5.3 Typen und Klassifikation affiner Abbildungen

Größe: px
Ab Seite anzeigen:

Download "5.3 Typen und Klassifikation affiner Abbildungen"

Transkript

1 53 Typen und Klassifikation affiner Abbildungen Definition 531 Sei A ein AR und Aff(A) die Gruppe der Affinitäten von A τ Aff(A) heißt Translation falls p, q A gilt: pτ(p) = qτ(q) Der dann von der Wahl p A unabhängige Vektor t = pτ(p) V A wird Translationsvektor der Translation τ genannt Satz 532 Sei A ein AR, α Aff(A) Dann sind äquivalent: (i) α ist eine Translation; (ii) p, q A: pq = α(p)α(q); (iii) Für die zu α gehörige lineare Abbildung α End K (V A ) gilt: α = id Definition 533 Sei A ein AR, α : A A eine affine Abbildung p A heißt Fixpunkt von α falls α(p) = p Fix(α) = {p A α(p) = p} bezeichnet die Menge der Fixpunkte von α Satz 534 Sei A ein AR, α Aff(A), p A Dann existiert eine eindeutig bestimmte Translation τ und ein eindeutig bestimmtes β Aff(A) mit β(p) = p und α = τ β Korollar 535 Sei A ein AR mit dim A = n < und KS (p 0,, p n ) Sei τ Aff(A) eine Translation mit Translationsvektor t = n i=1 t ip 0 p i Sei q A mit Koordinaten x 1,, x n in obigem KS, dh p 0 q = n i=1 x ip 0 p i Dann sind die Koordinaten von τ(q) in obigem KS gegeben durch x i + t i, 1 i n, dh p 0 τ(q) = n i=1 (x i + t i ) p 0 p i Es gilt insbesondere: MP P (τ) = I n t 1 t m Definition 536 Sei A ein euklidisch-affiner oder unitär-affiner Raum α Aff(A) heißt Isometrie (oder Kongruenz) falls sich der Abstand zweier Punkte unter Anwendung von α nicht ändert: p, q A gilt pq = α(p)α(q) Bemerkung und Definition 537 Sei A ein euklidisch-affiner oder unitäraffiner Raum (i) Jede Translation τ Aff(A) ist eine Isometrie 1

2 (ii) Sind α, β Aff(A) Isometrien, so sind auch α β und α 1 Isometrien Insbesondere bilden die Isometrien von A eine Untergruppe von Aff(A) genannt Isometriegruppe von A (oder Kongruenzgruppe von A), in Zeichen Iso(A) Satz 538 Sei A ein euklidisch-affiner oder unitär-affiner Raum, und sei α Aff(A) Dann gilt: α Iso(A) genau dann wenn die zu α gehörige lineare Abbildung α : V A V A eine orthogonale bzw unitäre Abbildung ist Definition und Satz 539 Sei A ein euklidisch-affiner oder unitär-affiner Raum α Aff(A) heißt Ähnlichkeit oder Similarität falls es ein c R, c > 0 gibt sodass für alle p, q A gilt: α(p)α(q) = c pq c heißt dann Ähnlichkeitsfaktor oder Similaritätsfaktor von α Es gilt: (i) Isometrien sind genau die Ähnlichkeiten mit Ähnlichkeitsfaktor 1 (ii) Die Menge der Ähnlichkeiten bezeichnen wir mit Sim(A) = {α Aff(A) α ist eine Ähnlichkeit Sim(A) ist eine Untergruppe von Aff(A) welche ihrerseits Iso(A) enthält: Iso(A) Sim(A) Aff(A) (iii) α Aff(A) ist eine Ähnlichkeit genau dann wenn es eine orthogonale bzw unitäre Abbildung β : V A V A und ein λ R, λ > 0 gibt mit α = λ β Bemerkung und Definition 5310 (1) Sei A ein euklidisch-affiner oder unitäraffiner Raum mit dim A = n < Im euklidischen Fall ist also der Grundkörper K = R, im unitären Fall K = C Ein KS P : (p 0,, p n ) in A nennt man kartesisch falls die Basis P : p 0 p n,, p 0 p n von V A eine Orthonormalbasis ist (bzgl des auf V A gegebenen Skalarprodukts) Sei nun α Aff(A), und sei T GL n (K) die zu α : V A V A gehörige Darstellungsmatrix bzgl der Basis P : T = M P P ( α), wobei wir annehmen, das (p 0,, p n ) ein kartesisches KS in A ist und P wie oben die dazugehörige ONB von V A Dann gilt: (i) α Aff(A) ist eine Isometrie genau dann wenn es eine orthogonale (im Fall K = R) bzw unitäre (im Fall K = C) Matrix T GL n (K) gibt mit T = M P P ( α) 2

3 (ii) α Aff(A) ist eine Ähnlichkeit mit Ähnlichkeitsfaktor c R, c > 0, genau dann wenn es eine orthogonale (im Fall K = R) bzw unitäre (im Fall K = C) Matrix T GL n (K) gibt mit ct = M P P ( α) (2) In einem euklidisch-affinen Raum A können wir den Winkel ϕ [0, π] (ohne Orientierung) zwischen 3 Punkten p 0, p 1, p 2 (mit p 1 p 0 p 2 ) definieren mittels ϕ := arccos p 0 p 1, p 0 p 2 p 0 p 1 p 0 p 1, p 0 p 2 = arccos p 0 p 2 p 0 p 1 p 0 p 2 (man vergleiche dies mit 4211) Wir schreiben ϕ = (p 0, p 1, p 2 ): p 2 (p p 1 0, p 1, p 2 ) p 0 Ähnlichkeiten lassen Winkel invariant: für eine Ähnlichkeit α gilt: (p 0, p 1, p 2 ) = (α(p 0 ), α(p 1 ), α(p 2 )) Definition 5311 Seien A und B ARs und α : A A, β : B B affine Abbildungen Wir nennen α konjugiert zu β, in Zeichen α β, falls es eine bijektive affine Abbildung ϕ : A B gibt mit α = ϕ 1 β ϕ Bemerkung (i) Damit α β überhaupt möglich ist, muss natürlich notwendigerweise dim A = dim B gelten (ii) α = ϕ 1 β ϕ bedeutet, dass das folgende Diagramm kommutiert: A α A ϕ B β B Satz 5312 Seien A und B ARs mit dim A = dim B = n <, und seien α : A A, β : B B affine Abbildungen Sei P ein KS auf A und Q ein KS auf B Dann gilt α β genau dann, wenn es C AGL n (K) gibt mit M P P (α) = C 1 M Q Q (β)c ϕ 1 3

