Automatische Mustererkennung

Größe: px
Ab Seite anzeigen:

Download "Automatische Mustererkennung"

Transkript

1 Automatische Mustererkennung Eine Einführung Eine Präsentation von Valentin Kraft Im Modul Digitale Bildverarbeitung Prof. Vogel FH Düsseldorf WS 12/13

2 Gliederung Anwendungsgebiete / Definition Ziele Zentrales Problem Warum ist Mustererkennung für die Maschine so schwer? Techniken Exkurs: Künstliche neuronale Netze Exkurs: Tracking Probleme/Grenzen Literaturhinweise & -verzeichnis 2

3 1. Anwendungen Anwendungen Spracherkennung Gesichtserkennung (Hand)-Schrifterkennung Bild-/Objekterkennung Tracking-Software etc. Industrielle Qualitätskontrolle / Robotik Biometrie (z.b. Sprech- Fingerabdruck- oder Iriserkennung) Medizin (Erkennung von Tumoren etc.) 3

4 4

5 1. Anwendungen Definition Unter Mustererkennung verstehen wir die automatische Transformation eines Sensorsignals in eine aufgabenspezifische symbolische Beschreibung. [3] 5

6 2. Ziel Ziel Computern eine (begrenzte) künstliche Intelligenz zu verschaffen, damit Objekte automatisch erkannt und richtig klassifiziert/kategorisiert werden Kurz: Simulation menschlicher Wahrnehmungsleistungen 6

7 3. Problem Zentrales Problem Für die Mustererkennung benötigt der Computer die elementare Fähigkeit der Klassifizierung Diese ist jedoch auch der Grundstein von Begriffsbildung, Abstraktion und (induktivem) Denken und damit letztlich von Intelligenz [1] Computer können jedoch eigentlich nur Schleifen und Bedingungen ausführen und nicht eigenständig handeln und besitzen kein Vorwissen Die Mustererkennung ist ein Teilgebiet des informatischen Themenkomplexes Künstliche Intelligenz, der sich die Lösung dieser Probleme zum Ziel gemacht hat Dabei ist die KI keine kreative, eigenständige Intelligenz, sondern nur eine schwache KI, d.h. die Fähigkeit der Mustererkennung wird durch geschickte statistische Verfahren & Algorithmen bewerkstelligt 7

8 Techniken/Methoden 8

9 Drei grundlegende Ansätze in der Mustererkennung 4. Techniken 1. Syntaktisch (ältester Ansatz): - Dinge werden so durch Folgen von Symbolen beschrieben, dass Objekte der gleichen Kategorie die selben Beschreibungen aufweisen - Problem: Erfordert eindeutige, einfache Attribute zur Unterscheidung! - Bei komplexen Sachverhalten wird damit das eigentliche Problem nur hinausgezögert statt gelöst Ansatz wird kaum noch verwendet 2. Statistisch (aktuell am Häufigsten verwendet): - Sortiert Objekte in die Kategorie mit der höchsten Wahrscheinlichkeit - Jedes Merkmal wird mathematisch als ein Vektor beschrieben - Eine Funktion ordnet jedem denkbaren Merkmalsvektor eine Kategorie zu - Dabei finden Anwendung: - Regressionsanalyse - Varianzanalyse und Diskriminanzanalyse - Clusteranalyse - Künstliche Neuronale Netze Exkurs gelb und lang rot und rund 3. Strukturell (für die Zukunft am Vielversprechendsten): - typisches Beispiel: Gesichtserkennung - Statistische Verfahren nehmen die grundlegende Merkmalserkennung vor (z.b.: liegt Auge vor, oder nicht?) - Übergeordnete strukturelle Inferenzverfahren wie etwa Bayes sche Netze führen diese Einzelergebnisse zusammen und berechnen daraus das Gesamtergebnis, die Kategoriezugehörigkeit [6] [1] 9

10 Typischer Ablauf einer Mustererkennung Z.B. Kamerabild Diskretisierung der Daten Beseitigung von Störungen (z.b. Rauschen) Segmentierung Inhalte unserer VL! Herausfiltern von Daten/Merkmalen (Farbe, Form, Ecken, Reflektanz, ) Transformation in eine kompakte Form Ergebnis: Merkmalsvektor wird in einen Merkmalsraum transformiert 4. Techniken Objekt wird einer Klasse zugeordnet durch wahrscheinlichkeitsbasiertem Vergleich der Merkmale mit der Datenbank Realisierung oft durch neuronale Netze Weglassen unwichtiger Merkmale Untersuchung der Trennbarkeit von Merkmalen Ergebnis: Merkmalsvektor mit niedrigerer Dimension Generell gilt jedoch: Die Vorgehensweise/der Systemaufbau ist je nach Anwendung unterschiedlich! Eingabe von Testdaten Lernen von Klassifikationsvorschriften bzw. Training des neuronalen Netzes [2] 10

11 4. Techniken Die Vorverarbeitung Ziel: wesentliche Bild- /Objektmerkmale klar & störungsarm hervorheben und ggf. charakteristische Formmerkmale verstärken für den Computer lesbar machen Dazu wird das Bild segmentiert ( Verweis auf Jonas Vortrag) [9] 11

12 4. Techniken Die Vorverarbeitung Zuvor wird das Bild jedoch durch die bei uns in der VL behandelten Filter vorgefiltert. Kandidaten dafür: Mittelwertbilder Rauschunterdrückung 2D-121-Filter (Binomialfilter) Rauschunterdrückung [10] Medianfilter Rauschunterdrückung Diffusionsfilter Rauschunterdrückung bei gleichzeitigem Erhalt der Kanten im Bild Morphologische Operationen: Opening/Closing Herausfiltern zu kleiner Objekte bzw. Schließen von Löchern im Objekt o.ä. [8] 12

13 4. Techniken Die Vorverarbeitung Außerdem, je nach Anwendungsfall: Laplace-Operator Kantendetektion 2D-Sobeloperator Kantendetektion Skelettierung [10] [8] 13

14 4. Techniken Die Merkmalsextraktion Modellbasierte Methoden: Orientieren sich an der geometrischen Form des Objekts Aus dem vorverarbeiteten Bild muss nun die Form extrahiert werden Die Houghtransformation erkennt einfache geometrische Formen wie z.b. Kreise, Geraden, etc. Fourierdeskriptoren beschreiben auch komplexe Formen mathematisch Erscheinungs-/Objektbasierte Methoden: Orientieren sich auch an Reflektanz, Farbe, Grauwertvarianz etc. (Für Texturen gibt es spezielle mathematische Beschreibungen) 14

