Fachwerke

Größe: px
Ab Seite anzeigen:

Download "Fachwerke"

Transkript

1 1. Fachwerke Ein Fachwerk besteht aus einzelnen Stäben, die in den Knoten gelenkig miteinander verbunden sind. Am Beispiel des Fachwerks lassen sich die einzelnen Berechnungsschritte einer Finite-Elemente-Rechnung gut veranschaulichen

2 1. Fachwerke 1.1 Elementsteifigkeit 1.2 Assemblierung 1.3 Gleichungssystem 1.4 Elementergebnisse 1.5 Schlussfolgerungen 3.1-2

3 1.1 Elementsteifigkeit Das Stabelement: F L F 2 x E u 1 u 2 Der Anfangsknoten hat die Nummer 1 und der Endknoten die Nummer 2, unabhängig davon, welche Nummern die entsprechenden Knoten im Fachwerk haben. Die x E -Achse des Elementkoordinatensystems zeigt von Knoten 1 zu Knoten

4 1.1 Elementsteifigkeit Kräfte und Verschiebungen sind positiv, wenn sie in Richtung der x E -Achse zeigen. Der Stab hat die Länge L, die Querschnittsfläche A und den Elastizitätsmodul E. Steifigkeitsmatrix im Elementkoordinatensystem: Für die Längenänderung des Stabs gilt: L=u 2 u 1 Daraus folgt für die Normalkraft: N =E A Δ L L = E A L ( u 2 u 1 ) 3.1-4

5 1.1 Elementsteifigkeit Für die Kräfte gilt: N 1 2 N F F 2 x E x E F 1 = N, F 2 =N Damit lautet der Zusammenhang zwischen den Verschiebungen und den Kräften an den Knoten: F 1 = E A L u 2 u 1, F 2 = E A L u 2 u

6 1.1 Elementsteifigkeit Diese linearen Beziehungen zwischen Verschiebungen und Kräften lassen sich übersichtlich mit Hilfe von Matrizen schreiben: [ F 1 F 2] = E A L [ 1 Der hochgestellte Index E zeigt an, dass sich die Größen auf ein Stabelement beziehen. Der tiefgestellte Index E zeigt an, dass sich die Größen auf das Elementkoordinatensystem beziehen ] [ u 1 u 2] [ F E ] E = [ k E ] E [u E ] E 3.1-6

7 1.1 Elementsteifigkeit [ F E ] E ist die Matrix der Elementkräfte. [ k E ] E ist die Steifigkeitsmatrix des Stabelements. [u E ] E ist die Matrix der Elementverschiebungen. Die Steifigkeitsmatrix ist symmetrisch: Die Kraft am Knoten 1 infolge einer Verschiebung u am Knoten 2 ist gleich der Kraft am Knoten 2 infolge einer Verschiebung u am Knoten 1. Die Symmetrie der Steifigkeitsmatrix ist eine Folge des Reziprozitätsgesetzes

8 1.1 Elementsteifigkeit Im Elementkoordinatensystem hat das Stabelement 2 Freiheitsgrade, nämlich die Verschiebungen u 1 und u 2, zu denen die Kräfte F 1 und F 2 gehören. Transformation in das Strukturkoordinatensystem: y v u x 3.1-8

9 1.1 Elementsteifigkeit Das Strukturkoordinatensystem ist ein allen Knoten gemeinsames Koordinatensystem. Im Strukturkoordinatensystem hat jeder Knoten 2 Freiheitsgrade, nämlich die Verschiebung u in x-richtung und die Verschiebung v in y-richtung. Für den Einheitsvektor e E des Elementkoordinatensystems gilt: [ e E ]=[ cos sin ] = 1 L [ x 2 x 1 y 2 y 1] y e E 2 mit L= x 2 x 1 2 y 2 y ϕ x 3.1-9

10 1.1 Elementsteifigkeit Die Verschiebungen in Richtung der x E -Achse sind die Projektionen der Verschiebungen auf die Elementachse: u 1 E =e E u 1 = 1 L [ x 2 x 1 y 2 y 1 ] [ u 1 v 1] = x 2 x 1 L u 1 y 2 y 1 L v 1 u 2 E =e E u 2 = 1 L [ x 2 x 1 y 2 y 1 ] [ u 2 v 2] = x 2 x 1 L u 2 y 2 y 1 L v

11 1.1 Elementsteifigkeit In Matrix-Schreibweise lauten die Beziehungen: [ u 1 E E] u 2 = 1 [ x 2 x 1 y 2 y ] L 0 0 x 2 x 1 y 2 y [u1 v 1 2] u 2 v [u E ] E = [T E ] E [ u E ]

12 1.1 Elementsteifigkeit Mit Hilfe der Steifigkeitsmatrix können die Kräfte im Elementkoordinatensystem berechnet werden: [ F 1E E] F 2 =[ F E ] E =[ k E ] E [u E ] E Die Kräfte wirken in Richtung der x E -Achse. Daher gilt für die Kräfte im Strukturkoordinatensystem: [ F 1 ]=F 1 E [e E ]= F 1E L [ x 2 x 1 y 2 y 1] = [ F 1 x F 1 y] [ F 2 ]=F 2 E [e E ]= F 2 E L [ x 2 x 1 y 2 y 1] = [ F 2 x F 2 y]

13 1.1 Elementsteifigkeit Die Beziehungen lassen sich zusammenfassen zu [ F 1 x F 1 y y] [ x2 x1 0 1 y = 2 y 1 0 1] [ F 1 E E] F 2 x L 0 x 2 x 1 F 2 F 2 0 y 2 y [ F E ] = [T E T ] E [ F E ] E Im Strukturkoordinatensystem gilt also: [ F E ]=[T E T ] E [ k E ] E [T E ] E [ u E ]

14 1.1 Elementsteifigkeit Im Strukturkoordinatensystem hat das Stabelement die Steifigkeitsmatrix [ k E ]=[T E ] E T [ k E ] E [T E ] E Zwischen den Verschiebungen und den Kräften am Element besteht die Beziehung [ F E ]=[ k E ] [u E ]

15 1.1 Elementsteifigkeit Räumliche Fachwerke: Ein Knotenpunkt im Raum hat die 3 Freiheitsgrade u, v und w. Die Transformationsmatrix vom Strukturkoordinatensystem in das Elementkoordinatensystem lautet [T E ] E = 1 L [ x 2 x 1 y 2 y 1 z 2 z x 2 x 1 y 2 y 1 z 2 z 1] mit L= x 2 x 1 2 y 2 y 1 2 z 2 z 1 2 Die Steifigkeitsmatrix im Elementkoordinatensystem wird genauso berechnet wie beim ebenen Fachwerk