4 Ein generelles Ziel ist nun, affine Abbildungen bis auf Konjugation zu klassifizieren Im Wesentlichen entspricht dies dem Problem, ein Koordinatensystem so zu wählen, dass die Darstellungsmatrix einer affinen Abbildung bzgl dieser Basis eine gewisse Normalform annimmt, wobei diese Normalformen die Eigenschaft haben sollen, dass affine Abbildungen genau dann konjugiert sind, wenn ihre Normalformen in gewisser Weise übereinstimmen Dies ist also ganz in Analogie zu unserem früheren Versuch, Normalformen für lineare Abbildungen zu finden (Stichwort: Jordansche Normalform) Wir erinnern uns daran, dass wir dazu bei linearen Abbildungen in der Lage waren, vorausgesetzt, ihre charakteristischen Polynome zerfielen in Linearfaktoren Für affine Abbildungen ist das Problem noch ein bisschen schwieriger Definition 5313 (i) Für einen affinen Raum A definieren wir AEnd(A) := {affine Abbildungen α : A A} Wir nennen die Elemente in AEnd(A) auch affine Endomorphismen von A (ii) Wir nennen zwei Matrizen L 1, L 2 AM n (K) affin ähnlich, in Zeichen L 1 a L 2, wenn es C AGL n (K) gibt mit L 1 = C 1 L 2 C Bemerkung 5314 (i) Konjugation definiert eine Äquivalenzrelation auf AEnd(A) (ii) Affine Ähnlichkeit definiert eine Äquivalenzrelation auf AM n(k) (iii) Falls dim A = n <, α, β AEnd(A), P, Q zwei KS auf A, dann gilt Insbesondere gilt: M P P (α) a M Q Q (α) α β M P P (α) a M Q Q (β) Sind ferner P und Q die zu P bzw Q gehörenden Basen von V A, so gilt: Sind α und β konjugiert dann sind M P P ( α) und M Q ( α) ähnlich zueinander im Sinne von Q 329, dh es gibt D GL n (K) mit M P P ( α) = D 1 M Q ( α)d Die Umkehrung Q gilt ia nicht (iv) Falls dim A = n <, α AEnd(A), dann sind äquivalent: (a) α ist Translation; ( (b) Es gibt ein KS P von A sodass MP P (α) = In S S K n ; ) für ein geeignetes (c) Für jedes KS P von A hat MP P (α) die Gestalt wie in (b) (mit von P abhängigem S) 4

5 Falls in (b) das KS P durch (p 0,, p n ) gegeben ist, und S = (s i ) K n, so ist der Translationsvektor gegeben durch n i=1 s ip 0 p i (v) Falls dim A = n < (, α ) AEnd(A), und P : (p 0,, p n ) ein KS von T 0 A, dann gilt: MP P (α) = für ein geeignetes T M n (K) genau dann wenn p 0 Fixpunkt von α ist (vi) Sei dim A = n < und seien P, Q zwei KS von A und MQ P (id A) = ( ) T S, die Koordinatenwechselmatrix von P nach Q Es gilt sicher ( T S ) = ( In S ) ( T 0 Gilt ebenfalls für T M n (K) und S K n, dass ( ) ( ) ( ) T S In S = T 0 dann gilt notwendigerweise T = T und S = S ( ) T 0 Die Matrix entspricht hierbei nach (v) einer KS-Transformation vom ( ) KS P zu einem KS P In S, die den Ursprung p 0 festlässt, und die Matrix entspricht hierbei einer Translation ( Verschiebung ) vom KS P zum KS Q (Man vergleiche dies mit 534) (vii) Allgemeiner gilt für affine Matrizen wegen 534 und mit obigen (iv), (v): Sei B AM n (K) gegeben Dann existieren eindeutig bestimmte T M n (K) und S K n mit ( ) ( ) In S T 0 B = Zur Erinnerung: Ist A ein AR und α AEnd(A), so ist die Menge der Fixpunkte von α Fix(A) = {p A α(p) = p} Lemma 5315 Sei A ein AR und α AEnd(A) Dann ist Fix(A) ein AUR von A Satz 5316 Seien A und B ARs, α AEnd(A), β AEnd(B) Angenommen α und β sind konjugiert zueinander, dh es gibt eine bijektive affine Abbildung ϕ : A B mit α = ϕ 1 β ϕ Dann gilt ϕ(fix(α)) = Fix(β) 5 )

6 Insbesondere ist ϕ Fix(α) : Fix(α) Fix(β) eine bijektive affine Abbildung und dim Fix(α) = dim Fix(β) Bemerkung 5317 Sei A ein AR mit dim A = n, P : (p 0,, p n ) ein KS auf A, und sei α AEnd(A) Wir wollen die Fixpunkte von α bestimmen Mit anderen Worten, wir wollen die Koordinaten (bzgl P ) der Punkte q A bestimmen für die α(q) = q Sei zunächst q A ein beliebiger Punkt mir Koordinaten x 1,, x n, dh p 0 q = n i=1 x i p0 p i Seien ferner y 1,, y n die Koordinaten von α(q): p 0 α(q) = n i=1 y i p0 p i ( ) T S Sei ferner MP P (α) = AM n (K) die zu α gehörende Darstellungs- matrix bzgl P Sei X := x 1 x n und Y := y 1 y n Nach 526 gilt dann: Y = T X + S Dies lässt sich nach 527 auch als Matrizenmultiplikation ausdrücken: ( ) ( ) ( ) Y T S X = 1 1 Damit gilt für q A mit Koordinatenvektor X: q ist Fixpunkt T X + S = X (T I n )X = S X ist Lösung des LGS (T I n S) Für endlich-dimensionale ARs liefert dieses Argument zusammen mit 5115 einen neuen Beweis, dass Fix(α) ein AUR ist Außerdem folgt aus 5115 (also eigentlich aus der Theorie der LGS): Falls α einen Fixpunkt hat, dh falls das LGS (T I n S) eine Lösung hat, so gilt: dim Fix(α) = n Rang(T I n ) 6

