Versuch E Bei einer unbelasteten Spannungsquelle liegt kein geschlossener Stromkreis vor. Außer dem Innenwiderstand

Größe: px
Ab Seite anzeigen:

Download "Versuch E Bei einer unbelasteten Spannungsquelle liegt kein geschlossener Stromkreis vor. Außer dem Innenwiderstand"

Transkript

1 1 Spannungsquelle Belastete und unbelastete Spannungsquelle: Unbelastete Spannungsquelle Bei einer unbelasteten Spannungsquelle liegt kein geschlossener Stromkreis vor. Außer dem Innenwiderstand R i der Spannungsquelle ist kein weiterer Widerstand U a angeschlossen. Die Spannungsquelle ist unbelastet. U 0 = U i + U a U 0 = R i I + U a Da I = 0 ist U 0 = U a. Belastete Spannungsquelle Bei einer belasteten Spannungsquelle liegt ein geschlossener Stromkreis vor. Zusätzlich dem Innenwiderstand R i der Spannungsquelle ist ein weiterer Widerstand U a angeschlossen. Die Spannungsquelle ist belastet und es gilt: U 0 = R i I + U a 2 Kirchhoff-Regeln Knotenregel Bei einer Parallelschaltung von Einzelwiderständen müssen nach dem Gesetz der Ladungserhaltung alle zu einem Stromknoten fließenden Ströme gleich der Summe der abfließenden Ströme sein. n I i = 0 i=1 Maschenregel In einem geschlossenen Stromkreis (Masche) ist die Summe aller Quellenspannungen gleich der Summe aller Spannungsabfälle an den Elementen des Netzwerks. Kurz: Die Summe aller Spannungen eines Stromkreises ist Null. n U i = 0 i=1 Physikalisches Grundpraktikum 3 Seite 1 von 5

2 3 Kondensator Ein Kondensator ist ein elektrisches Bauelement, das elektrische Ladung bzw. elektrische Energie speichern kann. Die Speicherfähigkeit wird als Kapazität bezeichnet. Kondensatoren wirken Spannungsänderungen entgegen (Strom eilt vor). Auf- und Entladevorgang im Kondensator: Aufladung Ein Kondensator kann mit Hilfe eines in Reihe geschalteten ohmschen Widerstand geladen werden. Dabei addieren sich die Teilspannungen an den Bauelementen (Widerstand U r und Kondensator U c ) zur Gesamtspannung. Es gilt (Ansatz für die DGL): U 0 + U r (t) + U c (t) = 0 Dies lässt sich mit U r = R I (Ohmsches Gesetz) und U c = C Q (Kapazität) umformen zu: U 0 + R I(t) + Q(t) C = 0 U 0 + R dq(t) dq(t) + Q(t) C = R C Q(t) + U 0 R = 0 Die Lösung der DGL ergibt sich durch: ( ( U C (t) = U 0 1 exp 1 )) I C (t) = U ( 0 R exp 1 ) Das Produkt R C im Nenner des Exponenten bildet eine Zeitkonstante τ. Entladung Die Entladung erfolgt entgegengesetzt, aber analog zur Aufladung: ( U C (t) = U 0 exp 1 ) Physikalisches Grundpraktikum 3 Seite 2 von 5

3 I C (t) = U ( 0 R exp 1 ) 4 Spule Eine Spule ist ein elektrisches Bauelement, das magnetische Felder erzeugen kann. Die Fähigkeit zur magnetischen Indkution wird als Induktivität bezeichnet. Spulen wirken Stromänderungen bei entgegen (Spannung eilt vor). Einschalt- und Ausschaltvorgang in der Spule: Einschaltvorgang Auch bei er Spule liegt ein zeitabhängiges Verhalten vor. Beim Einschalten erzeugt die Induktivität der Spule eine Selbstinduktionsspannung U L, welche den Stromanstieg verzögert. Im Einschaltmoment gilt U ges = U L. U 0 = U L (t) + U R (t) Mit U R = R I (Ohmsches Gesetz) und U L = L di U 0 = L di + R I(t) Ein weiteres mal nach der Zeit abgeleitet ergibt sich: 0 = L Ï + R I (Induktivität) gilt: 0 = Ï + R L I Die Lösung der DGL ergibt sich durch: U L (t) = U 0 (1 exp ( RL )) I L (t) = U 0 R ( 1 exp ( RL )) Der Quotient L R im Exponenten bildet eine Zeitkonstante τ. Physikalisches Grundpraktikum 3 Seite 3 von 5

4 Ausschaltvorgang Nach der Lenz schen Regel fließt unter dem Abbau des Magnetfeldes ein Kurzschlussstrom in gleiche Richtung des unterbrochenen Versorgungsstroms weiter. Die Ursache für den Kurzschlussstrom ist das Magnetfeld und die daraus entstandene Selbstinduktionsspannung. Für den Ausschaltvorgang gilt: U L (t) = U 0 exp ( RL ) I L (t) = U 0 ( R exp RL ) 5 Schwingkreise Harmonischer Oszillator Ein harmonischer Oszillator ist ein schwingungsfähiges System mit linearer Rückstellgröße (proportional zur Auslenkung entgegenwirkende Kraft). Der harmonische Oszillator kann durch folgende Differentialgleichung beschrieben werden: ẍ + ω 2 0x = 0 Dabei bezeichnet x(t) die Auslenkung zu einem bestimmten Zeitpunkt und ω 0 die Eigenfrequenz des Systems. Freie gedämpfte elektrische Schwingung Eine freie gedämpfte Schwingung ergibt sich aus einem schwingungsfähigem elektrischen System, welches einmal in Schwingung gebracht wurde, jedoch ohne äußere Einflüsse gedämpft ausschwingt. Dieses System kann allgemein durch folgende Differentialgleichung beschrieben werden: ẍ + ω 0 ẋ + ω 2 0x = 0 Im Falle eines RLC-Schwingkreises ergibt sich: L Q + R Q + 1 C Q = 0 Eigenfrequenz von RLC-Systemen Im ungestörten Fall schwingen schwingungsfähige elektrische L-Systeme in der Eigenfrequenz. ω 0 = 1 LC 6 Abklingvorgang im RLC-Schwingkreis Ein Abklingvorgang ergibt sich aus der Dämpfung eines Schwingkreises. Die Dämpfung ergibt sich über den Widerstand R. Dabei sind drei Fälle möglich. (1) Freie schwach gedämpfte Schwingung, (2) Kriechfall und (3) aperiodischer Grenzfall. Physikalisches Grundpraktikum 3 Seite 4 von 5

