitung Pixel s Bildverarbeitung IDCT S Dequantisierung Q SQ Entropiedekodierung RLE, Huffman W. Kowarschick

22 Die Bildaufbereitung zerlegt Rasterbilder in Ebenen und Blocks. Ebenen: Farbebenen (-, RGB, CMYK, YC b C r ) Kartenebenen (< 6) Blocks: 8x8-Blocks (6 Pixel) werden transformiert, quantisiert, komprimiert W. Kowarschick

23 FDCT: S uv := 7 7 x= y= (x + )uπ C(u) C(v) s xy cos 6 (y + )vπ cos 6 IDCT: s xy := 7 7 u= v= (x + )uπ C(u) C(v) S uv cos 6 (y + )vπ cos 6 x, y [, 7] und u, v [, 7] C(s) = / falls s = ; sonst C(s) = W. Kowarschick

24 u =, v = cos(*pi*(*x+)/6)*cos(*pi*(*y+)/6) u =, v = cos(*pi*(*x+)/6)*cos(*pi*(*y+)/6).667..e W. Kowarschick

25 u =, v = cos(*pi*(*x+)/6)*cos(*pi*(*y+)/6).667..e u = 7, v = 7 cos(7*pi*(*x+)/6)*cos(7*pi*(*y+)/6).667..e W. Kowarschick

26 u =, v = cos(*pi*(*x+)/6)*cos(*pi*(*y+)/6) u = 7, v = cos(7*pi*(*x+)/6)*cos(*pi*(*y+)/6).667..e W. Kowarschick 6

27 u =, v = 7 cos(7*pi*(*x+)/6)*cos(*pi*(*y+)/6).667..e u = 7, v = cos(*pi*(*x+)/6)*cos(7*pi*(*y+)/6).667..e W. Kowarschick 7

28 Der Benutzer steuert die Quantisierung über eine Tabelle Q: Quantisierung: SQ uv := round(s uv /Q uv ) Dequantisierung: S uv := SQ uv Q uv S uv Q uv = SQ uv S uv Q uv Q uv Q uv W. Kowarschick 8

29 Abbildung : Gif (6 Byte) W. Kowarschick 9

30 Abbildung : JPEG (7%, Byte) W. Kowarschick

31 Abbildung : JPEG (%, 68 Byte) W. Kowarschick

32 Abbildung 6: JPEG (%, 7 Byte) W. Kowarschick

33 Fraktale Verfahren Innerhalb eines Bildes werden selbstähnliche Gebiete gesucht. Diese werden nicht gespeichert, sondern nur die notwendigen mathematischen Transformationen. Aufwendige, aber sehr gute Kompression. Beispiel: JPEG W. Kowarschick

Kodierung. Kodierung von Zeichen mit dem ASCII-Code

Kodierung. Kodierung von Zeichen mit dem ASCII-Code Kodierung Kodierung von Zeichen mit dem ASCII-Code Weiterführende Aspekte zur Kodierung: Speicherplatzsparende Codes Fehlererkennende und -korrigierende Codes Verschlüsselnde Codes Spezielle Codes, Beispiel

Mehr

Kompression und Datenformate. Grundlagen der Bildspeicherung, Kompressionsverfahren, Datenformate

Kompression und Datenformate. Grundlagen der Bildspeicherung, Kompressionsverfahren, Datenformate Kompression und Datenformate Grundlagen der Bildspeicherung, Kompressionsverfahren, Datenformate Digitale Speicherung von Bildern Digitalisierung Informationsgehalt Speicherbedarf Kompression von Multimediadaten

Mehr

Bilddatenformate BMP GIF JPG. Digitale Bildverarbeitung Liedtke 7.1. Bezeichnung: Microsoft Windows Bitmap, BMP, DIB

Bilddatenformate BMP GIF JPG. Digitale Bildverarbeitung Liedtke 7.1. Bezeichnung: Microsoft Windows Bitmap, BMP, DIB Bilddatenformate BMP Bezeichnung: Microsoft Windows Bitmap, BMP, DIB Format: Raster Farben: 1 Bit (s/w), 4 Bit (16 Farben), 8 Bit (256 Farben), 24 Bit (16,7 Mio. Farben) Kompression: Keine (meist) oder

Mehr

Kodierungsalgorithmen

Kodierungsalgorithmen Kodierungsalgorithmen Komprimierung Verschlüsselung Komprimierung Zielsetzung: Reduktion der Speicherkapazität Schnellere Übertragung Prinzipien: Wiederholungen in den Eingabedaten kompakter speichern

Mehr

2. Digitale Codierung und Übertragung

2. Digitale Codierung und Übertragung 2. Digitale Codierung und Übertragung 2.1 Informationstheoretische Grundlagen 2.2 Speicherbedarf und Kompression 2.3 Digitalisierung, Digitale Medien Ludwig-Maximilians-Universität München Prof. Hußmann

Mehr

Basisinformationstechnologie II

Basisinformationstechnologie II Basisinformationstechnologie II Sommersemester 2014 28. Mai 2014 Algorithmen der Bildverarbeitung I: Kompression Universität zu Köln. Historisch-Kulturwissenschaftliche Informationsverarbeitung Jan G.