5.3 Typen und Klassifikation affiner Abbildungen

5.3 Typen und Klassifikation affiner Abbildungen 53 Typen und Klassifikation affiner Abbildungen Definition 531 Sei A ein AR und Aff(A) die Gruppe der Affinitäten von A τ Aff(A) heißt Translation falls p, q A gilt: pτ(p) = qτ(q) Der dann von der Wahl

Mehr

5.3 Darstellungsmatrizen affiner Abbildungen

5.3 Darstellungsmatrizen affiner Abbildungen 5.3 Darstellungsmatrizen affiner Abbildungen Definition 5.3.1. Seien A und B endlich-dimensionale ARs mit dim A n, dim B m und KS E : (p 0,..., p n ) von A und KS F : (q 0,..., q m ) von B. Sei α : A B

Mehr

5.4 Affine Abbildungen in C 2 und R 2

5.4 Affine Abbildungen in C 2 und R 2 5.4 Affine Abbildungen in C 2 und R 2 Notation. Wir erinnern an die affine Ähnlichkeit von Matrizen (5.3.(ii)): L, L n (K). Dann: L a L 2 falls C AGL n (K) mit C L 2 C = L. Die aus 3.2.9 bekannte übliche

Mehr

5.4 Affine Abbildungen in C 2 und R 2

5.4 Affine Abbildungen in C 2 und R 2 5.4 Affine Abbildungen in C 2 und R 2 Notation. Wir erinnern an die affine Ähnlichkeit von Matrizen (5.3.8): L 1, L 1 AM n (K). Dann: L 1 a L 2 falls C AGL n (K) mit C 1 L 2 C = L 1. Die aus 3.2.9 bekannte

Mehr

7.2 Die adjungierte Abbildung

7.2 Die adjungierte Abbildung 7.2 Die adjungierte Abbildung Definition 7.2.1 Eine lineare Abbildung f : V K heißt lineares Funktional oder Linearform. (Diese Definition gilt für beliebige K-Vektorräume, nicht nur für innere Produkträume.)

Mehr

5 Analytische Geometrie

5 Analytische Geometrie 5 Analytische Geometrie Die Grundidee der analytischen Geometrie ist es, geometrische Objekte in Räumen mittels linearer Algebra zu beschreiben 51 Affine Räume Definition 511 Ein affiner Raum (AR) über

Mehr

7.3 Unitäre Operatoren

7.3 Unitäre Operatoren Wir können jeden Operator T wie folgt schreiben: Dabei gilt T = 1 2 (T + T ) + i( 1 2 i (T T )) (T + T ) = T + T sowie ( 1 2 i (T T )) = 1 2 i (T T) = 1 2 i (T T ). Wir können T also in zwei lineare Operatoren

Mehr

4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau

4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau 312 LinAlg II Version 0 20. Juni 2006 c Rudolf Scharlau 4.3 Bilinearformen Bilinearformen wurden bereits im Abschnitt 2.8 eingeführt; siehe die Definition 2.8.1. Die dort behandelten Skalarprodukte sind

Mehr

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen Hannover, den 7. Februar 2002 Aufgabe. Übungsblatt: Lineare Algebra II Abgabe: 8./9.4.2002 in den Übungsgruppen (2, 2, 3 Punkte) Der Vektorraum V = C[, ] sei mit dem üblichen Skalarprodukt f, g = f(t)g(t)

Mehr

4.4 Hermitesche Formen

4.4 Hermitesche Formen 44 Hermitesche Formen Wie üblich bezeichnen wir das komplex konjugierte Element von ζ = a + bi C (a, b R) mit ζ = a bi Definition 441 Sei V ein C-Vektorraum Eine hermitesche Form (HF) auf V ist eine Abbildung

Mehr

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009 I. (4 Punkte) Gegeben sei die Menge Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 9 G := { a c b a, b, c R }. (a) Zeigen Sie, dass G zusammen mit der Matrizenmultiplikation eine Gruppe

Mehr

3.4 Trigonalisierung und Jordansche Normalform

3.4 Trigonalisierung und Jordansche Normalform 3.4 Trigonalisierung und Jordansche Normalform Definition 3.4.1. Sei V ein K-Vektorraum, F End K (V ). Ein Unterraum U V heißt F -invariant falls F (U) U. Bemerkung. (1) Falls U V ein F -invarianter Unterraum

Mehr

2. Klausur zur Linearen Algebra II

2. Klausur zur Linearen Algebra II Technische Universität Dortmund Fakultät für Mathematik Platznummer: Sommersemester 7.9.7. Klausur zur Linearen Algebra II Name: Vorname: Matrikelnummer: Studiengang: Wichtige Informationen: Prüfen Sie

Mehr

4.4 Simultane Diagonalisierbarkeit und Trigonalisierbarkeit

4.4 Simultane Diagonalisierbarkeit und Trigonalisierbarkeit 4.4 Simultane Diagonalisierbarkeit und Trigonalisierbarkeit Definition 4.41. Eine Familie F linearer Operatoren heißt vertauschbar oder kommutierend, wenn für je zwei Operatoren U,T in F gilt: UT = TU.

Mehr

Aufgabe I.1 (4 Punkte) Gegeben seien die Matrix H := und die Menge L := {A R 4 4 A HA = H} Zeigen Sie:

Aufgabe I.1 (4 Punkte) Gegeben seien die Matrix H := und die Menge L := {A R 4 4 A HA = H} Zeigen Sie: Aufgabe I (4 Punkte Gegeben seien die Matrix und die Menge Zeigen Sie: H := L := {A R 4 4 A HA = H} a L ist bezüglich der Matrizenmultiplikation eine Gruppe b Die Matrizen der Form ( E O, O B wobei E R

Mehr

21. Affine Koordinaten und affine Abbildungen

21. Affine Koordinaten und affine Abbildungen 21.1. Grundbegriffe Definition: Sei A ein affiner Raum mit Richtungs-VRm V der Dimension n. (a) Sei B die Menge aller Basen von V. Ein Paar K := (O, B) A B heißt affines Koordinatensystem, wobei O der

Mehr

Die wichtigste Klasse von Funktionen zwischen Vektorräumen sind die linearen Abbildungen.