5 Für einen Abklingvorgang kann die Abklingkonstante angegeben werden: δ = ω 0 D Dabei entspricht ω 0 der Eigenfrequenz und D dem Dämpfungsgrad. Dieser ergibt sich für L-Schwingkreise über: D = R 2 L C = R 2Lω 0 Aperiodischer Grenzfall Der Aperiodische Grenzfall liegt vor, wenn δ = ω 0. Der Dämpfungsgrad ist damit genau D = 1. Auf ein RLC-Schwingsystem übertragen bedeutet dies: R = 2 Es ergibt sich: L C U c (t) = U k e δt (1 + δt) Im aperiodischen Grenzfall kommt es zu keinem Nulldurchgang bzw. endet der Schwingvorgang genau bei Null. Der Nullpunkt wird jedoch relativ schnell erreicht. Damit liegt der aperiodische Grenzfall an der Grenze zwischen Kriechfall (aperiodischer Fall) und freier gedämpfter Schwingung. Kriechfall Der Kriechfall (aperiodische Fall) liegt vor, wenn δ > ω 0. Der Dämpfungsgrad ist damit D > 1. Für einen RLC-Schwingkreis ergibt sich: ( ) tanh δ2 ω 2 ) U c (t) = U k e δt 0 1 cosh ( δ 2 ω 20 1 δ2 /ω 0 2 Im Kriechfall kommt es ebenfalls zu keinem Nulldurchgang. Im Gegensatz zum aperiodischen Grenzfall dauert es sehr lange bis der Gleichgewichtszustand erreicht ist. Der Kondensator entlä sich nur sehr langsam und verliert seine Spannung nur asymptotisch. Dadurch gibt es keine Schwingung. Physikalisches Grundpraktikum 3 Seite 5 von 5

ELEKTRISCHE GRUNDSCHALTUNGEN

ELEKTRISCHE GRUNDSCHALTUNGEN ELEKTRISCHE GRUNDSCHALTUNGEN Parallelschaltung Es gelten folgende Gesetze: (i) An parallel geschalteten Verbrauchern liegt dieselbe Spannung. (U = U 1 = U 2 = U 3 ) (ii) Bei der Parallelschaltung ist der

Mehr

R C 1s =0, C T 1

R C 1s =0, C T 1 Aufgaben zum Themengebiet Aufladen und Entladen eines Kondensators Theorie und nummerierte Formeln auf den Seiten 5 bis 8 Ein Kondensator mit der Kapazität = 00μF wurde mit der Spannung U = 60V aufgeladen

Mehr

Elektrotechnik: Übungsblatt 3 - Gleichstromschaltungen

Elektrotechnik: Übungsblatt 3 - Gleichstromschaltungen Elektrotechnik: Übungsblatt 3 - Gleichstromschaltungen 1. Aufgabe: Nennen sie die Kirchhoffschen Gesetzte und erläutern sie ihre physikalischen Prinzipien mit eigenen Worten. Lösung: Knotenregel: Die vorzeichenrichtige

Mehr

Schaltvorgänge und Schwingungen

Schaltvorgänge und Schwingungen Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum E13 Schaltvorgänge und Schwingungen Aufgaben 1. Messen Sie zum ennenlernen des computerunterstützten Messplatzes PA verschiedene

Mehr

Kondensator und Spule

Kondensator und Spule ()()(())0,6()HAW Hamburg Fakultät Life Sciences - Physiklabor Physikalisches Praktikum Kondensator und Spule Allgemeine Grundlagen 1. Ladung Q und Strom I Es gibt positive und negative Ladungen. Werden

Mehr

Resonanz Versuchsvorbereitung

Resonanz Versuchsvorbereitung Versuche P1-1,, Resonanz Versuchsvorbereitung Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 0.1.010 1 1 Vorwort Im Praktikumsversuch,,Resonanz geht es um freie

Mehr

Fakultät Grundlagen. Februar 2016

Fakultät Grundlagen. Februar 2016 Schwingungsdifferenzialgleichung Fakultät Grundlagen Hochschule Esslingen Februar 016 Fakultät Grundlagen Schwingungsdifferenzialgleichung Übersicht 1 Schwingungsdifferenzialgleichung Fakultät Grundlagen

Mehr

Ein- und Ausschaltvorgang am Kondensator ******

Ein- und Ausschaltvorgang am Kondensator ****** 6.2.3 ****** Motivation Bei diesem Versuch werden Ein- und Ausschaltvorgänge an RC-Schaltkreisen am PC vorgeführt. 2 Experiment Abbildung : Versuchsaufbau zum Eine variable Kapazität (C = (0 bis 82) nf)

Mehr

Technische Grundlagen der Informatik

Technische Grundlagen der Informatik Technische Grundlagen der Informatik WS 2008/2009 2. Vorlesung Klaus Kasper WS 2008/2009 Technische Grundlagen der Informatik Inhalt Wiederholung Strom und Spannung Ohmscher Widerstand und Ohmsches Gesetz

Mehr

Bearbeitungszeit: 30 Minuten

Bearbeitungszeit: 30 Minuten Vorname: Studiengang: Platz: Aufgabe: 1 2 3 Gesamt Punkte: Bearbeitungszeit: 30 Minuten Zugelassene Hilfsmittel: - eine selbsterstellte, handgeschriebene Formelsammlung (1 Blatt DIN A4, einseitig beschrieben,

