Lösung zu Übungsblatt 12

Größe: px
Ab Seite anzeigen:

Download "Lösung zu Übungsblatt 12"

Transkript

1 PN - Physik für Cheiker und Biologen Prof. J. Lipfert WS 208/9 Übungsblatt 2 Lösung zu Übungsblatt 2 Aufgabe Reinhold Messner schwingt in den Bergen: Reinhold Messner öchte den Mount Everest besteigen und hat sich versehentlich zur Sicherung Bungee-Seile eingepackt. Diese sind zwar zu Klettern untauglich, aber für einen kurzen Spaß gut geeignet. Er öchte dait an einer Felskante schwingen und kann dabei die Seile Parallel oder in Reihe schalten. Da Messner Hobbyphysiker ist, fragt er sich, wie sich das Syste verhält. Er nähert die Seile als Federn, obwohl Seile eigentlich nicht gestaucht werden können. Die beiden Seile haben die Federkonstanten c und c 2 und Messner die Masse. Er geht davon aus, dass die Bewegung nur entlang der vertikalen Achse erfolgt (d.h. eine eindiensionale Bewegung stattfindet). Beerkung: In beiden Fällen haben die Seile eine bestite (geeinsae) Ruhelänge, u die die zugehörige Masse oszilliert. Da die Bewegung hier entlang der vertikalen Achse erfolgt, uss die Gewichtskraft der Masse berücksichtigt werden. Diese führt allerdings nur dazu, dass die Seile eine neue (nach unten verschobene) Ruhelänge einnehen. Wir gehen davon aus, dass wir uns auf diese neue Ruhelage beziehen; Sie können die Schwerkraft also in der folgenden Rechnung einfach vernachlässigen. a) Messner sei it den Seilen so verbunden, dass diese in Reihe geschalten sind. Das Syste führt nach einer anfänglichen Anregung Oszillationen aus (Reibungseffekte werden vernachlässigt). Leiten Sie zunächst eine Forel für die Gesatfederkonstante c ges (in Abhängigkeit von c und c 2 ) her. Stellen Sie anschließend die Bewegungsgleichung (Differentialgleichung) für das beschriebene Syste auf und bestien Sie dessen Eigenfrequenz. Gehen wir zunächst von de Fall aus, dass das Syste noch nicht in Schwingung versetzt wurde. Wird von unten an der Masse it einer Kraft F gezogen, so überträgt sich die Kraft zunächst auf das untere Seil c 2, das dadurch u x 2 nach unten ausgelenkt wird. Dadurch wird die Kraft F auf das obere Seil c übertragen, das dann u x ausgelenkt wird. Die Seile erzeugen wiederu eine (zu F )

2 gleichgroße, aber entgegengesetzte Rückstellkraft F c = c x bzw. F c2 = c 2 x 2. Da beide Seile die selbe Kraft F spüren, ergibt sich folgende Gesatauslenkung: x ges = x + x 2 = F c F c 2 = F + F ( = + ) F. c c 2 c c 2 c c 2 Da andererseits F = c ges x ges und F = F gelten soll, ergibt sich für die Gesatfederkonstante der Reihenschaltung: c ges = c + c 2. (Hinweis für eine beliebige Anzahl N aneinander verketteter Federn gilt unter diesen Bedingungen: c ges = Das Syste sei nun zu Schwingen angeregt worden. Bewegt sich die Masse beispielsweise gerade von der Ruhelage aus gesehen nach unten, so erfährt sie durch die Seile eine Rückstellkraft F = c ges x ges nach oben. Andererseits ist eine Kraft allgeein durch F = a = ẍ ges gegeben. Daher erhält an folgende Bewegungsgleichung: N i= c i ẍ ges = c ges x ges ẍ ges = c ges x ges. Macht an den Ansatz x ges (t) = A sin(ωt + φ), und setzt diesen in die Differentialgleichung ein, so erhält an die Eigenfrequenz ω: ω 2 A sin(ωt + φ) = c ges A sin(ωt + φ) ω 2 = c ges ω = b) Nun seien die Seile it Messner durch eine Parallelschaltung, syetrisch zu Schwerpunkt (so dass kein Drehoent entsteht), verbunden. Das Syste wird in Schwingung versetzt (Reibungseffekte werden vernachlässigt). Bestien Sie zunächst wieder die Gesatfederkonstante c ges und stellen Sie anschließend die Differentialgleichung für das Syste auf. Eritteln Sie auch dessen Eigenfrequenz. 2

3 Zunächst sei das Syste in Ruhe. Wird nun wieder it einer Kraft F von unten an der Masse gezogen, verteilt sich diese auf beide Seile. Beide werden u x nach unten ausgelenkt. Dabei üben die Seile ihrerseits eine Rückstellkraft von F c + F c2 aus. Dait ergibt sich sofort: Andererseits gilt wiederu: Dait ist F = F c + F c2 = c x c 2 x = (c + c 2 ) x F = c ges x und F = F. c ges = c + c 2 die Gesatfederkonstante der Parallelschaltung. Analog zur Teilaufgabe b) erhält an die Bewegungsgleichung für das oszillierende Syste, ẍ = c ges x ẍ = c ges x, und it Hilfe des Ansatzes x(t) = A sin(ωt + φ) die zugehörige Eigenfrequenz ω =. c) Bestien Sie zu den Anfangsbedingungen x(t = 0) = 0 und ẋ(t = 0) = v 0 die eindeutige Lösung der Differentialgleichung aus Teilaufgabe b); d.h. in der Lösung dürfen keine unbekannten Konstanten ehr auftauchen. x(t = 0) = 0 A sin(ω 0 + φ) = 0 A sin(φ) = 0 φ = 0 ẋ(t = 0) = v 0 Aω cos(0) = v 0 A = v 0 ω Daher ist die eindeutige Lösung der Differentialgleichung aus Teilaufgabe b) x(t) = v 0 ( ) sin t. 3

