15 / 16 I GK EF Übung 2 Dez.15

Größe: px
Ab Seite anzeigen:

Download "15 / 16 I GK EF Übung 2 Dez.15"

Transkript

1 1 / 16 I GK EF Übung Dez.1 Nr. 1: Ableitungsdefinition - Tangentenberecnung Gegeben ist die ganzrationale Funktion. Grades mit: f(x) = x - x a) Bestimmen Sie die durcscnittlice Änderungsrate (Sekantensteigung) der Funktion zwiscen den x-werten 1 und. Δ = f()-f (1) -1 = 4-10-(1-) 1 = - b) Bestimmen Sie die momentane Änderungsrate (Tangentensteigung) der Funktion zum Zeitpunkt mit der - Metode und mit den Ableitungsregeln. gesuct: f ' () f(+)-f () m t = f ' () = lim = lim (+) - (+)- -* lim (-6) 0 = lim -1 0 = (-1) = = lim 0-1 = -1 Nac den Ableitungsregeln gilt: f ' (x) = x - f ' () = * - = -1 c) Bestimmen Sie mit Hilfe des Differenzenquotienten die erste Ableitung von f an der Stelle a. gesuct: f ' (a) m a = f(a+)-f (a) a+-a = (a+) - (a+)- a - a a + a + - a- - a - a = = + a - a = (+ a-) f ' (a) = lim 0 ( + a - ) = a - (vgl. mit f ' (x) = x - ) = + a - d) Bestimmen Sie die Gleicung der Tangenten an den Grapen von f an der Stelle 1. t: y = m x + b ; m = f ' (1) = - = - ; f(1) = 1 - * 1 = -4 ; B(1-4) t -4 = - * 1 + b b = -1 t : y = - x - 1 e) Wo scneidet die Normale an der Stelle 1 die Parabel zum. Mal? Normale: n : y = m x + b ; m n * m t = -1 m n * (-) = - m n = 1 B(1-4) n -4 = 1 * 1 + b b = -4 1 n : y = 1 x - 1 Scnittpunktbestimmung durc Gleicsetzen von Normale und Parabel: x - x = x - 1 x 1 = 1 x - 16 x + 1 = 0 x 1, = 8 ± ; x = 1 Mit n 1 = 1 * 1-1 = folgt: Die Normale scneidet die Parabel nocmal im Punkt P P 4 1 = 8 ± f) Bestimmen Sie den Tiefpunkt der Parabel. Im Tiefpunt gilt: f ' (x) = 0 0 = x - x =. Mit : f(.) = - 6. folgt: Sceitelpunkt S (. - 6.)

2 U nb g) In welcem Winkel scneidet die Parabel die x-acse in der von Null versciedenen Nullstelle? Nullstellen: f (x) = 0 = x - x = x(x - ) x 1 = 0; x = Scnittwinkel: tan (α) = m = f ' () = - = α = tan -1 () = Nr. : Grapisces Differenzieren Gegeben sind die Grapen A und B zweier ganzrationaler Funktionen. y y x x - A B a) (1) Bestimmen Sie begründet den Grad der beiden Funktionen. () Bestimmen Sie begründet die Symmetrieeigenscaften der Grapen A und B. (1) A ist der Grap einer ganzrationale Funktion 4. Grades, denn er könnte maximal 4 Nullstellen aben, wenn die x-acse etwas öer läge. B ist aus dem gleicen Grund ( Nullstellen). Grades. () Bei A ist keine Symmetrie erkennbar. B ist punktsymmetrisc zum Ursprung. z.b. liegen die Nullstellen (-8, -6., 0, 6., 8) symmetrisc zum Ursprung. Dem Hocpunkt H(-. 7) entsprict der Tiefpunkt T(. - 7). Allgemein gilt für B: - f(x) = f(- x) b) Zeicnen Sie die Grapen der Ableitung in das jeweilige Koordinatensystem ein. y y x x Nr. : Zusammenang zwiscen Funktion, Ableitung und Aufleitung f sei eine ganzrationale Funktion über dem Intervall [a; e]. Der Grap der Ableitungsfunktion f ' ist in der folgenden Zeicnung gegeben:

3 a) Macen Sie eine begründete Aussage über den f ' a b c d e Grad der Ableitungsfunktion f '. b) In welcen Intervallen steigt der Grap von f, in welcen fällt er (Begründung!)? c) Welces Veralten zeigt der Grap von f an den Stellen b, c und d (Begründung!)? d) Skizzieren Sie einen möglicen Verlauf des Grapen von f. e) Macen Sie eine begründete Aussage über die möglice Anzal der Nullstellen von f im Intervall [a ; e]. Input Der Grap könnte Nullstellen aben ; (er at Extremstellen) f ' at den Grad. b) f 'ist von 0 bis d immer negativ - er wird nur einmal bei b null -, daer fällt der Grap von f in diesem Bereic, erst für x > d steigt der Grap von f, denn ier ist f'>0. c) Stelle b: f ' (b) = 0 waagerecte Tangente in b. Da f ' sein Vorzeicen in b aber nict ändert, liegt dort ein Sattelpunkt und kein Extrema vor. Stelle c: f 'at in c ein Extrema (Tiefpunkt), damit at f dort einen Wendepunkt. Stelle d: f ' (d) = 0 waagerecte Tangente in d. Da f ' sein Vorzeicen in d von minus nac plus ändert, dort also vom Fallen zum Steigen überget,liegt dort ein Tiefpunkt vor. f f ' d) a b c d e e) f kann bis zu 4 Nullstellen aben, da der Grad von f gleic 4 ist. Nr. 4: Ableiten Berecnen Sie die erste Ableitung folgender Funktionen: a) f (x) = x 4 - x + 4 b) g(x) = 7 x - x c) (t) = t - π t + t + x a) f ' (x) = 8 x - 9 x b) g' (x) = 1 7 x4 - x c) ' (t) = - t - π t - 9 t 4 Nr. : Tangente und Normale

4 4 U nb Gegeben ist die ganzrationale Funktion. Grades mit: f(x) = 1 x - 1 x - 1. Die Grapen sind links dargestellt. - - Input a) Bestimmen Sie die Gleicung der Tangenten an den Grapen von f an der Stelle 1. f ' (x) = x - 1 ; Berürpunkt: f(1) = 1 * 1-1 * 1-1 = -1 B(1-1) t: y = m x + b ; m = f ' (1) = 1-1 = 1 ; B liegt auf t, also: -1 = 1 * 1 + b b = - t : y = 1 x -1. b) Wo scneidet die Normale an der Stelle 1 die Parabel zum. Mal? Normale: n : y = m x + b ; m n * m t = -1 m n = m n = - B(1-1) n -1 = - * 1 + b b = 1 n : y = - x + 1 Scnittpunktbestimmung durc Gleicsetzen von Normaler und Parabel: 1 x - 1 x - 1 = - x x + x - = 0 x + x - 4 = 0 x 1, = -1. ±. + 4 x 1, = -1. ±. x 1 = -4 ; x = 1 (Berürpunkt) y-wert: n(-4) = - (-4) + 1 = 9 Die Normale scneidet die Parabel nocmal im Punkt P(-4 9) c) Bestimmen Sie den Tiefpunkt der Parabel. Im Tiefpunt gilt: f ' (x) = 0 0 = x - 0. x = 0. Mit : f(0.) = 1 * * = -1.1 folgt: Sceitelpunkt S( ) d) In welcem Winkel scneidet die Parabel die x-acse in der größeren Nullstelle? Nullstellen: f (x) = 0 = 1 x - 1 x = x - x - x 1, = 0. ± 0. + x 1, = 0. ± 1. x 1 = -1; x = (größere Nullstelle) Scnittwinkel: tan (α) = m = f ' () = - 1 = 1. α = tan -1 (1.) = 6.1 Nr. 6: Transformation