Mehr

Bearbeitungszeit: 30 Minuten

Bearbeitungszeit: 30 Minuten Vorname: Studiengang: Platz: Aufgabe: 1 2 3 Gesamt Punkte: Bearbeitungszeit: 30 Minuten Zugelassene Hilfsmittel: - eine selbsterstellte, handgeschriebene Formelsammlung (1 Blatt DIN A4, einseitig beschrieben,

Mehr

Kondensator und Spule

Kondensator und Spule Hochschule für angewandte Wissenschaften Hamburg Naturwissenschaftliche Technik - Physiklabor http://www.haw-hamburg.de/?3430 Physikalisches Praktikum ----------------------------------------------------------------------------------------------------------------

Mehr

1 Elektrostatik Elektrische Feldstärke E Potential, potentielle Energie Kondensator... 4

1 Elektrostatik Elektrische Feldstärke E Potential, potentielle Energie Kondensator... 4 Inhaltsverzeichnis 1 Elektrostatik 3 1.1 Elektrische Feldstärke E............................... 3 1.2 Potential, potentielle Energie............................ 4 1.3 Kondensator.....................................

Mehr

Spule, Kondensator und Widerstände

Spule, Kondensator und Widerstände Spule, Kondensator und Widerstände Schulversuchspraktikum WS 00 / 003 Jetzinger Anamaria Mat.Nr.: 975576 Inhaltsverzeichnis. Vorwissen der Schüler. Lernziele 3. Theoretische Grundlagen 3. Der elektrische

Mehr

Elektrische Schwingungen und Wellen

Elektrische Schwingungen und Wellen Elektrische Schwingungen und Wellen. Wechselströme. Elektrischer Schwingkreis i. Wiederholung Schwingung ii. Freie Schwingung iii. Erzwungene Schwingung iv. Tesla Transformator 3. Elektromagnetische Wellen

Mehr

Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 6

Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 6 Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 6 KIT University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Mehr

Gleichstromkreise. 1.Übung am 25 März 2006 Methoden der Physik SS2006 Prof. Wladyslaw Szymanski. Elisabeth Seibold Nathalie Tassotti Tobias Krieger

Gleichstromkreise. 1.Übung am 25 März 2006 Methoden der Physik SS2006 Prof. Wladyslaw Szymanski. Elisabeth Seibold Nathalie Tassotti Tobias Krieger Gleichstromkreise 1.Übung am 25 März 2006 Methoden der Physik SS2006 Prof. Wladyslaw Szymanski Elisabeth Seibold Nathalie Tassotti Tobias Krieger ALLGEMEIN Ein Gleichstromkreis zeichnet sich dadurch aus,

Mehr

8. Periodische Bewegungen

8. Periodische Bewegungen 8. Periodische Bewegungen 8.1 Schwingungen 8.1.1 Harmonische Schwingung 8.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 8.1.4 Erzwungene Schwingung 8. Periodische Bewegungen Schwingung Zustand y wiederholt

Mehr

3.5 RL-Kreise und Impedanz

3.5 RL-Kreise und Impedanz 66 KAPITEL 3. ELEKTRISCHE SCHALTUNGEN 3.5 RL-Kreise un Impeanz Neues Element: Spule Spannung an einer Spule: V = L Q Selbstinuktivität (Einheit: Henry) [L] = 1 V s A Ursache für as Verhalten einer Spule:

Mehr

6 Elektromagnetische Schwingungen und Wellen

6 Elektromagnetische Schwingungen und Wellen 6 Elektromagnetische Schwingungen und Wellen Gegen Ende des 19.Jahrhunterts gelang dem berühmten deutschen Physiker Heinrich Rudolph Hertz (1857-1894) zum ersten Mal in der Geschichte der Menschheit der

Mehr

Tutorium der Grund- und Angleichungsvorlesung Physik. Elektrizität.

Tutorium der Grund- und Angleichungsvorlesung Physik. Elektrizität. 1 Tutorium der Grund- und Angleichungsvorlesung Physik. Elektrizität. WS 17/18 1. Sem. B.Sc. LM-Wissenschaften Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nichtkommerziell

Mehr

Ladungsfluss durch geschlossene Fläche = zeitliche Änderung der Ladung im Volumen 4.2 Elektrischer Widerstand

Ladungsfluss durch geschlossene Fläche = zeitliche Änderung der Ladung im Volumen 4.2 Elektrischer Widerstand E-Dynamik Teil II IV Der elektrische Strom 4.1 Stromstärke, Stromdichte, Kontinuitätsgleichung Definition der Stromstärke: ist die durch eine Querschnittsfläche pro Zeitintervall fließende Ladungsmenge

Mehr

GRUNDLAGEN DER WECHSELSTROMTECHNIK

GRUNDLAGEN DER WECHSELSTROMTECHNIK ELEKTROTECHNIK M GLEICHSTROM. ELEKTRISCHE GRÖßEN UND GRUNDGESETZE. ELEKTRISCHE LADUNG UND STROM.3 ELEKTRISCHES FELD UND STROM.4 ELEKTRISCHES SPANNUNG UND POTENTIAL.5 ELEKTRISCHES LEISTUNG UND WIRKUNGSGRAD.6

Mehr

Grundlagen der Elektrotechnik I im Wintersemester 2017 / 2018

Grundlagen der Elektrotechnik I im Wintersemester 2017 / 2018 +//6+ Prof. Dr.-Ing. B. Schmülling Klausur Grundlagen der Elektrotechnik I im Wintersemester 7 / 8 Bitte kreuzen Sie hier Ihre Matrikelnummer an (von links nach rechts). Vor- und Nachname: 3 4 3 4 3 4

Mehr

Protokoll zum Anfängerpraktikum

Protokoll zum Anfängerpraktikum Protokoll zum Anfängerpraktikum Elektromagnetischer Schwingkreis Gruppe, Team 5 Sebastian Korff Frerich Max 8.5.6 Inhaltsverzeichnis. Einleitung -3-. Versuchsdurchführung -5-. Eigenfrequenz und Dämpfung