4 Aufgabe 2 Schwingendes Seil: In folgenden beiden Abbildungen ist eine Welle dargestellt, die sich nach rechts fortbewegt. Links ist sie zur Zeit t = 0 s zu sehen, rechts 0 Sekunden später (die Periodendauer sei größer als 0 s). a) Bestien Sie i) die Wellenlänge der Welle, ii) die Frequenz der Quelle, welche das Seil zu schwingen bringt, sowie iii) die Geschwindigkeit der Welle. i) Die Wellenlänge ist λ = 6 c. ii) Für die Frequenz ist zunächst die Periodendauer T = 20 s abzulesen. Ferner ist dann f = = = 0, 05 Hz die gesuchte Frequenz. T 20 s iii) Die Geschwindigkeit ist v = 0, 3 c. s b) Zeichnen Sie einen Graphen der Auslenkung y als Funktion der Zeit für x = 0 c, x = 3 c, x = 6 c jeweils von t = 0 s bis t = 20 s. c) Stellen Sie eine Gleichung auf, die die Auslenkung y als Funktion von x und t beschreibt. 4

5 Die Gleichung, welche die Auslenkung y als Funktion von x und t beschreibt ist gegeben durch: y(x, t) = A sin(kx ωt) = 2 sin( 2π λ x 2π 2π t) = 2 sin( T 6 c x 2π 20 s t). Aufgabe 3 Gitarre: Die hohe e-saite einer Gitarre hat eine Länge von 65 c. Die Saite ist a Steg sowie an der Mechanik befestigt. An den fest eingespannten Enden üssen Knoten der Schwingung liegen; daher beträgt die Wellenlänge des Grundtons 2 L. Die Ausbreitungsgeschwindigkeit einer Welle der hohen e-saite beträgt c Saite = 428,5 s. a) Welche Frequenz besitzt der Grundton der Saite? Für die Wellenlänge des Grundtons gilt: λ = 2L. Und für die Frequenz: f = c Saite λ = 428,5 s = 329,6 Hz 2 0,65 Hinweis: Für eine Seite it 2 Knoten als Enden gilt allgeein: λ n = 2L, wobei für den n Grundton n = gilt und den ersten Oberton n = 2 (höhere Töne analog). Für eine Seite it eine Knoten und eine offenen Ende gilt: λ n = 4L, wobei 2n für den Grundton n = gilt und den ersten Oberton n = 2. b) Welche Frequenz besitzt der erste Oberton? Für die Wellenlänge des ersten Obertons gilt: λ 2 = L. Dait ist die Frequenz: f = c Saite λ 2 = 428,5 s = 659,2 Hz 0,65 c) Berührt an die Saite über de 2. Bund, so kann die Saite dennoch schwingen. Den resultierenden Ton nennt an Flageolettton. Waru kann die Saite schwingen, obwohl sie it de Finger gedäpft wird? Mit welcher Frequenz schwingt die Seite und welche wird dabei gedäpft? Hinweis: Der 2. Bund halbiert die Saite. Eine Zeichnung ist hilfreich. 5

6 Die Saite wird quasi in der Mitte festgehalten. Deswegen uss in der Mitte ein Knoten sein. Die Saite kann weiterhin it de ersten Oberton schwingen, da dieser in der Mitte einen Knoten hat. Es können aber auch der dritte, fünfte, siebte.. Oberton schwingen. Alle Töne, die keinen Knoten in der Mitte haben, werden vo Finger gedäpft. Die Saite schwingt it einer Überlagerung aller Obertöne, die einen Knoten in der Mitte haben. A prägnantesten ist der erste Oberton ( siehe Grafik ). Sie zeigt den ersten Oberton (lila), die Überlagerung des ersten und dritten Obertons (grün) sowie die Überlagerung des ersten, dritten und fünften Obertons (blau). 6

Lösung zu Übungsblatt 11

Lösung zu Übungsblatt 11 PN1 - Physik 1 für Cheiker und Biologen Prof. J. Lipfert WS 2016/17 Übungsblatt 11 Lösung zu Übungsblatt 11 Aufgabe 1 Torsionspendel. Henry Cavendish nutzte zur Bestiung der Gravitationskonstante den unten

Mehr

Übungen zur Klassischen Theoretischen Physik I WS 2016/17

Übungen zur Klassischen Theoretischen Physik I WS 2016/17 Karlsruher Institut für Technologie Institut für Theoretische Festkörperphysik Übungen zur Klassischen Theoretischen Physik I WS 06/7 Prof. Dr. Carsten Rockstuhl Blatt 4 Dr. Andreas Poenicke, MSc. Kari

Mehr

Experimentalphysik 1

Experimentalphysik 1 Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 016/17 Übung 4 Ronja Berg (ronja.berg@ph.tum.de) Katharina Scheidt (katharina.scheidt@tum.de) A. Übungen A.1. Schwingung

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdepartent E13 WS 011/1 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peter Müller-Buschbau, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdepartent E13 WS 2011/12 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peter Müller-Buschbau, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung

Mehr

Physik I Einführung in die Physik Mechanik

Physik I Einführung in die Physik Mechanik Physik I Einführung in die Physik Mechanik Winter 00/003, Prof. Thomas Müller, Universität Karlsruhe Lösung 13; Letztes Lösungsblatt 1. Torsionspendel (a) Vergleichen Sie die Größen rehwinkel ϕ, Winkelgeschwindigkeit

Mehr

Blatt 6. Schwingungen- Lösungsvorschlag

Blatt 6. Schwingungen- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T1) i SoSe 011 Blatt 6. Schwingungen- Lösungsvorschlag Aufgabe 6.1. Räulicher Oszillator

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 Karsten Kruse 2. Mechanische Schwingungen und Wellen - Theoretische Betrachtungen 2.1 Der harmonische Oszillator Wir betrachten eine lineare Feder mit der Ruhelänge l 0.