16 1.2 Assemblierung Freiheitsgrade der Gesamtstruktur: Bei einem ebenen Fachwerk hat jeder Knoten zwei Freiheitsgrade, nämlich die Verschiebungen u und v, zu denen die Kräfte F x und F y gehören. y 5 F 6y F 6x v u x

17 1.2 Assemblierung Die Verschiebungen werden in der Verschiebungsmatrix und die Kräfte in der Lastmatrix ]=[ zusammengefasst: F 1 x F 1 y F 2 x y], [ F F 2 y F 7 x F 7 v 1 u 2 [ u]=[u1 7] v 2 u 7 v

18 1.2 Assemblierung Assemblierung: Für jeden Knoten muss das Kräftegleichgewicht erfüllt sein. Am Knoten greifen die Stabkräfte sowie die äußeren Kräfte an. Die Stabkräfte können über die Elementsteifigkeitsmatrizen aus den Verschiebungen berechnet werden. Dazu müssen zunächst die Verschiebungen an den beiden Knoten des Stabelements aus der Verschiebungsmatrix extrahiert werden

19 1.2 Assemblierung Beispiel: Element 2 y v 2 v u 2 u 3 x v 2 v u 3 u

20 1.2 Assemblierung [u ]=[u 2 v u v 3]=[0 0] [ a 2 ] [ u1 v 1 u 2 v 2 u 3 v 7] 3 u 4 v 4 u 5 v 5 u 6 v 6 u 7 v

21 1.2 Assemblierung In Matrix-Schreibweise gilt: [u E ]=[ a E ] [ u ] Nun können die am Stabelement angreifenden Kräfte berechnet werden: [ F E ]=[ k E ] [u E ] Das sind die Kräfte, die die beiden Knoten auf das Stabelement ausüben. Diese Kräfte werden nun zu den Kräften, die die beiden Knoten auf die anderen angeschlossenen Stäbe ausüben, addiert

22 1.2 Assemblierung Beispiel: Element 2 y F 2y F 3y F 2x F 3x x F 2 1y + F 2 2y 1 2 F 2 1x F 2 2x

23 [ F 2 x 2 F 2 y 2 F 3 x ] 2 F 3 y 0 = [ ] [ F 2 1x 2 F 1 y ] 2 F 2 x 2 F 2 y 1.2 Assemblierung In Matrix-Schreibweise gilt für die Kräfte, die die Knoten auf die Stäbe ausüben: [ F S ]= E = E Die Matrix [ a E ] T [ F E ] ist die Steifigkeitsmatrix der Gesamtstruktur. [ a E ] T [ k E ] [ a E ] [ K ]= E [ u ]=[ K ] [ u ] [ a E ] T [ k E ] [ a E ]

24 1.2 Assemblierung Die Steifigkeitsmatrix der Gesamtstruktur beschreibt eine lineare Beziehung zwischen den Verschiebungen der Knoten und den Kräften, die die Knoten auf die Stäbe ausüben. Die Kräfte, die die Stäbe auf die Knoten ausüben, sind entgegengesetzt gleich groß wie die Kräfte, die die Knoten auf die Stäbe ausüben. Sie müssen im Gleichgewicht mit den äußeren Kräften sein: [ F S ] [ F ]=[0 ] [ F S ]=[ F ] [ K ] [ u]=[ F ]

25 1.3 Gleichungssystem Lagerung: Damit das Fachwerk Kräfte aufnehmen kann, muss es gelagert werden, Die Lagerung muss so beschaffen sein, dass keine Starrkörperbewegungen oder Mechanismen mehr möglich sind. Die Verschiebungen an den Lagern sind null. Damit sind die Verschiebungen an den Lagern bekannt, während die Lagerkräfte unbekannt sind. An den übrigen Freiheitsgraden sind die Verschiebungen unbekannt, während die Kräfte bekannt sind

26 1.3 Gleichungssystem Partitionierung der Matrizen: Die Verschiebungsmatrix [u] wird unterteilt in die Matrix [u s ] mit den Verschiebungen an den Lager-Freiheitsgraden und die Matrix [u f ] mit den übrigen, freien Verschiebungen: [ u ] [ [ u f ] [ u s ] ] Auf die gleiche Weise wird die Lastmatrix unterteilt: [ F ] [ [ F f ] [ F s ] ]

27 1.3 Gleichungssystem Beispiel: y x F1 x F 1 y y] 2 x v [ u 4 F f ]=[u2 [ F f ]=[F y] 4 y F 5 x u 6 F 6 x F 5 v 7], F 7 [ u s ]=[u 1 v 1 u 5 v 5], [ F s ]=[

28 1.3 Gleichungssystem Die Steifigkeitsmatrix wird in vier Teilmatrizen unterteilt: [ K ]=[ [ K ff ] [ K fs ] [ K fs ] T [ K ss ]] Matrix [K ff ] enthält die Elemente der Steifigkeitsmatrix, deren Zeilen und Spalten den freien Freiheitsgraden entsprechen. Matrix [K fs ] enthält die Elemente der Steifigkeitsmatrix, deren Zeilen den freien Freiheitsgraden und deren Spalten den Lager-Freiheitsgraden entsprechen

29 1.3 Gleichungssystem Matrix [K s s ] enthält die Elemente der Steifigkeitsmatrix, deren Zeilen und Spalten den Lager-Freiheitsgraden entsprechen. Damit lautet die Gleichgewichtsbedingung: Bekannt sind die Verschiebungen [u s ]=[0 ] und die äußeren Kräfte [F f ]. Gesucht sind die Verschiebungen [u f ] und die Lagerkräfte [F s ]. [ [ K ff ] [ K fs] ]][ [ K fs ] T [ K ss [ u f ] [ u s ] ] = [ [ F f ] [ F s ] ]

30 1.3 Gleichungssystem Das Gleichungssystem: Aus der Gleichgewichtsbedingung folgen die beiden Gleichungssysteme Durch Lösen des Gleichungssystems können die Verschiebungen [u f ] ermittelt werden. Anschließend lassen sich die Lagerkräfte [F s ] aus berechnen. [ K ff ] [u f ]=[ F f ] und [ K fs ] T [u f ]=[ F s ] [ F s ]=[ K fs ] T [u f ] [ K ff ] [u f ]=[ F f ]

31 1.4 Elementergebnisse Nach dem Lösen des Gleichungssystems sind alle Verschiebungen bekannt. Daraus lassen sich auf Elementebene weitere Ergebnisse berechnen. Elementverschiebungen: Die Verschiebungen der Knoten eines Stabelements im Elementkoordinatensystem berechnen sich zu [ u E] E 1 u 2 = [u E ] E =[T E ] E [ a E ] [u]