5 Gegeben ist die Funktion f mit der Gleicung f (x) = 1 x - x -. Der Grap ist in der Abbildung dargestellt. (1) Weisen Sie recnerisc nac, dass die in der Zeicnung erkennbare Nullstelle tatsäclic eine Nullstelle ist. () Gegeben ist die Funktion g a mit der Gleicung g a (x) = f (x + a). Geben Sie an, wie sic der Grap von g a verändert, wenn man für a immer größere Zalen einsetzt. Geben Sie außerdem einen Wert für a an, so dass die Funktion g a die Nullstelle x = -1 besitzt. (1) Am Grapen ist erkennbar, dass die vermutlice Nullstelle ist. Zum recneriscen Nacweis: Setze für x in f(x) ein. f () = = 0 () Je größer a wird, desto weiter wird der entsprecende Grap der Funktion g a nac links verscoben. Damit -1 eine Nullstelle wird, muss der Grap von f um drei Eineiten nac links verscoben werden, also muss a = gelten Nr. 7: Hocwasser in Beverungen In Beverungen sind Hocwasser nicts Unbekanntes. In den ersten Tagen des Jares 011 ließen analtende Regenfälle und die beginnende Scneescmelze in den Mittelgebirgen die Weser scnell ansteigen Für die Tage vom 6. Januar 011 0:00 Ur bis zum 8 Januar 011 4:00 Ur können die Aufzeicnung des Wasserstandes an der Messstation in Beverungen modellaft durc die Funktion mit der Funktionsgleicung: (x) = 1 4 x - x + x + bescrieben werden.dabei wird die Wasseröe in Metern und die Zeit in Tagen nac dem 6. Januar 0:00 Ur gemessen. Der Grap dieser Funktion ist links abgebildet.mit dieser Funktion ist es möglic, die folgenden Aufgabenstellungen zu bearbeiten. Input a) Berecnen Sie die Höe des Wasserstandes am 6 Januar 011 um 0:00 Ur und am 7. Januar um 1:00 Ur. 6. Januar 0110:00 Ur entsprict dem Startpunkt. Also: (0) = [m] 7. Januar 011 1:00 Ur ist 1 1 Tage nac dem Startpunkt, also: (1.) =.847[m] b) Berecnen Sie die Gescwindigkeit in m/, mit der der Wasserstand in den ersten 1 Stunden des Beobactungszeitraumes durcscnittlic anstieg. 1 Stunden 0, Tage, also: x 1 = 0 ; x = 0. Δ = (0.)-(0) = =.01 m = 4.06 = 4.06 m Tag 4 = m In den ersten 1 Stunden betrug die durcscnittlice Steigungsgescwindigkeit rund 17 cm /

6 6 U nb c) Wie oc war die momentane Änderungsrate des Wasserstandes am 6. Januar um 1:00 Ur? Die momentane Änderungsrate entsprict der Tangentensteigung, also der 1. Ableitung. (x) = 1 4 x - x + x + ' (x) = 4 x - 4 x + ' (0.) = 4 * * 0. + =.187 m Tag = m = m Am Mittag des 1. Tages steigt das Wasser mit einer Gescwindigkeit von ca 1 cm /. d) Ermitteln Sie recnerisc den Zeitpunkt, zu dem der öcste Wasserstand in diesem Zeitraum an der Messstation erreict wurde und berecnen Sie diesen Höcststand. Im Hocpunkt ist die Tangente waagerect, also Steigung ' (x) = 0 (x) = 1 4 x - x + x + ' (x) = 4 x - 4 x + Mit () = ' (t) = 0 0 = 4 x - 4 x + 0 = x - 16 x + 0 x 1, = 8 ± x 1, = 8 ± x 1 = ; x = 10 6 [m] =. (entfällt, da nict im Zeitraum) Wie man auc am Grapen erkenne kann, wird nac Tagen, also um Mitternact des 7./8. Januars der öcste Punkt des Hocwassers mit 6 m angenommen. e) An einer zweiten Messstation in Höxter war die Entwicklung des Wasserstandes in weiten Teilen vergleicbar mit dem Verlauf an der ersten Messstation in Beverungen. Allerdings wurde ier der öcste Wasserstand erst zu einem späteren Zeitpunkt gemessen und atte eine geringere Höe als an der ersten Messstation. Die Entwicklung des Wasserstandes an der zweiten Messstation kann durc eine Funktion g mit g(t) = a (t + b) bescrieben werden. Geben Sie einen Zalenbereic für a und einen Zalenbereic für b so an, dass der oben bescriebene neue Sacveralt sinnvoll modelliert werden kann, und begründen Sie Ire Wal. Der öcste Wasserstand wurde zu einem späteren Zeitpunkt gemessen, also muss der Grap nac rects verscoben werden. Dies gelingt mit b < 0. Da der öcste Wasserstand eine geringere Höe atte als an der ersten Messstation, muss der Grap in vertikaler Rictung gestauct werden. Dies gelingt, wenn ein a mit 0 < a < 1 gewält wird. Weitere Einscränkungen der Zalenbereice werden nict erwartet. Nr. 8: Verkersstau NRW Zentral 014 An einer Autobanbaustelle wurde über einen längeren Zeitraum die Stauentwicklung untersuct. Für 1 t 19 stellt der Grap der Funktion f modellaft die Staulänge wärend eines bestimmten Tages in der Zeit von 1:00 Ur bis 19:00 Ur dar (siee Abbildung). Es gilt: f (t) = -0.1 t + 4. t t +.7 Dabei ist t die Urzeit (z. B. 14:00 Ur t = 14) und f (t) die Staulänge zur Zeit t in Kilometern. Mit dieser Funktion f ist es möglic, die folgenden AufgabensteIlungen zu bearbeiten. a) (1) Berecnen Sie die Länge des Staus um 1:00 Ur.