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 1 Schwingungen und Wellen: Einführung in die mathematischen Grundlagen 1.1 Die Sinus- und die Kosinusfunktion Die Sinusfunktion lässt sich genauso wie die Kosinusfunktion

Mehr

Klassische und relativistische Mechanik

Klassische und relativistische Mechanik Klassische und relativistische Mechanik Othmar Marti 15. 02. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und relativistische Mechanik

Mehr

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Gekoppelte Pendel

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Gekoppelte Pendel Anfänger-Praktikum I WS 11/1 Michael Seidling Timo Raab Praktikumsbericht: Gekoppelte Pendel 1 Inhaltsverzeichnis Inhaltsverzeichnis I. Einführung 4 II. Grundlagen 4 1. Harmonische Schwingung 4. Gekoppelte

Mehr

Vorlesung Physik für Pharmazeuten und Biologen

Vorlesung Physik für Pharmazeuten und Biologen Vorlesung Physik für Pharmazeuten und Biologen Schwingungen Mechanische Wellen Akustik Freier harmonischer Oszillator Beispiel: Das mathematische Pendel Bewegungsgleichung : d s mg sinϕ = m dt Näherung

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

Abschlußprüfung an Fachoberschulen: Physik 1996 Aufgabe III

Abschlußprüfung an Fachoberschulen: Physik 1996 Aufgabe III Abschlußprüfung an Fachoberschulen: Physik 1996 Aufgabe III 1.0 Die Abhängigkeit des Betrags der Coulombkraft F C von den Punktladungen gen Q 1, Q und ihrem Abstand r im Vakuum wird durch das Coulombgesetz

Mehr

M1 Maxwellsches Rad. 1. Grundlagen

M1 Maxwellsches Rad. 1. Grundlagen M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten

Mehr

Prüfung aus Physik III (PHB3) Donnerstag 8. Juli 2010

Prüfung aus Physik III (PHB3) Donnerstag 8. Juli 2010 Fachhochschule München FK06 Soerseester 2010 Prüfer: Prof. r. Maier Prüfung aus Physik III (PHB3) onnerstag 8. Juli 2010 Zugelassene Hilfsittel: Forelsalung (Bestandteil der Prüfung), Taschenrechner (nicht

Mehr

Klassische und relativistische Mechanik

Klassische und relativistische Mechanik Klassische und relativistische Mechanik Othmar Marti 13. 02. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und relativistische Mechanik

Mehr

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016 Analysis D-BAUG Dr. Cornelia Busch FS 2016 Serie 13 1. Prüfungsaufgabe 4, Winter 2014. Bestimmen Sie die Funktion, für die gilt: An jeder Stelle des Definitionsbereichs ist die Steigung des Graphen der

Mehr

Übungen zu Lagrange-Formalismus und kleinen Schwingungen

Übungen zu Lagrange-Formalismus und kleinen Schwingungen Übungen zu Lagrange-Foralisus und kleinen Schwingungen Jonas Probst.9.9 Teilchen auf der Stange Aufgabe: Ein Teilchen der Masse wird durch eine Zwangskraft auf einer asselosen Stange gehalten, auf der

Mehr

1. Klausur in K2 am

1. Klausur in K2 am Name: Punkte: Note: Ø: Kernfach Phsik Abzüge für Darstellung: Rundung:. Klausur in K am.0. 0 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: Schallgeschwindigkeit

Mehr

Physik Profilkurs ÜA 07 mechanische Wellen Ks. 2011

Physik Profilkurs ÜA 07 mechanische Wellen Ks. 2011 Aufgabe 1) Ein Wellenträger wird mit f = 2,0 Hz harmonisch angeregt, wobei sich Wellen der Länge 30 cm und der Amplitude 3,0 cm bilden. Zur Zeit t o = 0,0 s durchläuft der Anfang des Wellenträgers gerade

Mehr

Physik 1 für Chemiker und Biologen 11. Vorlesung

Physik 1 für Chemiker und Biologen 11. Vorlesung Physik 1 für Chemiker und Biologen 11. Vorlesung 16.01.2017 Heute: - Wiederholung: Schwingungen - Resonanz - Wellen Prof. Dr. Jan Lipfert Jan.Lipfert@lmu.de http://xkcd.com/273/ Bitte genau ausfüllen!

Mehr

Physik 1 für Chemiker und Biologen 11. Vorlesung

Physik 1 für Chemiker und Biologen 11. Vorlesung Physik 1 für Chemiker und Biologen 11. Vorlesung 16.01.2017 Prof. Dr. Jan Lipfert Jan.Lipfert@lmu.de Heute: - Wiederholung: Schwingungen - Resonanz - Wellen http://xkcd.com/273/ Klausur Bitte genau ausfüllen!