32 1.4 Elementergebnisse Dehnungen: Für die Dehnung eines Stabelements gilt: Spannungen: E = u E E 2 u 1 L = 1 L [ 1 1 ] [ E u 1 = [ B E ] [u E ] E Die Spannungen berechnen sich mit dem Materialgesetz aus den Dehnungen: E =E E u 2 E]

33 1.5 Schlussfolgerungen Für Fachwerke ist die Methode der finiten Elemente exakt. Dabei ist zu beachten, dass die Betrachtung eines Tragwerks als Fachwerk bereits eine starke Idealisierung darstellt. Die Methode ist einfach zu programmieren. Entsprechend lassen sich auch Balkenelemente formulieren, die im Rahmen der Balkentheorie exakt sind

1. Das Stabelement. Prof. Dr. Wandinger 1. Fachwerke FEM L x E u 1. u 2

1. Das Stabelement. Prof. Dr. Wandinger 1. Fachwerke FEM L x E u 1. u 2 Ein Fachwerk besteht aus einzelnen Stäben, die in den Knoten gelenkig miteinander verbunden sind. Für jeden Stab besteht eine lineare Beziehung zwischen den Verschiebungen seiner Knoten und den Kräften

Mehr

3. Das Gleichungssystem

3. Das Gleichungssystem Lagerung: Damit das Fachwerk Kräfte aufnehmen kann, muss es gelagert werden, Die Lagerung muss so beschaffen sein, dass keine Starrkörperbewegungen oder Mechanismen mehr möglich sind. Die Verschiebungen

Mehr

2. Die Steifigkeitsmatrix

2. Die Steifigkeitsmatrix . Die Steifigkeitsmatrix Freiheitsgrade der Gesamtstruktur: Bei einem ebenen Fachwerk hat jeder Knoten zwei Freiheitsgrade, nämlich die Verschiebungen u x und u y, zu denen die Kräfte F x und F y gehören.

Mehr

4. Das Verfahren von Galerkin

4. Das Verfahren von Galerkin 4. Das Verfahren von Galerkin 4.1 Grundlagen 4.2 Methode der finiten Elemente 4.3 Beispiel: Stab mit Volumenkraft Prof. Dr. Wandinger 3. Prinzip der virtuellen Arbeit FEM 3.4-1 4.1 Grundlagen Das Verfahren

Mehr

2. Finite Elemente. Die Methode der finiten Elemente ist ein spezielles Bubnow-Galerkin-Verfahren:

2. Finite Elemente. Die Methode der finiten Elemente ist ein spezielles Bubnow-Galerkin-Verfahren: 2. Finite lemente Die Methode der finiten lemente ist ein spezielles Bubnow-Galerkin-Verfahren: Zur Lösung der Gleichung K [ ~ u,u]+d [ ~ u, u]+m [ ~ u, ü]=l[ ~ u ] ~ u wird folgender Ansatz gemacht: u=

Mehr

Fachwerksberechnung mit FEM II

Fachwerksberechnung mit FEM II HTBL-Kapfenberg Fachwerksberechnung mit FEM Seite 1 Florian Grabner fi.do@gmx.net Fachwerksberechnung mit FEM II Mathematische / Fachliche Inhalte in Stichworten: Finite Elemente Methode Kurzzusammenfassung

Mehr

Technische Mechanik. Fachwerke

Technische Mechanik. Fachwerke 7 Fachwerke Fachwerke Fachwerke Anwendungsbeispiele... Beispiele aus dem Ingenieurwesen (wikipedia.org) Fachwerke 1 Fachwerke Anwendungsbeispiele nanowerk.com (T. Bückmann) wikipedia.org Beispiele aus

Mehr

Klausurlösung Einführung in Numerische Methoden und FEM Universität Siegen, Department Maschinenbau,

Klausurlösung Einführung in Numerische Methoden und FEM Universität Siegen, Department Maschinenbau, Universität Siegen, Department Maschinenbau, 7.7. Aufgabe y 3 l 3 3 F l l x Das dargestellte Fachwerk soll statisch mit Hilfe der FEM untersucht werden. Die Knoten und Elemente sind in der Abbildung nummeriert.

Mehr

Übungsaufgaben Systemmodellierung WT 2015

Übungsaufgaben Systemmodellierung WT 2015 Übungsaufgaben Systemmodellierung WT 2015 Robert Friedrich Prof. Dr.-Ing. Rolf Lammering Institut für Mechanik Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg Holstenhofweg 85, 22043 Hamburg

Mehr

3. Das Prinzip der virtuellen Arbeit

3. Das Prinzip der virtuellen Arbeit 3.1 Stab 3.2 Scheibe 3. Das Prinzip der virtuellen Arbeit Prof. Dr. Wandinger 3. Prinzip der virtuellen Arbeit FEM 3.3-1 3.1 Stab Herleitung des Prinzips der virtuellen Arbeit: Am Stab greifen als äußere

Mehr

= = > > Aufgabe 1 (6 Punkte) Institut für Technische und Num. Mechanik Technische Mechanik IV Profs. P. Eberhard / M. Hanss WS 2014/15 K 2

= = > > Aufgabe 1 (6 Punkte) Institut für Technische und Num. Mechanik Technische Mechanik IV Profs. P. Eberhard / M. Hanss WS 2014/15 K 2 Institut für Technische und Num. Mechanik Technische Mechanik IV Profs. P. Eberhard / M. Hanss WS 014/15 K 1. Februar 015 Klausur in Technische Mechanik IV Nachname, Vorname E-Mail-Adresse (Angabe freiwillig)

Mehr

WS 2014/15 FINITE-ELEMENT-METHODE JUN.-PROF. D. JUHRE

WS 2014/15 FINITE-ELEMENT-METHODE JUN.-PROF. D. JUHRE Approximation der äußeren virtuellen Arbeit Die virtuelle Arbeit der äußeren Lasten lässt sich als Funktion der vorgeschriebenen Knotenlasten N i 1 und der vorgeschriebenen Streckenlast p 1 ξ 1 angeben.