Mehr

ELEKTRISCHE SPANNUNGSQUELLEN

ELEKTRISCHE SPANNUNGSQUELLEN Physikalisches Grundpraktikum I Versuch: (Versuch durchgeführt am 17.10.2000) ELEKTRISCHE SPANNUNGSQUELLEN Denk Adelheid 9955832 Ernst Dana Eva 9955579 Linz, am 22.10.2000 1 I. PHYSIKALISCHE GRUNDLAGEN

Mehr

Physikalisches Praktikum 3. Semester

Physikalisches Praktikum 3. Semester Torsten Leddig 26.Oktober 2004 Mathias Arbeiter Betreuer: Dr.Holzhüter Physikalisches Praktikum 3. Semester - passive lineare Netzwerke - 1 Aufgabe: 1. Lineare Netzwerke bei sinusförmiger Anregung: (a)

Mehr

1 Wechselstromwiderstände

1 Wechselstromwiderstände 1 Wechselstromwiderstände Wirkwiderstand Ein Wirkwiderstand ist ein ohmscher Widerstand an einem Wechselstromkreis. Er lässt keine zeitliche Verzögerung zwischen Strom und Spannung entstehen, daher liegt

Mehr

Elektrodynamik I Elektrische Schaltkreise

Elektrodynamik I Elektrische Schaltkreise Physik A VL35 (7.0.03) Elektrodynamik Elektrische Schaltkreise Strom, Ohm sches Gesetz und Leistung Elektrische Schaltkreise Parallel- und Serienschaltung von Widerständen Messung von Spannungen und Strömen

Mehr

Entladung eines Kondensators

Entladung eines Kondensators 3.11.5 Entladung eines Kondensators Im Gegensatz zu einer Batterie kann mit einem Kondensator innerhalb von kurzer Zeit eine hohe Stromstärke erzeugt werden. Dies wird zum Beispiel beim Blitz eines Fotoapparates

Mehr

Zusammenfassung v09 vom 28. Mai 2013

Zusammenfassung v09 vom 28. Mai 2013 Zusammenfassung v09 vom 28. Mai 2013 Ohm sche Widerstände sind durch die Befolgung des Ohm schen Gesetzes charakterisiert. Dies beinhaltet in (idealisierten Fällen) die Linearität zwischen Strom und Spannung,

Mehr

Grundlagen der Elektrotechnik I

Grundlagen der Elektrotechnik I Prof. Dr.-Ing. B. Schmülling Musterlösung zur Klausur Grundlagen der Elektrotechnik I im Wintersemester 27 / 28 Aufgabe : Die Lösungen zu Aufgabe folgen am Ende. Aufgabe 2:. U q = 3 V 2. R i = Ω 3. P =

Mehr

Elektromagnetische Schwingkreise

Elektromagnetische Schwingkreise Grundpraktikum der Physik Versuch Nr. 28 Elektromagnetische Schwingkreise Versuchsziel: Bestimmung der Kenngrößen der Elemente im Schwingkreis 1 1. Einführung Ein elektromagnetischer Schwingkreis entsteht

Mehr

Dieter Suter - 223 - Physik B3, SS03

Dieter Suter - 223 - Physik B3, SS03 Dieter Suter - 223 - Physik B3, SS03 4.4 Gedämpfte Schwingung 4.4.1 Dämpfung und Reibung Wie bei jeder Bewegung gibt es bei Schwingungen auch dissipative Effekte, d.h. es wird Schwingungsenergie in Wärmeenergie

Mehr

Spannungsquellen. Grundpraktikum I. Mittendorfer Stephan Matr. Nr Übungsdatum: Abgabetermin:

Spannungsquellen. Grundpraktikum I. Mittendorfer Stephan Matr. Nr Übungsdatum: Abgabetermin: Grundpraktikum I Spannungsquellen 1/5 Übungsdatum: 7.11. Abgabetermin: 3.1. Grundpraktikum I Spannungsquellen stephan@fundus.org Mittendorfer Stephan Matr. Nr. 9956335 Grundpraktikum I Spannungsquellen

Mehr

Rückkopplungsschaltung nach Meißner

Rückkopplungsschaltung nach Meißner Rückkopplungsschaltung nach Meißner In der Realität sind elektromagnetische Schwingungen, wie sie durch Schwingkreise erzeugt werden können, immer gedämpft: Alle Kabel weisen einen kleinen, aber von Null

Mehr

Gleichstromtechnik. Vorlesung 11: Strom- und Spannungsteilung. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Gleichstromtechnik. Vorlesung 11: Strom- und Spannungsteilung. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Gleichstromtechnik Vorlesung 11: Strom- und Spannungsteilung Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Motivation Auf der Basis der Kirchhoffschen Gesetze wurden Methoden zur Zusammenfassung

Mehr

Elektromagnetische Schwingungen und Lenz sche Regel in der Anwendung. Experimentalphysikalisches Seminar II

Elektromagnetische Schwingungen und Lenz sche Regel in der Anwendung. Experimentalphysikalisches Seminar II Elektromagnetische Schwingungen und Lenz sche Regel in der Anwendung Experimentalphysikalisches Seminar II 1 1. Elektromagnetischer Schwingkreis 1 In der Elektrizitätslehre gibt es drei Grundelemente:

Mehr

Gegeben ist die dargestellte Schaltung mit nebenstehenden Werten. Daten: U AB. der Induktivität L! und I 2. , wenn Z L. = j40 Ω ist? an!