7 () Um abzuscätzen, wie viele Farzeuge um 1:00 Ur im Stau steen, müssen Annamen getroffen werden. Berecnen Sie mit Hilfe von zwei plausiblen Annamen einen Scätzwert für die Anzal der Farzeuge, die um 1:00 Ur in diesem Stau steen. (+ Punkte) (1) f (1) = -0.1*1 + 4.*1-66.*1 +.7 = 1.6 km () Die Staulänge wird durc eine abgescätzte durcscnittlice Farzeuglänge zuzüglic des durcscnittlicen Farzeugabstandes dividiert. Komplexere Lösungen, in denen z. B. die Anzal der Farspuren berücksictigt wird, werden natürlic ebenfalls anerkannt. [Bei der Beurteilung der konkreten Annamen sollte großzügig verfaren werden.] Also: z.b. Autolänge und Farzeugabstand ca. 10 m Anzal der Autos im Stau ca b) Ermitteln Sie recnerisc die Urzeit, zu der die Staulänge im betracteten Zeitraum maximal ist, und geben Sie die maximale Länge des Staus an. (9 Punkte) Gesuct: globales Maxium im Intervall [1 ; 19], also lokales Max und Randveralten! lokale Extrema: Ableitungen: f (t) = -0.1 t + 4. t t +.7 ; f ' (t) = -0. t + 9 t ; f '' (t) = -0.6 t + 9 Extrema: notw. Bed.: f ' (t) = 0 0 = -0. t + 9 t = 1 t - 0 t + 1 t 1, = 1 ± - 1 t 1 = 1; t = 17 inr. Bed.: f '' (1) = -0.6*1 + 9 = 1. > 0 TP bei 1 ; f '' (17) = -0.6* = -1. < 0 HP bei 17 Werte: f (1) = -0.1*1 + 4.*1-66.*1 +.7 = 1.6(unnötig) f 1 = -0.1* *17-66.* = 4.8 H(17 4.8) ; T(1 1.6) Randveralten: f[1] = -0.1*1 + 4.*1-66.*1 +.7 =. und f[19] = -0.1* *19-66.* = 1.6 Also ist die Staulänge im lokalen Hocpunkt auc global am längsten. Um 17:00 Ur wird die Staulänge mit 4.8 km maximal. c) Bestimmen Sie, um wie viele Kilometer die Staulänge in der Zeit von 1:00 Ur bis 17:00 Ur pro Stunde im Durcscnitt zunimmt. ( Punkte) Es ist nac der durcscnittlicen Wacstumsgescwindigkeit, also nac der Sekantensteigung gefragt. Überlegung: Die Staulänge steigt in diesen 4 Stunden von 1.6 km auf 4.8 km, also um 0.8 km/. Recnung: m = y -y 1 = f(17)-f(1) = x -x = 0.8 km d) Für die Funktion f gelten für 1 < t < 17 die beiden Ungleicungen: f ' (t) > 0 und f " (t) < 0. Interpretieren Sie, welce Bedeutung diese beiden Ungleicungen im Saczusammenang der Aufgabe aben. (4 Punkte) f ' (t) > 0: Der Grap von f at für 1 < t < 17 eine positive Steigung, die Staulänge nimmt daer zwiscen 1:00 Ur und 17:00 Ur ständig zu. f '' (t) < 0: Der Grap von f at für 1 < t < 17 eine Rectkrümmung. die Staulänge nimmt daer zwiscen 1:00 Ur und 17:00 Ur immer langsamer zu. oder f '' (t) < 0 : Die Änderungsrate von f ' ist für 1 < t < 17 negativ, die Staulänge nimmt daer zwiscen