Mehr

Mathematik für Information und Kommunikation

Mathematik für Information und Kommunikation Mathematik für Information und Kommunikation Am Beispiel des Huffman- Algorithmus Thomas Borys und (Christian Urff) Huffman im Alltag MPEG Telefax JPEG MP3 ZIP avid Huffman avid Huffman [95-999] www.soe.ucsc.edu/people/faculty/huffman.html

Mehr

JPEG Kompression technische Realisierung

JPEG Kompression technische Realisierung Experimentalphysik V 20. Januar 2005 Schema der JPEG Kompression Farbraumkonvertierung RGB YCbCr Subsampling der Farbkomponenten Cb, Cr Zerlegung in Blöcke 8 8 2D Kosinustransformation (DCT) Quantisierung

Mehr

Datenkompression. 1 Allgemeines. 2 Verlustlose Kompression. Holger Rauhut

Datenkompression. 1 Allgemeines. 2 Verlustlose Kompression. Holger Rauhut Datenkompression Holger Rauhut 1. September 2010 Skript für die Schülerwoche 2010, 8.-11.9.2010 Hausdorff Center for Mathematics, Bonn 1 Allgemeines Datenkompression hat zum Ziel, Daten in digitaler Form,

Mehr

16 - Kompressionsverfahren für Texte

16 - Kompressionsverfahren für Texte 16 - Kompressionsverfahren für Texte Prof. Dr. S. Albers Kompressionsverfahren für Texte Verlustfreie Kompression Original kann perfekt rekonstruiert werden Beispiele: Huffman Code, Lauflängencodierung,

Mehr

Multimediatechnik / Video

Multimediatechnik / Video Multimediatechnik / Video Video-Kompression Zusammenfassung http://www.nanocosmos.de/lietz/mtv 2009 1 Motivation: Video-Kompression Unkomprimierte Datenmengen sind zu groß! TV: 20 MB/s = 72 GB/h (720x576x2x25)

Mehr

2. Digitale Codierung und Übertragung

2. Digitale Codierung und Übertragung 2. Digitale Codierung und Übertragung 2.1 Informationstheoretische Grundlagen 2.2 Speicherbedarf und Kompression 2.3 Digitalisierung Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien

Mehr

Problem: Finde für Alphabet mit n Zeichen einen Binärcode, der die Gesamtlänge eines Textes (über diesem Alphabet) minimiert.

Problem: Finde für Alphabet mit n Zeichen einen Binärcode, der die Gesamtlänge eines Textes (über diesem Alphabet) minimiert. Anwendungen von Bäumen 4.3.2 Huffman Code Problem: Finde für Alphabet mit n Zeichen einen Binärcode, der die Gesamtlänge eines Textes (über diesem Alphabet) minimiert. => nutzbar für Kompression Code fester

Mehr

Beispielhafte Testfragen (auch aus Schülerreferaten, Fragen können redundant sein, keine Audio Kompression berücksichtigt):

Beispielhafte Testfragen (auch aus Schülerreferaten, Fragen können redundant sein, keine Audio Kompression berücksichtigt): Beispielhafte Testfragen (auch aus Schülerreferaten, Fragen können redundant sein, keine Audio Kompression berücksichtigt): Was versteht man unter PCM, DPCM, DM, ADPCM? Skizze! Was versteht man unter PCM

Mehr

Proseminar Datenkomprimierung Dr. U. Tamm. Bildkompression WS 2002/03. Florian Strunk

Proseminar Datenkomprimierung Dr. U. Tamm. Bildkompression WS 2002/03. Florian Strunk Proseminar Datenkomprimierung Dr. U. Tamm Bildkompression WS 2002/03 Florian Strunk Problematik: Die Datencodierung und Kompression ist so alt wie die Geschichte des Computers. Seit dem es hochauflösende

Mehr

Datenkompression. Vortrag von Markus Durzinsky Student der Otto-von-Guericke-Universität Magdeburg

Datenkompression. Vortrag von Markus Durzinsky Student der Otto-von-Guericke-Universität Magdeburg Vortrag am 25. Januar 200 Werner von Siemens Gymnasium Magdeburg Zeitansatz: 5h (inklusive Programmieraufgaben) Datenkompression Vortrag von Markus Durzinsky Student der Otto-von-Guericke-Universität Magdeburg

Mehr

Bildkompression InTh, 2005, JPEG, Hak, Rur, 1

Bildkompression InTh, 2005, JPEG, Hak, Rur, 1 Bildkompression InTh, 25, JPEG, Hak, Rur, 1 Referenzen [1] D Salomon, Data Compression, Springer, 24 [2] Prof Dr A Steffen, Kurs SU, ZHW, 1999-24 [3] G Wallace, The JPEG Still Picture Compression Standard,

Mehr

Multimediatechnik / Video

Multimediatechnik / Video Multimediatechnik / Video Codierung, Datenreduktion Quantisierung, Lauflängencodierung DCT, JPEG http://www.nanocosmos.de/lietz/mtv Inhalt Codierung digitaler Signale Datenreduktion (Kompression) Verlustfrei

Mehr

2. Digitale Codierung und Übertragung

2. Digitale Codierung und Übertragung 2. Digitale Codierung und Übertragung 2.1 Informationstheoretische Grundlagen 2.2 Verlustfreie universelle Kompression 2.3 Digitalisierung, Digitale Medien Ludwig-Maximilians-Universität München, Medieninformatik,

Mehr

2. Digitale Codierung und Übertragung

2. Digitale Codierung und Übertragung 2. Digitale Codierung und Übertragung 2.1 Informationstheoretische Grundlagen 2.2 Verlustfreie universelle Kompression 2.3 Digitalisierung, Digitale Medien Weiterführende Literatur zum Thema Informationstheorie:

Mehr

Kompressionsverfahren für Texte

Kompressionsverfahren für Texte Kompressionsverfahren für Texte Prof. Dr. S. Albers Prof. Dr. Th. Ottmann 1 Zeichenkettenverarbeitung Suche in Texten, Textindizes Mustererkennung (Pattern-Matching) Verschlüsseln Komprimiern Analysieren

