5 Gravitationstheorie

Größe: px
Ab Seite anzeigen:

Download "5 Gravitationstheorie"

Transkript

1 5 Gavitationstheoie Ausgeabeitet von G. Knaup und H. Walitzki 5.1 Gavitationskaft - Gavitationsfeld Die Gundidee zu Gavitationstheoie stammt von Newton ( ): Die Kaft, die einen Apfel fallen lässt, ist die gleiche, die den Mond in eine Bahn um die Ede zwingt, die Ede in eine Bahn um die Sonne usw. In allen ällen ziehen sich Massen einande an. Die Kaft, mit de sie sich anziehen, ist abhängig von de Göße diese Massen und ihem Abstand voneinande. Aus dem Lex Tetia (Actio = Reactio) folgt, dass es sich um eine beideseitige Anziehung handelt, also de Apfel von de Ede und die Ede vom Apfel angezogen wid. Duch Messungen ehielt man: = γ m1m [ N = kg m ] sec 2 (80) γ wid Gavitationskonstante genannt und ist: γ = 6, [Nm 2 kg 2 ] γ = 6, [cm 3 g 1 sec 1 ] Die Gavitationskaft zeigt imme in Richtung des Einheitsvektos ˆ = de ebindungsstecke zwischen beiden Massen (Zentalkaft) und wikt imme anziehend. N = Newton ist die Einheit de Kaft. 12 = γ m 1 m ( 1 2 ) 12 ist die Kaft auf das este Teilchen als Wikung des zweiten Teilchens. Da die Gavitationskaft konsevativ und zental ist, können wi sie als Gadient eine potentiellen Enegie scheiben, die nu vom Betag von 12 abhängt. 12 = U( 12 ) = x y z U( 12 ) = U x U y U z (81) 120

2 Ode umgekeht können wi die potentielle Enegie scheiben als: = 1 2 U 12 = U( 1 2 ) = m 1 m 2 12 d = γ 1 2 (82) Ist die Masse m 2 kein Massenpunkt, sonden ausgedehnt (also aus veschiedenen Massepunkten zusammengesetzt), so addieen sich die Wikungen alle einzelnen Massepunkte auf die Masse m 1 (Supeposition). Man muss also alle einzelnen Käfte aufsummieen. 1 ( ) = n i=1 γ m m i i 3 ( i) (83) m ( ) i m i m 3 m 2 m 1 i 0 Abbildung 58: Ist m 2 eine Masse mit dem olumen und de Dichte ρ, so geht die Summe in ein Integal übe: 1 ( ) = γ m ρ( ) 3 ( )dτ (84) Um die Gavitationskaft unbhängig von de Pobemasse m zu machen, definieen wi als Gavitationsfeld: 121

3 g( ) def = 1 ( ) m (85) g( ) = γ 5.2 Gavitationspotential ρ( ) 3 ( )dτ (86) In einem zentalen und konsevativen Kaftfeld eine Massenveteilung (Massenpunkte ode kontinuielich) hat ein Teilchen de Masse m die potentielle Enegie ode allgemeine: U 1 () = γ m m i i (87) U i () = γ m ρ( ) dτ (88) Analog zum Gavitationsfeld definieen wi als Gavitationspotential potentielle Enegie po Einheitspunktmasse: G() def = U() m = γ ρ( ) dτ (89) 5.3 eldgleichungen Zu Heleitung de eldgleichungen fü das Gavitationsfeld (späte auch fü elektische und magnetische elde) sind zwei fundamentale Integalsätze von Bedeutung: 1. Gauß sche Satz: ü ein beliebiges ektofeld g( ) in einem olumen mit de Obefläche gilt: ( ) g( )d f = = div g()dτ g( )dτ (90) 122

4 df M dτ Abbildung 59: dτ = olumenelement; d f = lächenelement (geichtet in Nomalichtung nach außen); ( )... df = Integal übe die läche, die umschließt Mit dem Gauß schen Satz weden die Eigenschaften eines ektofeldes g( ) (z.b. des Gavitationsfeldes) im Innen eines beliebigen olumens mit denen des eldes auf de Obefläche veknüpft. 2. Stokes sche Satz: Gegeben ist eine Kuve c, deen Umlaufsinn bekannt ist. Übe diese Kuve c wid eine läche gelegt, die c als Rand hat. (Man kann sich das vostellen, wie eine Seifenblase kuz vo dem Ablösen von de Dahtschlinge, ode wie ein Schmettelingsnetz, das an einem Dahtbügel befestigt ist.) g( )d ( ) l = ot g( ) df c (e) = ot g( ) = g( ) = ( ) g( ) df (91) (e) g y z g z y g z x g x z g x y g y x Aus dem Stokes schen Satz geht hevo, dass ot gd f unabhängig von de om und de Göße de läche ist und nu vom Rand diese läche abhängt. 123

5 c df M dl Abbildung 60: c... d l = geschlossenes Linienintegal übe die Kuve c; d l = Linienelement von c; (c)... d f = Integal übe die läche mit dem Rand c Satz 1: Es gilt stets fü das Gavitationsfeld: ot g( ) = g( ) = 0 (92) Beweis: Wi möchten diesen Satz auf zwei Aten beweisen. a) Mit Hilfe des Stokes schen Satzes: Abbildung 61: A = E c 124

6 ot g( )d Stokes = g( )d l (e) c Nach (85) ist g( ) = ( ) g( ) = G( ) m Nach (83) ist ( ) = U() g( ) = G( ) Nach (89) ist U() = m G() g( ) = G( ) = g( )d f = c G( )d l = g( )d l c [ ] E G() A da abe A = E ist g( )d f = G( E ) G( A ) = 0 Da dies fü jede Göße und Oientieung de läche gilt, ist auch de Integand ot g( ) = 0. b) Duch Nachechnen: ot g() = ( ) G() = ( )G() = (G() ) 0 = 0 0 y z z y z x x z x y y x Z.B. 1. Zeile: 2 y z G 2 z y G = 0 usw. Da G() = γ ρ( ) dτ, sind alle gemischten zweiten Ableitungen de unktion G stetige unktionen, also auch vetauschba. ot g( ) = 0 q.e.d. Satz: Das Gavitationspotential efüllt die Poisson-Gleichung: 125

7 G() = 4πγ ρ( ) (93) = = 2 x y z 2 = div gad = Laplace-Opeato Beweis: Ein Massepunkt de Masse m i am Ot i hat das Kaftfeld: g i ( ) = γ m i i 3 ( i) Legt man den Uspung des Koodinatensystems in den Massepunkt m i, so ist i = 0: g i ( ) = γ m i 1 = γ m 1 3 i ˆ 2 ^ α df m Abbildung 62: Wi legen um m i ein beliebiges olumen mit de Obefläche mit beliebige om und bilden das Obeflächenintegal: 126