15 4. Techniken Die Klassifikation Erfolgt meist auf Basis des statistischen Ansatzes Beispiel: Wir wollen überprüfen, ob ein handgeschriebener Buchstabe ein a oder ein b ist Wir wissen, dass ein b in aller Regel höher ist als ein a Bei einem Messwert A liegt es also nahe, ihn als ein a zu klassifizieren Somit würde unser Merkmalvektor nur aus einer Komponente, der Höhe, bestehen Wahrscheinlichkeitsverteilung [7] 15

16 4. Techniken Die Klassifikation Problem 1: Die statistische Verteilung, also die Beschaffenheit der Merkmale muss bekannt sein Vorwissen /Datenbank nötig Anfangs Einspeisung von Lerndaten nötig! Problem 2: in der Realität gibt es eine Vielzahl von Unterscheidungskriterien hochdimensionale Merkmalvektoren (und nicht nur die Höhe wie bei unserem Buchstabenbeispiel oder 2D (rechts)) Wie klassifiziert man nun das Objekt richtig? Regressionsanalyse Bayes sches Gesetz / Entscheidungstheorie Varianzanalyse und Diskriminanzanalyse Neuronale Netze [7] Verschiedene Objekte 2D-Merkmalsraum Schwarz: Merkmalsvektor 16

17 5. Neuronale Netze Exkurs: Künstliche Neuronale Netze Künstliche Neuronale Netze (KNN) sind Schaltungen, die dem menschlichen Gehirn nachempfunden sind Dadurch erhofft man sich, menschliche Fähigkeiten, wie z.b. Lernen, Mustererkennung, etc. nachbilden zu können Das menschliche Gehirn enthält ca. Neuronen Man geht davon aus, dass jedes Neuron mit ca. 10⁴ anderen Neuronen vernetzt ist [4] Im Mustererkennungsprozess fungiert das (trainierte) KNN quasi als Merkmals-Datenbank 17

18 5. Neuronale Netze [Anzahl Kanten], z.b. 4 [Oberflächen mattheit] Buch! [4][5] 18

19 6. Tracking Exkurs: Tracking Das Tracking verfolgt ein bewegtes Objekt bzw. Muster in einer Sequenz von Bildern (Anwendung: Augmented Reality) Dabei orientiert es sich an markanten Punkten, sog. Feature Points Das Verfahren basiert auf der Annahme, dass sich zwischen zwei Frames die Geschwindigkeit, die Position und die Bewegungsrichtung eines Punktes nur geringfügig ändern Der Algorithmus sucht also im nächsten Frame in der Umgebung/Richtung der Bewegung der alten Punktposition nach der neuen Punktposition Die Bewegungsrichtung der Objekte kann durch den optischen Fluss des Bildes errechnet werden (= die Ableitung der Helligkeiten nach der Zeit) Vektorfeld [12] 19

20 6. Tracking [13] 20

21 Objekterkennung nochmal Für Dummies Aufgabe: Finde die Münze Originalbild Nach Vorfilterung & Segmentierung Formerkennung & Merkmalextraktion Merkmalsvektor: Statistischer Abgleich Münze! 21

22 7. Probleme/Grenzen Probleme/Grenzen der Mustererkennung Probleme bei: Teilverdeckung Komplexen Formen Schlechten/variierenden Lichtverhältnissen Objekte, die viele verschiedene Formen annehmen können bzw. zu allgemeine Objekte (z.b. Lampen) Umkehrschluss: (Noch) ist Objekt- & Mustererkennung nur bei optimalen Gegebenheiten & hoher menschlicher Administration möglich! [11] [14] 22

23 Vielen Dank für eure Aufmerksamkeit 23

24 Literaturverzeichnis [1] [2] [3] ; S. 10, 32 [4] Kroschel, Kristian; Rigoll, Gerhard; Schuller, Björn: Statistische Informationstechnik - Signal- und Mustererkennung, Parameter- und Signalschätzung, 5. Auflage, Springer 2011 ; S. 155f [5] 04 [6] ; S.14ff [7] Bishop, Christoph: Neural Networks for Pattern Recognition, Oxford University Press, 1995 ; S. 3ff [8] Vorlesungsskript der TU Ilmenau: [9] [10] [11] J. C. Liter, H. H. Bülthoff: An Introduction to Object Recognition, Max-Planck-Institut für biologische Kybernetik, Technical Report No. 43, Nov. 1996, ftp://ftp.mpiktueb.mpg.de/pub/mpi-memos/tr-043.ps [12] Jain et al.: Machine Vision, McGraw-Hill 1995 [13] [14] Jähne, Bernd: Digitale Bildverarbeitung, 5. Auflage, Springer

25 Standardwerke zur Mustererkennung und Klassifikation R.O.Duda, P.E.Hart & D.G.Stork, Pattern Classification, Wiley, 654 Seiten, Klassische Einführung in die Mustererkennung. S. Haykin, Neural Networks: a comprehensive foundation, Prentice Hall, 842 Seiten, Ebenfalls ein gut geschriebener Klassiker. Sehr umfangreich, Fokus auf neuronale Netze. T. Hastie, R. Tibshirani & J. Friedman, The elements of statistical learning, Springer, 533 Seiten, Standardwerk, geschrieben aus Sicht der Statistik. Schwerer zugänglich, aber lohnend. C.M.Bishop, Pattern recognition and machine learning, Springer, 738 Seiten, Sehr umfangreich, auf dem neuesten Stand in Richtung maschinelles Lernen. R.Rojas, Theorie der neuronalen Netze, Springer, ca. 300 Seiten, [6] 25

Vorbereitungsaufgaben

Vorbereitungsaufgaben Praktikum Bildverarbeitung / Bildinformationstechnik Versuch BV 4 / BIT 3: Mustererkennung Paddy Gadegast, CV00, 160967 Alexander Opel, CV00, 16075 Gruppe 3 Otto-von-Guericke Universität Magdeburg Fakultät

Mehr

Bildverarbeitung/Mustererkennung: Zusammenfassung und Ausblick

Bildverarbeitung/Mustererkennung: Zusammenfassung und Ausblick Bildverarbeitung/Mustererkennung: Zusammenfassung und Ausblick D. Schlesinger TUD/INF/KI/IS D. Schlesinger () BV/ME: Zusammenfassung 1 / 6 Organisatorisches Es gibt keine Scheine und keine bestanden Abschlüsse

Mehr

Digitale Bildverarbeitung

Digitale Bildverarbeitung Digitale Bildverarbeitung Eine praktische Einführung von Thorsten Hermes 1. Auflage Hanser München 2004 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 446 22969 3 Zu Leseprobe schnell und portofrei

Mehr

Bildverstehen. Vorlesung an der TU Chemnitz SS 2013

Bildverstehen. Vorlesung an der TU Chemnitz SS 2013 Bildverstehen Vorlesung an der TU Chemnitz SS 2013 Johannes Steinmüller 1/B309 Tel.: 531 35198 stj@informatik.tu-chemnitz.de Seite zur Vorlesung: http://www.tu-chemnitz.de/informatik/ki/edu/biver/ Buch