8 8 U nb e) 1:00 Ur und 17:00 Ur immer langsamer zu. Es kann davon ausgegangen werden, dass sic der Stau ab 19:00 Ur gleicmäßig um,6 Kilometer pro Stunde verringert. (1) Bestimmen Sie die Urzeit, zu der sic der Stau vollständig aufgelöst at. () Die Staulänge ab 19:00 Ur soll mit einer geeigneten Funktion g modelliert werden. Ermitteln Sie eine Funktionsgleicung der Funktion g. (+4 Punkte) (1) Staulänge um 19:00 Ur: f (19) = -0.1* *19-66.* = 1.6 km Da er sic pro Stunde um.6 km verkürzt dauert es keine Stunde mer = = *60 min = min 7 min Der Stau at sic ca 7 Minuten später, also ungefär um 19:7 Ur vollständig aufgelöst. () Da die Staulänge gleicmäßig abnimmt, wird zur Modellierung der Staulänge eine lineare Funktion g (eine Gerade) mit g (t) = m t + b verwendet. Da die Staulänge sic pro Stunde um,6 Kilometer verringert, gilt m = -.6. Punkt: Mit g(19) = f(19) = 1.6 = -.6 *19 + b b = = 70. ergibt sic die Funktionsgleicung g (t) = -.6 x + 70 Viel Erfolg!!!

Analysis: Ableitung, Änderungsrate,Tangente 1 Analysis Ableitung, Änderungsrate, Tangente Teil 1 Gymnasium Klasse 10

Analysis: Ableitung, Änderungsrate,Tangente 1 Analysis Ableitung, Änderungsrate, Tangente Teil 1 Gymnasium Klasse 10 www.mate-aufgaben.com Analysis: Ableitung, Änderungsrate,Tangente Analysis Ableitung, Änderungsrate, Tangente Teil Gymnasium Klasse 0 Alexander Scwarz www.mate-aufgaben.com April 0 www.mate-aufgaben.com

Mehr

Schülerbuchseite 8 11

Schülerbuchseite 8 11 Scülerbucseite 8 I Sclüsselkonzept: Ableitung Funktionen Seite 8 Die andere Person muss nict notwendig dieselbe Strecke gefaren sein, nur weil sie denselben Farpreis bezalt at. Es gibt versciedene Verbindungen,

Mehr

Übungsaufgaben zur Kursarbeit

Übungsaufgaben zur Kursarbeit Übungsaufgaben zur Kursarbeit I) Tema Funktionen. Gib jeweils die maximale Definitionsmenge der Funktion an f(x) = (x ) D f = R (x) = x D = {x R /x } g(x) = (x ) D = {x R /x } g k(x) = x D = {x R /x >

Mehr

Differenzialrechnung Was du nach den Ferien kannst! Klasse 10

Differenzialrechnung Was du nach den Ferien kannst! Klasse 10 Differenzialrecnung Was du nac den Ferien kannst! Klasse 10 Zeicne die Tangenten an den Stellen x=-4, x=-1 und x=3 an den abgebildeten Funktionsgrap, und bestimme die Tangentengleicung. Zeicne die Sekanten

Mehr

Mathematik GK 11 m3, AB 06 Klausurvorbereitung Differentialq. Lsg x 3 9x 4 2x 2 x 4. 4x 3 9x 4 : 2x 2 x 4 =2x 1 x 3 2x 2 8x

Mathematik GK 11 m3, AB 06 Klausurvorbereitung Differentialq. Lsg x 3 9x 4 2x 2 x 4. 4x 3 9x 4 : 2x 2 x 4 =2x 1 x 3 2x 2 8x Aufgabe : Berecne a) 4x 5x 5x 4x b) 4x 9x 4 x x 4 4x 5x 5x : 4x x x 4x x 4x 5x 4x x 4x 4x 4x 9x 4 : x x 4 x x x 8x x x 4 x x 4 c) 4x 4 x 8x 4x 4 x 4x 4 x 4 x 4x x : x x x x 4 4x 4x x x x x Aufgabe : Bestimme