8 g i ( )d f = γm i 1 2 ˆ d f Duch das Skalapodukt ˆ d f = ˆ d f cos α mit α (ˆ, d ˆf), kommt nu de Teil von d f zu Geltung, de paallel zu ˆ steht. Diesen Teil nennen wi d f. Es gilt: d f = df cos α Gleichzeitig ist abe d f = 2 sin ϑ dθdφ (in Polakoodinaten), so folgt: g i ( )d f = γm i = γ m i 2π = 4πγ m i 1 ˆ 2 }{{} n 0 =1 2 sin ϑ dφdϑ }{{} df cos α sin ϑ dϑ = γ m i 2π 2 df ^ α df m Abbildung 63: Wenn m i außehalb de läche liegt, titt mindenstens zwei Mal duch die läche. Da beim Ein- und Austitt de Winkel α einmal stumpf und 127

9 einmal spitz ist, de cos α also abwechselnd positiv ode negativ wid, heben sich die Anteile g( ) d f beim Integieen übe die gesamte läche gegeneinande auf. Also ist: g i ( )df) = 4πγm i g i ( )df = 0 m i innehalb de läche m i außehalb Hat man statt eines einzelnen Massepunktes eine Massenveteilung, so ist m i duch ρ( )dτ zu esetzen: g( )df = γ 4π ρ( )dτ Nach dem Gauß schen Satz ist: γ 4π g( )df = ρ( )dτ = div g( )dτ div g( ) dτ }{{} g ( g( ) + γ 4πρ( ) ) dτ = 0 Da diese Gleichung fü jedes beliebige olumen efüllt ist, muss de Integand stets Null sein. g( ) = div g( ) = 4π cot γρ( ) Da g( ) = G() wa: div G = 4π ρ( ) G = G = 4πγ ρ( ) 128

10 M a Abbildung 64: a = Radius de homogenen Kugel (ρ = const.) mit de Masse M = ρdτ; = olumen (Kugel) mit dem Radius und dem Mittelpunkt im Mittelpunkt de Massenveteilung 5.4 Beispiele 1. Beispiel: Homogene Kugel mit Radius a (z.b. Ede) Die Poissongleichung lautet: G() = g( ) = +4πγ ρ( ) Da das Poblem kugelsymmetisch ist, ist g nu eine unktion des Abstandes vom Mittelpunkt. Wi legen um die Edkugel ein (Kugel-)olumen mit de Obefläche. Duch Integation übe das olumen folgt g( )dτ = 4πγ ρ( )dτ (94) a) all > a: Da ρ() fü > a gleich Null, egibt das echte Integal: 4πγ ρ( )dτ = 4πγ M Aus dem Gauß schen Satz folgt unte de Beücksichtigung, dass g() bei diesem kugelsymmetischen Poblem imme paallel zu d f (einem lächenstück von ) ist. 129

11 g () df g( )dτ = }{{} g()df }{{} = Gauß g df = g ()4π 2 = 4πγ ρ( )dτ = 4πγ M }{{} (94) g () = γ M 1 2 g ist die Radialkomponente von g(). In diesem all ist g () = ± g(). df = 4π2, da übe die Obefläche de Kugel mit dem Radius integiet wid. b) all < a: Da jetzt übe eine Kugel integiet wid, die kleine ist als die homogene Kugel (z.b. Edkugel), egibt das Integal 4πγ ρ( )dτ = 4πγ 4 3 π3 ρ() = 4πγ 4 3 πa3 ρ() }{{} M 3 a 3 Nach (94) ist: g()dτ = 4πγ ρ( )dτ = 4πγM 3 a 3 und nach dem Gauß schen Satz: g()dτ = }{{} Gauß g () = γ M a 2 a g()d f = g ()4π 2 = 4πγM 3 a 3 Das Gavitationsfeld lässt sich dastellen als Gadient des Potentials: g( ) = G() 130

12 Da g und G nu von abhängen, kann man einfache scheiben: g () = G() Duch Integation diese Gleichung ehält man ü > a ist ü < a ist G() = g ()d ( G() = γm 1 )d = γ M 2 a ( G() = γ M 1 ) d 2 = γ M ( 3 a ) 2 a 2 2. Beispiel: Hohlkugel mit dem Radius a: a ( γ M ) d a 2 a Die Masse de Kugel befindet sich auf eine venachlässigba dünnen Schicht auf de Obefläche (z.b. Weihnachtskugel). Legt man um die Hohlkugel ein (Kugel-)olumen mit dem Radius und de Obefläche = 4π 2, so ist hie wie beim Beispiel 1: a) all > a: g()dτ = }{{} Gauß = }{{} (94) 4πγ g = γ M 1 2 g()df = g () ρ()dτ = 4πγ M df = g ()4π 2 131

13 G() g () a a ~ 1 ~ 1 2 ~ ~ 2 Abbildung 65: b) all < a: Das Kaftfeld in de Kugel ist gleich Null, weil sich die gesamte Masse de Hohlkugel außehalb des olumens befindet. g () = 0 Das Gavitationspotential ehält man auch hie wiede duch Integation nach d: a) all > a: b) all < a: G() = g d = γ M a ( G() = γm 1 ) d a (0) }{{} =0 d = γ M 1 a

14 Tägt man g () und G() gegen auf, so sieht man, dass sich das eld und das Potential de Hohlkugel nu im Beeich < a von de homogenen massegefüllten Kugel untescheiden. G() g () ~ 1 ~ 1 2 Abbildung 66: 133

N = kg m ] sec 2. F = γ m1m 2 r ˆr = r 1 r 2 r 1 r 2

N = kg m ] sec 2. F = γ m1m 2 r ˆr = r 1 r 2 r 1 r 2 Kpitel 5 Gvittionstheoie Ausgebeitet von G. Knup und H. Wlitzki 5. Gvittionskft - Gvittionsfeld Die Gundidee zu Gvittionstheoie stmmt von Newton (643-727): Die Kft, die einen Apfel fllen lässt, ist die

Mehr

U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr

U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr PHYSIK A Zusatvolesung SS 13 3. Gadient Divegen & Rotation 3.1 De Gadient eines Skalafeldes Sei ein skalaes eld.b. ein Potential das von abhängt. Dann kann man scheiben: d d d d d d kann duch eine Veändeung

Mehr

Allgemeine Mechanik Musterlo sung 4.