Mehr

Teilstrukturen

Teilstrukturen 5. Teilstrukturen Die Berechnung von komplexen trukturen lässt sich oft vereinfachen, wenn die truktur in Teilstrukturen unterteilt wird. Die Teilstrukturen hängen an den Anschlusspunkten zusammen. Für

Mehr

Assemblierung der Elemente zum System

Assemblierung der Elemente zum System Assemblierung der Elemente zum System Die Assemblierung kann durch vier aufeinander aufbauenden Methoden realisiert werden. Diese unterscheiden sich im wesentlichen in der mathematischen Formulierung,

Mehr

1.1.2 Stabkräfte berechnen

1.1.2 Stabkräfte berechnen 1.1.2 Stabkräfte berechnen Wozu brauche ich dieses Thema? Man braucht die Berechnungsmethoden dieses Themas, um die Kräfte in Fachwerken zu berechnen. Auch Seilkräfte, z.b. im Bridle, können so ermittelt

Mehr

D-MAVT Lineare Algebra I HS 2018 Prof. Dr. N. Hungerbühler. Lösungen 7

D-MAVT Lineare Algebra I HS 2018 Prof. Dr. N. Hungerbühler. Lösungen 7 D-MAVT Lineare Algebra I HS 8 Prof. Dr. N. Hungerbühler Lösungen 7. Gegeben seien: A := ( ), A := 5 ( ) 3 4. 4 3 Welche der folgenden Aussagen gelten? (a) A ist orthogonal. (b) A ist orthogonal. Lösung.

Mehr

Inhaltsverzeichnis Einleitung Mathematische Grundlagen

Inhaltsverzeichnis Einleitung Mathematische Grundlagen Inhaltsverzeichnis 1 Einleitung 1.1 Vorgehensweise bei der FEM... 3 1.2 Verschiedene Elementtypen... 5 1.3 Beispiele zur Finite-Elemente-Methode... 10 1.3.1 Beispiel zu nichtlinearen Problemen... 10 1.3.2

Mehr

3. Erzwungene Schwingungen

3. Erzwungene Schwingungen 3. Erzwungene Schwingungen 3.1 Grundlagen 3.2 Tilger 3.3 Kragbalken 3.4 Fahrbahnanregung 3.3-1 3.1 Grundlagen Untersucht wird die Antwort des Systems auf eine Anregung mit harmonischem Zeitverlauf. Bewegungsgleichung:

Mehr

Finite-Elemente-Methode

Finite-Elemente-Methode Peter Steinke Finite-Elemente-Methode Rechnergestützte Einführung 3., neu bearbeitete Auflage Springer 1 Einleitung 1.1 Vorgehensweise bei der FEM 3 1.2 Verschiedene Elementtypen 5 1.3 Beispiele zur. Finite-Elemente-Methode

Mehr

in den knotenzentrierten Koordinatensystemen des linken und rechten Knotens (Element i) bekannt sind. Das Prinzip der Berechnung lat

in den knotenzentrierten Koordinatensystemen des linken und rechten Knotens (Element i) bekannt sind. Das Prinzip der Berechnung lat Kapitel Gleichgewicht von Stabwerken Durch die Festlegung auf die grundlegenden Elementtypen und die knotenzentrierten Koordinatensysteme ist der Weg zur Formulierung der Gleichgewichtsbedingungen vorgezeichnet.

Mehr

1. Formänderungsenergie

1. Formänderungsenergie 1. Formänderungsenergie 1.1 Grundlagen 1. Grundlastfälle 1.3 Beispiele.1-1 1.1 Grundlagen Zugstab: F L F x E, A F W u u An einem am linken Ende eingespannten linear elastischen Stab greift am rechten Ende

Mehr

4. Der Berechnungsprozess

4. Der Berechnungsprozess Idealisierung Bauteil / Entwurf Preprocessor Mathematisches Modell Diskretisierung Finite-Elemente- Modell Solver Rechnung Ergebnisse Postprocessor Bewertung Prof. Dr. Wandinger 1. Fachwerke FEM 1.4-1

Mehr

Finite Elemente Modellierung

Finite Elemente Modellierung Finite Elemente Modellierung Modellerstellung Diskretisierung des Kontinuums Methode der Finite Elemente Anwendungsbeispiele der FEM Zugstab: Kraftmethode Zugstab: Energiemethode Zugstab: Ansatzfunktion

Mehr

3. Elastizitätsgesetz

3. Elastizitätsgesetz 3. Elastizitätsgesetz 3.1 Grundlagen 3.2 Isotropes Material 3.3 Orthotropes Material 3.4 Temperaturdehnungen 1.3-1 3.1 Grundlagen Elastisches Material: Bei einem elastischen Material besteht ein eindeutig

Mehr

3. Prinzip der virtuellen Arbeit

3. Prinzip der virtuellen Arbeit 3. Prinzip der virtuellen rbeit Mit dem Satz von Castigliano können erschiebungen für Freiheitsgrade berechnet werden, an denen Lasten angreifen. Dabei werden nicht immer alle Terme der Formänderungsenergie

Mehr

1. Zug und Druck in Stäben

1. Zug und Druck in Stäben 1. Zug und Druck in Stäben Stäbe sind Bauteile, deren Querschnittsabmessungen klein gegenüber ihrer änge sind: D Sie werden nur in ihrer ängsrichtung auf Zug oder Druck belastet. D Prof. Dr. Wandinger

Mehr

Theoretische Einleitung Fachwerkbrücken Parabelbrücken

Theoretische Einleitung Fachwerkbrücken Parabelbrücken Quellen: www.1000steine.com, www.professorbeaker.com, http://andrea2007.files.wordpress.com, www.zum.de, www.morgenweb.de, www1.pictures.gi.zimbio.com Quellen: www.1000steine.com, www.professorbeaker.com,

Mehr

Finite-Elemente-Methode

Finite-Elemente-Methode Finite-Elemente-Methode Rechnergestützte Einführung von Peter Steinke 1. Auflage Finite-Elemente-Methode Steinke schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG Springer 2012 Verlag

Mehr

3. Fluid-Struktur-Kopplung

3. Fluid-Struktur-Kopplung 3. Fluid-Struktur-Kopplung Bei einer schwingenden Struktur muss die Normalkomponente der Schallschnelle mit der Normalkomponente der Geschwindigkeit an der Oberfläche der Struktur übereinstimmen. Dadurch

Mehr

Mathematik I für MB und ME

Mathematik I für MB und ME Mathematik I für MB und ME Fachbereich Grundlagenwissenschaften Prof Dr Viola Weiÿ Wintersemester 28/29 Übungsaufgaben Serie 4: Lineare Unabhängigkeit, Matrizen, Determinanten, LGS Prüfen Sie, ob die folgenden

Mehr

Kapitel 9 Räumlicher Spannungszustand

Kapitel 9 Räumlicher Spannungszustand Kapitel 9 Räumlicher Spannungszustand 9 9 9 Räumlicher Spannungszustand 9.1 Problemdefinition... 297 9.2 Die Grundgleichungen des räumlichen Problems... 297 9.2.1 Die Feldgleichungen des räumlichen Problems...