Mehr

Analysis: Ableitung, Änderungsrate,Tangente Analysis Klausur zu Ableitung, Änderungsrate, Tangente Gymnasium Klasse 10

Analysis: Ableitung, Änderungsrate,Tangente Analysis Klausur zu Ableitung, Änderungsrate, Tangente Gymnasium Klasse 10 Analysis Klausur zu Ableitung, Änderungsrate, Tangente Gymnasium Klasse 10 Aleander Scwarz www.mate-aufgaben.com Dezember 01 1 Teil 1: one Hilfsmittel Aufgabe 1: Ermittle die Steigung von f() = + 4 an

Mehr

N a c h s c h r e i b k l a u s u r

N a c h s c h r e i b k l a u s u r N a c s c r e i b k l a u s u r Aufgabe Bestimmen Sie die Ableitung der Funktion f (x) an der Stelle x 0, indem Sie den Grenzwert des Differenzenquotienten berecnen. a) f (x) = 4 x 2 x 2 x 0 = 4 b) f (x)

Mehr

Tangentensteigung. Gegeben ist die Funktion f(x) = x 2.

Tangentensteigung. Gegeben ist die Funktion f(x) = x 2. Tangentensteigung Gegeben ist die Funktion () =. Um die Steigung der Tangente im Punkt P( ) zu bestimmen, ermitteln wir zunäcst die Steigung der Sekante durc P( ) und Q( ). Q soll so beweglic sein, dass

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Aufgabe 2 Wetterstation Aufgabe aus der scriftlicen Abiturprüfung Hamburg 05. In einer Wetterstation wird die Aufzeicnung eines Niedersclagmessgeräts vom Vortag (im Zeitraum von 0 Ur bis Ur) ausgewertet.

Mehr

Mathematik LK 11 M2, AB 13 Funktionsuntersuchungen Lösung h h

Mathematik LK 11 M2, AB 13 Funktionsuntersuchungen Lösung h h Matematik LK 11 M2, AB 1 Funktionsuntersucungen Lösung 14.0.2016 Aufgabe 1: Gegeben ist die Funktion f (x)=x x 2 1.1 Berecne die ersten drei Ableitungsfunktionen der Funktion f mit Hilfe des Differentialquotienten,

Mehr

Mathematik GK m3, 2. KA gebr. rat. Funktionen / Steigungen Lösung

Mathematik GK m3, 2. KA gebr. rat. Funktionen / Steigungen Lösung Aufgabe 1: Gebrocen rationale Funktion Gegeben ist die folgende gebrocen rationale Funktionen f (x)= 0.5x4 +2 x 3 16x 2 x 3 6x 2 +12x 8 1.1 Berecne die Nullstellen der Funktion. (Kontrolllösung: x 1 =0

Mehr

Jgst. 11/I 1.Klausur

Jgst. 11/I 1.Klausur Jgst. /I.Klausur..00 A. Bestimme den Scnittpunkt und den Scnittwinkel der beiden folgenden Geraden: g : x y = 5 : + y = 5x Zunäcst müssen die beiden Geraden auf Normalform gebract werden: x y = 5 y = x

Mehr

mathphys-online DIFFERENTIALRECHNUNG BEI GANZRATIONALEN FUNKTIONEN y-achse x-achse Graph von f Graph von f ' Graph von f ''

mathphys-online DIFFERENTIALRECHNUNG BEI GANZRATIONALEN FUNKTIONEN y-achse x-achse Graph von f Graph von f ' Graph von f '' matpys-online DIFFERENTIALRECHNUNG BEI GANZRATIONALEN FUNKTIONEN 5 Grap von f Grap von f ' Grap von f '' matpys-online bei ganzrationalen Funktionen Inaltsverzeicnis Kapitel Inalt Seite Der Ableitungsbegriff.

Mehr

Aufgabenzettel. Löse rechnerisch mit Hilfe geeigneter Funktionsgleichungen. Überprüfe deine Lösung mit einer Zeichnung.