Allgemeine Mechanik Musterlo sung 4. Allgemeine Mechanik Mustelo sung 4. U bung. HS 03 Pof. R. Renne Steuqueschnitt fu abstossende Zentalkaft Betachte die Steuung eines Teilchens de Enegie E > 0 in einem abstossenden Zentalkaftfeld C F x)

Mehr

Kapitel 4 Energie und Arbeit

Kapitel 4 Energie und Arbeit Kapitel 4 negie und Abeit Kaftfelde Wenn wi jedem unkt des Raums eindeutig einen Kaft-Vekto zuodnen können, ehalten wi ein Kaftfeld F ( ) Häufig tauchen in de hysik Zental-Kaftfelde auf : F( ) f ( ) ˆ

Mehr

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s 2.4 Konsevative Käfte und Potential /mewae/sc/kap2 4s3 29-0-0 Einige Begiffe: Begiff des Kaftfeldes: Def.: Kaftfeld: von Kaft-Wikung efüllte Raum. Dastellung: F ( ) z.b. Gavitation: 2. Masse m 2 in Umgebung

Mehr

5. Gravitation Drehimpuls und Drehmoment. Mechanik Gravitation

5. Gravitation Drehimpuls und Drehmoment. Mechanik Gravitation Mechanik Gavitation 5. Gavitation 5.1. Dehipuls und Dehoent De Dehipuls titt bei Dehbewegungen an die Stelle des Ipulses. Wi betachten zunächst den Dehipuls eines Teilchens (späte weden wi den Dehipuls

Mehr

{ } e r. v dv C 1. g R. dr dt. dv dr. dv dr v. dv dt G M. 2 v 2. F (r) r 2 e r. r 2. (g nicht const.)

{ } e r. v dv C 1. g R. dr dt. dv dr. dv dr v. dv dt G M. 2 v 2. F (r) r 2 e r. r 2. (g nicht const.) Otsabhängige Käfte Bsp.: akete i Gavitationsfeld (g nicht const.) F () Nu -Kop. G M 2 e (späte eh) a v dv a d v dv v dv d v dv 1 G M 2 v2 C 1 1 2 v (Abschuss vo Pol) d G M 2 C 1 d 2 G M dv d v 1 2 v 2

Mehr

Experimentalphysik II (Kip SS 2007)

Experimentalphysik II (Kip SS 2007) Epeimentalphysik II (Kip SS 7) Zusatzvolesungen: Z- Ein- und mehdimensionale Integation Z- Gadient, Divegenz und Rotation Z-3 Gaußsche und Stokessche Integalsatz Z-4 Kontinuitätsgleichung Z-5 Elektomagnetische

Mehr

Arbeit in Kraftfeldern

Arbeit in Kraftfeldern Abeit in Kaftfelden In einem Kaftfeld F ( ) ist F( )d die vom Feld bei Bewegung eines Köps entlang dem Weg geleistete Abeit. Achtung: Vozeichenwechsel bzgl. voheigen Beispielen Konsevative Kaftfelde Ein

Mehr

6 Die Gesetze von Kepler

6 Die Gesetze von Kepler 6 DIE GESETE VON KEPER 1 6 Die Gesetze von Kele Wi nehmen an, dass de entalköe (Sonne) eine seh viel gössee Masse M besitzt als de Planet mit de Masse m, so dass de Schweunkt in gute Näheung im entum de

Mehr

Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler

Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler Klassische Mechanik - Feienkus Sommesemeste 2011, Pof. Metzle 1 Inhaltsvezeichnis 1 Kelegesetze 3 2 Zweiköeoblem 3 3 Zentalkäfte 4 4 Bewegungen im konsevativen Zentalkaftfeld 5 5 Lenzsche Vekto 7 6 Effektives

Mehr

Mathematische Behandlung der Natur- und Wirtschaftswissenschaften II

Mathematische Behandlung der Natur- und Wirtschaftswissenschaften II Technische Univesität München SS 29 Fakultät fü Mathematik Pof. D. J. Edenhofe Dipl.-Ing. W. Schult Übung 8 Lösungsvoschlag Mathematische Behandlung de Natu- und Witschaftswissenschaften II Aufgabe T 2

Mehr

Von Kepler zu Hamilton und Newton

Von Kepler zu Hamilton und Newton Von Kele zu Hamilton und Newton Eine seh elegante Vaiante von 3 Kele egeben 1 Newton 1. Das este Kele sche Gesetz 2. Das zweite Kele sche Gesetz 3. Die Bahngeschwindigkeit v und de Hodogah 4. Die Beschleunigung

Mehr

Übungen zur Klassischen Physik II (Elektrodynamik) SS 2016

Übungen zur Klassischen Physik II (Elektrodynamik) SS 2016 Institut fü Expeimentelle Kenphysik, KIT Übungen zu Klassischen Physik II (Elektodynamik) SS 216 Pof. D. T. Mülle D. F. Hatmann Blatt 3 Beabeitung: 11.5.216 1. 3D Integation (a) Einfache Ladungsveteilung

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008 Übungsblatt 4 zu Physik II Von Patik Hlobil (38654), Leonhad Doeflinge (496) Übungen zu Kusvolesung Physik II (Elektodynamik) Sommesemeste8 Übungsblatt N. 4 Aufgabe 3: Feldstäke im Innen eines Ladungsinges

Mehr

Magnetostatik. Feldberechnungen

Magnetostatik. Feldberechnungen Magnetostatik 1. Pemanentmagnete. Magnetfeld stationäe Stöme i. Elektomagnetismus Phänomenologie ii. Magnetische Fluss Ampeesches Gesetz iii. Feldbeechnungen mit Ampeschen Gesetz i.das Vektopotenzial.

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf Einfühung in die Physik I Dynaik des Massenpunkts () O. von de Lühe und U. Landgaf Abeit Käfte können aufgeteilt ode ugefot weden duch (z. B.) Hebel Flaschenzüge De Weg, übe welchen eine eduziete Kaft

Mehr

6. Gravitation. m s. r r. G = Nm 2 /kg 2. Beispiel: Mond. r M = 1738 km

6. Gravitation. m s. r r. G = Nm 2 /kg 2. Beispiel: Mond. r M = 1738 km 00 0 6. Gavitation Gavitationswechselwikung: eine de vie fundaentalen Käfte (die andeen sind elektoagnetische, schwache und stake Wechselwikung) Ein Köpe it asse i Abstand zu eine Köpe it asse übt auf

Mehr

Ferienkurs Theoretische Mechanik 2009 Newtonsche Mechanik, Keplerproblem - Lösungen

Ferienkurs Theoretische Mechanik 2009 Newtonsche Mechanik, Keplerproblem - Lösungen Physi Depatment Technische Univesität München Matthias Eibl Blatt Feienus Theoetische Mechani 9 Newtonsche Mechani, Keplepoblem - en Aufgaben fü Montag Heleitungen zu Volesung Zeigen Sie die in de Volesung

Mehr

Integration von Ortsgrößen zu Bereichsgrößen

Integration von Ortsgrößen zu Bereichsgrößen Integation von Otsgößen zu Beeichsgößen 1 Integation von Otsgößen zu Beeichsgößen Stömungen sind Bewegungen von Teilchen innehalb von Stoffen. Ihe wesentlichen Gesetzmäßigkeiten gehen aus Zusammenhängen