Mehr

Effiziente Algorithmen und Komplexitätstheorie

Effiziente Algorithmen und Komplexitätstheorie Fakultät für Informatik Lehrstuhl 2 Vorlesung Effiziente Algorithmen und Komplexitätstheorie Sommersemester 2008 Ingo Wegener; Vertretung: Carsten Witt 7. Juli 2008 Vorlesung am 14.07. (nächste Woche):

Mehr

Übung 1: Quellencodierung

Übung 1: Quellencodierung ZHAW, NTM2, Rumc, /7 Übung : Quellencodierung Aufgabe : Huffman-Algorithmus. Betrachten Sie die folgende ternäre, gedächtnislose Quelle mit dem Symbolalphabet A = {A,B,C} und den Symbol-Wahrscheinlichkeiten

Mehr

DIGITALE VIDEO KOMPRESSION AM BEISPIEL DES JPEG-VERFAHRENS

DIGITALE VIDEO KOMPRESSION AM BEISPIEL DES JPEG-VERFAHRENS 1 DIGITALE VIDEO KOMPRESSION AM BEISPIEL DES JPEG-VERFAHRENS Um das digitale Schneiden von digitalisierten Bildern zu ermöglichen, ist es notwendig, die drastisch hohe Datenmenge, die für jedes Bild gespeichert

Mehr

Panorama der Mathematik und Informatik

Panorama der Mathematik und Informatik Panorama der Mathematik und Informatik 18: Algorithmen III: png und Co Dirk Frettlöh Technische Fakultät / Richtig Einsteigen 11.6.2015 Kompressionsalgorithmen: Idee: Speichere 2 MB Daten in einer 1 MB

Mehr

Codierung. Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau

Codierung. Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau Codierung Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau Ein bisschen Informationstheorie Betrachten wir das folgende Problem: Wie lautet eine sinnvolle Definition für das quantitative

Mehr

10%, 7,57 kb 20%, 5,3 kb 30%, 4,33 kb 40%, 3,71 kb 50%, 3,34 kb. 60%, 2,97 kb 70%, 2,59 kb 80%, 2,15 kb 90%, 1,62 kb 99%, 1,09 kb

10%, 7,57 kb 20%, 5,3 kb 30%, 4,33 kb 40%, 3,71 kb 50%, 3,34 kb. 60%, 2,97 kb 70%, 2,59 kb 80%, 2,15 kb 90%, 1,62 kb 99%, 1,09 kb Die Komprimierung: Die Abkürzung JPG (oder auch JPEG) steht für "Joint Photographic Experts Group". Dieses Bildformat ist nach der Expertengruppe, die es erfunden hat, benannt. Die Komprimierung empfiehlt

Mehr

1. Daten, Information, Wissen. 2. Fortsetzung Informationsdarstellung. 1. Zahlensysteme 1. Binärsystem, Hexadezimalsystem. 2. Bilder. 3.

1. Daten, Information, Wissen. 2. Fortsetzung Informationsdarstellung. 1. Zahlensysteme 1. Binärsystem, Hexadezimalsystem. 2. Bilder. 3. Überblick GRUNDKURS INFORMATIK 1 DATEN - INFORMATION - WISSEN 1. Daten, Information, Wissen 2. Fortsetzung Informationsdarstellung 1. Zahlensysteme 1. Binärsystem, Hexadezimalsystem 2. Bilder 3. Audio

Mehr

Digitale Bildverarbeitung (DBV)

Digitale Bildverarbeitung (DBV) Digitale Bildverarbeitung (DBV) Prof. Dr. Ing. Heinz Jürgen Przybilla Labor für Photogrammetrie Email: heinz juergen.przybilla@hs bochum.de Tel. 0234 32 10517 Sprechstunde: Montags 13 14 Uhr und nach Vereinbarung

Mehr

Hauptdiplomklausur Informatik Februar 2006: Multimedia Systems

Hauptdiplomklausur Informatik Februar 2006: Multimedia Systems Universität Mannheim Fakultät für Mathematik und Informatik Lehrstuhl für Praktische Informatik IV Prof. Dr.-Ing. W. Effelsberg Hauptdiplomklausur Informatik Februar 2006: Multimedia Systems Name: Matrikel-Nr.:

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

Grafikformate. Grafikformate. Digitale Bildverarbeitung Bildkompression

Grafikformate. Grafikformate. Digitale Bildverarbeitung Bildkompression Digitale Bildverarbeitung Bildkompression Einleitung Datenmenge für ein unkomprimiertes Bild Verwendungszweck des Bildes Bild soll weiterverarbeitet werden Bild soll archiviert werden Bild soll per E-Mail

Mehr

Seminar Kompressionsalgorithmen Huffman-Codierung, arithmetische Codierung

Seminar Kompressionsalgorithmen Huffman-Codierung, arithmetische Codierung Huffman-Codierung, arithmetische Codierung Theoretische Informatik RWTH-Aachen 4. April 2012 Übersicht 1 Einführung 2 3 4 5 6 Einführung Datenkompression Disziplin,die Kompressionsalgorithmen entwirft

Mehr

Basisinformationstechnologie II

Basisinformationstechnologie II Basisinformationstechnologie II Sommersemester 2015 13. Mai 2015 Algorithmen der Bildverarbeitung I: Kompression Universität zu Köln. Historisch-Kulturwissenschaftliche Informationsverarbeitung Dr. Jan

Mehr

Bildbearbeitung: Grafikformate II und Farbmodelle

Bildbearbeitung: Grafikformate II und Farbmodelle Michael Gieding Bildbearbeitung: Grafikformate II und Farbmodelle Folien zur gleichnamigen Lehrveranstaltung PH-Heidelberg, Sommersemester 2004 Wiederholung Folie 1: Speicherplatzberechnungen Grafikformate

Mehr

Stefan Gössner 21.09.2004 Multimedia: Eine Einführung. Was ist Multimedia? Was ist ein Medium? Was ist Multimedia? Multimedia?