Gegeben ist die dargestellte Schaltung mit nebenstehenden Werten. Daten: U AB. der Induktivität L! und I 2. , wenn Z L. = j40 Ω ist? an! Grundlagen der Elektrotechnik I Aufgabe K4 Gegeben ist die dargestellte Schaltung mit nebenstehenden Werten. R 1 A R 2 Daten R 1 30 Ω R 3 L R 2 20 Ω B R 3 30 Ω L 40 mh 1500 V f 159,15 Hz 1. Berechnen Sie

Mehr

Aufgaben zum Thema Elektromagnetische Schwingungen

Aufgaben zum Thema Elektromagnetische Schwingungen Aufgaben zum Thema Elektromagnetische Schwingungen 10.03.2011 1.Aufgabe: a)an eine vertikal aufgehängte Schraubenfeder wird ein Körper mit der Masse m = 0,30 kg gehängt. Dadurch wird die Feder um x = 1,2

Mehr

15. Elektromagnetische Schwingungen

15. Elektromagnetische Schwingungen 5. Elektromagnetische Schwingungen Elektromagnetischer Schwingkreis Ein Beispiel für eine mechanische harmonische Schwingung wäre eine schwingende Feder, die im Normalfall durch den uftwiderstand gedämpft

Mehr

Experimentalphysik II Zeitlich veränderliche Felder und Wechselstrom

Experimentalphysik II Zeitlich veränderliche Felder und Wechselstrom Experimentalphysik II Zeitlich veränderliche Felder und Wechselstrom Ferienkurs Sommersemester 009 Martina Stadlmeier 09.09.009 Inhaltsverzeichnis 1 Zeitlich veränderliche Felder 1.1 Faradaysches Induktionsgesetz.....................

Mehr

Zusammenfassung EPII. Elektromagnetismus

Zusammenfassung EPII. Elektromagnetismus Zusammenfassung EPII Elektromagnetismus Elektrodynamik: Überblick Dynamik (Newton): Elektromagnetische Kräfte zw. Ladungen: Definition EFeld: Kraft auf ruhende Testladung Q: BFeld: Kraft auf bewegte Testladung:

Mehr

5.6 Aperiodische und periodische Vorgänge *)

5.6 Aperiodische und periodische Vorgänge *) 298 5 Elektrizitätslehre 5.6 Aperiodische und periodische Vorgänge *) 5.6.1 Schaltvorgänge. Zeitkonstanten 5.6.1.0 Grundlagen Schließt man in Fig. 5.72a, b zur Zeit t = 0 den Schalter S derart, daß die

Mehr

Elektrische Schwingungen

Elektrische Schwingungen E05 Elektrische Schwingungen Elektrische Schwingungen am Serien- und Parallelschwingkreis werden erzeugt und untersucht. Dabei sollen Unterschiede zwischen den beiden Schaltungen und Gemeinsamkeiten mit

Mehr

Versuch: Induktions - Dosenöffner. Experimentalphysik I/II für Mediziner: Sommersemester 2010 Caren Hagner Magnetismus 25

Versuch: Induktions - Dosenöffner. Experimentalphysik I/II für Mediziner: Sommersemester 2010 Caren Hagner Magnetismus 25 Versuch: Induktions - Dosenöffner Experimentalphysik I/II für Mediziner: Sommersemester 2010 Caren Hagner Magnetismus 25 Der schwebende Supraleiter (idealer Diamagnet) Supraleiter B ind Magnet B Magnet

Mehr

IV. Elektrizität und Magnetismus

IV. Elektrizität und Magnetismus IV. Elektrizität und Magnetismus IV.4 Wechselstromkreise Physik für Mediziner Ohmscher Widerstand bei Wechselstrom Der Ohmsche Widerstand verhält sich bei Wechselstrom genauso wie bei Gleichstrom zu jedem

Mehr

Erzwungene Schwingung, Resonanz, Selbstgesteuerte Schwingungen

Erzwungene Schwingung, Resonanz, Selbstgesteuerte Schwingungen Übung 19 Resonanz Erzwungene Schwingung, Resonanz, Selbstgesteuerte Schwingungen Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse erarbeiten können. - verstehen, was eine

Mehr

Elektrische Grundgrößen, Ohmsches Gesetz, Kirchhoffsche Gesetze, Wheatstonesche Brücke

Elektrische Grundgrößen, Ohmsches Gesetz, Kirchhoffsche Gesetze, Wheatstonesche Brücke E Elektrische Meßinstrumente Stoffgebiet: Elektrische Grundgrößen, Ohmsches Gesetz, Kirchhoffsche Gesetze, Wheatstonesche Brücke Versuchsziel: Benützung elektrischer Messinstrumente (Amperemeter, Voltmeter,

Mehr

Erzwungene Schwingung, Resonanz, Selbstgesteuerte Schwingungen

Erzwungene Schwingung, Resonanz, Selbstgesteuerte Schwingungen Aufgaben 19 Resonanz Erzwungene Schwingung, Resonanz, Selbstgesteuerte Schwingungen Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse erarbeiten können. - verstehen, was eine

Mehr

2.1.2 Elektromagnetischer Schwingkreis; Thomson-Gleichung

2.1.2 Elektromagnetischer Schwingkreis; Thomson-Gleichung 2..2 Elektromagnetischer Schwingkreis; Thomson-Gleichung Vorbemerkungen Bei einer Spule steigt der Blindwiderstand R = ω mit wachsender Frequenz an, beim Kondensator dagegen sinkt R = ab. In der Spule

Mehr

Aufgaben zur Elektrizitätslehre

Aufgaben zur Elektrizitätslehre Aufgaben zur Elektrizitätslehre Elektrischer Strom, elektrische Ladung 1. In einem Metalldraht bei Zimmertemperatur übernehmen folgende Ladungsträger den Stromtransport (A) nur negative Ionen (B) negative

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 27/08/13 Technische Universität München Aufgaben zur Magnetostatik Aufgabe 1 Bestimmen Sie das Magnetfeld eines unendlichen

Mehr

(2 π f C ) I eff Z = 25 V

(2 π f C ) I eff Z = 25 V Physik Induktion, Selbstinduktion, Wechselstrom, mechanische Schwingung ösungen 1. Eine Spule mit der Induktivität = 0,20 mh und ein Kondensator der Kapazität C = 30 µf werden in Reihe an eine Wechselspannung

Mehr

Zusammenfassung. Induktions-Spannungspuls in einem bewegten Leiter im homogenen Magnetfeld

Zusammenfassung. Induktions-Spannungspuls in einem bewegten Leiter im homogenen Magnetfeld 5b Induktion Zusammenfassung Induktion ist ein physikalisches Phänomen, bei der eine Spannungspuls in einem Leiter oder einer Spule induziert wird, wenn sich der Leiter in einem Magnetischen Feld befindet.