Mehr

2.3 Elektrisches Potential und Energie

2.3 Elektrisches Potential und Energie 2.3. ELEKTRISCHES POTENTIAL UND ENERGIE 17 2.3 Elektisches Potential un Enegie Aus e Mechanik wissen wi, ass ie Abeit Q, ie an einem Massepunkt veichtet wi, wenn iese um einen (kleinen) Vekto veschoben

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

Konservatives Kraftfeld. Nullpunkt frei wählbar (abh. von Masse m) E pot bezogen auf Probemasse (unabh. von Masse m)

Konservatives Kraftfeld. Nullpunkt frei wählbar (abh. von Masse m) E pot bezogen auf Probemasse (unabh. von Masse m) Zu inneung Stichwote aus de 5. Volesung: () Kaftfeld: Konsevatives Kaftfeld W d 0 Potentielle negie: Nullpunkt fei wählba (abh. von Masse m) d Potential: eldstäke: bezogen auf Pobemasse (unabh. von Masse

Mehr

1. Übungsblatt zur Theoretischen Physik I im SS16: Mechanik & Spezielle Relativitätstheorie. Newtonsche Mechanik

1. Übungsblatt zur Theoretischen Physik I im SS16: Mechanik & Spezielle Relativitätstheorie. Newtonsche Mechanik 1. Übungsblatt zu Theoetischen Physik I im SS16: Mechanik & Spezielle elativitätstheoie Newtonsche Mechanik Aufgabe 1 Abhängigkeit physikalische Gesetze von de Zeitdefinition Eine wesentliche Gundlage

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EPI 06 I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang EPI WS 2006/07 Dünnwebe/Faessle 1 x 1 = x 1 y 1 x 1 x 1 = y 1 I)Mechanik: 1.Kinematik, 2.Dynamik Bewegung in Ebene und Raum (2- und

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwöte von de letzten Volesung können Sie sich noch einnen? Positive und negative Ladung Das Coulombsche Gesetz F 1 4πε q q 1 Quantisieung und haltung de elektischen Ladung e 19 1, 6 1 C Das

Mehr

Erzeugung eines Skalars durch räumliche Differentiation einer vektoriellen Größe

Erzeugung eines Skalars durch räumliche Differentiation einer vektoriellen Größe eugung eines Skalas duch äumliche Diffeentiation eine ektoiellen Göße Diegen - de Gaußsche Integalsat Diegen ist als Wot aus de Stahlenoptik bekannt wid hie abe iel allgemeine gebaucht: Unte Diegen estehen

Mehr

Theoretische Physik 1 (Mechanik) Lösung Aufgabenblatt 1

Theoretische Physik 1 (Mechanik) Lösung Aufgabenblatt 1 Technische Univesität München Fakultät fü Physik Feienkus Theoetische Physik 1 (Mechanik) SS 018 Aufgabenblatt 1 Daniel Sick Maximilian Ries 1 Aufgabe 1: Diffeenzieen Sie die folgenden Funktionen und entwickeln

Mehr

Elektrostatik. Arbeit und potenzielle Energie

Elektrostatik. Arbeit und potenzielle Energie Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld 5. De Satz von Gauß 6. Potenzial und Potenzialdiffeenz i. Abeit im elektischen

Mehr

{ } v = v r. v dv = G M. a dr = v dv. 1 2 v2 = G M + C 1. = 1 2 v 02 g R. e r. F (r) = G m M r 2. a = dv dt. = dv dr dr. dr v G M.

{ } v = v r. v dv = G M. a dr = v dv. 1 2 v2 = G M + C 1. = 1 2 v 02 g R. e r. F (r) = G m M r 2. a = dv dt. = dv dr dr. dr v G M. Otsabhängige Käfte Bsp.: Rakete im Gavitationsfeld (g nicht const.) F () = G m M 2 Nu -Komp. a = dv dt e v = v = dv d d dt a d = v dv v dv = G M 1 2 v2 = G M C 1 = 1 2 v 0 (späte meh) (Abschuss vom Pol)

Mehr

Einführung in die Physik I. Elektromagnetismus 1

Einführung in die Physik I. Elektromagnetismus 1 infühung in die Physik I lektomagnetismus O. von de Lühe und. Landgaf lektische Ladung lektische Ladung bleibt in einem abgeschlossenen System ehalten s gibt zwei Aten elektische Ladung positive und negative

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

Lösung der Aufgabe 4.2.2

Lösung der Aufgabe 4.2.2 Elektomagnetische Felde und Wellen: Lösung de Aufgabe 422 1 Lösung de Aufgabe 422 Übeabeitet von: JüM 172005 Aufgabe wie in de Klausu Eine Kugel vom adius ist gleichfömig in x-ichtung polaisiet mit P =

Mehr

Repetitorium B: 1-, 2-dim. Integrale, Satz v. Stokes

Repetitorium B: 1-, 2-dim. Integrale, Satz v. Stokes Fakultät fü Physik R: Rechenmethoden fü Physike, WiSe 06/7 Dozent: Jan von Delft Übungen: Hong-Hao Tu, Fabian Kugle http://www.physik.uni-muenchen.de/lehe/volesungen/wise_6_7/_ echenmethoden_6_7/ Repetitoium

Mehr

Inhalt der Vorlesung Experimentalphysik I

Inhalt der Vorlesung Experimentalphysik I Expeimentalphysik I (Kip WS 009) Inhalt de Volesung Expeimentalphysik I Teil : Mechanik. Physikalische Gößen und Einheiten. Kinematik von Massepunkten 3. Dynamik von Massepunkten 4. Gavitation 4. Keplesche

Mehr

1.2.2 Gravitationsgesetz

1.2.2 Gravitationsgesetz VAK 5.04.900, WS03/04 J.L. Vehey, (CvO Univesität Oldenbug ) 1.. Gavitationsgesetz Heleitung aus Planetenbewegung Keplesche Gesetze 1. Planeten bewegen sich auf Ellipsen. De von Sonne zum Planeten gezogene

Mehr

Der Lagrange- Formalismus

Der Lagrange- Formalismus Kapitel 8 De Lagange- Fomalismus 8.1 Eule-Lagange-Gleichung In de Quantenmechanik benutzt man oft den Hamilton-Opeato, um ein System zu bescheiben. Es ist abe auch möglich den Lagange- Fomalismus zu vewenden.