Stefan Gössner 21.09.2004 Multimedia: Eine Einführung. Was ist Multimedia? Was ist ein Medium? Was ist Multimedia? Multimedia? 1 of 7 Stefan Gössner 21.09.2004 Multimedia: Eine Einführung Stefan Gössner Was ist Multimedia? vielverwendeter Begriff hat was mit Computern zu tun? Multi + Media? Was ist ein Medium? Mittel zur Verbreitung

Mehr

JPEG - Kompression. Steffen Grunwald, Christiane Schmidt, Stephan Weck TIT01EGR BA-Mannheim 21. Mai 2002

JPEG - Kompression. Steffen Grunwald, Christiane Schmidt, Stephan Weck TIT01EGR BA-Mannheim 21. Mai 2002 JPEG - Kompression Steffen Grunwald, Christiane Schmidt, Stephan Weck TIT01EGR BA-Mannheim 21. Mai 2002 Inhaltsverzeichnis 1 Entwicklung von JPEG 2 1.1 Was heisst und was ist JPEG?................... 2

Mehr

1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes

1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche: Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 5/ 44 Unser Modell Shannon

Mehr

Kompressionsverfahren

Kompressionsverfahren Kompressionsverfahren Quelle: Steinmetz, Ralf: Multimedia-Technologie: Einführung und Grundlagen, Springer, Verlag Verlustlose Kompressionsalgorithmen RLC Huffman Adaptive Huffman Kodierung Arithmetische

Mehr

CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005

CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005 CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005. Das Problem.. Quellcodierung und Datenkompression. Wir wollen eine Nachricht über einen digitalen Kanal, der nur 0 oder übertragen kann, schicken.

Mehr

Kryptographie und Codierung für den Mathematikunterricht

Kryptographie und Codierung für den Mathematikunterricht Kryptographie und Codierung für den Mathematikunterricht Pädagogische Hochschule Karlsruhe University of Education École Supérieure de Pédagogie Institut für Mathematik und Informatik Th. Borys Was verstehst

Mehr

Kompakte Graphmodelle handgezeichneter Bilder. Einbeziehung in Autentizierung und Bilderkennung

Kompakte Graphmodelle handgezeichneter Bilder. Einbeziehung in Autentizierung und Bilderkennung Kompakte Graphmodelle handgezeichneter Bilder Einbeziehung in Autentizierung und Bilderkennung Inhaltsverzeichnis 1 Einleitung Das graphische Model.1 Image Thinning................................. 3.

Mehr

Der LZ77 Algorithmus. von. Stefan Mühlinghaus Matrikelnummer: 11033988 Benutzerkennung: ai495

Der LZ77 Algorithmus. von. Stefan Mühlinghaus Matrikelnummer: 11033988 Benutzerkennung: ai495 Der LZ77 Algorithmus von Stefan Mühlinghaus Matrikelnummer: 11033988 Benutzerkennung: ai495 Über den Algorithmus: Der LZ77 Algorithmus wurde von seinen Erfindern Abraham Lempel und Jacob Ziv erstmalig

Mehr

Codierungstheorie. Code-Arten und Code-Sicherung

Codierungstheorie. Code-Arten und Code-Sicherung Codierungstheorie Code-Arten und Code-Sicherung Inhaltsübersicht und Literatur Informationstheorie Was ist eine Codierung? Arten von Codes Informationsgehalt und Entropie Shannon'sches Codierungstheorem

Mehr

Übung 13: Quellencodierung

Übung 13: Quellencodierung ZHAW, NTM, FS2008, Rumc, /5 Übung 3: Quellencodierung Aufgabe : Huffmann-Algorithmus. Betrachten Sie die folgende ternäre, gedächtnislose Quelle mit dem Symbolalphabet A = {A,B,C} und den Symbol-Wahrscheinlichkeiten

Mehr

Einführung in die Informatik II Aus der Informationstheorie: Datenkompression

Einführung in die Informatik II Aus der Informationstheorie: Datenkompression Einführung in die Informatik II Aus der Informationstheorie: Datenkompression Prof. Bernd Brügge, Ph.D Institut für Informatik Technische Universität München Sommersemester 2 2. Juli 2 Copyright 2 Bernd

Mehr

Textkompression. Komprimierung von Daten. Runlength Komprimierung (2) Runlength Komprimierung (1) Herkömmliche Kodierung. Runlength Komprimierung (3)

Textkompression. Komprimierung von Daten. Runlength Komprimierung (2) Runlength Komprimierung (1) Herkömmliche Kodierung. Runlength Komprimierung (3) Komprimierung von Daten Textkompression Effiziente Algorithmen VU 2.0 WS 2008/09 Bin Hu Ziel: Platz und Zeit sparen Kompression durch - Effiziente Kodierung - Verminderung der Redundanzen (verlustfrei)

Mehr

JKU Young Scientists Matheseminar

JKU Young Scientists Matheseminar JKU Young Scientists Matheseminar Matheseminar WS 2013/14 Codierung und Information Das grundlegende Problem der Kommunikation besteht darin, an einer Stelle entweder genau oder angenähert eine Nachricht

Mehr

EDV-Anwendungen im Archivwesen II

EDV-Anwendungen im Archivwesen II EDV-Anwendungen im Archivwesen II 070472 UE WS08/09 Digitale Formate (Beispiele) Überblick Kurzer Überblick über derzeit übliche Formate Bild Ton Video Archivierungsformate Ist Komprimierung immer zu vermeiden?