Die wichtigste Klasse von Funktionen zwischen Vektorräumen sind die linearen Abbildungen. Definition: Lineare Abbildung Lineare Abbildungen Die wichtigste Klasse von Funktionen zwischen Vektorräumen sind die linearen Abbildungen. 8.1 Definition: Lineare Abbildung Eine Funktion f : V Ñ W zwischen

Mehr

17. Orthogonalsysteme

17. Orthogonalsysteme 17. Orthogonalsysteme 17.1. Winkel und Orthogonalität Vorbemerkung: Sei V ein Vektorraum mit Skalaprodukt, und zugehöriger Norm, dann gilt nach Cauchy-Schwarz: x, y V \ {0} : x, y x y 1 Definition: (a)

Mehr

6. Normale Abbildungen

6. Normale Abbildungen SKALARPRODUKE 1 6 Normale Abbildungen 61 Erinnerung Sei V ein n-dimensionaler prä-hilbertraum, also ein n-dimensionaler Vektorraum über K (R oder C) versehen auch mit einer Skalarprodukt, ra K Die euklidische

Mehr

4 Bilinearformen und Skalarprodukte

4 Bilinearformen und Skalarprodukte 4 Bilinearformen und Skalarprodukte 4 Grundlagen über Bilinearformen Definition 4 Sei V ein K-Vektorraum Eine Bilinearform b auf V ist eine Abbildung b : V V K mit folgenden Eigenschaften: (B) x, y, z

Mehr

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen Orthonormalisierung Wie schon im Falle V = R n erwähnt, erhalten wir durch ein Skalarprodukt eine zugehörige Norm (Länge) eines Vektors und in weiterer Folge eine Metrik (Abstand zwischen zwei Vektoren).

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

Universität Bielefeld Sommersemester Lineare Algebra 2 Übungsblatt 1

Universität Bielefeld Sommersemester Lineare Algebra 2 Übungsblatt 1 Übungsblatt 1 Abgabe bis 10:00 Uhr am Donnerstag, den 19. April 2018, im Postfach Ihrer Tutorin bzw. Ihres Tutors. Es sei K ein beliebiger Körper. Seien V und W endlich-dimensionale K-Vektorräume, mit

Mehr

Wiederholungsserie II

Wiederholungsserie II Lineare Algebra II D-MATH, FS 205 Prof. Richard Pink Wiederholungsserie II. Zeige durch Kopfrechnen, dass die folgende reelle Matrix invertierbar ist: 205 2344 234 990 A := 224 423 990 3026 230 204 9095

Mehr

Klausur zur Vorlesung Lineare Algebra II, SoSe 2016,

Klausur zur Vorlesung Lineare Algebra II, SoSe 2016, Klausur zur Vorlesung Lineare Algebra II, SoSe 6, 6.7.6 Vokabelbuch In diesem Teil soll getestet werden, inwieweit Sie in der Lage sind, wichtige Definitionen und Sätze aus der Vorlesung korrekt zu formulieren

Mehr

Lineare Algebra I Ferienblatt

Lineare Algebra I Ferienblatt Wintersemester 09/0 Prof. Dr. Frank-Olaf Schreyer Dr. Janko Boehm Lineare Algebra I Ferienblatt. Sei, das Euklidische Skalarprodukt auf R. Das Kreuzprodukt a b von Vektoren a, b R ist durch die Formel

Mehr

4 Orthogonale Endormorphismen

4 Orthogonale Endormorphismen 4 Orthogonale Endormorphismen Frage: Bei welchen Abbildungen R R bzw. R 3 R 3 bleibt der Abstand zwischen zwei Punkten erhalten? Für α R setzen wir cosα sin α D(α) = und S(α) := sin α cosα ( cos α sin

Mehr

2. Isotropie. Beweis: (i) (ii): β U ist nicht ausgeartet. U U = {0} (ii) (iii): β U ist nicht ausgeartet. Da β nicht ausgeartet ist, gilt U = U:

2. Isotropie. Beweis: (i) (ii): β U ist nicht ausgeartet. U U = {0} (ii) (iii): β U ist nicht ausgeartet. Da β nicht ausgeartet ist, gilt U = U: 2. Isotropie Im folgenden sei V ein K-Vektorraum der Dimension n. Es sei q eine quadratische Form darüber und β die zugehörige symmetrische Bilinearform. Zudem gelte in K: 1 + 1 0. Notation 2.0: Wir nennen

Mehr

Unter einem reellen inneren Produktraum verstehen wir einen Vektorraum V über

Unter einem reellen inneren Produktraum verstehen wir einen Vektorraum V über 9 Innere Produkte In diesem Kapitel betrachten wir immer Vektorräume über dem Körper der reellen Zahlen R oder dem Körper der komplexen Zahlen C. Definition 9.1: Sei V ein Vektorraum über R. Ein inneres

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

Euklidische und unitäre Vektorräume

Euklidische und unitäre Vektorräume Kapitel 7 Euklidische und unitäre Vektorräume In diesem Abschnitt ist der Körper K stets R oder C. 7.1 Definitionen, Orthonormalbasen Definition 7.1.1 Sei K = R oder C, und sei V ein K-Vektorraum. Ein

Mehr

3 Vektorräume abstrakt

3 Vektorräume abstrakt Mathematik I für inf/swt Wintersemester / Seite 7 Vektorräume abstrakt Lineare Unabhängigkeit Definition: Sei V Vektorraum W V Dann heißt W := LH(W := Menge aller Linearkombinationen aus W die lineare

Mehr

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 9 (SS 2011) Abgabetermin: Donnerstag, 16. Juni.

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 9 (SS 2011) Abgabetermin: Donnerstag, 16. Juni. Lineare Algebra II Prof. Dr. M. Rost Übungen Blatt 9 (SS 2011) Abgabetermin: Donnerstag, 16. Juni http://www.math.uni-bielefeld.de/~rost/la2 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung: Affine

Mehr

Trigonalisierung. Definition. 1) Sei F : V V linear, dim V = n. Dann heißt F trigonalisierbar, wenn es eine Basis B von V gibt sodass a 11 a 12..