Mehr

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Vorüberlegung In einem seriellen Stromkreis addieren sich die Teilspannungen zur Gesamtspannung Bei einer Gesamtspannung U ges, der

Mehr

Galvanometer Versuchsvorbereitung

Galvanometer Versuchsvorbereitung Versuche P1-13,14,15 Galvanometer Versuchsvorbereitung Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 10.1.2011 1 1 Galvanometer Bei einem Galvanometer handelt

Mehr

1.2 Stromkreis Stromquelle Batterie

1.2 Stromkreis Stromquelle Batterie 1.2 Stromkreis 1 + + + Stromquelle Batterie + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - Pluspol: Positiv geladene Atome warten sehnsüchtig auf Elektronen. Minuspol:

Mehr

6. Niederfrequente Wechselfelder

6. Niederfrequente Wechselfelder 6. Niederfrequente Wechselfelder 6.1. Der Skin-Effekt Übergang zu niedrigen Frequenzen und leitfähigem Material -> Wechselstromtechnik Wir starten von der Telegraphen-Gleichung: E = 1 c 2 E µ E mit 1 c

Mehr

Inhalt dieses Vorlesungsteils - ROADMAP

Inhalt dieses Vorlesungsteils - ROADMAP AKUSTISCHE WELLEN Inhalt dieses Vorlesungsteils - ROADMAP MECHANISCHE SCHWINGUNGEN ELEKTRO- MAGNETISCHE WELLEN WECHSELSTROM KREISE E Elemente E11 Mechanische Schwingungen E12 Akustische Schwingungen E13

Mehr

rtllh Grundlagen der Elektrotechnik Gert Hagmann AULA-Verlag

rtllh Grundlagen der Elektrotechnik Gert Hagmann AULA-Verlag Gert Hagmann Grundlagen der Elektrotechnik Das bewährte Lehrbuch für Studierende der Elektrotechnik und anderer technischer Studiengänge ab 1. Semester Mit 225 Abbildungen, 4 Tabellen, Aufgaben und Lösungen

Mehr

Fadenstrahlrohr und Millikan

Fadenstrahlrohr und Millikan M.Links & R.Garreis Inhaltsverzeichnis Fadenstrahlrohr und Millikan Anfängerpraktikum SS 03 Martin Link und Rebekka Garreis 0.06.03 Universtität Konstanz bei Czarkowski, Tobias Inhaltsverzeichnis Einführung

Mehr

Fachhochschule Aalen Studiengang Wirtschaftsingenieurwesen Physik II Dr. Haan. Abschlussklausur am 09. Februar 2004

Fachhochschule Aalen Studiengang Wirtschaftsingenieurwesen Physik II Dr. Haan. Abschlussklausur am 09. Februar 2004 Fachhochschule Aalen Studiengang Wirtschaftsingenieurwesen Physik II Dr. Haan Abschlussklausur a 9. Februar 4 Folgendes bitte in Druckbuchstaben schreiben: Nae: Vornae: Geburtstag: Matrikelnuer: Erstversuch

Mehr

9. Periodische Bewegungen

9. Periodische Bewegungen Inhalt 9.1 Schwingungen 9.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 9.1.4 Erzwungene Schwingung 9.1 Schwingungen 9.1 Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen

Mehr

Physik LK 12, 3. Kursarbeit Induktion - Lösung

Physik LK 12, 3. Kursarbeit Induktion - Lösung Physik K 1, 3. Kursarbeit Induktion - ösung.0.013 Aufgabe I: Induktion 1. Thomson ingversuch 1.1 Beschreibe den Thomson'schen ingversuch in Aufbau und Beobachtung und erkläre die grundlegenden physikalischen

Mehr

Elektrotechnik: Zusatzaufgaben

Elektrotechnik: Zusatzaufgaben Elektrotechnik: Zusatzaufgaben 1.1. Aufgabe: Rechnen Sie die abgeleiteten Einheiten der elektrischen Spannung, des elektrischen Widerstandes und der elektrischen Leistung in die Basiseinheiten des SI um.

Mehr

4.6 Schwingungen mit mehreren Freiheitsgraden

4.6 Schwingungen mit mehreren Freiheitsgraden Dieter Suter - 36 - Physik B3 4.6 Schwingungen mit mehreren Freiheitsgraden 4.6. Das Doppelpendel Wir betrachten nun nicht mehr einzelne, unabhängige harmonische Oszillatoren, sondern mehrere, die aneinander

Mehr

Kraft auf ein geladenes Teilchen im Magnetfeld (Lorentzkraft):

Kraft auf ein geladenes Teilchen im Magnetfeld (Lorentzkraft): Wiederholung: 1 r F r B Kraft auf ein geladenes Teilchen im Magnetfeld (Lorentzkraft): = r q v q = Ladung des Teilchens v = Geschwindigkeit des Teilchens B = magnetische Kraftflussdichte Rechte Hand Regel

Mehr

Grundlagen der Elektrotechnik Teil 2

Grundlagen der Elektrotechnik Teil 2 Grundlagen der Elektrotechnik Teil 2 Dipl.-Ing. Ulrich M. Menne ulrich.menne@ini.de 18. Januar 2015 Zusammenfassung: Dieses Dokument ist eine Einführung in die Grundlagen der Elektrotechnik die dazu dienen