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 6 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 6 Summe Punkte: 29,5 7 17 10 9,5 7 80 Davon erreicht Punkte: Gesamtergebnis

Mehr

Dankert/Dankert: Technische Mechanik, 5. Auflage Lösungen zu den Aufgaben, Teil 5 (Kapitel 18)

Dankert/Dankert: Technische Mechanik, 5. Auflage Lösungen zu den Aufgaben, Teil 5 (Kapitel 18) Dankert/Dankert: Technische Mechanik, 5. Auflage Lösungen zu den Aufgaben, Teil 5 (Kapitel 18) Lösung 18.1: Die Aufgabe wird nach der im Beispiel des Abschnitt 18.1.5 demonstrierten Strategie für die Lösung

Mehr

4. Balken. Brücken Tragflügel KFZ-Karosserie: A-Säule, B-Säule Rahmen: Fahrrad, Motorrad. Prof. Dr. Wandinger 2. Festigkeitslehre TM 2.

4. Balken. Brücken Tragflügel KFZ-Karosserie: A-Säule, B-Säule Rahmen: Fahrrad, Motorrad. Prof. Dr. Wandinger 2. Festigkeitslehre TM 2. 4. Balken Balken sind eindimensionale Idealisierungen für Bauteile, die Längskräfte, Querkräfte und Momente übertragen können. Die Querschnittsabmessungen sind klein gegenüber der Länge. Beispiele: Brücken

Mehr

Peter Steinke. Finite-Elemente-Methode. Rechnergestützte Einführung. 5., bearbeitete und ergänzte Auflage. ^ Springer Vi eweg

Peter Steinke. Finite-Elemente-Methode. Rechnergestützte Einführung. 5., bearbeitete und ergänzte Auflage. ^ Springer Vi eweg Peter Steinke Finite-Elemente-Methode Rechnergestützte Einführung 5., bearbeitete und ergänzte Auflage ^ Springer Vi eweg 1 Einleitung 1.1 Vorgehensweise bei der FEM 3 1.2 Verschiedene Elementtypen 5 1.3

Mehr

CES-Softwareentwicklungspraktikum Projekt: Elastische zweidimensionale Tragwerksberechnung

CES-Softwareentwicklungspraktikum Projekt: Elastische zweidimensionale Tragwerksberechnung CES-Softwareentwicklungspraktikum Projekt: Elastische zweidimensionale Tragwerksberechnung Dipl.-Ing. M. Nicolai, Dipl. Phys. Eva Schlauch, Chair for Computational Analysis of Technical Systems, RWTH Aachen

Mehr

Fragen aus dem Repetitorium II

Fragen aus dem Repetitorium II Fragen aus dem Repetitorium II Folgend werden die Fragen des Repetitoriums II, welche ihr im Skript ab Seite 182 findet, behandelt. Die Seiten werden ständig aktualisiert und korrigiert, so daß es sich

Mehr

Fachwerkelemente sind an ihren Enden durch reibungsfreie Gelenke miteinander verbunden

Fachwerkelemente sind an ihren Enden durch reibungsfreie Gelenke miteinander verbunden 47 8 achwerke achwerke sind Tragwerkstrukturen aus geraden Stäben. Sie finden ihren Einsatz überall dort, wo große Distanzen zu überbrücken sind. Durch ihren Aufbau vermeiden sie Momentenbelastungen und

Mehr

4. Verzerrungen. Der Abstand von zwei Punkten ändert sich. Der Winkel zwischen drei Punkten ändert sich

4. Verzerrungen. Der Abstand von zwei Punkten ändert sich. Der Winkel zwischen drei Punkten ändert sich 4. Verzerrungen Wird ein Körper belastet, so ändert sich seine Geometrie. Die Punkte des Körpers ändern ihre Lage. Sie erfahren eine Verschiebung. Ist die Verschiebung für benachbarte Punkte unterschiedlich,

Mehr

1. Ebene gerade Balken

1. Ebene gerade Balken 1. Ebene gerade Balken Betrachtet werden gerade Balken, die nur in der -Ebene belastet werden. Prof. Dr. Wandinger 4. Schnittlasten bei Balken TM 1 4.1-1 1. Ebene gerade Balken 1.1 Schnittlasten 1.2 Balken

Mehr

Die Methode der Finiten Elemente für Ingenieure

Die Methode der Finiten Elemente für Ingenieure Die Methode der Finiten Elemente für Ingenieure H. Herrmann Die Methode der Finiten Elemente für Ingenieure Grundlagen, Theorie und praktische Anwendung mit dem FEM Baukasten Der Autor Dr. Horst Herrmann

Mehr

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik Aufgaben zur Statik S 1. Seilkräfte 28 0 F 1 = 40 kn 25 0 F 2 = 32 kn Am Mast einer Überlandleitung greifen in der angegebenen Weise zwei Seilkräfte an. Bestimmen Sie die resultierende Kraft. Addition

Mehr

5. Kritische Drehzahl

5. Kritische Drehzahl Aufgabenstellung: 5. Kritische Drehzahl y y Ω c/4 c/4 m c/4 e z O O S c/4 x Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.5-1 Der starre Körper mit der Masse m dreht sich mit der konstanten Winkelgeschwindigkeit

Mehr

Diplomprüfung Frühjahr Prüfungsfach. Statik. Klausur am (bitte deutlich schreiben!)

Diplomprüfung Frühjahr Prüfungsfach. Statik. Klausur am (bitte deutlich schreiben!) Diplomprüfung Frühjahr 00 Prüfungsfach Statik Klausur am 04.0.00 Name: Vorname: (bitte deutlich schreiben) Matr.-Nr.: (9-stellig) Aufgabe 4 5 6 7 8 9 Summe mögliche Punkte 7 5 4 6 6 4 4 0 erreichte Punkte

Mehr

Finite Elemente. Klaus Knothe Heribert Wessels. Eine Einführung für Ingenieure. Springer-Verlag

Finite Elemente. Klaus Knothe Heribert Wessels. Eine Einführung für Ingenieure. Springer-Verlag Klaus Knothe Heribert Wessels Finite Elemente Eine Einführung für Ingenieure Mit 283 Abbildungen Springer-Verlag Berlin Heidelberg NewYork London Paris Tokyo Hong Kong Barcelona Budapest Inhaltsverzeichnis

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 6 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 6 Summe Punkte: 29,5 7 17 10 9,5 7 80 Davon erreicht Punkte: Gesamtergebnis

Mehr

Transformation Allgemeines Die Lage eines Punktes kann durch einen Ortsvektor (ausgehend vom Ursprung des Koordinatensystems