Aufgabenzettel. Löse rechnerisch mit Hilfe geeigneter Funktionsgleichungen. Überprüfe deine Lösung mit einer Zeichnung. Matematik Klasse 11 1 Zylinder Zwei Zylinderförmige Gefäße werden mit Wasser gefüllt (siee unten). Jedes Gefäß at einen Grundfläceninalt von 1dm 2 und ist 85cm oc. Erreict der Wasserspiegel des zweiten

Mehr

Lösungen zu delta 10 H

Lösungen zu delta 10 H Kann ic das noc? Lösungen zu den Seiten 6 und 7. a) T () = ( ) + ( + ) + = = + + 4 + 4 + + = = + + 6 b) T () = ( + a) a(a + ) = = + a + a a a = = c) T () = ( ) ( + ) ( ) = = 4 + 9 6 4 = = d) T 4 () = (

Mehr

Linear. Halbkreis. Parabel

Linear. Halbkreis. Parabel Vom Parabolspiegel zur Ableitungsfunktion Im Folgenden get es darum erauszufinden, was ein Parabolspiegel ist und wie er funktioniert. Das fürt uns auf wictige Fragen eines Teilgebietes der Matematik,

Mehr

V6 Lösungsvorschläge

V6 Lösungsvorschläge V6 Lösungsvorscläge 2 V6-Lösungsvorscläge Aufgabe 1 Die Aufgabe ist ein einfaces, nict so ganz realistisces Beispiel für lokale Änderungsrate, die bei Weg/Zeit-Zusammenängen die Gescwindigkeit bescreibt

Mehr

Analysis: Klausur Analysis

Analysis: Klausur Analysis Analysis Klausur zu Ableitung, Extrem- und Wendepunkten, Interpretation von Grapen von Ableitungsfunktionen, Tangenten und Normalen (Bearbeitungszeit: 90 Minuten) Gymnasium J Alexander Scwarz www.mate-aufgaben.com

Mehr

Tangenten an Funktionsgraphen (Differenzialrechnung) Aufgaben ab Seite 4

Tangenten an Funktionsgraphen (Differenzialrechnung) Aufgaben ab Seite 4 Klasse / Augaben ab Seite 4 rundlagen und Begrie der Dierenzialrecnung Die Zeicnungen und Erklärungen sind etwas ausürlicer als notwendig u versciedene Screibweisen und Darstellungen auzuzeigen. Steigung

Mehr

Weitere Anwendungen von ganzrationalen Funktionen

Weitere Anwendungen von ganzrationalen Funktionen Weitere Anwendungen von ganzrationalen Funktionen 1.0 Um Obstkisten aus Pappe erzustellen, werden aus recteckigen Kartonplatten (Länge 16 dm, Breite 1 dm) an den vier Ecken jeweils Quadrate abgescnitten.

Mehr

Einstiegsphase Analysis (Jg. 11)

Einstiegsphase Analysis (Jg. 11) Einstiegspase Analysis (Jg. 11) Ac Geradengleicungen: Eine Gerade g verlaufe durc P(-3/-2) und Q(4/3). Eine Gerade gee durc R(1/y) und stee senkrect auf g. Zeicne diese Geraden und stelle ire Gleicungen

Mehr

2. Unterrichtsvorhaben in der E-Phase Änderungsraten und Ableitung

2. Unterrichtsvorhaben in der E-Phase Änderungsraten und Ableitung 0 2. Unterrictsvoraben in der E-Pase Änderungsraten und Ableitung Jörn Meyer j.meyer@fals-solingen.de www.maspole.de 1 Inaltsverzeicnis 1 Einfürung in die Differenzialrecnung... 2 2 Mittlere Änderungsraten...

Mehr

TU Dresden Fakultät Mathematik Institut für Numerische Mathematik 1

TU Dresden Fakultät Mathematik Institut für Numerische Mathematik 1 TU Dresden Fakultät Matematik Institut für Numerisce Matematik Lösung zur Aufgabe 4 (a) des 9. Übungsblattes größtmöglicer Definitionsbereic: Die Funktion ist überall definiert, außer an der Stelle = 3

Mehr

Produktregel (Ableitung von f g)

Produktregel (Ableitung von f g) Produktregel (Ableitung von f g) f f g 0 f 0 g g 0 Wir aben die Hoffnung, dass die Ableitung von f g mit Hilfe der Ableitungen von f und g ermittelt werden kann. f ( 0 ) = lim 0 f( 0 +) f( 0 ) g ( 0 )

Mehr

= (Differenzenquotient).