Mehr

Grundlagen der Elektrotechnik - Einführung Bachelor Maschinenbau Bachelor Wirtschaftsingenieurwesen Maschinenbau Bachelor Chemieingenieurwesen

Grundlagen der Elektrotechnik - Einführung Bachelor Maschinenbau Bachelor Wirtschaftsingenieurwesen Maschinenbau Bachelor Chemieingenieurwesen Gundlagen de Elektotechnik - Einfühung Bachelo Maschinenbau Bachelo Witschaftsingenieuwesen Maschinenbau Bachelo Chemieingenieuwesen Jun.-Pof. D.-Ing. Katin Temmen Fachgebiet Technikdidaktik Institut fü

Mehr

3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen

3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen 3 Elektostatik Das in de letzten Volesung vogestellte Helmholtz-Theoem stellt eine fomale Lösung de Maxwell- Gleichungen da. Im Folgenden weden wi altenative Methoden kennenlenen (bzw. wiedeholen), die

Mehr

Abbildung 1 Geometrie eines Streuexperiments, elastische Streuung

Abbildung 1 Geometrie eines Streuexperiments, elastische Streuung Loenz-Mie-Steuung in Bonsche Näheung 1 Einleitung Licht wede an einem Medium mit dem Bechungsindex n gesteut De Bechungsindex sei eell, Absoption finde nicht statt Ist die Wechselwikung mit dem Medium

Mehr

Mathematik für Ingenieure 2

Mathematik für Ingenieure 2 Mathematik fü Ingenieue Doppelintegale THE SERVICES Mathematik PROVIDER fü Ingenieue DIE - Doppelintegale Anschauung des Integals ingenieusmäßige Intepetation des bestimmten Integals Das bestimmte Integal

Mehr

Zur Erinnerung. = grade pot. 1 m F G = Stichworte aus der 5. Vorlesung: Konservatives Kraftfeld. Kraftfeld: Nullpunkt frei wählbar (abh.

Zur Erinnerung. = grade pot. 1 m F G = Stichworte aus der 5. Vorlesung: Konservatives Kraftfeld. Kraftfeld: Nullpunkt frei wählbar (abh. Zu inneung Stichwote aus de 5. Volesung: () Kaftfeld: Konsevatives Kaftfeld W d 0 Potentielle negie: Potential: eldstäke: Nullpunkt fei wählba (abh. von Masse m) bezogen auf Pobemasse (unabh. von Masse

Mehr

Zusammenfassung magnetische Kraft auf elektrische Ladung

Zusammenfassung magnetische Kraft auf elektrische Ladung 24b Magnetismus 1 Zusammenfassung magnetische Kaft auf elektische Ladung Kaftwikung am elektisch geladenen Isolato ist otsunabhängig Kaftwikung am Magneten ist otsabhängig Maximale Kaft an den Enden Magnete

Mehr

Lösung - Schnellübung 4

Lösung - Schnellübung 4 D-MAVT/D-MATL Analysis I HS 2016 D Andeas Steige Lösung - Schnellübung 1 Ein Keis vom Radius ollt im Innen eines Keises vom Radius R ab Die Kuve t, die dabei ein feste Punkt P auf dem Rand des kleinen

Mehr

Gravitationsgesetz. Name. d in km m in kg Chaldene 4 7, Callirrhoe 9 8, Ananke 28 3, Sinope 38 7, Carme 46 1,

Gravitationsgesetz. Name. d in km m in kg Chaldene 4 7, Callirrhoe 9 8, Ananke 28 3, Sinope 38 7, Carme 46 1, . De Jupite hat etwa 60 Monde auch Tabanten genannt. De Duchesse seines gößten Mondes Ganyed betägt 56k. Es gibt abe auch Monde die nu einen Duchesse von etwa eine Kiloete haben. Die Monde des Jupites

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwöte von de letzten Volesung können Sie sich noch einnen? Magnetfeld: Pemanentmagnete und Elektomagnete F = qv B B Gekeuzte Felde De Hall-Effekt Geladene Teilchen auf eine Keisbahn = mv

Mehr

Theorie klassischer Teilchen und Felder I

Theorie klassischer Teilchen und Felder I Mustelösungen Blatt 9.0.006 Theoetische Physik I: Theoie klassische Teilchen und Felde I Pof. D. G. Albe Dipl.-Phys. O. Ken Das Zwei-Köpe-Poblem. Zeigen Sie, dass fü die Potentialfunktion U x x gilt mit

Mehr

KIT WS 2011/12 Theo A 1. 2 = b c ist dann doppelt so lang, wie â, also. c = 2 6

KIT WS 2011/12 Theo A 1. 2 = b c ist dann doppelt so lang, wie â, also. c = 2 6 KIT WS / Theo A Aufgabe : Vetoen [3 + 3 = 6] Gegeben sind die Vetoen a = (, 7, und b = (,,. (a Bestimmen Sie einen Veto c de Länge c = in de a b Ebene mit c b. (b Bestimmen Sie den paametisieten Weg (ϕ

Mehr

MECHANIK OHNE FERNWIRKUNG - mit Impuls und Impulsströmen

MECHANIK OHNE FERNWIRKUNG - mit Impuls und Impulsströmen MECHANIK OHNE FERNWIRKUNG - mit Impuls und Impulsstömen Holge Hauptmann Euopa-Gymnasium, Wöth am Rhein holge.hauptmann@gmx.de Mechanik mit Impuls und Impulsstömen 1 Impuls als Gundgöße de Mechanik De Impuls

Mehr

Der elektrische Dipol Sind zwei unterschiedliche Ladungen in einem Abstand d angeordnet, dann liegt ein elektrischer Dipol vor.

Der elektrische Dipol Sind zwei unterschiedliche Ladungen in einem Abstand d angeordnet, dann liegt ein elektrischer Dipol vor. De elektische Dipol Sind zwei unteschiedliche Ladungen in einem Abstand d angeodnet, dann liegt ein elektische Dipol vo. +q d q Man definiet das Dipolmoment: p q d Das Diplomoment ist ein Vekto, de entlang

Mehr

Lösung V Veröentlicht:

Lösung V Veröentlicht: 1 Bewegung entlang eines hoizontalen Keises (a) Ein Ball de Masse m hängt an einem Seil de Länge L otiet mit eine konstanten Geschwindigkeit v auf einem hoizontalen Keis mit Radius, wie in Abbildung 2

Mehr

r [0, ), φ [0, 2π), ϑ [0, π]

r [0, ), φ [0, 2π), ϑ [0, π] ET2 Koodinatenssteme 1 Koodinatenssteme Zlindekoodinaten Kugelkoodinaten P(,,) P(,,) P(,,) P(,,ϑ) cos ϑ sin ϑ sin ϑ sin cos sin ϑ cos sin ϑ = cos = sin = [, ), [, 2π), (-, ) = sin ϑ cos = sin ϑ sin = cos

Mehr

Seminar Gewöhnliche Dierentialgleichungen Anwendungen in der Mechanik

Seminar Gewöhnliche Dierentialgleichungen Anwendungen in der Mechanik Semina Gewöhnliche Dieentialgleichungen Anwendungen in de Mechanik Geog Daniilidis 6.Juli 05 Inhaltsvezeichnis Einleitung Motivation:.Newtonsche Gesetz 3 Vowissen 4 Konsevativen Systeme 3 5 Zentale Kaftfelde

Mehr

Kardioiden INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W. BUCKEL. Text Nr Stand 11. Mai 2016