Mehr

Vorkurs Mathematik-Physik, Teil 8 c 2016 A. Kersch

Vorkurs Mathematik-Physik, Teil 8 c 2016 A. Kersch Aufgaben Dynamik Vorkurs Mathematik-Physik, Teil 8 c 6 A. Kersch. Ein D-Zug (Masse 4t) fährt mit einer Geschwindigkeit von 8km/h. Er wird auf einer Strecke von 36m mit konstanter Verzögerung zum Stehen

Mehr

Lösung der harmonischen Oszillator-Gleichung

Lösung der harmonischen Oszillator-Gleichung Lösung der harmonischen Oszillator-Gleichung Lucas Kunz 8. Dezember 016 Inhaltsverzeichnis 1 Physikalische Herleitung 1.1 Gravitation................................... 1. Reibung.....................................

Mehr

Schwingwagen ******

Schwingwagen ****** 5.3.0 ****** Motivation Ein kleiner Wagen und zwei Stahlfedern bilden ein schwingungsfähiges System. Ein Elektromotor mit Exzenter lenkt diesen Wagen periodisch aus seiner Ruhestellung aus. Die Antriebsfrequenz

Mehr

Physik 1 für Chemiker und Biologen 11. Vorlesung

Physik 1 für Chemiker und Biologen 11. Vorlesung Physik 1 für Chemiker und Biologen 11. Vorlesung 22.01.2018 Wiederholungs-/Einstiegsfrage: Abstimmen unter pingo.upb.de, #282978 http://xkcd.com/1161/ Heute: - Wiederholung: Schwingungen - Resonanz - Wellen

Mehr

1.2 Schwingungen von gekoppelten Pendeln

1.2 Schwingungen von gekoppelten Pendeln 0 1. Schwingungen von gekoppelten Pendeln Aufgaben In diesem Experiment werden die Schwingungen von zwei Pendeln untersucht, die durch eine Feder miteinander gekoppelt sind. Für verschiedene Kopplungsstärken

Mehr

9 Periodische Bewegungen

9 Periodische Bewegungen Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen Mit Schwingungsdauer (Periode, Periodendauer) T Welle Schwingung breitet sich im Raum aus Zustand y wiederholt sich in Raum

Mehr

Experimentalphysik 1

Experimentalphysik 1 Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 16/17 Lösung 1 Ronja Berg (ronja.berg@tum.de) Katharina Scheidt (katharina.scheidt@tum.de) Aufgabe 1: Superposition

Mehr

Ferienkurs Experimentalphysik Übung 4 - Musterlösung

Ferienkurs Experimentalphysik Übung 4 - Musterlösung Ferienkurs Experimentalphysik 1 1 Übung 4 - Musterlösung 1. Feder auf schiefer Ebene (**) Auf einer schiefen Ebene mit Neigungswinkel α = befindet sich ein Körper der Masse m = 1 kg. An dem Körper ist

Mehr

Aufgabe 1: (18 Punkte)

Aufgabe 1: (18 Punkte) MODULPRÜFUNG TECHNISCHE MECHANIK IV (PO 2004) VOM 26.07.2011 Seite 1 Aufgabe 1: (18 Punkte) Zwei Massenpunkte m 1 = 5 kg und m 2 = 2 kg sind durch ein dehnstarres und massenloses Seil über eine reibungsfrei

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zwei Kugeln und der Satz von Steiner Nehmen Sie zwei Kugeln mit identischem Radius R und

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Übungen zu Physik I für Physiker Serie 12 Musterlösungen

Übungen zu Physik I für Physiker Serie 12 Musterlösungen Übungen zu Physik I für Physiker Serie 1 Musterlösungen Allgemeine Fragen 1. Warum hängt der Klang einer Saite davon ab, in welcher Entfernung von der Mitte man sie anspielt? Welche Oberschwingungen fehlen

Mehr

Klassische Theoretische Physik I WS 2013/ Nicht so schnell (10 Punkte) Ein kleiner

Klassische Theoretische Physik I WS 2013/ Nicht so schnell (10 Punkte) Ein kleiner Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 23/24 Prof. Dr. J. Schmalian Blatt, Punkte Dr. P. P. Orth Abgabe und Besprechung 24..24. Nicht so schnell

Mehr

2.9 Gedämpfter Harmonischer Oszillator

2.9 Gedämpfter Harmonischer Oszillator 72 KAPITEL 2. DYNAMIK EINES MASSENPUNKTES 2.9 Gedämpfter Harmonischer Oszillator In diesem Abschnitt wollen wir die Bewegung eines Massenpunktes betrachten, der sich in einer Raumrichtung x in einer Harmonischen

Mehr

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder 6. Schwingungen Schwingungen Schwingung: räumlich und zeitlich wiederkehrender (=periodischer) Vorgang Zu besprechen: ungedämpfte freie Schwingung gedämpfte freie Schwingung erzwungene gedämpfte Schwingung

Mehr

1. Klausur in K2 am

1. Klausur in K2 am Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung:. Klausur in K am 0.0. Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: Schallgeschwindigkeit

Mehr

Tutorium Physik 2. Schwingungen

Tutorium Physik 2. Schwingungen 1 Tutorium Physik 2. Schwingungen SS 16 2.Semester BSc. Oec. und BSc. CH 2 Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 12. Radioaktivität 3 9. SCHWINGUNGEN 9.1 Bestimmen der

Mehr

Hertz ), also 1 Schwingung pro Sekunde. Der Vorfaktor A ist die Amplitude, er misst die Lautstärke des Tons.