Mehr

Digitale Bildverarbeitung Einheit 11 Klassifikation

Digitale Bildverarbeitung Einheit 11 Klassifikation Digitale Bildverarbeitung Einheit 11 Klassifikation Lehrauftrag WS 06/07 Fachbereich M+I der FH-Offenburg Dr. Bernard Haasdonk Albert-Ludwigs-Universität Freiburg Ziele der Einheit Verstehen, dass basierend

Mehr

Ideen der Informatik. Maschinelles Lernen. Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik

Ideen der Informatik. Maschinelles Lernen. Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Ideen der Informatik Maschinelles Lernen Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Übersicht Lernen: Begriff Beispiele für den Stand der Kunst Spamerkennung Handschriftenerkennung

Mehr

Bildverarbeitung in der Qualitätskontrolle. Sebastian Zambal LEADING INNOVATIONS

Bildverarbeitung in der Qualitätskontrolle. Sebastian Zambal LEADING INNOVATIONS Bildverarbeitung in der Qualitätskontrolle Sebastian Zambal LEADING INNOVATIONS Überblick Profactor Grundlagen Bildverarbeitung HW, SW, Methoden Inspektion Gussteilen Inspektion CFK, GFK Projekte EMVA-Studie:

Mehr

Kapitel 11* Grundlagen ME. Aufbau eines ME-Systems Entwicklung eines ME-Systems. Kapitel11* Grundlagen ME p.1/12

Kapitel 11* Grundlagen ME. Aufbau eines ME-Systems Entwicklung eines ME-Systems. Kapitel11* Grundlagen ME p.1/12 Kapitel 11* Kapitel11* Grundlagen ME p.1/12 Grundlagen ME Aufbau eines ME-Systems Entwicklung eines ME-Systems Kapitel11* Grundlagen ME p.2/12 Aufbau eines ME-Systems (1) on line Phase digitalisiertes

Mehr

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn Maschinelles Lernen: Neuronale Netze Ideen der Informatik Kurt Mehlhorn 16. Januar 2014 Übersicht Stand der Kunst im Bilderverstehen: Klassifizieren und Suchen Was ist ein Bild in Rohform? Biologische

Mehr

Bildverarbeitung Herbstsemester 2012. Kanten und Ecken

Bildverarbeitung Herbstsemester 2012. Kanten und Ecken Bildverarbeitung Herbstsemester 01 Kanten und Ecken 1 Inhalt Einführung Kantendetektierung Gradientenbasierende Verfahren Verfahren basierend auf der zweiten Ableitung Eckpunkterkennung Harris Corner Detector

Mehr

Gliederung. Biologische Motivation Künstliche neuronale Netzwerke. Anwendungsbeispiele Zusammenfassung. Das Perzeptron

Gliederung. Biologische Motivation Künstliche neuronale Netzwerke. Anwendungsbeispiele Zusammenfassung. Das Perzeptron Neuronale Netzwerke Gliederung Biologische Motivation Künstliche neuronale Netzwerke Das Perzeptron Aufbau Lernen und Verallgemeinern Anwendung Testergebnis Anwendungsbeispiele Zusammenfassung Biologische

Mehr

Technische Gesichtserkennung

Technische Gesichtserkennung Technische Gesichtserkennung Gliederung Was ist Gesichtserkennung? Anwendungsbereiche der Gesichtserkennung Technische Verfahren Paul-Viola Algorithmus Gesichtsverfolgung via Webcam Hardware Software Demo

Mehr

Probabilistisches Tracking mit dem Condensation Algorithmus

Probabilistisches Tracking mit dem Condensation Algorithmus Probabilistisches Tracking mit dem Condensation Algorithmus Seminar Medizinische Bildverarbeitung Axel Janßen Condensation - Conditional Density Propagation for Visual Tracking Michael Isard, Andrew Blake

Mehr

Kapitel ML: I. I. Einführung. Beispiele für Lernaufgaben Spezifikation von Lernproblemen

Kapitel ML: I. I. Einführung. Beispiele für Lernaufgaben Spezifikation von Lernproblemen Kapitel ML: I I. Einführung Beispiele für Lernaufgaben Spezifikation von Lernproblemen ML: I-8 Introduction c STEIN/LETTMANN 2005-2010 Beispiele für Lernaufgaben Autoeinkaufsberater Welche Kriterien liegen

Mehr

Inhaltliche Planung für die Vorlesung

Inhaltliche Planung für die Vorlesung Vorlesung: Künstliche Intelligenz - Mustererkennung - P LS ES S ST ME Künstliche Intelligenz Miao Wang 1 Inhaltliche Planung für die Vorlesung 1) Definition und Geschichte der KI, PROLOG 2) Expertensysteme

Mehr

Digitale Bildverarbeitung

Digitale Bildverarbeitung Einführung Studienblock (10 ECTS, Prüf.Nr. 2635) FH-Aachen / Jülich, FB 9 Prof. Dr. rer. nat. Walter Hillen (Dig Img 0 Intro) 1 Einführung: Verfahrensschritte: Bilderzeugung Bild-Analyse, Interpretation

Mehr

Konzepte der AI. Maschinelles Lernen

Konzepte der AI. Maschinelles Lernen Konzepte der AI Maschinelles Lernen http://www.dbai.tuwien.ac.at/education/aikonzepte/ Wolfgang Slany Institut für Informationssysteme, Technische Universität Wien mailto: wsi@dbai.tuwien.ac.at, http://www.dbai.tuwien.ac.at/staff/slany/

Mehr

3D-Rekonstruktion von Schiffen aus kalibrierten und unkalibrierten Aufnahmen

3D-Rekonstruktion von Schiffen aus kalibrierten und unkalibrierten Aufnahmen Allgemeine Nachrichtentechnik Prof. Dr.-Ing. Udo Zölzer 3D-Rekonstruktion von Schiffen aus kalibrierten und unkalibrierten Aufnahmen Christian Ruwwe & Udo Zölzer 4. Tagung Optik und Optronik in der Wehrtechnik

Mehr

1.3.5 Clinical Decision Support Systems

1.3.5 Clinical Decision Support Systems Arzneimitteltherapie Thieme Verlag 1.3.5 Clinical Decision Support Systems Marco Egbring, Stefan Russmann, Gerd A. Kullak-Ublick Im Allgemeinen wird unter dem Begriff Clinical Decision Support System (CDSS)

Mehr

Einführung in Bildverarbeitung und Computervision

Einführung in Bildverarbeitung und Computervision Einführung in Bildverarbeitung und Computervision Vorlesung 1: Grundlagen Dipl.-Math. Dimitri Ovrutskiy SS 2010 HTWdS Auf Basis der Vorlesungen von und mit Danksagung an Hr. Prof. Dr. J. Weikert Bildverarbeitung