Mehr

Übungen zur Klassischen Physik II (Elektrodynamik) SS 2016

Übungen zur Klassischen Physik II (Elektrodynamik) SS 2016 Institut für Experimentelle Kernphysik, KIT Übungen zur Klassischen Physik II Elektrodynamik) SS 206 Prof. Dr. T. Müller Dr. F. Hartmann 2tes und letztes Übungsblatt - Spulen, Wechselstrom mit komplexen

Mehr

Vorlesung nach Tipler, Gerthsen, Alonso-Finn, Halliday Skript:

Vorlesung nach Tipler, Gerthsen, Alonso-Finn, Halliday Skript: PHYS3100 Grundkurs IIIb für Physiker Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Tipler, Gerthsen, Alonso-Finn, Halliday Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3b-2003-2004

Mehr

Physikalisches Praktikum 3. Semester

Physikalisches Praktikum 3. Semester Torsten Leddig 26.Oktober 2004 Mathias Arbeiter Betreuer: Dr.Hoppe Physikalisches Praktikum 3. Semester - Galvanometer - 1 Aufgaben: 1. Bauen Sie eine Grundschaltung zur Bestimmung charakteristischer Größen

Mehr

8. Schwingkreise. Reihenschwingkreis

8. Schwingkreise. Reihenschwingkreis . Schwingkreise Moeller et.al.: Grundlagen der Elektrotechnik,. Auflage, Teubner Verlag 996, Seite ff Paul,.: Elektrotechnik, Springer Verlag, 3. Auflage 993, Seite 5 ff, Pregla,.: Grundlagen der Elektrotechnik,

Mehr

Inhaltsverzeichnis. Gleichstromlehre

Inhaltsverzeichnis. Gleichstromlehre Inhaltsverzeichnis I Gleichstromlehre 1 Elektrische Grundgrößen... 12 1.1 Elektrische Ladung... 12 1.2 Elektrische Stromstärke... 13 1.3 Elektrische Spannung... 15 1.4 Elektrischer Gleichstromkreis......

Mehr

Induktivität einer Ringspule Berechnen Sie die Induktivität einer Ringspule von 320 Windungen, 2. Der Spulenkern sei:

Induktivität einer Ringspule Berechnen Sie die Induktivität einer Ringspule von 320 Windungen, 2. Der Spulenkern sei: TECHNOLOGISCHE GRUNDLAGEN INDUKTION, EINPHASEN-WECHSELSTROM PETITIONEN SELBSTINDUKTION, INDUKTIVITÄT UND ENERGIE IN DER SPULE 1 1.581 24 Induktivität einer Ringspule Berechnen Sie die Induktivität einer

Mehr

Elektrotechnisches Praktikum II

Elektrotechnisches Praktikum II Elektrotechnisches Praktikum II Versuch 6: Schwingkreis 1 Versuchsinhalt 2 2 Versuchsvorbereitung 3 2.1 Freie Schwingungen............................. 3 2.1.1 Freier ungedämpfter Schwingkreis.................

Mehr

Elektrische Grundgrößen, Ohmsches Gesetz, Kirchhoffsche Gesetze, Wheatstonesche Brücke

Elektrische Grundgrößen, Ohmsches Gesetz, Kirchhoffsche Gesetze, Wheatstonesche Brücke E Elektrische Meßinstrumente Stoffgebiet: Elektrische Grundgrößen, Ohmsches Gesetz, Kirchhoffsche Gesetze, Wheatstonesche Brücke Versuchsziel: Benützung elektrischer Messinstrumente (Amperemeter, Voltmeter,

Mehr

Übungen zur Physik II PHY 121, FS 2017

Übungen zur Physik II PHY 121, FS 2017 Übungen zur Physik II PHY, FS 07 Serie Abgabe: Dienstag, 3. Mai 00 Impedanz = impedance Phasenlage = phasing Wirkleistung = active power Blindleistung = reactive power Scheinleistung = apparent power Schaltung

Mehr

E 4 Spule und Kondensator im Wechselstromkreis

E 4 Spule und Kondensator im Wechselstromkreis E 4 Spule und Kondensator im Wechselstromkreis 1. Aufgaben 1. Die Scheinwiderstände einer Spule und eines Kondensators sind in Abhängigkeit von der Frequenz zu bestimmen und gemeinsam in einem Diagramm

Mehr

Strom (Elektrisch) Spannung (Elektrisch) Widerstand (Elektrisch)

Strom (Elektrisch) Spannung (Elektrisch) Widerstand (Elektrisch) Strom (Elektrisch) Als elektrischen Strom bezeichnet man die Bewegung von Ladungsträgern durch einen Stoff oder durch einen luftleeren Raum. Ladungsträger sind zum Beispiel Elektronen oder Ionen. Bewegen

Mehr

Tutorium Physik 2. Elektrizität

Tutorium Physik 2. Elektrizität 1 Tutorium Physik 2. Elektrizität SS 16 2.Semester BSc. Oec. und BSc. CH 2 Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 12. Radioaktivität 3 10. ELEKTRIZITÄT 4 10.1 Coulombkraft:

Mehr

Gedämpfte harmonische Schwingung

Gedämpfte harmonische Schwingung Gedämpfte harmonische Schwingung Die Differentialgleichung u + 2ru + ω 2 0u = c cos(ωt) mit r > 0 modelliert sowohl eine elastische Feder als auch einen elektrischen Schwingkreis. Gedämpfte harmonische

Mehr

Elektromagnetische Schwingkreise

Elektromagnetische Schwingkreise Universität Ulm Fachbereich Physik Grundpraktikum Physik Versuchsanleitung Elektromagnetische Schwingkreise Nummer: 28 Kompiliert am: 13. Dezember 2018 Letzte Änderung: 11.12.2018 Beschreibung: Webseite:

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik

Physik-Department. Ferienkurs zur Experimentalphysik Physik-Department Ferienkurs zur Experimentalphysik Daniel Jost 27/08/13 Technische Universität München Inhaltsverzeichnis 1 Magnetostatik 1 1.1 Gleichungen der Magnetostatik........................ 1