Hertz ), also 1 Schwingung pro Sekunde. Der Vorfaktor A ist die Amplitude, er misst die Lautstärke des Tons. 1 Vorbereitungen 1.1 Was ist und wofür braucht man Fourieranalysis? Anwendungsgebiete der Fourier-Analysis sind z.b. Signalverarbeitung, Bildverarbeitung, Schaltkreisentwurf, Elektrodynamik, Optik, Akustik,

Mehr

3. Erzwungene Schwingungen

3. Erzwungene Schwingungen 3. Erzwungene Schwingungen Bei erzwungenen Schwingungen greift am schwingenden System eine zeitlich veränderliche äußere Anregung an. Kraftanregung: Am schwingenden System greift eine zeitlich veränderliche

Mehr

Ballaufgabe. David Reichenbacher. 8. November 2015

Ballaufgabe. David Reichenbacher. 8. November 2015 Ballaufgabe David Reichenbacher 8. November 2015 Hausaufgabe aus der Vorlesung Höhere Mathematik für die Fachrichtung Physik Dozent: Dr. Ioannis Anapolitanos Dieses Dokument beinhaltet einen Lösungsvorschlag

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Mathematik III für MB, MPE, LaB, WI(MB) Übung 1, Lösungsvorschlag

Mathematik III für MB, MPE, LaB, WI(MB) Übung 1, Lösungsvorschlag Gruppenübung Mathematik III für MB, MPE, LaB, WI(MB) Übung 1, Lösungsvorschlag G 11 (Klassifikation von Differentialgleichungen) Klassifizieren Sie die folgenden Differentialgleichungen: x 2 y + x y +

Mehr

7.4 Gekoppelte Schwingungen

7.4 Gekoppelte Schwingungen 7.4. GEKOPPELTE SCHWINGUNGEN 333 7.4 Gekoppelte Schwingungen Als Beispiel für 2 gekoppelte Schwingungen betrachten wir das Doppelpendel, das in Abb. 7.19 dargestellt ist. Zunächst vernachlässigen wir die

Mehr

TECHNISCHE MECHANIK III (DYNAMIK)

TECHNISCHE MECHANIK III (DYNAMIK) Klausur im Fach TECHNISCHE MECHANIK III (DYNAMIK) WS 2014 / 2015 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 Summe Punkte: 15 7 23 15 60 Davon erreicht Bearbeitungszeit: Hilfsmittel:

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre (c) Ulm University p 1/2 Grundlagen der Physik 2 Schwingungen und Wärmelehre 30 04 2007 Othmar Marti othmarmarti@uni-ulmde Experimentelle Physik Universität Ulm (c) Ulm University p 2/2 Gedämpfter Oszillator

Mehr

Illustrierende Aufgaben zum LehrplanPLUS. Gitarre

Illustrierende Aufgaben zum LehrplanPLUS. Gitarre Gitarre Stand: 01.10.2018 Jahrgangsstufen FOS 12, BOS 12 Fach Übergreifende Bildungs- und Erziehungsziele Benötigtes Material Physik Technische Bildung, digitale Bildung, kulturelle Bildung Wünschenswert,

Mehr

Prüfung aus Physik III (PHB3) Freitag 24. Juli 2009

Prüfung aus Physik III (PHB3) Freitag 24. Juli 2009 Fachhochschule München FK06 Soerseester 2009 Prüfer: Prof. r. Maier Zweitprüfer: Prof. r. Herberg Prüfung aus Physik III (PHB3) Freitag 24. Juli 2009 Zugelassene Hilfsittel: Forelsalung (Bestandteil der

Mehr

Physik 1 für Chemiker und Biologen 11. Vorlesung

Physik 1 für Chemiker und Biologen 11. Vorlesung Physik 1 für Chemiker und Biologen 11. Vorlesung 22.01.2018 Wiederholungs-/Einstiegsfrage: Abstimmen unter pingo.upb.de, #282978 http://xkcd.com/1161/ Heute: - Wiederholung: Schwingungen - Resonanz - Wellen

Mehr

Physik I Übung 12 - Lösungshinweise

Physik I Übung 12 - Lösungshinweise Physik I Übung - Lösungshinweise Stefan Reutter WS 0/ Moritz Kütt Stand: 7. Februar 0 Franz Fujara Aufgabe Zielich Koplex Das Ganze a) Stelle eine Differentialgleichung für ein ungedäpftes Federpendel

Mehr

Das führt zu einer periodischen Hin- und Herbewegung (Schwingung) Applet Federpendel (http://www.walter-fendt.de)

Das führt zu einer periodischen Hin- und Herbewegung (Schwingung) Applet Federpendel (http://www.walter-fendt.de) Elastische SCHWINGUNGEN (harmonische Bewegung) Eine Masse sei reibungsfrei durch elastische Kräfte in einer Ruhelage fixiert Wenn aus der Ruhelage entfernt wirkt eine rücktreibende Kraft Abb. 7.1 Biologische

Mehr

Federpendel. Einführung. Das Federpendel. Basiswissen > Mechanische Schwingungen > Federpendel. Skript PLUS

Federpendel. Einführung. Das Federpendel.  Basiswissen > Mechanische Schwingungen > Federpendel. Skript PLUS www.schullv.de Basiswissen > Mechanische Schwingungen > Federpendel Federpendel Skript PLUS Einführung Wärst du utig genug für einen Bungee-Sprung? Oder hast du gar schon einen geacht? Wenn ja, hast du

Mehr

Musterlösungen (ohne Gewähr)

Musterlösungen (ohne Gewähr) Seite /9 Frage ( Punkte) Eine Waschmaschine hat einen mit Feder und Dämpfer gelagerten Motor (Masse m), an dem ohne Unwucht die Trommel befestigt ist. Wieviel Wäsche m u kann geschleudert werden, wenn

Mehr

4.6 Schwingungen mit mehreren Freiheitsgraden

4.6 Schwingungen mit mehreren Freiheitsgraden Dieter Suter - 36 - Physik B3 4.6 Schwingungen mit mehreren Freiheitsgraden 4.6. Das Doppelpendel Wir betrachten nun nicht mehr einzelne, unabhängige harmonische Oszillatoren, sondern mehrere, die aneinander