Mehr

Industrielle Bildverarbeitung mit OpenCV

Industrielle Bildverarbeitung mit OpenCV Industrielle Bildverarbeitung mit OpenCV Zhang,Duoyi 6.7.2 Gliederung. Einführung für OpenCV 2. Die Struktur von OpenCV Überblick Funktionsumfang in Ausschnitten mit Beispielen 3. Industrielles Anwendungsbeispiel

Mehr

Industrielle Bildverarbeitung

Industrielle Bildverarbeitung I Christian Demant Bernd Streicher-Abel Peter Waszkewitz 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Industrielle

Mehr

Automatische Erkennung von Objekten in 3D Millimeterwellen Bilddaten für den QPS Sicherheitsscanner

Automatische Erkennung von Objekten in 3D Millimeterwellen Bilddaten für den QPS Sicherheitsscanner 2. Fachseminar Mikrowellen- und Terahertz-Prüftechnik in der Praxis Vortrag 3 Automatische Erkennung von Objekten in 3D Millimeterwellen Bilddaten für den QPS Sicherheitsscanner Athanasios KARAMALIS 1,

Mehr

Inhaltsverzeichnis. 3. Erläuterungen zu den Programmbeispielen 13 3.1 Arbeitsblätter 13

Inhaltsverzeichnis. 3. Erläuterungen zu den Programmbeispielen 13 3.1 Arbeitsblätter 13 Inhaltsverzeichnis 1. Einführung 1 1.1 Ursprünge der Bildverarbeitung 1 1.2 Einordnung und Anwendungen der Bildverarbeitung ] 1.3 Die Bildverarbeitungskette 2 1.4 Aufbau und Inhalt des Buches 3 2. Das

Mehr

Tracking Technologien für Augmented Reality

Tracking Technologien für Augmented Reality Tracking Technologien für Augmented Reality 1 Inhalt Motivation Tracking Methoden Optisch MarkerlessTracking (kleine Wiederholung) Aktiv und Passive Marker Modellbasiertes Markerless Tracking Sensoren

Mehr

Junge Kinder fassen Mathematik an. Bildungssituationen mit Kindern bis 6 Jahre

Junge Kinder fassen Mathematik an. Bildungssituationen mit Kindern bis 6 Jahre Junge Kinder fassen Mathematik an Bildungssituationen mit Kindern bis 6 Jahre Fortbildung für Tagespflegepersonen 12. April 2014 Konzept der Mathematik Brückenpfeiler Mathe-Kings Nancy Hoenisch, Elisabeth

Mehr

EXTRAKTION UND KLASSIFIKATION VON BEWERTETEN PRODUKTFEATURES AUF WEBSEITEN

EXTRAKTION UND KLASSIFIKATION VON BEWERTETEN PRODUKTFEATURES AUF WEBSEITEN EXTRAKTION UND KLASSIFIKATION VON BEWERTETEN PRODUKTFEATURES AUF WEBSEITEN T-SYSTEMS MULTIMEDIA SOLUTIONS GMBH, 16. FEBRUAR 2012 1. Schlüsselworte Semantic Web, Opinion Mining, Sentiment Analysis, Stimmungsanalyse,

Mehr

Digitale Bildverarbeitung

Digitale Bildverarbeitung Digitale Bildverarbeitung Dr. Stefan Gehrig Dipl.-Physiker, Dipl.-Ing. (BA) Duale Hochschule Baden-Württemberg - Stuttgart Sommersemester 2015 S. Gehrig - Digitale Bildverarbeitung 1 S. Gehrig - Digitale

Mehr

Vom Chip zum Gehirn Elektronische Systeme zur Informationsverarbeitung

Vom Chip zum Gehirn Elektronische Systeme zur Informationsverarbeitung Vom Chip zum Gehirn Elektronische Systeme zur Informationsverarbeitung Johannes Schemmel Forschungsgruppe Electronic Vision(s) Lehrstuhl Prof. K. Meier Ruprecht-Karls-Universität Heidelberg Mitarbeiter:

Mehr

Growing neural Gas Strukturen lernen. Torsten Siedel 23.05.2012

Growing neural Gas Strukturen lernen. Torsten Siedel 23.05.2012 Growing neural Gas Strukturen lernen Torsten Siedel 23.05.2012 Inhalt 1. Prozess der Selbstorganisation 2. Lernen - momentan oder statistisch? 3. Vektorbasierte Neuronale Netze 4. Klassifizierung der Lernverfahren

Mehr

Tiefgreifende Prozessverbesserung und Wissensmanagement durch Data Mining

Tiefgreifende Prozessverbesserung und Wissensmanagement durch Data Mining Tiefgreifende Prozessverbesserung und Wissensmanagement durch Data Mining Ausgangssituation Kaizen Data Mining ISO 9001 Wenn andere Methoden an ihre Grenzen stoßen Es gibt unzählige Methoden, die Abläufe

Mehr

Künstliche Intelligenz Maschinelles Lernen

Künstliche Intelligenz Maschinelles Lernen Künstliche Intelligenz Maschinelles Lernen Stephan Schwiebert Sommersemester 2009 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Maschinelles Lernen Überwachtes Lernen

Mehr

Fachgruppe Statistik, Risikoanalyse & Computing. STAT672 Data Mining. Sommersemester 2007. Prof. Dr. R. D. Reiß

Fachgruppe Statistik, Risikoanalyse & Computing. STAT672 Data Mining. Sommersemester 2007. Prof. Dr. R. D. Reiß Fachgruppe Statistik, Risikoanalyse & Computing STAT672 Data Mining Sommersemester 2007 Prof. Dr. R. D. Reiß Überblick Data Mining Begrifflichkeit Unter Data Mining versteht man die Computergestützte Suche

Mehr

Tracking bewegter Objekte in Videosequenzen

Tracking bewegter Objekte in Videosequenzen Wintersemester 2009/2010 Fakultät Technik und Informatik Übersicht Aufgabenstellung Aktueller Lösungsansatz Forschung / Stand der Technik Methoden der Objekterkennung in der digitalen Bildverarbeitung

Mehr

Seminarvortrag Bildverarbeitung im Projekt FAUST mit dem Schwerpunkt Skelettierung

Seminarvortrag Bildverarbeitung im Projekt FAUST mit dem Schwerpunkt Skelettierung Seminarvortrag Bildverarbeitung im Projekt FAUST mit dem Schwerpunkt Skelettierung Ingmar Gründel HAW-Hamburg 15. Dezember 2006 Ingmar Gründel Bildverarbeitung im Projekt FAUST mit dem Schwerpunkt Skelettierung

Mehr

Neuronale Netze (I) Biologisches Neuronales Netz

Neuronale Netze (I) Biologisches Neuronales Netz Neuronale Netze (I) Biologisches Neuronales Netz Im menschlichen Gehirn ist ein Neuron mit bis zu 20.000 anderen Neuronen verbunden. Milliarden von Neuronen beteiligen sich simultan an der Verarbeitung

Mehr

Informatik studieren an der Universität zu Lübeck

Informatik studieren an der Universität zu Lübeck Informatik studieren an der Universität zu Lübeck Prof. Dr. Till Tantau Studiendekan Technisch-Naturwissenschaftliche Fakultät Universität zu Lübeck Das Informatik-Studium an der Uni Lübeck...... ist angewandter.