Trigonalisierung. Definition. 1) Sei F : V V linear, dim V = n. Dann heißt F trigonalisierbar, wenn es eine Basis B von V gibt sodass a 11 a 12.. Trigonalisierung Sei F : V V linear und dim V = n. Wir beschäftigen uns jetzt mit der Frage, ob es eine Basis B von V gibt, sodass M B (F ) eine Dreiecksmatrix ist. Definition. ) Sei F : V V linear, dim

Mehr

Lösungsskizzen der Klausur zur Linearen Algebra im Herbst 2015

Lösungsskizzen der Klausur zur Linearen Algebra im Herbst 2015 sskizzen der Klausur zur Linearen Algebra im Herbst 5 Aufgabe I. Es sei (G, ) eine Gruppe mit neutralem Element e und M {x G x x e}. Zeigen Sie: (a) Ist G kommutativ, so ist M eine Untergruppe von G. (b)

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.44 2018/05/17 14:11:13 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.6 Bewegungen und Kongruenzbegriffe Wir untersuchen gerade die Spiegelung an einer Hyperebene h R d. Ist ein

Mehr

8 Eigenwerttheorie I 8. EIGENWERTTHEORIE I 139. Wir hatten bereits früher den Polynomring in einer Variablen über einem Körper K betrachtet:

8 Eigenwerttheorie I 8. EIGENWERTTHEORIE I 139. Wir hatten bereits früher den Polynomring in einer Variablen über einem Körper K betrachtet: 8. EIGENWERTTHEORIE I 139 8 Eigenwerttheorie I Wir hatten bereits früher den Polynomring in einer Variablen über einem Körper K betrachtet: K[x] = Abb[N, K] = {P ; P = a n x n + a n 1 x n 1 + + a 0 ; a

Mehr

Lösungsskizzen zur Klausur zur Linearen Algebra II. Definitionen

Lösungsskizzen zur Klausur zur Linearen Algebra II. Definitionen Technische Universität Berlin Sommersemester 2008 Institut für Mathematik 18 Juli 2008 Prof Dr Stefan Felsner Andrea Hoffkamp Lösungsskizzen zur Klausur zur Linearen Algebra II Aufgabe 1 (1+1+1 Punkte)

Mehr

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 6): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

3 Bilinearform, Basen und Matrizen

3 Bilinearform, Basen und Matrizen Lineare Algebra II 2. Oktober 2013 Mitschrift der Vorlesung Lineare Algebra II im SS 2013 bei Prof. Peter Littelmann von Dario Antweiler an der Universität zu Köln. Kann Fehler enthalten. Veröentlicht

Mehr

10 Unitäre Vektorräume

10 Unitäre Vektorräume 10 Unitäre Vektorräume Pink: Lineare Algebra 2014/15 Seite 98 10 Unitäre Vektorräume Die Theorie komplexer Vektorräume mit Skalarprodukt folgt denselben Linien wie die Theorie reeller Vektorräume mit Skalarprodukt;

Mehr

3 Geometrische Klassifikation der Bewegungen im R 2 und R 3

3 Geometrische Klassifikation der Bewegungen im R 2 und R 3 3 Geometrische Klassifikation der Bewegungen im R 2 und R 3 Sei f : R n R n eine Bewegung Sie kann beschrieben werden in der Form Dabei ist T (f)(x) = A x f(x) = Ax + b mit A O(n) und b R n Definition:

Mehr

Lineare Abbildungen und Matrizen

Lineare Abbildungen und Matrizen Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 31. Mai 2016 Stefan Ruzika 9: Lineare Abbildungen und Matrizen 31. Mai 2016 1 / 16 Gliederung 1 Schulstoff 2 Körper 3 Vektorräume

Mehr

Musterlösungen zur Linearen Algebra II Weihnachtszettel

Musterlösungen zur Linearen Algebra II Weihnachtszettel Musterlösungen zur Linearen Algebra II Weihnachtszettel Aufgabe. Welche der folgenden Matrizen 3 0 0 A = 0 4, B = 3, C = 0 0 0 6 0 0 0 sind über R und welche über C diagonalisierbar? Bestimmen Sie dazu

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.24 2017/05/18 11:18:04 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.6 Bewegungen und Kongruenzbegriffe In diesem Abschnitt wollen wir die Automorphismengruppe der euklidischen

Mehr

Lineare Algebra 2. Lösung zu Aufgabe 7.2:

Lineare Algebra 2. Lösung zu Aufgabe 7.2: Technische Universität Dortmund Sommersemester 2017 Fakultät für Mathematik Übungsblatt 7 Prof. Dr. Detlev Hoffmann 15. Juni 2017 Marco Sobiech/ Nico Lorenz Lineare Algebra 2 Lösung zu Aufgabe 7.1: (a)

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 34 Die Diagonalisierbarkeit von Isometrien im Komplexen Satz 34.1. Es sei V ein endlichdimensionaler C-Vektorraum

Mehr

Seminararbeit. Orthogonale Gruppen. Marvin K. Neugebauer. 15. Juli 2010

Seminararbeit. Orthogonale Gruppen. Marvin K. Neugebauer. 15. Juli 2010 Seminararbeit Orthogonale Gruppen Marvin K Neugebauer 15 Juli 2010 Prof Dr Schwachhöfer Lehrstuhl für Differentialgeometrie Proseminar Lineare Algebra SS 2010 Dank an Rafael Kawka für die Hilfe bei der

Mehr

Lineare Algebra I Zusammenfassung

Lineare Algebra I Zusammenfassung Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition

Mehr

1 Euklidische und unitäre Vektorräume

1 Euklidische und unitäre Vektorräume 1 Euklidische und unitäre Vektorräume In diesem Abschnitt betrachten wir reelle und komplexe Vektorräume mit Skalarprodukt. Dieses erlaubt uns die Länge eines Vektors zu definieren und (im Fall eines reellen

Mehr

2 Spiegelungen. d(f(p), f(q)) = d(p, q) für alle p, q R n

2 Spiegelungen. d(f(p), f(q)) = d(p, q) für alle p, q R n 2 Siegelungen Definition: f : R n R n heißt Bewegung (Isometrie), wenn f Abstände erhält, dh wenn d(f(), f(q)) = d(, q) für alle, q R n Kaitel IV, Satz 32: f ist genau dann eine Bewegung, wenn es eine

Mehr

5 Quadriken. K = { R 2 ax 2 + bxy + cy 2 + dx + ey + f = 0} wobei a, b, c, d, e, f reelle Zahlen sind mit (a, b, c) (0, 0, 0).