Mehr

Multimediale Werkzeuge, Audio: Formate, Tools. -Sound/Audio Objekte. Formate, Beispiele:

Multimediale Werkzeuge, Audio: Formate, Tools. -Sound/Audio Objekte. Formate, Beispiele: Multimediale Werkzeuge, Audio: Formate, Tools -Sound/Audio Objekte Formate, Beispiele: - Mp3 (Kurz für MPEG1/2 Layer 3) - PCM (z.b. Wave Datei), übliche Formate: CD: 44100 HZ Abtastrate, 16 Bits/Abtastwert.

Mehr

Organisation. Was kommt zum Test? Buch Informatik Grundlagen bis inkl. Kapitel 7.4 Wissensfragen und Rechenbeispiele

Organisation. Was kommt zum Test? Buch Informatik Grundlagen bis inkl. Kapitel 7.4 Wissensfragen und Rechenbeispiele Organisation Was kommt zum Test? Buch Informatik Grundlagen bis inkl Kapitel 74 Wissensfragen und Rechenbeispiele 3 Vorträge zur Übung Informationstheorie, Huffman-Codierung und trennzeichenfreie Codierung

Mehr

15 Optimales Kodieren

15 Optimales Kodieren 15 Optimales Kodieren Es soll ein optimaler Kodierer C(T ) entworfen werden, welcher eine Information (z.b. Text T ) mit möglichst geringer Bitanzahl eindeutig überträgt. Die Anforderungen an den optimalen

Mehr

JPEG. Seminar: Kompressionsalgorithmen. Ruslan Ragimov. 5. September 2012

JPEG. Seminar: Kompressionsalgorithmen. Ruslan Ragimov. 5. September 2012 JPEG Seminar: Kompressionsalgorithmen Ruslan Ragimov 5. September 2012 Zusammenfassung Die allgemeinen verlustfreien Verfahren zur Datenkompression können gute Kompressionsraten für verschiedene Dateitypen

Mehr

Run Length Coding und Variable Length Coding

Run Length Coding und Variable Length Coding Fachbereich Medieninformatik Hochschule Harz Run Length Coding und Variable Length Coding Referat Matthias Zittlau 11034 Abgabe: 15.01.2007 Inhaltsverzeichnis 1. RLC...1 2.1 Einführung...1 2.2 Prinzip...1

Mehr

Proseminar Datenkomprimierung Dr. U. Tamm. JPEG - Kompression WS 2002/03. Torsten Zichner

Proseminar Datenkomprimierung Dr. U. Tamm. JPEG - Kompression WS 2002/03. Torsten Zichner Proseminar Datenkomprimierung Dr. U. Tamm JPEG - Kompression WS 2002/03 Torsten Zichner Inhaltsangabe: 1. Einleitung 2. JPEG Kompression 2.1. Konvertierung des Bildes in ein geeignetes Farbmodell 2.2.

Mehr

Kapitel 2 Quellencodierung

Kapitel 2 Quellencodierung Kapitel 2 Quellencodierung Prof. Dr. Dirk W. Hoffmann Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Übersicht Quelle Senke Kompression Huffman-, Arithmetische-, Lempel-Ziv

Mehr

Dynamisches Huffman-Verfahren

Dynamisches Huffman-Verfahren Dynamisches Huffman-Verfahren - Adaptive Huffman Coding - von Michael Brückner 1. Einleitung 2. Der Huffman-Algorithmus 3. Übergang zu einem dynamischen Verfahren 4. Der FGK-Algorithmus 5. Überblick über

Mehr

Verlustbehaftete Kompression. JPEG: Joint Photographic Experts Group

Verlustbehaftete Kompression. JPEG: Joint Photographic Experts Group Verlustbehaftete Kompression JPEG: Joint Photographic Experts Group ITU T8.1 definiert Zusammenarbeit von ITU, IEC, ISO Verfahren zur verlustbehafteten Bildkodierung (auch Verlustloser Modus vorhanden)

Mehr

Code-Arten und Code-Sicherung. Literatur: Blieberger et.al.: Informatik (Kap. 3 und 4), Springer-Verlag R.-H. Schulz: Codierungstheorie, Vieweg

Code-Arten und Code-Sicherung. Literatur: Blieberger et.al.: Informatik (Kap. 3 und 4), Springer-Verlag R.-H. Schulz: Codierungstheorie, Vieweg Codierungstheorie Code-Arten und Code-Sicherung Inhaltsübersicht und Literatur Informationstheorie Was ist eine Codierung? Arten von Codes Informationsgehalt und Entropie Shannon'sches Codierungstheorem

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Wintersemester 2012/13 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Programm 11 Datenkompression Einführung Grundlagen

Mehr

Grafikformate. Auflösung Farbtiefe Farbmodelle

Grafikformate. Auflösung Farbtiefe Farbmodelle Farblehre Grafikformate Auflösung Farbtiefe Farbmodelle Grafikformate 1. Auflösung Je höher die Auflösung umso besser das Bild. niedrig mittel hoch 09.03.2007 2 Auflösung 1cm 1cm 1 Pixel pro cm Auflösung

Mehr

JPEG, PDF & Co. JPEG, PDF & Co. Theorie und Praxis zu Bildern auf Computern und Druckern