Mehr

Grundstufe. Mathematik 2 Klausur 210 Minuten 9 Leistungspunkte

Grundstufe. Mathematik 2 Klausur 210 Minuten 9 Leistungspunkte Anlage 1: und Prüfungen im Bachelor-Studium Grundstufe 1. Semester 2. Semester. Semester. Semester Mathematik Mathematik 1 Klausur 20 Minuten 11 Mathematik 2 Klausur 210 Minuten 9 Mathematik Klausur 10

Mehr

TEXTKLASSIFIKATION. WS 2011/12 Computerlinguistik I Deasy Sukarya & Tania Bellini

TEXTKLASSIFIKATION. WS 2011/12 Computerlinguistik I Deasy Sukarya & Tania Bellini TEXTKLASSIFIKATION WS 2011/12 Computerlinguistik I Deasy Sukarya & Tania Bellini GLIEDERUNG 1. Allgemeines Was ist Textklassifikation? 2. Aufbau eines Textklassifikationssystems 3. Arten von Textklassifikationssystemen

Mehr

Data-Mining: Ausgewählte Verfahren und Werkzeuge

Data-Mining: Ausgewählte Verfahren und Werkzeuge Fakultät Informatik Institut für Angewandte Informatik Lehrstuhl Technische Informationssysteme Data-Mining: Ausgewählte Verfahren und Vortragender: Jia Mu Betreuer: Dipl.-Inf. Denis Stein Dresden, den

Mehr

Projektpraktikum: Bildauswertung und fusion Wintersemester 2011 / 2012

Projektpraktikum: Bildauswertung und fusion Wintersemester 2011 / 2012 Projektpraktikum: Bildauswertung und fusion Wintersemester 2011 / 2012 http://www.ies.uni-karlsruhe.de Zeitlich adaptives Objekttracking in der Aufklärung und Überwachung Flugdrohne / visuell optischer

Mehr

Coma I. Einleitung. Computer und Algorithmen. Programmiersprachen. Algorithmen versus Programmiersprachen. Literaturhinweise

Coma I. Einleitung. Computer und Algorithmen. Programmiersprachen. Algorithmen versus Programmiersprachen. Literaturhinweise Coma I Einleitung 1 Computer und Algorithmen Programmiersprachen Algorithmen versus Programmiersprachen Literaturhinweise 2 Computer und Algorithmen Programmiersprachen Algorithmen versus Programmiersprachen

Mehr

Mustererkennung in Energieverbrauchsdaten

Mustererkennung in Energieverbrauchsdaten Mustererkennung in Energieverbrauchsdaten Ein Modul für die Energiemanagement-Software IngSoft InterWatt Karsten Reese & Dr. Roberto Monetti Mustererkennung in Energieverbrauchsdaten, 22. März 2015 Folie

Mehr

SEMINAR AUTOMATISCHE GESICHTSERKENNUNG

SEMINAR AUTOMATISCHE GESICHTSERKENNUNG SEMINAR AUTOMATISCHE GESICHTSERKENNUNG OBERSEMINAR AUTOMATISCHE ANALYSE VON GESICHTSAUSDRÜCKEN Organisation, Überblick, Themen Überblick heutige Veranstaltung 1. Organisatorisches 2. Überblick über beide

Mehr

Fitting 3D Models to Images

Fitting 3D Models to Images Proseminar "Aufgabenstellungen der Bildanalyse und Mustererkennung" Fitting 3D Models to Images WS 08/09 Gliederung Einleitung Pose Consistency perspective Camera affine/projective Camera Linearkombinationen

Mehr

Bildauswertung in UAV

Bildauswertung in UAV Bildauswertung in UAV Prof. Dr. Nailja Luth Prof. N. Luth Emden 2014-1 OTH Ost-Bayerische Technische Hochschule Amberg-Weiden Prof. N. Luth Emden 2014-2 Prof. Dr.-Ing. N. Luth: Vorlesung Bildverarbeitung

Mehr

Quelle: www.omekinteractive.com. Ganzkörper- Gestensteuerung. Mit 3-D Sensor (z.b. MS Kinect, ASUS Xtion) Zwischenpräsentation 21.05.

Quelle: www.omekinteractive.com. Ganzkörper- Gestensteuerung. Mit 3-D Sensor (z.b. MS Kinect, ASUS Xtion) Zwischenpräsentation 21.05. Quelle: www.omekinteractive.com Ganzkörper- 1 Gestensteuerung Mit 3-D Sensor (z.b. MS Kinect, ASUS Xtion) Zwischenpräsentation 2 Gliederung Motivation Wozu braucht man eine Gestensteuerung? Aktuelle Anwendungen

Mehr

Seminar zum Thema Künstliche Intelligenz:

Seminar zum Thema Künstliche Intelligenz: Wolfgang Ginolas Seminar zum Thema Künstliche Intelligenz: Clusteranalyse Wolfgang Ginolas 11.5.2005 Wolfgang Ginolas 1 Beispiel Was ist eine Clusteranalyse Ein einfacher Algorithmus 2 bei verschieden

Mehr

Algorithmik II. SS 2003 Prof. Dr. H. Stoyan Lehrstuhl für Informatik 8 ( Künstliche Intelligenz) Email: stoyan@informatik.uni-erlangen.