Transformation Allgemeines Die Lage eines Punktes kann durch einen Ortsvektor (ausgehend vom Ursprung des Koordinatensystems Transformation - 1 1. Allgemeines 2. Zwei durch eine Translation verknüpfte gleichartige Basissysteme 3. Zwei durch eine Translation verknüpfte verschiedenartige Basissysteme (noch gleiche Orientierung)

Mehr

Fachwerke. 1 Definition & Annahmen. 2 Statische Bestimmtheit VII III

Fachwerke. 1 Definition & Annahmen. 2 Statische Bestimmtheit VII III Fachwerke Definition & nnahmen Ein Fachwerk oder auch Stabwerk soll aus geraden Stäben bestehen, die miteinander nur durch Knoten (vorstellbar als ideale Kugelgelenke) miteinander verbunden sind. Äußere

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 5 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 3 4 5 6 Summe Punkte: 31 7,5 17,5 9 10 5 80 Davon erreicht Punkte: Gesamtergebnis

Mehr

Übungsblatt

Übungsblatt Übungsblatt 3 3.5.27 ) Die folgenden vier Matrizen bilden eine Darstellung der Gruppe C 4 : E =, A =, B =, C = Zeigen Sie einige Gruppeneigenschaften: a) Abgeschlossenheit: Berechnen Sie alle möglichen

Mehr

Lineare Gleichungssystem

Lineare Gleichungssystem Lineare Gleichungssystem 8. Juli 07 Inhaltsverzeichnis Einleitung Der Gauß-Algorithmus 4 3 Lösbarkeit von Gleichungssystemen 6 Einleitung Wir haben uns bisher hauptsächlich mit dem Finden von Nullstellen

Mehr

Herbstsemester a b 1. c d. e 0 f B = (iii) e = 0 (iv) ) 2 + ( 1. Das Skalarprodukt des ersten und zweiten Spaltenvektors muss null ergeben:

Herbstsemester a b 1. c d. e 0 f B = (iii) e = 0 (iv) ) 2 + ( 1. Das Skalarprodukt des ersten und zweiten Spaltenvektors muss null ergeben: Dr V Gradinaru D Devaud Herbstsemester 5 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 5 Aufgabe 5 Multiple Choice: Online abzugeben Gegeben sei die orthogonale Matrix

Mehr

Baumechanik - Repetitorium

Baumechanik - Repetitorium Mechanik und Numerische Methoden Thema 1: Fachwerke Aufgabe 1.1 Ein ebenes Fachwerk wird durch eine Reihe von Einzelkräften unterschiedlicher Größe belastet. a) Weisen Sie nach, dass das Fachwerk statisch

Mehr

1. Einfache ebene Tragwerke

1. Einfache ebene Tragwerke Die Ermittlung der Lagerreaktionen einfacher Tragwerke erfolgt in drei Schritten: Freischneiden Aufstellen der Gleichgewichtsbedingungen Auflösen der Gleichungen Prof. Dr. Wandinger 3. Tragwerksanalyse

Mehr

Lösungen Serie 5 (Determinante)

Lösungen Serie 5 (Determinante) Name: Seite: Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Lösungen Serie 5 (Determinante) Dozent: R Burkhardt Büro: 463 Klasse: Studienjahr Semester: Datum: HS 2008/09 Aufgabe Bestimme

Mehr

2. Sätze von Castigliano und Menabrea

2. Sätze von Castigliano und Menabrea 2. Sätze von Castigliano und Menabrea us der Gleichheit von äußerer rbeit und Formänderungsenergie kann die Verschiebung am Lastangriffspunkt berechnet werden, wenn an der Struktur nur eine Last angreift.

Mehr

Dankert/Dankert: Technische Mechanik, 5. Auflage Lösungen zu den Aufgaben, Teil 4 (Kapitel 15-17)

Dankert/Dankert: Technische Mechanik, 5. Auflage Lösungen zu den Aufgaben, Teil 4 (Kapitel 15-17) Dankert/Dankert: Technische Mechanik, 5. Auflage Lösungen zu den Aufgaben, Teil 4 (Kapitel 15-17) Lösung 15.1: Element-Steifigkeitsmatrix Jeweils drei 2*2-Untermatrizen einer Element- Steifigkeitsmatrix

Mehr

Allgemeines Gleichungssystem mit zwei Gleichungen und zwei Variablen. Der erste Index bezeichnet die Nummer der Zeile, der zweite die der Spalte.

Allgemeines Gleichungssystem mit zwei Gleichungen und zwei Variablen. Der erste Index bezeichnet die Nummer der Zeile, der zweite die der Spalte. Lineare Gleichungssysteme. Einleitung Lineare Gleichungssysteme sind in der Theorie und in den Anwendungen ein wichtiges Thema. Theoretisch werden sie in der Linearen Algebra untersucht. Die Numerische

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 5 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 6 Summe Punkte: 31 7,5 17,5 9 10 5 80 Davon erreicht Punkte: Gesamtergebnis

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 8 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 Summe Punkte: 29 18,5 11 11 10,5 80 Davon erreicht Punkte: Gesamtergebnis

Mehr

4. Drehschwinger. B 2 Schwerpunkt S. c 2 P 2. S P 1 c 1 m, J B 1. Prof. Dr. Wandinger 6. Schwingungen Dynamik

4. Drehschwinger. B 2 Schwerpunkt S. c 2 P 2. S P 1 c 1 m, J B 1. Prof. Dr. Wandinger 6. Schwingungen Dynamik c 2 B 2 Schwerpunkt S P 2 S P 1 c 1 m, J O O B 1 Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.4-1 Aufgabenstellung: 4. Drehschwinger Der Drehschwinger besteht aus einem starren Körper, der im Punkt

Mehr

13. Lineare Algebra und Koordinatenwechsel.

13. Lineare Algebra und Koordinatenwechsel. 3. Lineare Algebra und Koordinatenwechsel. In dieser Vorlesung behandeln wir die Vorzüge von Koordinatenwechseln. Insbesondere werden wir über geeignete Koordinatenwechsle zu einer Klassifikation der lineare

Mehr

Webinar: Statik Thema: Cremonaplan Zeicherische Ermittlung der Stabkräfte eines Fachwerks. 4 kn 6 kn I IV V VI III

Webinar: Statik Thema: Cremonaplan Zeicherische Ermittlung der Stabkräfte eines Fachwerks. 4 kn 6 kn I IV V VI III Webinar: Statik Thema: Cremonaplan Zeicherische Ermittlung der Stabkräfte eines Fachwerks Aufgabe: Cremonaplan 8 9 0 Gegeben sei das obige Fachwerk welches durch die beiden äußeren Kräfte belastet wird.