Kardioiden INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.  FRIEDRICH W. BUCKEL. Text Nr Stand 11. Mai 2016 Kadioiden Text N. 5 Stand. Mai 6 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 5 Kadioiden Vowot Die Kadioide ist aus meheen Günden beühmt. Da gibt es zuest die physikalische Escheinung de

Mehr

Mehrkörperproblem & Gezeitenkräfte

Mehrkörperproblem & Gezeitenkräfte 508.55 Satellitengeodäsie Mehköpepoblem & Gezeitenkäfte Tosten Maye-Gü Tosten Maye-Gü Bewegungsgleichung Bewegungsgleichung (Keplepoblem): Diffeentialgleichung. Odnung ( t) ( t) GM ( t) Bestimmt bis auf

Mehr

Ferienkurs Experimentalphysik Übung 1-Musterlösung

Ferienkurs Experimentalphysik Übung 1-Musterlösung Feienkus Expeimentalphysik 1 2012 Übung 1-Mustelösung 1. Auto gegen Baum v 2 = v 2 0 + 2a(x x 0 ) = 2gh h = v2 2g = km (100 h )2 3.6 2 2 9.81 m s 2 39.3m 2. Spungschanze a) Die maximale Hohe nach Velassen

Mehr

3. Elektrostatik (Motivation) Nervenzelle

3. Elektrostatik (Motivation) Nervenzelle 3. Elektostatik (Motivation) Nevenzelle 18 Jh.: Neuone wie elektische Leite. ABER: Widestand des Axoplasmas seh hoch 2,5 10 8 Ω (vegleichba Holz) Weiteleitung duch Pozesse senkecht zu Zellmemban Zellmemban

Mehr

Newtons Problem des minimalen Widerstands

Newtons Problem des minimalen Widerstands Newtons Poblem des minimalen Widestands Newton-Poblem (685: Wie muss ein sich in eine Flüssigkeit mit konstante Geschwindigkeit bewegende Köe aussehen, damit e, bei vogegebenem maximalen Queschnitt einen

Mehr

Elektrostatik. Salze lösen sich in Wasser um Lösungen geladener Ionen zu bilden, die drei Viertel der Erdoberfläche bedecken.

Elektrostatik. Salze lösen sich in Wasser um Lösungen geladener Ionen zu bilden, die drei Viertel der Erdoberfläche bedecken. Elektostatik Elektische Wechselwikungen zwischen Ladungen bestimmen gosse Teile de Physik, Chemie und Biologie. z.b. Sie sind die Gundlage fü stake wie schwache chemische Bindungen. Salze lösen sich in

Mehr

( γ (h(t)) ) h (t) dt =

( γ (h(t)) ) h (t) dt = γ 1 : [, 1] X eine andee Paametisieung von, so existiet eine monoton wachsende diffeenziebae Funktion h : [, 1] [, 1] mit γ 1 t) = γht)), und es esultiet α γ1 t) γ 1 t) ) dt = α γht)) γ ht)) ) h t) dt

Mehr

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher Seminavotag Diffeentialgeometie: Rotationsflächen konstante Gaußsche Kümmung Paul Ebeman, Jens Köne, Mata Vitalis 1. Juni 22 Inhaltsvezeichnis Vobemekung 2 1 Einfühung 2 2 Este Fundamentalfom 2 3 Vetägliche

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Pof. D. M. Wolf D. M. Pähofe TECHNISCHE UNIVERSITÄT MÜNCHEN Zentum Mathematik Mathematik fü Phsike 3 (Analsis MA93 http://www-m5.ma.tum.de/allgemeines/ma93 8S Sommesem. 8 Lösungsblatt 7 (8.5.8 Zentalübung

Mehr

4.3 Magnetostatik Beobachtungen

4.3 Magnetostatik Beobachtungen 4.3 Magnetostatik Gundlegende Beobachtungen an Magneten Auch unmagnetische Köpe aus Fe, Co, Ni weden von Magneten angezogen. Die Kaftwikung an den Enden, den Polen, ist besondes goß. Eine dehbae Magnetnadel

Mehr

Inhalt der Vorlesung Teil 2

Inhalt der Vorlesung Teil 2 Physik A/B SS 7 PHYSIK B Inhalt de Volesung Teil 3. Elektizitätslehe, Elektodynamik Einleitung Elektostatik Elektische Stom Magnetostatik Zeitlich veändeliche Felde - Elektodynamik Wechselstomnetzweke

Mehr

Wichtige Begriffe dieser Vorlesung:

Wichtige Begriffe dieser Vorlesung: Wichtige Begiffe diese Volesung: Impuls Abeit, Enegie, kinetische Enegie Ehaltungssätze: - Impulsehaltung - Enegieehaltung Die Newtonschen Gundgesetze 1. Newtonsches Axiom (Tägheitspinzip) Ein Köpe, de

Mehr

Vektoranalysis Teil 1

Vektoranalysis Teil 1 Skiptum zu Volesung Mathematik 2 fü Ingenieue Vektoanalysis Teil Pof. D.-Ing. Nobet Höptne (nach eine Volage von Pof. D.-Ing. Tosten Benkne) Fachhochschule Pfozheim FB2-Ingenieuwissenschaften, Elektotechnik/Infomationstechnik

Mehr

9.2. Bereichsintegrale und Volumina

9.2. Bereichsintegrale und Volumina 9.. Beeichsintegale und Volumina Beeichsintegale Rein fomal kann man Integale übe einem (meßbaen) Beeich B bilden, indem man eine möglicheweise auf einem gößeen Beeich definiete Funktion f mit de chaakteistischen

Mehr

49 Uneigentliche Integrale

49 Uneigentliche Integrale Abschnitt 49 Uneigentliche Integale R lato 23 49 Uneigentliche Integale Wi betachten im Folgenden Integale a f / d von Funktionen f, die in einzelnen unkten des betachteten Integationsbeeichs nicht definiet

Mehr

Übungen zur Ingenieur-Mathematik III WS 2013/14 Blatt

Übungen zur Ingenieur-Mathematik III WS 2013/14 Blatt Übungen zu Ingenieu-Mathematik III WS 3/4 Blatt 7..4 Aufgabe 38: Betachten Sie eine Ellipse (in de Ebene) mit den Halbachsen a und b und bestimmen Sie die Kümmung in den Scheitelpunkten. Lösung:Eine Paametisieung

Mehr

3b) Energie. Wenn Arbeit W von außen geleistet wird: W = E gesamt = E pot + E kin + EPI WS 2006/07 Dünnweber/Faessler

3b) Energie. Wenn Arbeit W von außen geleistet wird: W = E gesamt = E pot + E kin + EPI WS 2006/07 Dünnweber/Faessler 3b) Enegie (Fotsetzung) Eines de wichtigsten Natugesetze Die Gesamtenegie eines abgeschlossenen Systems ist ehalten, also zeitlich konstant. Enegie kann nu von eine Fom in eine andee vewandelt weden kann