Mehr

Aufgabe Summe Note Mögliche Punkte Erreichte Punkte

Aufgabe Summe Note Mögliche Punkte Erreichte Punkte Universität Siegen Grundlagen der Elektrotechnik für Maschinenbauer Fachbereich 12 Prüfer : Dr.-Ing. Klaus Teichmann Datum : 30. 3. 2006 Klausurdauer : 2 Stunden Hilfsmittel : 5 Blätter Formelsammlung

Mehr

Induktionsbeispiele. Rotierende Leiterschleife: Spule mit Induktionsschleife: Bei konstanter Winkelgeschw. ω: Φ m = AB cos φ = AB cos(ωt + φ 0 )

Induktionsbeispiele. Rotierende Leiterschleife: Spule mit Induktionsschleife: Bei konstanter Winkelgeschw. ω: Φ m = AB cos φ = AB cos(ωt + φ 0 ) Induktionsbeispiele Rotierende eiterschleife: Bei konstanter Winkelgeschw. ω: Φ m = AB cos φ = AB cos(ωt + φ 0 ) A φ B ω Induktionsspannung: U ind = dφ m = AB [ ω sin(ωt + φ 0 )] = ABω sin(ωt + φ 0 ) (Wechselspannung)

Mehr

Reihen- und Parallelschaltung von Kondensatoren

Reihen- und Parallelschaltung von Kondensatoren Ladung Spannung Kapazität Skizze wir-sind-klasse.jimdo.com Das elektrische Feld Energie des Kondensators Die Energie sitzt nach Faradays Feldvorstellung nicht bei den Ladungen auf den Platten sondern zwischen

Mehr

Systemtheorie. Vorlesung 17: Berechnung von Ein- und Umschaltvorgängen. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Systemtheorie. Vorlesung 17: Berechnung von Ein- und Umschaltvorgängen. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Systemtheorie Vorlesung 7: Berechnung von Ein- und Umschaltvorgängen Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Ein- und Umschaltvorgänge Einführung Grundlagen der Elektrotechnik

Mehr

3.5. Prüfungsaufgaben zur Wechselstromtechnik

3.5. Prüfungsaufgaben zur Wechselstromtechnik 3.5. Prüfungsaufgaben zur Wechselstromtechnik Aufgabe : Impedanz (4) Erkläre die Formel C i C und leite sie aus der Formel C Q für die Kapazität eines Kondensators her. ösung: (4) Betrachtet man die Wechselspannung

Mehr

Lo sung zu UÜ bung 1. I Schaltung Ersatzquellenberechnung. 1.1 Berechnung von R i

Lo sung zu UÜ bung 1. I Schaltung Ersatzquellenberechnung. 1.1 Berechnung von R i Lo sung zu UÜ bung 1 I Schaltung 1 Schaltbild 1: 1.Schaltung mit Spannungsquelle 1. Ersatzquellenberechnung 1.1 Berechnung von R i Zunächst Ersatzschaltbild von den Klemmen aus betrachtet zeichnen: ESB

Mehr

Inhaltsverzeichnis. Rainer Ose. Elektrotechnik für Ingenieure. Grundlagen. ISBN (Buch): ISBN (E-Book):

Inhaltsverzeichnis. Rainer Ose. Elektrotechnik für Ingenieure. Grundlagen. ISBN (Buch): ISBN (E-Book): Inhaltsverzeichnis Rainer Ose Elektrotechnik für Ingenieure Grundlagen ISBN (Buch): 978-3-446-43244-4 ISBN (E-Book): 978-3-446-43955-9 Weitere Informationen oder Bestellungen unter http://www.hanser-fachbuch.de/978-3-446-43244-4

Mehr

6 Gleichstromkreis. 6.1 Gleichstromkreis

6 Gleichstromkreis. 6.1 Gleichstromkreis 6 Gleichstromkreis Alle elektrischen und elektronischen Geräte enthalten Schaltkreise in der einen oder anderen Form. Wir befassen uns zunächst nur mit Gleichstromkreisen und diskutieren Wechselstromkreise

Mehr

Versuch EP2 Elektrische Schwingkreise (RCL)

Versuch EP2 Elektrische Schwingkreise (RCL) BERGISCHE UNIVERSITÄT WUPPERTAL FACHBEREICH C - PHYSIK ELEKTRONIKPRAKTIKUM Versuch EP2 Elektrische Schwingkreise (RCL) I. Zielsetzung des Versuches Im diesem Versuch des Elektronikpraktikums sollen die

Mehr

Technische Grundlagen: Übungssatz 1

Technische Grundlagen: Übungssatz 1 Fakultät Informatik Institut für Technische Informatik Professur für VLSI-Entwurfssysteme, Diagnostik und Architektur Lösungen Technische Grundlagen: Übungssatz Aufgabe. Wiederholungsfragen zum Physik-Unterricht:

Mehr

PHYSIKTEST 4C 16. November 2016 GRUPPE A

PHYSIKTEST 4C 16. November 2016 GRUPPE A PHYSIKTEST 4C 16. November 2016 GRUPPE A SCHÜLERNAME: PUNKTEANZAHL: /20 NOTE: NOTENSCHLÜSSEL 18-20 Sehr Gut (1) 15-17 Gut (2) 13-14 Befriedigend (3) 10-12 Genügend (4) 0-9 Nicht Genügend (5) Aufgabe 1.

Mehr

Elektrotechnik: Zusatzaufgaben

Elektrotechnik: Zusatzaufgaben Elektrotechnik: Zusatzaufgaben 1.1. Aufgabe: Rechnen Sie die abgeleiteten Einheiten der elektrischen Spannung, des elektrischen Widerstandes und der elektrischen Leistung in die Basiseinheiten des SI um.

Mehr

2 Das elektrostatische Feld

2 Das elektrostatische Feld Das elektrostatische Feld Das elektrostatische Feld wird durch ruhende elektrische Ladungen verursacht, d.h. es fließt kein Strom. Auf die ruhenden Ladungen wirken Coulomb-Kräfte, die über das Coulombsche

Mehr