5 Quadriken. K = { R 2 ax 2 + bxy + cy 2 + dx + ey + f = 0} wobei a, b, c, d, e, f reelle Zahlen sind mit (a, b, c) (0, 0, 0). 5 Quadriken Kegelschnitte Ein Kegelschnitt ist eine Teilmenge K R 2, welche durch eine quadratische Gleichung in zwei Unbestimmten beschrieben werden kann: x K = { R 2 ax 2 + bxy + cy 2 + dx + ey + f =

Mehr

2 Euklidische Vektorräume

2 Euklidische Vektorräume Sei V ein R Vektorraum. 2 Euklidische Vektorräume Definition: Ein Skalarprodukt auf V ist eine Abbildung σ : V V R, (v, w) σ(v, w) mit folgenden Eigenschaften ( Axiome des Skalarprodukts) (SP1) σ ist bilinear,

Mehr

Seminar zur Darstellungstheorie von Köchern HS08. Erste Definitionen und der Satz von Gabriel

Seminar zur Darstellungstheorie von Köchern HS08. Erste Definitionen und der Satz von Gabriel Seminar zur Darstellungstheorie von Köchern HS08 Erste Definitionen und der Satz von Gabriel Autoren: Nicoletta Andri Claude Eicher Reto Hobi Andreas Pasternak Professorin: Prof. K. Baur Assistent: I.

Mehr

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni.

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni. Lineare Algebra II Prof. Dr. M. Rost Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni http://www.math.uni-bielefeld.de/~rost/la2 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung: Eigenvektoren

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

3.5 Trigonalisierbarkeit, verallgemeinerte Eigenräume und Jordansche Normalform

3.5 Trigonalisierbarkeit, verallgemeinerte Eigenräume und Jordansche Normalform LinAlg II Version 1 29. Mai 2006 c Rudolf Scharlau 219 3.5 Trigonalisierbarkeit, verallgemeinerte Eigenräume und Jordansche Normalform Das Problem der Normalformen für Endomorphismen handelt kurz gesprochen

Mehr

a) Zeigen Sie, dass ϕ genau dann ein Gruppenhomomorphismus ist, wenn die Verknüpfung

a) Zeigen Sie, dass ϕ genau dann ein Gruppenhomomorphismus ist, wenn die Verknüpfung Aufgabe (8 Punkte) Es sei (G, ) eine Gruppe und ϕ: G G die Abbildung, die für jedes g G durch ϕ(g) = g g =: g gegeben ist. a) Zeigen Sie, dass ϕ genau dann ein Gruppenhomomorphismus ist, wenn die Verknüpfung

Mehr

Lina II - Aufgaben zur Vorbereitung für die Klausur (Teil 1) - Lösungen

Lina II - Aufgaben zur Vorbereitung für die Klausur (Teil 1) - Lösungen Lina II - Aufgaben zur Vorbereitung für die Klausur (Teil 1) - en Kommentare an HannesKlarner@FU-Berlinde FU Berlin SS 1 Dia- und Trigonalisierbarkeit Aufgabe (1) Gegeben seien A = i i C 3 3 und B = 1

Mehr

2.4 Lineare Abbildungen und Matrizen

2.4 Lineare Abbildungen und Matrizen 24 Lineare Abbildungen und Matrizen Definition 24 Seien V, W zwei K-Vektorräume Eine Abbildung f : V W heißt lineare Abbildung (lineare Transformation, linearer Homomorphismus, Vektorraumhomomorphismus

Mehr

Kontrollfragen und Aufgaben zur 4. Konsultation

Kontrollfragen und Aufgaben zur 4. Konsultation 1 Technische Universität Ilmenau Fakultät für Mathematik und Naturwissenschaften Institut für Mathematik Dr. Jens Schreyer und Prof. Dr. Michael Stiebitz Kontrollfragen und Aufgaben zur 4. Konsultation

Mehr

Lineare Algebra II (SS 13)

Lineare Algebra II (SS 13) Lineare Algebra II (SS 13) Bernhard Hanke Universität Augsburg 03.07.2013 Bernhard Hanke 1 / 16 Selbstadjungierte Endomorphismen und der Spektralsatz Definition Es sei (V,, ) ein euklidischer oder unitärer

Mehr

Tutorium 4. 1 Bilinearformen. Definition. Seien U, V, W Vektorräume. Eine Abbildung Φ : V W U heißt bilinear: Bemerkung. Dies ist äquivalent zu:

Tutorium 4. 1 Bilinearformen. Definition. Seien U, V, W Vektorräume. Eine Abbildung Φ : V W U heißt bilinear: Bemerkung. Dies ist äquivalent zu: 1 Bilinearformen Tutorium 4 Definition. Seien U, V, W Vektorräume. Eine Abbildung Φ : V W U heißt bilinear: Φ(αv + w, x) = α Φ(v, x) + Φ(w, x) und Φ(v, βx + y) = β Φ(v, x) + Φ(v, y) Bemerkung. Dies ist

Mehr

Darstellungstheorie. Manfred Hörz

Darstellungstheorie. Manfred Hörz Darstellungstheorie Manfred Hörz Die (lineare) Darstellungstheorie versucht schwer zu durchschauende Eigenschaften von gewissen Gruppen (oder Algebren) durch strukturerhaltende Abbildungen auf Matrizen,

Mehr

Tutorium 3. 1 Nilpotente Endomorphismen. Definition. Sei Φ End(V ). Φ heißt nilpotent: n N : Φ n = 0