Mehr

EP-Vorlesung #5. 5. Vorlesung EP

EP-Vorlesung #5. 5. Vorlesung EP 5. Volesung EP EP-Volesung #5 I) Mechanik 1. Kinematik (Begiffe Raum, Zeit, Ot, Länge, Weltlinie, Geschwindigkeit,..) 2. Dynamik a) Newtons Axiome (Begiffe Masse und Kaft) b) Fundamentale Käfte c) Schwekaft

Mehr

Mathematische Hilfsmittel der Physik Rechen-Test I. Markieren Sie die richtige(n) Lösung(en):

Mathematische Hilfsmittel der Physik Rechen-Test I. Markieren Sie die richtige(n) Lösung(en): Technische Betiebswitschaft Gundlagen de Physik D. Banget Mat.-N.: Mathematische Hilfsmittel de Physik Rechen-Test I Makieen Sie die ichtige(n) Lösung(en):. Geben Sie jeweils den Wahheitswet (w fü wah;

Mehr

Statische Magnetfelder

Statische Magnetfelder Statische Magnetfelde Bewegte Ladungen ezeugen Magnetfelde. Im Magnetfeld efäht eine bewegte Ladung eine Kaft. Elektische Felde weden von uhenden und bewegten Ladungen gleichemaßen ezeugt. Die Kaft duch

Mehr

Zur Erinnerung. Winkelmaße: Radiant und Steradiant. Stichworte aus der 3. Vorlesung:

Zur Erinnerung. Winkelmaße: Radiant und Steradiant. Stichworte aus der 3. Vorlesung: Zu inneung Stichwote aus de 3. Volesung: inkelaße: Radiant und Steadiant die (gleichföige) Keisbewegung als beschleunigte Bewegung (Richtungsändeung von v) Dastellung de kineatischen Gößen duch die inheitsvektoen

Mehr

Klausur 2 Kurs Ph11 Physik Lk

Klausur 2 Kurs Ph11 Physik Lk 26.11.2004 Klausu 2 Kus Ph11 Physik Lk Lösung 1 1 2 3 4 5 - + Eine echteckige Spule wid von Stom duchflossen. Sie hängt an einem Kaftmesse und befindet sich entwede außehalb ode teilweise innehalb eine

Mehr

Physik - Gravitation. 8.1 Weltbilder. Ptolemaios: Geozentrisches Weltbild (Modell mit Epizyklen) R. Girwidz 1. R. Girwidz 2

Physik - Gravitation. 8.1 Weltbilder. Ptolemaios: Geozentrisches Weltbild (Modell mit Epizyklen) R. Girwidz 1. R. Girwidz 2 Physik - avitation. iwidz 8. Weltbilde Ptolemaios: eozentisches Weltbild (odell mit pizyklen). iwidz 8. Weltbilde. iwidz 3 8. Weltbilde Histoisch: Die Bewegung de Planeten wa übe Jahhundete nicht zu ekläen

Mehr

Der Integrand im ersten Term auf der rechten Seite verschwindet außerhalb der Teilchen, so dass sich eine Summe über die gelösten Teilchen ergibt:

Der Integrand im ersten Term auf der rechten Seite verschwindet außerhalb der Teilchen, so dass sich eine Summe über die gelösten Teilchen ergibt: eilchen in Lösung Wi betachten eine Pobe olumen aus N eilchen in eine Lösung. Die Lösemittelmoleküle sollen klein gegenübe en gelösten eilchen sein, so ass man bei SAS-Expeimenten nu ihe mittlee Steulängenichte

Mehr

Übungsblatt 09 PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt)

Übungsblatt 09 PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt) Übungsblatt 9 PHYS11 Gundkus I Physik, Witschaftsphysik, Physik Leham Othma Mati, othma.mati@uni-ulm.de 16. 1. 5 und 19. 1. 5 1 Aufgaben 1. De Raum soll duch ein katesisches Koodinatensystem beschieben

Mehr

Physik A VL6 ( )

Physik A VL6 ( ) Physik A VL6 (19.10.01) Bescheibung on Bewegungen - Kinematik in dei Raumichtungen II Deh- und Rotationsbewegungen Zusammenfassung: Kinematik Deh- und Rotationsbewegungen Deh- und Rotationsbewegungen Paamete

Mehr

Kap. 0 Mathematische Grundlagen

Kap. 0 Mathematische Grundlagen Kap. 0 Mathematische Gundlagen 1. Vektoen 1. Vektoopeationen (Skala- und Vektopodukt) 2. Diffeentialopeatoen (Nabla- und Laplace-Opeato) 2. Tigonometische Beziehungen 3. Komplexe Zahlen und komplexe Zahlenebene

Mehr

B.3 Kugelflächenfunktionen und Legendre-Polynome

B.3 Kugelflächenfunktionen und Legendre-Polynome B.3 Kugelflächenfunktionen und Legende-Polynome 113 B.3 Kugelflächenfunktionen und Legende-Polynome B.3.1 Kugelflächenfunktionen B.3.1 a ::::::: :::::::::: Definition Sei die Einheitskugelfläche von R

Mehr

4.11 Wechselwirkungen und Kräfte

4.11 Wechselwirkungen und Kräfte 4.11 Wechselwikungen und Käfte Kaft Wechselwikung Reichweite (m) Relative Stäke Gavitationskaft zwischen Massen Gavitationsladung (Anziehend) 1-22 Schwache Kaft Wechselwikung beim β-zefall schwache Ladung

Mehr

19. Vorlesung. III. Elektrizität und Magnetismus 19. Magnetische Felder 20. Induktion

19. Vorlesung. III. Elektrizität und Magnetismus 19. Magnetische Felder 20. Induktion 19. Volesung III. Elektizität und Magnetismus 19. Magnetische Felde 20. Induktion Vesuche: Elektonenstahl-Oszilloskop (Nachtag zu 18., Stöme im Vakuum) Feldlinienbilde fü stomduchflossene Leite Feldlinienbilde

Mehr

e r a Z = v2 die zum Mittelpunkt der Kreisbahn gerichtet ist. herbeigeführt. Diese Kraft lässt sich an ausgelenkter Federwaage ablesen.

e r a Z = v2 die zum Mittelpunkt der Kreisbahn gerichtet ist. herbeigeführt. Diese Kraft lässt sich an ausgelenkter Federwaage ablesen. Im (x 1, y 1 ) System wikt auf Masse m die Zentipetalbeschleunigung, a Z = v2 e die zum Mittelpunkt de Keisbahn geichtet ist. Folie: Ableitung von a Z = v2 e Pfeil auf Keisscheibe, Stoboskop Die Keisbewegung