JPEG, PDF & Co. JPEG, PDF & Co. Theorie und Praxis zu Bildern auf Computern und Druckern JPEG, PDF & Co. Theorie und Praxis zu Bildern auf Computern und Druckern 16.12.2010 Borkwalde, Blog und Bier 1 Datei Bildschirm Drucker 16.12.2010 Borkwalde, Blog und Bier 2 Was ist eine Datei? 10011101

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 6. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Datenkomprimierung Bei den meisten bisher betrachteten

Mehr

DFIM+CGBV (SS 2007) 19.10.2007 Name (bitte in Blockschrift) Matrikelnummer

DFIM+CGBV (SS 2007) 19.10.2007 Name (bitte in Blockschrift) Matrikelnummer Musterlösung Prüfung: Datenformate für interaktive Medien + Computergrafik und Bildverarbeitung DFIM+CGBV (SS 2007) 19.10.2007 Name (bitte in Blockschrift) Matrikelnummer Unterschrift Hinweise: Überprüfen

Mehr

A1.7: Entropie natürlicher Texte

A1.7: Entropie natürlicher Texte A1.7: Entropie natürlicher Texte Anfang der 1950er Jahre hat Claude E. Shannon die Entropie H der englischen Sprache mit einem bit pro Zeichen abgeschätzt. Kurz darauf kam Karl Küpfmüller bei einer empirischen

Mehr

Zielstellung - "bildhafte" Darstellung von Informationen. "Ein Bild sagt mehr als 1000 Worte"

Zielstellung - bildhafte Darstellung von Informationen. Ein Bild sagt mehr als 1000 Worte Informatik - Präsentation / Graphik 1 Präsentation / Graphik Zielstellung - "bildhafte" Darstellung von Informationen "Ein Bild sagt mehr als 1000 Worte" - Aufnahmefähigkeit des Menschen Lesen 10-150 Bit/s

Mehr

Datenkompression. Motivation Datenmengen

Datenkompression. Motivation Datenmengen Motivation Übersicht, Informationstheorie, Modellierung Verlustfreie : Huffman-Codierung, Arithmetische Codierung,... Verlustbehaftete : Fourier-Analyse, JPEG, MPEG,... Datenorganisation 6 Seite Motivation

Mehr

Molekulare Bioinformatik

Molekulare Bioinformatik Molekulare Bioinformatik Wintersemester 203/204 Prof. Thomas Martinetz Institut für Neuro- und Bioinformatik Universität zu Luebeck 07.0.204 Molekulare Bioinformatik - Vorlesung 0 Wiederhohlung Die Entropie

Mehr

1 / 33. P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V5 07. Mai / 33

1 / 33. P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V5 07. Mai / 33 P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V5 07. Mai 204 7 / 33 P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V5 07. Mai 204 8 / 33 ADS: Algorithmen und Datenstrukturen 2 Teil 5 Prof. Peter F. Stadler

Mehr

Lossless Codecs. Fachbereich Medieninformatik. Hochschule Harz. Referat. Christian Menschel. Thema: Lossless Codecs

Lossless Codecs. Fachbereich Medieninformatik. Hochschule Harz. Referat. Christian Menschel. Thema: Lossless Codecs Fachbereich Medieninformatik Hochschule Harz Lossless Codecs Referat Christian Menschel 11487 Abgabe: 15.01.2007 Inhaltsverzeichnis Abkürzungen...I 1 Einleitung...1 2 Entropiekodierung...2 3 MPEG - 4 Audio

Mehr

(Prüfungs-)Aufgaben zur Codierungstheorie

(Prüfungs-)Aufgaben zur Codierungstheorie (Prüfungs-)Aufgaben zur Codierungstheorie 1) Gegeben sei die folgende CCITT2-Codierung der Dezimalziffern: Dezimal CCITT2 0 0 1 1 0 1 1 1 1 1 0 1 2 1 1 0 0 1 3 1 0 0 0 0 4 0 1 0 1 0 5 0 0 0 0 1 6 1 0 1

Mehr

Quellencodierung NTM, 2006/05, 9.3 Quellencodierung, Rur, 1

Quellencodierung NTM, 2006/05, 9.3 Quellencodierung, Rur, 1 Quellencodierung NTM, 2006/05, 9.3 Quellencodierung, Rur, 1 Referenzen [1] Proakis, Salehi, Grundlagen der Kommunikationstechnik, Pearson, 2004. [2] D. Salomon, Data Compression, Springer, 2004. [3] D.

Mehr

Fachbericht zum Thema: Anforderungen an ein Datenbanksystem

Fachbericht zum Thema: Anforderungen an ein Datenbanksystem Fachbericht zum Thema: Anforderungen an ein Datenbanksystem von André Franken 1 Inhaltsverzeichnis 1 Inhaltsverzeichnis 1 2 Einführung 2 2.1 Gründe für den Einsatz von DB-Systemen 2 2.2 Definition: Datenbank

Mehr

Eine verlustbehaftete Komprimierung ist es, wenn wir einige Kleidungsstücke zu

Eine verlustbehaftete Komprimierung ist es, wenn wir einige Kleidungsstücke zu Komprimierungen In Netzwerken müssen viele Daten transportiert werden. Dies geht natürlich schneller, wenn die Datenmengen klein sind. Um dies erreichen zu können werden die Daten komprimiert. Das heisst,

Mehr

Digitalisierung. analoges Signal PAM. Quantisierung

Digitalisierung. analoges Signal PAM. Quantisierung Digitalisierung U analoges Signal t U PAM t U Quantisierung t Datenreduktion Redundanzreduktion (verlustfrei): mehrfach vorhandene Informationen werden nur einmal übertragen, das Signal ist ohne Verluste