Tutorium 3. 1 Nilpotente Endomorphismen. Definition. Sei Φ End(V ). Φ heißt nilpotent: n N : Φ n = 0 Tutorium 3 1 Nilpotente Endomorphismen Definition. Sei Φ End(V ). Φ heißt nilpotent: n N : Φ n = Bemerkung. Sei V {}. Dann ist λ = einziger EW. Und wegen H(Φ, ) = Kern((Φ id) k ) Kern(Φ n ) = Kern() =

Mehr

2.1 Voraussetzungen aus der Analytischen Geometrie

2.1 Voraussetzungen aus der Analytischen Geometrie 2 Kinematik im E n 2.1 Voraussetzungen aus der Analytischen Geometrie (AG) 2.1.1 Bewegungen E n... n-dimensionaler euklidischer Raum Bewegung: Abbildung so dass σ : E n E n, σ(p ) =: P, d(p, Q ) = d(p,

Mehr

6.3 Eigenwerte. γ ist Eigenwert von T [T] B B γi ist nicht invertierbar.

6.3 Eigenwerte. γ ist Eigenwert von T [T] B B γi ist nicht invertierbar. Um zu zeigen, dass die irreduziblen Teiler eines reellen Polynoms höchstens den Grad 2 haben, fassen wir nun (x γ) und (x γ) zusammen und stellen fest, dass (x (a + b i))(x ((a b i)) = x 2 2a + (a 2 +

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 6/7): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr 5, Thema, Aufgabe ) Sei V ein reeller Vektorraum. a) Wann nennt man eine Teilmenge U

Mehr

9 Vektorräume mit Skalarprodukt

9 Vektorräume mit Skalarprodukt 9 Skalarprodukt Pink: Lineare Algebra 2014/15 Seite 79 9 Vektorräume mit Skalarprodukt 9.1 Normierte Körper Sei K ein Körper. Definition: Eine Norm auf K ist eine Abbildung : K R 0, x x mit den folgenden

Mehr

Skalarprodukt, Norm & Metrik

Skalarprodukt, Norm & Metrik Skalarprodukt, Norm & Metrik Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 11. Mai 2016 Stefan Ruzika 5: Skalarprodukt, Norm & Metrik 11. Mai 2016 1 / 13 Gliederung 1

Mehr

10. Übung zur Linearen Algebra II -

10. Übung zur Linearen Algebra II - 0. Übung zur Linearen Algebra II - Lösungen Kommentare an Hannes.Klarner@Fu-Berlin.de FU Berlin. SS 00. Aufgabe 7 Der ( linearen ) Abbildung ϕ : R R sei bzgl. der kanonischen Basis die Matrix zugeordnet.

Mehr

a b Q = b a 0 ) existiert ein Element p Q, so dass gilt: q 1 q 2 = 2 b 1 b 2 a 1 b 2 a 2 b 1 a 1 a 2 b 1 b 2 a 1 b 2 a 2 b 1 a b p = 1 det(q) C 2 2,

a b Q = b a 0 ) existiert ein Element p Q, so dass gilt: q 1 q 2 = 2 b 1 b 2 a 1 b 2 a 2 b 1 a 1 a 2 b 1 b 2 a 1 b 2 a 2 b 1 a b p = 1 det(q) C 2 2, Aufgabe I Es sei Q die folgende Teilmenge von C 2 2 : { ( ) a b Q a, b C b a Hier bezeichnet der Querstrich die komplexe Konjugation Zeigen Sie: (a) Mit den üblichen Verknüpfungen + und für Matrizen ist

Mehr

Die Klassifikation der sieben Friesgruppen

Die Klassifikation der sieben Friesgruppen Mathematisches Institut Heinrich-Heine Universität Düsseldorf Dr. Steffen Kionke Proseminar: Kristallographische Gruppen WS 2014/15 Die Klassifikation der sieben Friesgruppen Dieser Text behandelt die

Mehr

Lineare Algebra II Lösungen zu ausgewählten Aufgaben

Lineare Algebra II Lösungen zu ausgewählten Aufgaben Lineare Algebra II Lösungen zu ausgewählten Aufgaben Blatt 2, Aufgabe 3 a) Wir zeigen, daß das Ideal (2, X) kein Hauptideal in Z[X] ist. (Dieses Ideal besteht aus allen Elementen in Z[X], die von der Form

Mehr

Übungen zur Vorlesung Lineare Algebra II, SoSe 2016, Blatt 1

Übungen zur Vorlesung Lineare Algebra II, SoSe 2016, Blatt 1 Übungen zur Vorlesung Lineare Algebra II, SoSe 216, Blatt 1 Mündliche Aufgaben Die Aufgaben aus diesem Blatt bestehen zu einem großen Teil aus den Aufgaben von Blatt 13 der LA1. Sie dienen vor allem der

Mehr

Drehung um einen Punkt um Winkel α.

Drehung um einen Punkt um Winkel α. Drehung um einen Punkt um Winkel α. Sei A R 2 und α R. Drehung um A um Winkel α ist eine Abbildung D A (α) : R 2 R 2 welche wie folgt definiert ist: D A (α) = T A D 0 (α) T ( A), wobei die Abbildung D

Mehr

Henning Krause Lineare Algebra Julia Sauter SS 2017 Klausur mit Lösungsvorschlag Jan Geuenich

Henning Krause Lineare Algebra Julia Sauter SS 2017 Klausur mit Lösungsvorschlag Jan Geuenich Henning Krause Lineare Algebra Julia Sauter SS 27 Klausur 2.9.27 mit Lösungsvorschlag Jan Geuenich Aufgabe (4 Punkte: Sei n N und seien A und B zwei (n n-matrizen über einem Körper K. Wahr Falsch (a Es

Mehr

Analytische Geometrie

Analytische Geometrie 21 Vorlesungen über Analytische Geometrie für Lehramtstudierende der Schulformen Grund-, Mittel- und Realschule Jens Jordan Universität Würzburg, Wintersemster 2015/16 Hier kommt noch ein schönes Bildchen

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 42 Normale Endomorphismen Nach Satz 34.1 besitzt eine Isometrie über C eine Orthonormalbasis aus Eigenvektoren

Mehr

2.5 Diskrete Bewegungsgruppen I: die Punktgruppe,

2.5 Diskrete Bewegungsgruppen I: die Punktgruppe, Diskrete Geometrie (Version 3) 20. November 2011 c Rudolf Scharlau 133 2.5 Diskrete Bewegungsgruppen I: die Punktgruppe, Friesgruppen In diesem Abschnitt ist wie bisher ein euklidischer (Vektor-)Raum E

Mehr

2.3 Basis und Dimension

2.3 Basis und Dimension 23 Basis und Dimension Erinnerung Gegeben ein K-Vektorraum V, ein Vektorensystem x,, x n in V Eine Linearkombination in den x i ist ein Vektor der Form λ x + + λ n x n mit λ i K Die λ i heißen Koeffizienten

Mehr

Definition von R n. Parallelverschiebungen in R n. Definition 8.1 Unter dem Raum R n (n N) versteht man das kartesische Produkt R R... R (n-mal), d.h.