Mehr

2.12 Dreieckskonstruktionen

2.12 Dreieckskonstruktionen .1 Deieckskonstuktionen 53.1 Deieckskonstuktionen.1.1 B aus a, b und c. Keis um mit Radius b 3. Keis um B mit Radius a 4. Schnittpunkt de Keise ist Bemekung: Es entstehen zwei konguente B..1. B aus α,

Mehr

2.2 Beschleunigte Bezugssysteme Gleichf. beschl. Translationsbew.

2.2 Beschleunigte Bezugssysteme Gleichf. beschl. Translationsbew. . Beschleunigte Bezugssysteme..1 Gleichf. beschl. Tanslationsbew. System S' gleichf. beschleunigt: V = a t (bei t=0 sei V = 0) s S s gleichfömige beschleunigte Tanslationsbewegung System S System S' x,

Mehr

Vorlesung Technische Mechanik 1 Statik, Wintersemester 2007/2008. Technische Mechanik

Vorlesung Technische Mechanik 1 Statik, Wintersemester 2007/2008. Technische Mechanik Volesung Technische Mechanik 1 Statik, Wintesemeste 2007/2008 Technische Mechanik 1. Einleitung 2. Statik des staen Köpes 2.1 Äquivalenz von Käfteguppen am staen Köpe 2.2 Käfte mit gemeinsamem Angiffspunkt

Mehr

Physikalische Chemie I - Klassische Thermodynamik SoSe 2006 Prof. Dr. Norbert Hampp 1/7 3. Das reale Gas. Das reale Gas

Physikalische Chemie I - Klassische Thermodynamik SoSe 2006 Prof. Dr. Norbert Hampp 1/7 3. Das reale Gas. Das reale Gas Pof. D. Nobet Ham 1/7. Das eale Gas Das eale Gas Fü die Bescheibung des ealen Gases weden die Gasteilchen betachtet als - massebehaftet - kugelfömig mit Duchmesse d - Wechselwikungen auf Gund von Diol-Diol-Wechselwikungen

Mehr

Experimentierfeld 1. Statik und Dynamik. 1. Einführung. 2. Addition von Kräften

Experimentierfeld 1. Statik und Dynamik. 1. Einführung. 2. Addition von Kräften Expeimentiefeld 1 Statik und Dynamik 1. Einfühung Übelegungen im Beeich de Statik und Dynamik beuhen stets auf de physikalischen Göße Kaft F. Betachten wi Käfte und ihe Wikung auf einen ausgedehnten Köpe,

Mehr

MAE4 Mathematik: Analysis für Ingenieure 4 Frühlingssemester 2017

MAE4 Mathematik: Analysis für Ingenieure 4 Frühlingssemester 2017 MAE4 Mathematik: Analysis fü Ingenieue 4 Fühlingssemeste 27 D. Chistoph Kisch ZHAW Wintethu Lösung 2 Aufgabe : Die Funktion ϕ ist offensichtlich stetig patiell diffeenzieba. Wi zeigen noch die Injektivität

Mehr

[( r. = dv. Für D = 0 muss folglich die Klammer verschwinden. Die Differentialgleichung WS 2008/ PDDr.S.Mertens

[( r. = dv. Für D = 0 muss folglich die Klammer verschwinden. Die Differentialgleichung WS 2008/ PDDr.S.Mertens PDD.S.Metens Theoetische Physik I Mechanik J. Untehinninghofen, M. Hummel Blatt 7 WS 28/29 2.2.28. Runge-enz-Vekto.EinMassenpunktdeMassemmitdemDehimplus bezüglichdes (4Pkt. Kaftzentums bewege sich in einem

Mehr

Physik für Nicht-Physikerinnen und Nicht-Physiker

Physik für Nicht-Physikerinnen und Nicht-Physiker FAKULTÄT FÜR PHYSIK UND ASTRONOMIE Physik fü Nicht-Physikeinnen und Nicht-Physike A. Belin 15.Mai2014 Lenziele Die Gößen Winkelgeschwindigkeit, Dehmoment und Dehimpuls sind Vektoen die senkecht auf de

Mehr

Kepler sche Bahnelemente

Kepler sche Bahnelemente Keple sche Bahnelemente Siegfied Eggl In de Dynamischen Astonomie ist es üblich, das Vehalten von gavitativ inteagieenden Köpen nicht im katesischen Koodinatensystem zu studieen, sonden die Entwicklung

Mehr

Vorlesung: Naturwissenschaftliche und technische Grundlagen Datum: schwer. leicht

Vorlesung: Naturwissenschaftliche und technische Grundlagen Datum: schwer. leicht Elektische Ladungen und elektisches eld Gleichnamige Ladungen stoßen sich ab Ungleichnamige Ladungen ziehen sich an Die Ladungen stammen aus den Atomen Atomken: - Neutonen (neutal) - Potonen (positiv)

Mehr

Gradient, Divergenz, Rotation und Laplace-Operator in Polarkoordinaten. Umrechnung des Laplace-Operators auf Polarkoordinaten

Gradient, Divergenz, Rotation und Laplace-Operator in Polarkoordinaten. Umrechnung des Laplace-Operators auf Polarkoordinaten Polakoodinaten Vektofeld mit Polakoodinaten Gadient, Divegenz, Rotation und Laplace-Opeato in Polakoodinaten Gadient des Skalafeldes Φ(, ϕ) Divegenz des Vektofeldes v(,ϕ) Divegenz Umechnung des Laplace-Opeatos

Mehr

Die Schwarzschild-Metrik

Die Schwarzschild-Metrik Die Schwazschild-Metik Semina Mathematische Physik vom 19. Mai 2010 Lauin Ostemann 1 Einleitung Die Schwazschild-Metik in de engl. Liteatu Schwazschild solution) wa die este bekannte analytische Lösung

Mehr

Kapitel 3 Kräfte und Drehmomente

Kapitel 3 Kräfte und Drehmomente Kapitel 3 Käfte und Dehmomente Käfte Messung und physikalische Bedeutung eine Kaft : Messung von Masse m Messung von Beschleunigung a (Rückgiff auf Längen- und Zeitmessung) Aus de Messung von Masse und

Mehr

Gleichseitige Dreiecke im Kreis. aus der Sicht eines Punktes. Eckart Schmidt

Gleichseitige Dreiecke im Kreis. aus der Sicht eines Punktes. Eckart Schmidt Gleichseitige Deiecke im Keis aus de Sicht eines Punktes Eckat Schmidt Zu einem Punkt und einem gleichseitigen Deieck in seinem Umkeis lassen sich zwei weitee Deiecke bilden: das Lotfußpunktdeieck und

Mehr

Einführung in die Theoretische Physik

Einführung in die Theoretische Physik Einfühung in die Theoetische Physik De elektische Stom Wesen und Wikungen Teil : Gundlagen Siegfied Pety Fassung vom 19. Janua 013 n h a l t : 1 Einleitung Stomstäke und Stomdichte 3 3 Das Ohmsche Gesetz

Mehr