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 4. Aufgabe 4.1. Dr. V. Gradinaru D. Devaud A. Hiltebrand.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 4. Aufgabe 4.1. Dr. V. Gradinaru D. Devaud A. Hiltebrand. Dr V Gradinaru D Devaud A Hiltebrand Herbstsemester 4 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 4 Aufgabe 4 Multiple Choice: Online abzugeben 4a) Wir betrachten

Mehr

52 5 Gleichgewicht des ebenen Kraftsystems. Festlager

52 5 Gleichgewicht des ebenen Kraftsystems. Festlager 52 5 Gleichgewicht des ebenen Kraftsystems Loslager A estlager B BH Einspannung A M A AH A BV AV Abbildung 5.11: Typische Lagerungen eines starren Körpers in der Ebene (oben) und die zugehörigen Schnittskizzen

Mehr

CES-Softwareentwicklungspraktikum Projekt: Elastische zweidimensionale Tragwerksberechnung

CES-Softwareentwicklungspraktikum Projekt: Elastische zweidimensionale Tragwerksberechnung CES-Softwareentwicklungspraktikum Projekt: Elastische zweidimensionale Tragwerksberechnung Dipl.-Ing. M. Nicolai, Dipl. Phys. Eva Schlauch, Dipl. Phys. Roland Siegbert, Chair for Computational Analysis

Mehr

Raimond Dallmann. Baustatik 1. Berechnung statisch bestimmter Tragwerke. 5., aktualisierte Auflage

Raimond Dallmann. Baustatik 1. Berechnung statisch bestimmter Tragwerke. 5., aktualisierte Auflage Raimond Dallmann Baustatik Berechnung statisch bestimmter Tragwerke., aktualisierte uflage .3 leichgewicht am Punkt 9 F + F 3 Hinweis: Da die Länge des Richtungsvektors beliebig ist, wurde für n nicht

Mehr

Hauptachsentransformation: Eigenwerte und Eigenvektoren

Hauptachsentransformation: Eigenwerte und Eigenvektoren Hauptachsentransformation: Eigenwerte und Eigenvektoren die bisherigen Betrachtungen beziehen sich im Wesentlichen auf die Standardbasis des R n Nun soll aufgezeigt werden, wie man sich von dieser Einschränkung

Mehr

Theorie zu Serie 2. erstellt von A. Menichelli. 16. Februar 2018

Theorie zu Serie 2. erstellt von A. Menichelli. 16. Februar 2018 Theorie zu Serie erstellt von A. Menichelli 16. Februar 018 1 Spannungen in D 1.1 Allgemein Die Definition der Spannung ist im allgemeinen die Verteilung einer Kraft auf der Fläche, auf der diese Kraft

Mehr

22. Netzwerke II. 4. Maschenstromanalyse 5. Knotenpotentialanalyse

22. Netzwerke II. 4. Maschenstromanalyse 5. Knotenpotentialanalyse . Netzwerke II 4. Maschenstromanalyse 5. Knotenpotentialanalyse 4. Netzwerkberechnungsverfahren Das Maschenstromanalyse Paul, Elektrotechnik 2, Seite 68 ff. Unbehauen, Grundlagen der Elektrotechnik 1,

Mehr

3. Praktische Anwendung

3. Praktische Anwendung 3. Praktische Anwendung 3.1 Berechnungsprozess 3.2 Modellbildung 3.3 Diskretisierung 3.4 Festigkeitsnachweis 3.3-1 3.1 Berechnungsprozess Idealisierung Physikalisches Problem Preprocessor Mathematisches

Mehr

Matrizen und Determinanten, Aufgaben

Matrizen und Determinanten, Aufgaben Matrizen und Determinanten, Aufgaben Inhaltsverzeichnis 1 Multiplikation von Matrizen 1 11 Lösungen 3 2 Determinanten 6 21 Lösungen 7 3 Inverse Matrix 8 31 Lösungen 9 4 Matrizengleichungen 11 41 Lösungen

Mehr

6 Systeme mit mehreren Freiheitsgraden

6 Systeme mit mehreren Freiheitsgraden 6 Systeme mit mehreren Freiheitsgraden 6.. Steifigkeitsformulierung 6. Formulierung der Bewegungsgleichung 6.. Gleichgewichtsformulierung Die Freiheitsgrade sind die horizontalen Verschiebungen und u auf

Mehr

13. Vorlesung. Lineare Algebra und Koordinatenwechsel.

13. Vorlesung. Lineare Algebra und Koordinatenwechsel. 3. Vorlesung. Lineare Algebra und Koordinatenwechsel. In dieser Vorlesung behandeln wir die Vorzüge von Koordinatenwechseln. Insbesondere werden wir über geeignete Koordinatenwechsle zu einer Klassifikation

Mehr

Institut für Analysis und Scientific Computing E. Weinmüller WS 2017

Institut für Analysis und Scientific Computing E. Weinmüller WS 2017 Institut für Analysis und Scientific Computing TU Wien E. Weinmüller WS 27 L I N E A R E A L G E B R A F Ü R T P H, U E (.64) 2. Haupttest (FR, 9..28) (mit Lösung ) Ein einfacher Taschenrechner ist erlaubt.

Mehr

4. Übungsblatt zur Mathematik II für BI, MaWi, WI(BI), AngGeo

4. Übungsblatt zur Mathematik II für BI, MaWi, WI(BI), AngGeo Fachbereich Mathematik Prof. J. Lehn Hasan Gündoğan, Nicole Nowak Sommersemester 8 4./5./8. April 4. Übungsblatt zur Mathematik II für BI, MaWi, WI(BI, AngGeo Gruppenübung Aufgabe G9 (Multiple Choice Bei

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 8 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 3 4 Summe Punkte: 9 8,, 8 Davon erreicht Punkte: Gesamtergebnis Klausur Testate Summe

Mehr

f = f = f = Institut für Technische und Num. Mechanik Prof. P. Eberhard / Dr.-Ing. F. Fleißner WS 2017/18 P März 2018

f = f = f = Institut für Technische und Num. Mechanik Prof. P. Eberhard / Dr.-Ing. F. Fleißner WS 2017/18 P März 2018 Institut für Technische und Num. Mechanik Maschinendynamik Prof. P. Eberhard / Dr.-Ing. F. Fleißner WS 2017/18 P 1 20. März 2018 Prüfung in Maschinendynamik Nachname, Vorname Aufgabe 1 (6 Punkte) Bestimmen

Mehr

Mathematik I+II Frühlingsemester 2019 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Mathematik I+II Frühlingsemester 2019 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Mathematik I+II Frühlingsemester 219 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 46 8. Lineare Algebra: 5. Eigenwerte und

Mehr

Institut für Analysis und Scientific Computing E. Weinmüller WS 2016

Institut für Analysis und Scientific Computing E. Weinmüller WS 2016 Institut für Analysis und Scientific Computing TU Wien E. Weinmüller WS 26 L I N E A R E A L G E B R A F Ü R T P H, U E (3.64) 2. Haupttest (FR, 2..27) (mit Lösung ) Ein einfacher Taschenrechner ist erlaubt.