Definition von R n. Parallelverschiebungen in R n. Definition 8.1 Unter dem Raum R n (n N) versteht man das kartesische Produkt R R... R (n-mal), d.h. 8 Elemente der linearen Algebra 81 Der euklidische Raum R n Definition von R n Definition 81 Unter dem Raum R n (n N) versteht man das kartesische Produkt R R R (n-mal), dh R n = {(x 1, x 2,, x n ) : x

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Basisdarstellung und das Skalarprodukt (Teil 2)

TECHNISCHE UNIVERSITÄT MÜNCHEN. Basisdarstellung und das Skalarprodukt (Teil 2) TECHNISCHE UNIERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra 1 WS 006/07 en Blatt 11 15.01.007 Basisdarstellung und das Skalarprodukt (Teil )

Mehr

Basisprüfung. 18. August 2015

Basisprüfung. 18. August 2015 Lineare Algebra I/II D-MATH, HS 4/FS 5 Prof Richard Pink Basisprüfung 8 August 25 [6 Punkte] Betrachte den reellen Vektorraum R 3 zusammen mit dem Standardskalarprodukt, und die Vektoren 9 3 v := 6, v

Mehr

Plan für Heute/Morgen

Plan für Heute/Morgen Plan für Heute/Morgen Kongruenzsätze: aus der Schule wissen wir die SSS, SWS, und SSW Kongruenzsätze für Dreiecke: Wir wollen diese Sätze im Rahmen unseres Modells (wenn Punkte die 2 Tupel von reellen

Mehr

Kapitel 14. Geometrie Eine kurze Einführung in die affine Geometrie

Kapitel 14. Geometrie Eine kurze Einführung in die affine Geometrie Kapitel 14 Geometrie Sei V ein Vektorraum, z.b. V = R 3. Wenn wir uns für geometrische Eigenschaften vonr 3 interessieren, so stört manchmal dieausnahmerolle des Nullvektors, die es ja in V gibt. Beispielsweise

Mehr

Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom

Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom Eine Fragestellung, die uns im weiteren beschäftigen wird, ist das Finden eines möglichst einfachen Repräsentanten aus jeder Äquivalenzklasse

Mehr

8. Elemente der linearen Algebra 8.1 Der euklidische Raum R n

8. Elemente der linearen Algebra 8.1 Der euklidische Raum R n 8 Elemente der linearen Algebra 81 Der euklidische Raum R n Definition von R n Definition 81 Unter dem Raum R n (n N) versteht man das kartesische Produkt R R R (n-mal), dh R n = {(x 1, x 2,, x n ) : x

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 206 Lineare Algebra und analytische Geometrie II Vorlesung 33 Das Kreuzprodukt Eine Besonderheit im R 3 ist das sogenannte Kreuzprodukt, das zu zwei gegebenen Vektoren

Mehr

2.11 Eigenwerte und Diagonalisierbarkeit

2.11 Eigenwerte und Diagonalisierbarkeit 2.11. EIGENWERTE UND DIAGONALISIERBARKEIT 127 Die Determinante eines Endomorphismus Wir geben uns jetzt einen endlichen erzeugten K-Vektorraum V und einen Endomorphismus ϕ : V V vor. Wir wollen die Determinante

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 5/6): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr 5, Thema, Aufgabe ) Sei V ein reeller Vektorraum. a) Wann nennt man eine Teilmenge U

Mehr

23. Die Jordan sche Normalform

23. Die Jordan sche Normalform Chr.Nelius, Lineare Algebra II (SS 2005) 1 23. Die Jordan sche Normalform Wir suchen für einen trigonalisierbaren Endomorphismus unter seinen dreiecksförmigen Darstellungsmatrizen eine Darstellungsmatrix,

Mehr

Lineare Algebra I Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß

Lineare Algebra I Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß Lineare Algebra I - 26. Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß Donnerstag 8.12.: 8:30 Uhr - Vorlesung 10:15 Uhr - große Übung / Fragestunde Klausur: Mittwoch, 14.12. 14:15 Uhr, A3 001 Cauchy-Schwarz

Mehr

Lineare Algebra I Lösungsvorschlag

Lineare Algebra I Lösungsvorschlag Aufgabe Lineare Algebra I Lösungsvorschlag Wir bezeichnen mit a, a 2, a 3 Q 4 die Spalten der Matrix A. Es ist 7 a + 2a 2 = 7 4 = 7a 3, und wir sehen im l A = a, a 2, a 3 = a, a 2. Da die Vektoren a und

Mehr

1. Übungsblatt: Lineare Algebra II Abgabe: 24./ in den Übungsgruppen

1. Übungsblatt: Lineare Algebra II Abgabe: 24./ in den Übungsgruppen Hannover, den 0. April 2006. Übungsblatt: Lineare Algebra II Abgabe: 24./25.4.2006 in den Übungsgruppen ( ) 2 5 a) Zeigen Sie, dass A = und B = 2 ( 7 6 invertierbare Matrix T an mit T AT = B. b) Zeigen

Mehr

Lineare Abbildungen. i=0 c ix i n. K n K m

Lineare Abbildungen. i=0 c ix i n. K n K m Kapitel 4 Lineare Abbildungen In diesem Abschnitt lernen Sie erstmals eine Klasse von strukturerhaltenden Abbildungen kennen. Diese Konzept ist von zentraler Bedeutung in der Algebra. Grob gesagt geht

Mehr