Algorithmik II. SS 2003 Prof. Dr. H. Stoyan Lehrstuhl für Informatik 8 ( Künstliche Intelligenz) Email: stoyan@informatik.uni-erlangen. Algorithmik II SS 2003 Prof. Dr. H. Stoyan Lehrstuhl für Informatik 8 ( Künstliche Intelligenz) Email: stoyan@informatik.uni-erlangen.de Homepage der Vorlesung Vorbemerkungen I http://www8.informatik.uni-erlangen.de/immd8

Mehr

Februar 06 Uni Basel Seminar Künstliche Intelligenz Stefan Pauwels Emotion Recognition :-)

Februar 06 Uni Basel Seminar Künstliche Intelligenz Stefan Pauwels Emotion Recognition :-) Emotion Recognition :-) Themenüberblick Emotionen Emotion Recognition Speech Facial Expression Mulitmodal Emotion Recognition Integrationsmöglichkeiten der zwei Kanäle Emotionen: Grundlagen Konsens in

Mehr

Regressionsanalyse zur Optimierung von künstlichen neuronalen Netzen bei der DAX-Prognose

Regressionsanalyse zur Optimierung von künstlichen neuronalen Netzen bei der DAX-Prognose Informatik Philipp von der Born Regressionsanalyse zur Optimierung von künstlichen neuronalen Netzen bei der DAX-Prognose Bachelorarbeit Universität Bremen Studiengang Informatik Regressionsanalyse zur

Mehr

Zusammenfassung Digitale Bildverarbeitung By Fabian Flohrmann

Zusammenfassung Digitale Bildverarbeitung By Fabian Flohrmann Zusammenfassung Digitale Bildverarbeitung By Fabian Flohrmann VL01 Stufen der Bildverarbeitung Bildgewinnung => Bildbearbeitung => Bilderkennung Bildgewinnung: Bildaufnahme Bilddiskretisierung Bildbearbeitung:

Mehr

8. Clusterbildung, Klassifikation und Mustererkennung

8. Clusterbildung, Klassifikation und Mustererkennung 8. Clusterbildung, Klassifikation und Mustererkennung Begriffsklärung (nach Voss & Süße 1991): Objekt: wird in diesem Kapitel mit einem zugeordneten Merkmalstupel (x 1,..., x M ) identifiziert (Merkmalsextraktion

Mehr

Zellulare Neuronale Netzwerke

Zellulare Neuronale Netzwerke Fakultät Informatik, Institut für Technische Informatik, Professur für VLSI-Entwurfssysteme, Diagnostik und Architektur Zellulare Neuronale Netzwerke Florian Bilstein Dresden, 13.06.2012 Gliederung 1.

Mehr

Objektsegmentierung von kompaktem Schüttgut für die technische Erkennung

Objektsegmentierung von kompaktem Schüttgut für die technische Erkennung Objektsegmentierung von kompaktem Schüttgut für die technische Erkennung Dissertation zur Erlangung des akademischen Grades Doktoringenieur (Dr.-Ing.) vorgelegt der Fakultät für Maschinenbau der Technischen

Mehr

Was bisher geschah. Definition digitaler Bilder B : pos col Bildanalyse, statistische Merkmale Signale im Orts- und Frequenzraum Bildbearbeitung durch

Was bisher geschah. Definition digitaler Bilder B : pos col Bildanalyse, statistische Merkmale Signale im Orts- und Frequenzraum Bildbearbeitung durch Was bisher geschah Definition digitaler Bilder B : pos col Bildanalyse, statistische Merkmale Signale im Orts- und Frequenzraum Bildbearbeitung durch Punktoperationen (Farbtransformation) f : col1 col

Mehr

Could a robot be creative - and would we know?

Could a robot be creative - and would we know? Could a robot be creative - and would we know? By Margaret Boden Philip Meckseper Tina Mahler Margaret Boden Research Professor of Cognitive Science at the University of Susse Association for Artificial

Mehr

Machine Learning - Maschinen besser als das menschliche Gehirn?

Machine Learning - Maschinen besser als das menschliche Gehirn? Machine Learning - Maschinen besser als das menschliche Gehirn? Seminar Big Data Science Tobias Stähle 23. Mai 2014 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der

Mehr

Automatische Gesprächsauswertung im Callcenter

Automatische Gesprächsauswertung im Callcenter Einleitung Forschungsbeitrag Automatische Gesprächsauswertung im Callcenter Projekt CoachOST Dipl.-Wirtsch.-Inf. Mathias Walther Prof. Dr. Taïeb Mellouli Lehrstuhl für Wirtschaftsinformatik und Operations

Mehr

Industrielle Bildverarbeitung

Industrielle Bildverarbeitung Christian Demant Bernd Streicher-Abel Peter Waszkewitz Industrielle Bildverarbeitung Wie optische Qualitätskontrolle wirklich funktioniert 2. Auflage Mit 239 Abbildungen und 29 Tabellen Springer Inhaltsverzeichnis

Mehr

Bild-Erkennung & -Interpretation

Bild-Erkennung & -Interpretation Kapitel I Bild-Erkennung & -Interpretation FH Aachen / Jülich, FB 9 Prof. Dr. rer.nat. Walter Hillen (Dig Img I) 1 Einführung Schritte zur Bilderkennung und Interpretation: Bild-Erfassung Vorverarbeitung

Mehr

Elementare Bildverarbeitungsoperationen

Elementare Bildverarbeitungsoperationen 1 Elementare Bildverarbeitungsoperationen - Kantenerkennung - 1 Einführung 2 Gradientenverfahren 3 Laplace-Verfahren 4 Canny-Verfahren 5 Literatur 1 Einführung 2 1 Einführung Kantenerkennung basiert auf

Mehr

Pfinder: Real-Time Tracking of the Human Body

Pfinder: Real-Time Tracking of the Human Body Pfinder: Real-Time Tracking of the Human Body Christopher Wren, Ali Azarbayejani, Trevor Darrell, Alex Pentland aus: IEEE Transactions on Pattern Analysis and Machine Intelligence (pp. 780-785) 12. April

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg,

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg, Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg, Literatur Richard Hartle and Andrew Zisserman. Multiple View Geometr in computer vision, Cambridge Universit Press, 2 nd Ed., 23. O.D.

Mehr

Textmining Klassifikation von Texten Teil 1: Naive Bayes

Textmining Klassifikation von Texten Teil 1: Naive Bayes Textmining Klassifikation von Texten Teil 1: Naive Bayes Dept. Informatik 8 (Künstliche Intelligenz) Friedrich-Alexander-Universität Erlangen-Nürnberg (Informatik 8) Klassifikation von Texten 1: Naive

Mehr

Softcomputing Biologische Prinzipien in der Informatik. Neuronale Netze. Dipl. Math. Maria Oelinger Dipl. Inform. Gabriele Vierhuff IF TIF 08 2003

Softcomputing Biologische Prinzipien in der Informatik. Neuronale Netze. Dipl. Math. Maria Oelinger Dipl. Inform. Gabriele Vierhuff IF TIF 08 2003 Softcomputing Biologische Prinzipien in der Informatik Neuronale Netze Dipl. Math. Maria Oelinger Dipl. Inform. Gabriele Vierhuff IF TIF 08 2003 Überblick Motivation Biologische Grundlagen und ihre Umsetzung

Mehr

Was ist Data Mining... in der Fundraising Praxis?