Mehr

Farb-Fernsehsignal (Composite FBAS)

Farb-Fernsehsignal (Composite FBAS) Farb-Fernsehsignal (Composite FBAS) Quelle: Ze-Nian Li : Script Multimedia Systems, Simon Fraser University, Canada VIDEO- Digitalisierung Gemeinsame Kodierung FBAS Farbbild- Austast- und Synchronsignal

Mehr

3. Entscheidungsbäume. Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002)

3. Entscheidungsbäume. Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002) 3. Entscheidungsbäume Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002) (aus Wilhelm 2001) Beispiel: (aus Böhm 2003) Wann sind Entscheidungsbäume

Mehr

Technische Universität München. Lehrstuhl für Bildverstehen und wissensbasierte Systeme. Wintersemester 2006 / 2007

Technische Universität München. Lehrstuhl für Bildverstehen und wissensbasierte Systeme. Wintersemester 2006 / 2007 Technische Universität München Lehrstuhl für Bildverstehen und wissensbasierte Systeme Proseminar: Grundlagen Bildverarbeitung / Bildverstehen Wintersemester 2006 / 2007 Thema: Bildkodierung, Bildkompression

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 5. Vorlesung Uwe Quasthoff Abteilung Automatische Sprachverarbeitung Institut für Informatik Universität Leipzig 9. Mai 2012 1 / 35 Datenkompression Bisheriges Hauptziel

Mehr

Mathematisches Praktikum - SoSe 2014

Mathematisches Praktikum - SoSe 2014 Mathematisches Praktikum - SoSe 2014 Prof. Dr. Wolfgang Dahmen Felix Gruber, M. Sc., Christian Löbbert, M. Sc., Yuanjun Zhang, M. Sc., Klaus Kaiser, M. Sc. Zusatzaufgabe 3 für Informatiker Bearbeitungszeit:

Mehr

Modulation. Kommunikationstechnik, SS 08, Prof. Dr. Stefan Brunthaler 104

Modulation. Kommunikationstechnik, SS 08, Prof. Dr. Stefan Brunthaler 104 Modulation Kommunikationstechnik, SS 08, Prof. Dr. Stefan Brunthaler 104 Datenfernübertragung I Über kurze Entfernungen können Daten über Kupferkabel übertragen werden, indem jedes Bit mit einer positiven

Mehr

Effiziente Erzeugung qualitativ hochwertiger Bilder anhand punktbasierter Geometriedaten

Effiziente Erzeugung qualitativ hochwertiger Bilder anhand punktbasierter Geometriedaten Effiziente Erzeugung qualitativ hochwertiger Bilder anhand punktbasierter Geometriedaten Referent: Arndt Ebert 1 2 Ziel des Vortrags Einordnung der point based representation (PBR) und Grundlagen Effiziente

Mehr

Bildkompression Proseminar Datenkompression Daniel Koch

Bildkompression Proseminar Datenkompression Daniel Koch Bildkompression Proseminar Datenkompression Daniel Koch 0 Inhalt INHALT...1 VERLUSTFREIE KOMPRESSIONSVERFAHREN...2 VERLUSTBEHAFTETE KOMPRESSIONSVERFAHREN...3 YUV-FARBREDUKTION...3 QUANTISIERUNG...3 JPEG...4

Mehr

Verlustfreie Kompressionsverfahren. RLE, LZW, Huffmann, CCITT, ZIP

Verlustfreie Kompressionsverfahren. RLE, LZW, Huffmann, CCITT, ZIP Verlustfreie Kompressionsverfahren RLE, LZW, Huffmann, CCITT, ZIP Run-Length-Encoding (RLE) Sinnvoll beim Auftreten von stark redundanten Datenmustern, wie z. B. flächige Farben Verwendung eines Kennzeichens

Mehr

Standbildcodierung. Dipl.-Ing. Guido Heising. Digitale Videotechnik, SS 02, TFH Berlin, Dipl.-Ing. G. Heising G. Heising, K.

Standbildcodierung. Dipl.-Ing. Guido Heising. Digitale Videotechnik, SS 02, TFH Berlin, Dipl.-Ing. G. Heising G. Heising, K. Standbildcodierung Dipl.-Ing. Guido Heising Digitale Videotechnik, SS 02, TFH Berlin, Dipl.-Ing. G. Heising G. Heising, K. Barthel 1 Gliederung der Vorlesung Einführung in die Bildcodierung - verlustlose/verlustbehaftete

Mehr

Algorithmen und Datenstrukturen (für ET/IT) Programm heute. Wintersemester 2012/13. Dr. Tobias Lasser. 7 Fortgeschrittene Datenstrukturen

Algorithmen und Datenstrukturen (für ET/IT) Programm heute. Wintersemester 2012/13. Dr. Tobias Lasser. 7 Fortgeschrittene Datenstrukturen Algorithmen und Datenstrukturen (für ET/IT) Wintersemester 202/3 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Programm heute 7 Fortgeschrittene Datenstrukturen 8 Such-Algorithmen

Mehr

AAC ADPCM. Kompressionsverfahren für Audio. Anzahl Zeichen MP3 Wahrscheinlichkeit. des Auftretens des Zeichens

AAC ADPCM. Kompressionsverfahren für Audio. Anzahl Zeichen MP3 Wahrscheinlichkeit. des Auftretens des Zeichens Entropie= durchschnittlicher Informationsgehalt pro Zeichen in einer Zeichenkette H = pilog2 p m p m i= 1 Anzahl Zeichen MP3 Wahrscheinlichkeit AAC ADPCM i i des Auftretens des Zeichens i Kompressionsverfahren