Mehr

Fortschreitende Wellen. Station C. Was transportieren Wellen? Längs- und Querwellen

Fortschreitende Wellen. Station C. Was transportieren Wellen? Längs- und Querwellen Station A Fortschreitende Wellen a) Skizziere ein Wellental. Stelle darin die Schnelle und die Ausbreitungsgeschwindigkeit c dar. b) Die gemessene Ausbreitungsgeschwindigkeit: c = c) Warum kann nicht ein

Mehr

Übung zu Mechanik 4 Seite 28

Übung zu Mechanik 4 Seite 28 Übung zu Mechanik 4 Seite 28 Aufgabe 47 Auf ein Fundament (Masse m), dessen elastische Bettung durch zwei Ersatzfedern dargestellt wird, wirkt die periodische Kraft F(t) = F 0 cos (Ω t). Die seitliche

Mehr

2. Freie Schwingungen

2. Freie Schwingungen 2. Freie Schwingungen Die einfachsten schwingungsfähigen Systeme sind lineare Systeme: Die Rückstellkräfte sind proportional zur Auslenkung. Die Dämpfungskräfte sind proportional zur Geschwindigkeit. Bei

Mehr

Differentialgleichung.

Differentialgleichung. Kapitel 9 Differentialgleichungen 9. Einteilung der Differentialgleichungen In einer Differentialgleichung (DGl) treten Differentialquotienten von einer oder ehreren Funtionen von einer oder ehreren Veränderlichen

Mehr

Übungsblatt 6 ( ) mit Lösungen

Übungsblatt 6 ( ) mit Lösungen 1) Wellengleichung Experimentalphysik für Naturwissenschaftler 1 Universität Erlangen Nürnberg WS 014/15 Übungsblatt 6 (09.01.015) mit Lösungen Eine Welle, die sich in positiver x-richtung mit der Geschwindigkeit

Mehr

wir-sind-klasse.jimdo.com

wir-sind-klasse.jimdo.com 1. Einführung und Begriffe Eine vom Erreger (periodische Anregung) wegwandernde Störung heißt fortschreitende Welle. Die Ausbreitung mechanischer Wellen erfordert einen Träger, in dem sich schwingungsfähige

Mehr

Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme

Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme Fakultät für Physik Technische Universität München Michael Schrapp Übungsblatt 3 Ferienkurs Theoretische Mechanik 009 Hamilton Formalismus und gekoppelte Systeme Hamilton-Mechanik. Aus Doctoral General

Mehr

Jan Auffenberg. 2. Theorie 2.1 Mathematisches Pendel Um eine Pendelbewegung einfach beschreiben zu können, wendet man folgende Abstraktionen a:

Jan Auffenberg. 2. Theorie 2.1 Mathematisches Pendel Um eine Pendelbewegung einfach beschreiben zu können, wendet man folgende Abstraktionen a: Gruppe 8 Björn Baueier Protokoll zu Versuch M1: Pendel 1. Einleitung Die Eigenschaften und Bewegungen der in diese Versuch untersuchten Fadenund Federpendel, werden durch eine besonders einfache haronische

Mehr

Technische Mechanik III WiSe Name : Vorname : Matrikelnummer : Klausurnummer : Allgemeine Hinweise:

Technische Mechanik III WiSe Name : Vorname : Matrikelnummer : Klausurnummer : Allgemeine Hinweise: Technische Mechanik III WiSe 0 6.0.0 Nae : Vornae : Matrikelnuer : Klausurnuer : Aufgabe Punkte 9 0 50 Allgeeine Hinweise: alle Blätter it Naen und Matrikelnuer beschriften! keine grüne oder rote Farbe

Mehr

1.Klausur LK Physik 12/2 - Sporenberg Datum:

1.Klausur LK Physik 12/2 - Sporenberg Datum: 1.Klausur LK Physik 12/2 - Sporenberg Datum: 28.03.2011 1.Aufgabe: I. Eine flache Spule (n 500, b 5 cm, l 7 cm, R 280 Ω) wird mit v 4 mm in der Abbildung aus der Lage I durch das scharf begrenzte Magnetfeld

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 1 Fakultät für Physik Technische Universität München Bernd Kohler & Daniel Singh Probeklausur WS 2014/2015 27.03.2015 Bearbeitungszeit: 90 Minuten Aufgabe 1: Romeo und Julia (ca. 15 min) Julia befindet

Mehr

MR - Mechanische Resonanz Blockpraktikum Herbst 2005

MR - Mechanische Resonanz Blockpraktikum Herbst 2005 MR - Mechanische Resonanz, Blockpraktikum Herbst 5 7. September 5 MR - Mechanische Resonanz Blockpraktikum Herbst 5 Assistent Florian Jessen Tübingen, den 7. September 5 Vorwort In diesem Versuch ging

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober

Mehr

Vorbereitung: Pendel. Marcel Köpke Gruppe

Vorbereitung: Pendel. Marcel Köpke Gruppe Vorbereitung: Pendel Marcel Köpke Gruppe 7 10.1.011 Inhaltsverzeichnis 1 Augabe 1 3 1.1 Physikalisches Pendel.............................. 3 1. Reversionspendel................................ 6 Aufgabe

Mehr

5.1 Eigenwerte und Eigenvektoren

5.1 Eigenwerte und Eigenvektoren 5 Eigenwerte und Eigenvektoren Die Eigenwerttheorie ist ein besonders wirkungsvolles Werkzeug der linearen Algebra Sie liefert zb Lösungsethoden zur Auffindung von - Fixgeraden linearer Abbildungen, insbesondere

Mehr

Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss. Aufgabensammlung mit Kurzlösungen

Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss. Aufgabensammlung mit Kurzlösungen Prof. Dr.-Ing. Prof. E.h. P. Eberhard / Prof. Dr.-Ing. M. Hanss SS 17 Ü1 Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss Aufgabensammlung mit Kurzlösungen Sommersemester 017 Prof. Dr.-Ing.