Mehr

Institut für Allgemeine Mechanik der RWTH Aachen

Institut für Allgemeine Mechanik der RWTH Aachen Prof. Dr.-Ing. D. Weichert 4.Übung Mechanik II 2008 9.05.2008. Aufgabe Ein rechteckiges Blech wird spiel- und spannungsfrei in eine undehnbare Führung eingepaßt. Dann wird die Temperatur des Blechs um

Mehr

FINITE ELEMENTE ANALYSE für Vollzeit-Studenten des Masterstudiengangs (MSc) Fahrzeugingenieurwesen 2. HAUSAUFGABE

FINITE ELEMENTE ANALYSE für Vollzeit-Studenten des Masterstudiengangs (MSc) Fahrzeugingenieurwesen 2. HAUSAUFGABE FINITE ELEMENTE ANALYSE für Vollzeit-Studenten des Masterstudiengangs (MSc) Fahrzeugingenieurwesen 2. HAUSAUFGABE Bekannt sind die Dimensionen des Tragwerkes in dem Bild (siehe Anlage 1): (, ), sein Elastizitätsmodul

Mehr

Institut für Analysis und Scientific Computing E. Weinmüller WS 2017

Institut für Analysis und Scientific Computing E. Weinmüller WS 2017 Institut für Analysis und Scientific Computing TU Wien E. Weinmüller WS 7 L I N E A R E A L G E B R A F Ü R T P H, U E (.64). Haupttest (FR, 9..8) (mit Lösung ) Ein einfacher Taschenrechner ist erlaubt.

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 213 Prof. Dr. Erich Walter Farkas Kapitel 7: Lineare Algebra Kapitel 7.5: Eigenwerte und Eigenvektoren einer quadratischen Matrix Prof. Dr. Erich Walter Farkas Mathematik

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwerte und Eigenvektoren Motivierendes eispiel Lineare Abbildungen werden durch Matrizen dargestellt: Abbildung : Spiegelung A =. Abbildung A = : Verzerrung. ei der Spiegelung wird ~e auf sich selbst

Mehr

Ferienkurs Mathematik für Physiker I Blatt 3 ( )

Ferienkurs Mathematik für Physiker I Blatt 3 ( ) Ferienkurs Mathematik für Physiker I WS 6/7 Ferienkurs Mathematik für Physiker I Blatt 3 (9.3.7) Aufgabe : Matrizenrechung 3 (a) Ermitteln Sie für die Matrix A = 3 4 den Ausdruck A + A + A + 6 A3. 3 4

Mehr

Aufgabe 1 (6 Punkte) Prüfungsklausur Technische Mechanik I. Techn. Mechanik & Fahrzeugdynamik

Aufgabe 1 (6 Punkte) Prüfungsklausur Technische Mechanik I. Techn. Mechanik & Fahrzeugdynamik Techn. Mechanik & Fahrzeugdynamik TM I Prof. Dr.-Ing. habil. Hon. Prof. (NUST) D. Bestle 8. September 018 Prüfungsklausur Technische Mechanik I Aufgabe 1 (6 Punkte) Zwei Gewichte (Massen m 1, m ) sind

Mehr

Ausblick. 1. Lineare dynamische Analysen 2. Nichtlineare Analysen 3. Weitere Anwendungen. Prof. Dr. Wandinger 5. Ausblick FEM 5-1

Ausblick. 1. Lineare dynamische Analysen 2. Nichtlineare Analysen 3. Weitere Anwendungen. Prof. Dr. Wandinger 5. Ausblick FEM 5-1 Ausblick 1. Lineare dynamische Analysen 2. Nichtlineare Analysen 3. Weitere Anwendungen Prof. Dr. Wandinger 5. Ausblick FEM 5-1 1. Lineare dynamische Analysen Beschleunigungen: Bei linearen dynamischen

Mehr

Brückenkurs Mathematik. Mittwoch Freitag

Brückenkurs Mathematik. Mittwoch Freitag Brückenkurs Mathematik Mittwoch 5.10. - Freitag 14.10.2016 Vorlesung 4 Dreiecke, Vektoren, Matrizen, lineare Gleichungssysteme Kai Rothe Technische Universität Hamburg-Harburg Montag 10.10.2016 0 Brückenkurs

Mehr

Einführung FEM 1D - Beispiel

Einführung FEM 1D - Beispiel p. 1/28 Einführung FEM 1D - Beispiel /home/lehre/vl-mhs-1/folien/vorlesung/4_fem_intro/deckblatt.tex Seite 1 von 28 p. 2/28 Inhaltsverzeichnis 1D Beispiel - Finite Elemente Methode 1. 1D Aufbau Geometrie

Mehr

Untersuchen Sie, ob die folgenden Abbildungen linear oder nicht linear sind. x y

Untersuchen Sie, ob die folgenden Abbildungen linear oder nicht linear sind. x y Aufgabe 1 Untersuchen Sie, ob die folgenden Abbildungen linear oder nicht linear sind. (( )) 3x x (a) Sei f : R 2 R 3 mit f = 2y + x y x y ( ) 4 (b) Sei f : R R 2 mit f(x) = x + 1 (( )) ( ) x x y (c) Sei

Mehr

Drehung. Die orthogonale n n-matrix 1 0. c s. Zeile j. s c

Drehung. Die orthogonale n n-matrix 1 0. c s. Zeile j. s c Drehung Die orthogonale n n-matrix Q i,j... Zeile i c s... Zeile j s c... mit c = cos ϕ und s = sin ϕ beschreibt eine Drehung um den Winkel ϕ in der x i x j -Ebene des R n. Drehung - Drehung Die orthogonale

Mehr

Lineare Gleichungssysteme und Matrizen

Lineare Gleichungssysteme und Matrizen Kapitel 11 Lineare Gleichungssysteme und Matrizen Ein lineares Gleichungssystem (lgs) mit m linearen Gleichungen in den n Unbekannten x 1, x 2,..., x n hat die Gestalt: Mit a 11 x 1 + a 12 x 2 + a 13 x

Mehr