Was ist Data Mining... in der Fundraising Praxis? Was ist Data Mining...... in der Fundraising Praxis? Erkennen von unbekannten Mustern in sehr grossen Datenbanken (> 1000 GB) wenige und leistungsfähige Verfahren Automatisierung Erkennen von unbekannten

Mehr

GMDS-Tagung 2006 Bioinformatik 1. Assessing the stability of unsupervised learning results in small-sample-size problems

GMDS-Tagung 2006 Bioinformatik 1. Assessing the stability of unsupervised learning results in small-sample-size problems GMDS-Tagung 2006 Bioinformatik 1 Assessing the stability of unsupervised learning results in small-sample-size problems Ulrich Möller Email: Ulrich.Moeller@hki-jena.de Leibniz Institute for Natural Product

Mehr

Der Einbau im Auto. Stereo: Beispiel Fahrzeug. Einbau im Rückspiegel Erfassung von. Reichweite: bis 30 m

Der Einbau im Auto. Stereo: Beispiel Fahrzeug. Einbau im Rückspiegel Erfassung von. Reichweite: bis 30 m Der Einbau im Auto Sichtbereich Sichtbereich Kameras Einbau im Rückspiegel Erfassung von anderen Fahrzeugen (Pkw,Lkw) Zweiradfahrern Fußgängern und Kindern Reichweite: bis 30 m Digitale Bildverarbeitung

Mehr

Autonome Mobilität - Was wir von biologischen Systemen lernen können. Georg Färber Realzeit Computer - Systeme Technische Universität München

Autonome Mobilität - Was wir von biologischen Systemen lernen können. Georg Färber Realzeit Computer - Systeme Technische Universität München Autonome Mobilität - Was wir von biologischen Systemen lernen können Georg Färber Realzeit Computer - Systeme Technische Universität München Autonome Mobilität Lernen von der Biologie Merkmals- Erkennung

Mehr

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke Vorlesungsplan 17.10. Einleitung 24.10. Ein- und Ausgabe 31.10. Reformationstag, Einfache Regeln 7.11. Naïve Bayes, Entscheidungsbäume 14.11. Entscheidungsregeln, Assoziationsregeln 21.11. Lineare Modelle,

Mehr

4 Grundlagen der Datenbankentwicklung

4 Grundlagen der Datenbankentwicklung 4 Grundlagen der Datenbankentwicklung In diesem Kapitel werden wir die Grundlagen der Konzeption von relationalen Datenbanken beschreiben. Dazu werden Sie die einzelnen Entwicklungsschritte von der Problemanalyse

Mehr

Graphenalgorithmen und lineare Algebra Hand in Hand Vorlesung für den Bereich Diplom/Master Informatik

Graphenalgorithmen und lineare Algebra Hand in Hand Vorlesung für den Bereich Diplom/Master Informatik Vorlesung für den Bereich Diplom/Master Informatik Dozent: Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes

Mehr

Seminar Seminarname SS 2003

Seminar Seminarname SS 2003 Universität Karlsruhe (TH) Institut für Rechnerentwurf und Fehlertoleranz (IRF) Lehrstuhl Prof. Dr.-Ing. Dillmann Seminar Seminarname SS 2003 Beitragstitel Eva Muster Kaiserstraße 1 76133 Karlsruhe eva@muster.de

Mehr

Raumbezogene Datenbanken (Spatial Databases)

Raumbezogene Datenbanken (Spatial Databases) Raumbezogene Datenbanken (Spatial Databases) Ein Vortrag von Dominik Trinter Alexander Christian 1 Inhalte Was ist ein raumbezogenes DBMS? Modellierung Abfragen Werkzeuge zur Implementierung Systemarchitektur

Mehr

Betrachtung von Verfahren zur Posenbestimmung und Merkmalsexktraktion. Thorsten Jost INF-MA SR Wintersemester 2008/2009 1.

Betrachtung von Verfahren zur Posenbestimmung und Merkmalsexktraktion. Thorsten Jost INF-MA SR Wintersemester 2008/2009 1. Betrachtung von Verfahren zur Posenbestimmung und Merkmalsexktraktion Thorsten Jost INF-MA SR Wintersemester 2008/2009 1. Dezember 2008 Agenda Motivation Feature Detection SIFT MOPS SURF SLAM Monte Carlo

Mehr

Bachelor-Arbeiten am Lehrstuhl Informatik VII. Dr. Frank Weichert. frank.weichert@tu-dortmund.de. technische universität dortmund

Bachelor-Arbeiten am Lehrstuhl Informatik VII. Dr. Frank Weichert. frank.weichert@tu-dortmund.de. technische universität dortmund Bachelor-Arbeiten am Lehrstuhl Dr. Frank Weichert frank.weichert@tu-.de F. Weichert Juli 2013 Bachelor Arbeiten am Lehrstuhl 1 Übersicht zum Lehrstuhl / Thematische Einordnung F. Weichert Juli 2013 Bachelor

Mehr

Computergraphik & Digitale Bildverarbeitung

Computergraphik & Digitale Bildverarbeitung Übergangsbestimmungen für das Masterstudium Computergraphik & Digitale an der Technischen Universität Wien von der Studienkommission Informatik beschlossen am 20.9.2006 (1) Sofern nicht anderes angegeben

Mehr

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform.

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform. kurze Wiederholung der letzten Stunde: Neuronale Netze martin.loesch@kit.edu (0721) 608 45944 Labor Wissensrepräsentation Aufgaben der letzten Stunde Übersicht Neuronale Netze Motivation Perzeptron Multilayer

Mehr

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Maschinelles Lernen: Neuronale Netze Ideen der Informatik Kurt Mehlhorn Adrian Neumann 16. Januar 2014 Übersicht Biologische Inspiration Stand der Kunst in Objekterkennung auf Bildern Künstliche Neuronale

Mehr

Bildverarbeitung Herbstsemester. Binärbildanalyse

Bildverarbeitung Herbstsemester. Binärbildanalyse Bildverarbeitung Herbstsemester Herbstsemester 2010 2012 Binärbildanalyse 1 Inhalt Einführung Partikelfilterung und -analyse Auffinden von Regionen und Konturen Gruppenarbeit Erkennung von geometrischen

Mehr

Kapitel MK:I. I. Einführung. Künstliche Intelligenz Starke KI versus Schwache KI Geschichte der KI Gebiete der KI

Kapitel MK:I. I. Einführung. Künstliche Intelligenz Starke KI versus Schwache KI Geschichte der KI Gebiete der KI Kapitel MK:I I. Einführung Künstliche Intelligenz Starke KI versus Schwache KI Geschichte der KI Gebiete der KI MK:I-29 I Introduction STEIN 1998-2009 Ursprung der Methoden der KI/Wissensverarbeitung (induktives)

Mehr

Informatik studieren an der Universität zu Lübeck

Informatik studieren an der Universität zu Lübeck Informatik studieren an der Universität zu Lübeck Prof. Dr. Till Tantau Studiengangsleiter MINT Lübecker Schnuppertag 2011 Das Informatik-Studium an der Uni Lübeck...... ist angewandter. Ein Studium an