Mehr

Lösungen zu den Übungen zur Newtonschen Mechanik

Lösungen zu den Übungen zur Newtonschen Mechanik Lösungen zu den Übungen zur Newtonschen Mechanik Jonas Probst.9.9 1 Bahnkurve eines Massenpunktes Aufgabe: Ein Massenpunkt bewegt sich auf folgender Trajektorie: 1. Skizzieren Sie die Bahnkurve. r(t) (a

Mehr

Übungsblatt 6 ( ) mit Lösungen

Übungsblatt 6 ( ) mit Lösungen Experimentalphysik für Naturwissenschaftler 1 Universität Erlangen Nürnberg WS 011/1 Übungsblatt 6 (7.01.01) mit Lösungen Vorlesungen: Mo, Mi, jeweils 08:15-09:50 HG Übungen: Fr 08:15-09:45 oder Fr 1:15-13:45

Mehr

14. Mechanische Schwingungen und Wellen

14. Mechanische Schwingungen und Wellen 14. Mechanische Schwingungen und Wellen Schwingungen treten in der Technik in vielen Vorgängen auf mit positiven und negativen Effekten (z. B. Haarrisse, Achsbrüche etc.). Deshalb ist es eine wichtige

Mehr

Übungen zu Experimentalphysik 1 für MSE

Übungen zu Experimentalphysik 1 für MSE Physik-Department LS für Funktionelle Materialien WS 214/15 Übungen zu Experimentalphysik 1 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Daniel Moseguí González, Pascal Neibecker, Nitin

Mehr

Prüfung aus Physik III (PHB3) Dienstag 24. Januar 2012

Prüfung aus Physik III (PHB3) Dienstag 24. Januar 2012 Fachhochschule München FK06 Winterseester 2011/12 Prüfer: Prof. r. Maier Prüfung aus Physik III (PHB3) ienstag 24. Januar 2012 Zugelassene Hilfsittel: Forelsalung (Bestandteil der Prüfung), Taschenrechner

Mehr

ÜBUNGSAUFGABEN PHYSIK SCHWINGUNGEN KAPITEL S ZUR. Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl UND WELLEN.

ÜBUNGSAUFGABEN PHYSIK SCHWINGUNGEN KAPITEL S ZUR. Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl UND WELLEN. ÜBUNGSAUFGABEN ZUR PHYSIK KAPITEL S SCHWINGUNGEN UND WELLEN Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl IEUT 10/05 Kohl 1. Schwingungen 10/2005-koh 1. Welche Auslenkung hat ein schwingender

Mehr

5 Schwingungen und Wellen

5 Schwingungen und Wellen 5 Schwingungen und Wellen Schwingung: Regelmäßige Bewegung, die zwischen zwei Grenzen hin- & zurückführt Zeitlich periodische Zustandsänderung mit Periode T ψ ψ(t) [ ψ(t-τ)] Wellen: Periodische Zustandsänderung

Mehr

Differentialgleichungen 2. Ordnung

Differentialgleichungen 2. Ordnung Differentialgleichungen 2. Ordnung 1-E1 1-E2 Einführendes Beispiel Freier Fall Viele Geschichten ranken sich um den schiefen Turm von Pisa: Der Legende nach hat der aus Pisa stammende Galileo Galilei bei

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK Physik A/B1 A WS SS 17 13/14 Inhalt der Vorlesung A1 1. Einführung Methode der Physik Physikalische Größen Übersicht über die vorgesehenen Themenbereiche. Teilchen A. Einzelne Teilchen Beschreibung

Mehr

Harmonische Schwingungen

Harmonische Schwingungen Haronische Schwingungen Schwingungen einer Spiralfeder Von welchen physikalischen Größen ist die Schwingungsdauer abhängig? Welche Größen könnten die Schwingungsdauer beeinflussen? Härte der Feder ein

Mehr

3. Erzwungene gedämpfte Schwingungen

3. Erzwungene gedämpfte Schwingungen 3. Erzwungene gedämpfte Schwingungen 3.1 Schwingungsgleichung 3.2 Unwuchtanregung 3.3 Weganregung 3.4 Komplexe Darstellung 2.3-1 3.1 Schwingungsgleichung F(t) m Bei einer erzwungenen gedämpften Schwingung

Mehr

Blatt Musterlösung Seite 1. Aufgabe 1: Schwingender Stab

Blatt Musterlösung Seite 1. Aufgabe 1: Schwingender Stab Seite 1 Aufgabe 1: Schwingender Stab Ein Stahlstab der Länge l = 1 m wird an beiden Enden fest eingespannt. Durch Reiben erzeugt man Eigenschwingungen. Die Frequenz der Grundschwingung betrage f 0 = 250

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre (c) Ulm University p. 1/1 Grundlagen der Physik 2 Schwingungen und Wärmelehre 07. 05. 2007 Othmar Marti othmar.marti@uni-ulm.de Experimentelle Physik Universität Ulm (c) Ulm University p. 2/1 Wellen in

Mehr

1. Aufgabe: (ca. 15% der Gesamtpunkte)

1. Aufgabe: (ca. 15% der Gesamtpunkte) Institut für Mechanik Prof. Dr.-Ing. habil. P. Betsch Prof. Dr.-Ing. habil. h. Seelig Prüfung in Baudynaik. Februar 8. Aufgabe: (ca. 5% der Gesatpunkte) a) Was versteht an unter aktiver und passiver Schwingungsisolierung?