Mehr

Die Digitalisierung von Musik

Die Digitalisierung von Musik Die Digitalisierung von Musik 1 Analoges Speichern Speicherung von Musik auf einer LP Die Daten sind analog gespeichert Analysis 2 Digitale Datenerfassung 1.Sampling Das (akustische) elektrische Signal

Mehr

Modul 0: Einführung Basiswissen Multimedia. Modul 1: Information und Kommunikation (IuK)

Modul 0: Einführung Basiswissen Multimedia. Modul 1: Information und Kommunikation (IuK) Inhaltsverzeichnis Modul 0: Einführung Basiswissen Multimedia 1 Was ist Multimedia? 15 2 Wer braucht Wissen" über Multimedia? Warum? 17 3 Wozu Multimedia? 19 4 Wozu Multimedia über das Internet? 21 Modul

Mehr

Kapitel 2: Informationstheorie. 3. Quellencodierung

Kapitel 2: Informationstheorie. 3. Quellencodierung ZHAW, NTM2, Rumc, 2.3-1 Kapitel 2: Informationstheorie 3. Quellencodierung Inhaltsverzeichnis 1. EINLEITUNG... 1 2. QUELLENCODIERUNGSTHEOREM... 2 3. HUFFMAN-QUELLENCODIERUNG... 3 4. DATENKOMPRESSION MIT

Mehr

Photoshop 6.0.1 Abspeichern von Dokumenten...

Photoshop 6.0.1 Abspeichern von Dokumenten... VHS Reutlingen Visuelle Kommunikation - Grundlagen Computer 1/6 Photoshop 6.0.1 Abspeichern von Dokumenten... Menüleiste Datei Speichern/ Speichern unter.../ Für Web speichern... Das Photoshop - Format

Mehr

J.P.E.G. Standard. J.P.E.G. Eigenschaften. J.P.E.G. System. JPEG Verschlüsselungsschritte. Farbmodell

J.P.E.G. Standard. J.P.E.G. Eigenschaften. J.P.E.G. System. JPEG Verschlüsselungsschritte. Farbmodell Inhaltsbasierte Bildsuche J.P.E.G = Joint Photographic Expert Group Informatica Feminale Universität Bremen, Aug. 2005 Maja Temerinac Albert-Ludwigs-Universität Freiburg J.P.E.G. Standard Standard zur

Mehr

Kompakte Graphmodelle handgezeichneter Bilder

Kompakte Graphmodelle handgezeichneter Bilder Kompakte Graphmodelle handgezeichneter Bilder Einbeziehung in Authentizierung und Bilderkennung Inhaltsverzeichnis Seminar Mustererkennung WS 006/07 Autor: Stefan Lohs 1 Einleitung 1 Das graphische Modell.1

Mehr

Kompressionsverfahren

Kompressionsverfahren Kompressionsverfahren Quelle: Steinmetz, Ralf: Multimedia-Technologie: Einführung und Grundlagen, Springer, Verlag Adaptive Huffman - Kodierung Nach 17 Zeichen: A(1),B(2),C(2),D(2),E(10) Kodierung A: 000

Mehr

DATEIFORMATE 1 7 PHOTOSHOP CS6 DATEIFORMATE

DATEIFORMATE 1 7 PHOTOSHOP CS6 DATEIFORMATE 1 7 Photoshop-Dateien (.psd) Das Format PSD ist das Hausformat von Photoshop und unterstützt restlos alle Funktionen des Programmes. In PSD ist keine Datenkompression möglich. Was aber auch nicht notwendig

Mehr

Diskrete Cosinus-Transformation (DCT)

Diskrete Cosinus-Transformation (DCT) Diskrete Cosinus-Transformation (DCT) Prinzip von DCT: (in einer oder zwei Dimensionen...) Menge von Datenpunkten f(x) bzw. f(x,y) (für x,y = 1, N) Forward DCT (FDCT) Inverse DCT (IDCT) Rekonstruktion

Mehr

EDV-Anwendungen im Archivwesen II

EDV-Anwendungen im Archivwesen II EDV-Anwendungen im Archivwesen II 070472 UE WS08/09 Grundlagen der Digitalisierung Überblick Allgemeine Grundlagen der Digitalisierung anhand der Ton-Digitalisierung Abtastrate (Samplerate) Wortlänge (Bitrate)

Mehr

Abbildtreue und Kompression gescannter Dokumente bei PDF/A

Abbildtreue und Kompression gescannter Dokumente bei PDF/A Abbildtreue und Kompression gescannter Dokumente bei PDF/A Empfehlungen geeigneter Einstellungen Datum: 29.11.2013 Autor: Axel Rehse Thomas Zellmann LuraTech Imaging GmbH LuraTech Europe GmbH Inhalt Einleitung...

Mehr

Referat für Algorithmische Anwendungen WS 2006/ 07: Verlustfreie Datenkompression mit dem Deflate-Algorithmus (LZ77- und Huffman-Codierung)

Referat für Algorithmische Anwendungen WS 2006/ 07: Verlustfreie Datenkompression mit dem Deflate-Algorithmus (LZ77- und Huffman-Codierung) Referat für Algorithmische Anwendungen WS 2006/ 07: Verlustfreie Datenkompression mit dem Deflate-Algorithmus (LZ77- und Huffman-Codierung) Benedikt Arnold, 11041025, ai686@gm.fh-koeln.de Sebastian Bieker,

Mehr