Mehr

CT Rekonstruktion mit Objektspezifischen Erweiterten Trajektorien

CT Rekonstruktion mit Objektspezifischen Erweiterten Trajektorien DACH-Jahrestagung 2015 Mo.3.A.3 CT Rekonstruktion mit Objektspezifischen Erweiterten Trajektorien Andreas FISCHER 1, Tobias LASSER 2, Michael SCHRAPP 1, Jürgen STEPHAN 1, Karsten SCHÖRNER 1, Peter NOËL

Mehr

x 2 x 1 x 3 5.1 Lernen mit Entscheidungsbäumen

x 2 x 1 x 3 5.1 Lernen mit Entscheidungsbäumen 5.1 Lernen mit Entscheidungsbäumen Falls zum Beispiel A = {gelb, rot, blau} R 2 und B = {0, 1}, so definiert der folgende Entscheidungsbaum eine Hypothese H : A B (wobei der Attributvektor aus A mit x

Mehr

MOTION TRACKING. Olaf Christ AIS-Sommersemester 2000 Betreuer: Prof. C. Klauck

MOTION TRACKING. Olaf Christ AIS-Sommersemester 2000 Betreuer: Prof. C. Klauck MOTION TRACKING Olaf Christ AIS-Sommersemester 2000 Betreuer: Prof. C. Klauck Motion Tracking Ziele des Vortrags Einsatzgebiete Bewegungsanalyse Methoden Weitere Probleme des Motion Tracking Abschließendes

Mehr

Grundlagen der Theoretischen Informatik, SoSe 2008

Grundlagen der Theoretischen Informatik, SoSe 2008 1. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 2 Zustandsdiagramme (6 Punkte, wird korrigiert)

Mehr

Grundlagen der Videotechnik. Redundanz

Grundlagen der Videotechnik. Redundanz Grundlagen der Videotechnik Redundanz Redundanz beruht auf: - statistischen Abhängigkeiten im Signal, - Information, die vorher schon gesendet wurde - generell eine Art Gedächtnis im Signal Beispiel: Ein

Mehr

Selbstorganisierende Karten

Selbstorganisierende Karten Selbstorganisierende Karten Yacin Bessas yb1@informatik.uni-ulm.de Proseminar Neuronale Netze 1 Einleitung 1.1 Kurzüberblick Die Selbstorganisierenden Karten, auch Self-Organizing (Feature) Maps, Kohonen-

Mehr

Computer Vision: AdaBoost. D. Schlesinger () Computer Vision: AdaBoost 1 / 10

Computer Vision: AdaBoost. D. Schlesinger () Computer Vision: AdaBoost 1 / 10 Computer Vision: AdaBoost D. Schlesinger () Computer Vision: AdaBoost 1 / 10 Idee Gegeben sei eine Menge schwacher (einfacher, schlechter) Klassifikatoren Man bilde einen guten durch eine geschickte Kombination

Mehr

Ingo Scholz, Jochen Schmidt, and Heinrich Niemann Farbbildverarbeitung unter Echtzeitbedingungen in der Augmented Reality

Ingo Scholz, Jochen Schmidt, and Heinrich Niemann Farbbildverarbeitung unter Echtzeitbedingungen in der Augmented Reality 1 Ingo Scholz, Jochen Schmidt, and Heinrich Niemann Farbbildverarbeitung unter Echtzeitbedingungen in der Augmented Reality appeared in: Siebter Workshop Farbbildverarbeitung Arbeitsberichte des Instituts

Mehr

Website. Vorlesung Statistisches Lernen. Dozenten. Termine. Einheit 1: Einführung

Website. Vorlesung Statistisches Lernen. Dozenten. Termine. Einheit 1: Einführung Website Vorlesung Statistisches Lernen Einheit 1: Einführung Dr. rer. nat. Christine Pausch Institut für Medizinische Informatik, Statistik und Epidemiologie Universität Leipzig (Aktuelle) Informationen

Mehr

Vorlesung Statistisches Lernen

Vorlesung Statistisches Lernen Vorlesung Statistisches Lernen Einheit 1: Einführung Dr. rer. nat. Christine Pausch Institut für Medizinische Informatik, Statistik und Epidemiologie Universität Leipzig WS 2014/2015 1 / 20 Organisatorisches

Mehr

Software zur Erkennung von Körperhaltungen K Bildschirmarbeitsplätzen. tzen. Referent: Markus Kirschmann

Software zur Erkennung von Körperhaltungen K Bildschirmarbeitsplätzen. tzen. Referent: Markus Kirschmann Software zur Erkennung von Körperhaltungen K an Bildschirmarbeitsplätzen tzen Vortrag zur Diplomarbeit Neuronale Mehrklassifikatorsysteme zur Erkennung der Körperhaltung K in Bildschirmarbeitsplatzumgebungen

Mehr

Bestandskundenmanagement Wo drückt bei Ihnen der Schuh?

Bestandskundenmanagement Wo drückt bei Ihnen der Schuh? Bestandskundenmanagement Wo drückt bei Ihnen der Schuh? best-reactions GmbH Hirschberger Straße 33 D 90559 Burgthann Alle Rechte vorbehalten HRB 23679, Amtsgericht Nürnberg Geschäftsführer Alexander P.

Mehr

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 15, Donnerstag, 12.

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 15, Donnerstag, 12. Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 15, Donnerstag, 12. Februar 2015 (Evaluation, Klausur, Vorstellung Arbeitsgruppe) Junior-Prof.

Mehr

Implizite Modellierung zur Objekterkennung in der Fernerkundung

Implizite Modellierung zur Objekterkennung in der Fernerkundung Implizite Modellierung zur Objekterkennung in der Fernerkundung Mitarbeiterseminar 20.01.2011 (IPF) Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften KIT Universität des Landes Baden-Württemberg

Mehr

Konzepte der AI: Maschinelles Lernen

Konzepte der AI: Maschinelles Lernen Konzepte der AI: Maschinelles Lernen Nysret Musliu, Wolfgang Slany Abteilung für Datenbanken und Artificial Intelligence Institut für Informationssysteme, TU-Wien Übersicht Was ist Lernen? Wozu maschinelles

Mehr

Internetkommunikation I WS 2004/05 Rafael Birkner

Internetkommunikation I WS 2004/05 Rafael Birkner Vortrag zum Thema: Bayes'sche Filter zur SPAM-Erkennung 1. Bayes'sche Filter: Eigenschaften - englischer Mathematiker Thomas Bayes (1702 1761) - state of the art Technologie zur Bekämpfung von Spam - adaptive

Mehr

Verteilte Systeme CS5001

Verteilte Systeme CS5001 CS5001 Th. Letschert TH Mittelhessen Gießen University of Applied Sciences Einführung Administratives Unterlagen Verwendbar: Master of Science (Informatik) Wahlpflichtfach (Theorie-Pool) Unterlagen Folien:

Mehr