Mehr

T0: Rechenmethoden WiSe 2011/12. Lösungen: Ergänzungsaufgaben zur Klausurvorbereitung Differentialgleichungen

T0: Rechenmethoden WiSe 2011/12. Lösungen: Ergänzungsaufgaben zur Klausurvorbereitung Differentialgleichungen T0: Rechenmethoden WiSe 20/2 Prof. Jan von Delft http://homepages.physik.uni-muenchen.de/~vondelft/lehre/2t0/ Lösungen: Ergänzungsaufgaben zur Klausurvorbereitung Differentialgleichungen Aufgabe. (**)

Mehr

Übungen zur Vorlesung PN1 Lösung Übungsblatt 12 Besprechung am

Übungen zur Vorlesung PN1 Lösung Übungsblatt 12 Besprechung am Übungen zur Vorleung PN1 Löung Übungblatt 12 Beprechung am 22.1.2013 Aufgabe 1: Gedämpfte Schwingung An einer Feder mit der Federhärte 20 N/m hängt eine Kugel der Mae 100g. Die Kugel wird um 10 cm nach

Mehr

Bei gekoppelten Pendeln breitet sich die Schwingung von einem zum nächsten aus

Bei gekoppelten Pendeln breitet sich die Schwingung von einem zum nächsten aus 7. Wellen Ausbreitung von Schwingungen -> Wellen Bei gekoppelten Pendeln breitet sich die Schwingung von einem zum nächsten aus Welle entsteht durch lokale Anregung oder Störung eine Mediums, die sich

Mehr

12. Vorlesung. I Mechanik

12. Vorlesung. I Mechanik 12. Vorlesung I Mechanik 7. Schwingungen 8. Wellen transversale und longitudinale Wellen, Phasengeschwindigkeit, Dopplereffekt Superposition von Wellen 9. Schallwellen, Akustik Versuche: Wellenwanne: ebene

Mehr

M. 59 Perle auf rotierendem Draht (F 2018)

M. 59 Perle auf rotierendem Draht (F 2018) M. 59 Perle auf rotierendem Draht (F 8) Eine Perle der Masse m bewegt sich reibungslos auf einem mit konstanter Winkelgeschwindigkeit ω um die z-achse rotierenden Draht. Für die Belange dieser Aufgabe

Mehr

Die Phasenkonstante ) 2. Loslassen nach Auslenkung. Anstoßen in Ruhelage: -0,500,00 5,00 10,00 15,00 2,00 1,50 1,00 0,50 0,00.

Die Phasenkonstante ) 2. Loslassen nach Auslenkung. Anstoßen in Ruhelage: -0,500,00 5,00 10,00 15,00 2,00 1,50 1,00 0,50 0,00. Die Phasenkonstante Auslenkung 2,50 2,00 1,50 1,00 0,50 0,00-0,500,00 5,00 10,00 15,00-1,00-1,50-2,00-2,50 Zeit Loslassen nach Auslenkung. y y0 sin( t ) 2 2 Auslenkung 2,50 2,00 1,50 1,00 0,50 0,00-0,500,00

Mehr

Vorbereitung. (1) bzw. diskreten Wellenzahlen. λ n = 2L n. k n = nπ L

Vorbereitung. (1) bzw. diskreten Wellenzahlen. λ n = 2L n. k n = nπ L Physikalisches Fortgeschrittenenpraktikum Gitterschwingungen Vorbereitung Armin Burgmeier Robert Schittny 1 Theoretische Grundlagen Im Versuch Gitterschwingungen werden die Schwingungen von Atomen in einem

Mehr

Schwingungen. Außerplanmäßig nächste Woche Dienstag, :30 Uhr Vorlesung, Kleiner Hörsaal Physik Mittwoch, Uhr, Übung, Hörsaal Schutow

Schwingungen. Außerplanmäßig nächste Woche Dienstag, :30 Uhr Vorlesung, Kleiner Hörsaal Physik Mittwoch, Uhr, Übung, Hörsaal Schutow Außerplanäßig nächste Woche Dienstag, 8.4.08 7:30 Uhr Vorlesung, Kleiner Hörsaal Physik Mittwoch, 9.4.08 3 Uhr, Übung, Hörsaal Schutow Schwingungen www-bereich Lehre in Arbeitsgruppe Cluster und Nanostrukturen

Mehr

8. Periodische Bewegungen

8. Periodische Bewegungen 8. Periodische Bewegungen 8.1 Schwingungen 8.1.1 Harmonische Schwingung 8.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 8.1.4 Erzwungene Schwingung 8. Periodische Bewegungen Schwingung Zustand y wiederholt

Mehr

1 Fouriersynthese und Fourieranalyse

1 Fouriersynthese und Fourieranalyse Schwingungslehre in Kursstufe 5/ 57 Ernst Schreier Fouriersynthese und Fourieranalyse. Stehende Wellen / Eigenschwingungen / Resonanz Bei einfacher Reflexion bildet sich immer eine stehende Welle vor der

Mehr

Schwingungen und Wellen

Schwingungen und Wellen Aufgaben 1 Schwingungen und Wellen Lernziel - Problemstellungen zu Schwingungen und Wellen analysieren und lösen können. Aufgaben 1.1 a) Erdbeben können sich in der Erdkruste sowohl durch Longitudinalwellen

Mehr