= (Differenzenquotient). Micael Bulmann Matematik > Analysis > Ableitungen > Änderungsrate Von der mittleren zur momentanen Änderungsrate Für zwei versciedene Punkte P( 1 y 1 und Q( y auf der Zalenebene ergibt sic die Steigung

Mehr

Lösungen zu delta 6. Kann ich das noch? Lösungen zu den Seiten 6 und 7

Lösungen zu delta 6. Kann ich das noch? Lösungen zu den Seiten 6 und 7 Kann ic das noc? Lösungen zu den Seiten 6 und 7. a) L = { ; } b) L = {0; } c) L = {} d) ( + )( + ) = 0; L = { ; } e) ( 6)( ) = 0; L = {; 6} f) L = {0}; 0,7 G g) ( 8)( + ) = 0; L = { ; 8} ) ( + )( + ) =

Mehr

Einführung in die Differentialrechnung

Einführung in die Differentialrechnung Reiner Winter Einfürung in die Differentialrecnung. Das Tangentenproblem als ein Grundproblem der Differentialrecnung Wir betracten im folgenden die quadratisce Normalparabel, d.. den Grapen GI f der Funktionsgleicung

Mehr

5.3 Von der Sekantensteigungsfunktion zur Ableitungsfunktion

5.3 Von der Sekantensteigungsfunktion zur Ableitungsfunktion 5.3 Von der Sekantensteigungsfunktion zur Ableitungsfunktion 5.3 Von der Sekantensteigungsfunktion zur Ableitungsfunktion Ein kurzer Rückblick erleictert die Bescreibung des Neuen: Im ersten Lernabscnitt

Mehr

( ), und legen deshalb eine Ebene fest. Als Aufpunkt dient ein beliebiger Punkt von g oder h, als Spannvektoren

( ), und legen deshalb eine Ebene fest. Als Aufpunkt dient ein beliebiger Punkt von g oder h, als Spannvektoren Lösungen zur analytiscen Geometrie, Buc S. 9f. a) E in die Parameterform umwandeln: x = x + x + Wäle: x = ; x = x = + E : X = x x x = + + = + In F einsetzen: + + = + = = In E einsetzen: s: X = + + ( )

Mehr

4. Aufgaben zur Integralrechnung (Kap.14)

4. Aufgaben zur Integralrechnung (Kap.14) . ugaben zur Integralrecnung Kap.. Geben Sie ür die Funktionen jeweils die Funktionsgleicung einer Stammunktion F an und erläutern Sie insbesondere Ire Vorgeensweise:. Geben Sie ür die Funktionen jeweils

Mehr

Mathematik Klassenarbeit Nr. 3. Die Ableitungsfunktion, Eigenschaften und Anwendungen

Mathematik Klassenarbeit Nr. 3. Die Ableitungsfunktion, Eigenschaften und Anwendungen 0. Für Pflict- und Walteil gilt: saubere und übersictlice Darstellung, klar ersictlice Recenwege, Antworten in ganzen Sätzen und Zeicnungen mit spitzem Bleistift bringen dir bis zu 3 Punkte. /3 1. Erkläre

Mehr

Realschulabschluss Schuljahr 2004/2005. Mathematik

Realschulabschluss Schuljahr 2004/2005. Mathematik Prüfungstag: Mittwoc, 8. Juni 2005 Prüfungsbeginn: 8.00 Ur Realsculabscluss Sculjar 2004/2005 Matematik Hinweise für die Prüfungsteilnemerinnen und -teilnemer Die Arbeitszeit beträgt 150 Minuten. Im Bereic

Mehr

Abiturprüfung Mathematik 2005 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Lösung Aufgabe A

Abiturprüfung Mathematik 2005 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Lösung Aufgabe A www.mate-aufgaben.com Abiturprüfung Matematik 5 (Baden-Württemberg) Beruflice Gymnasien one TG Analysis Gruppe I, Lösung Aufgabe A f () ( ) ( ) ( ) f () ( ) f () ( ) und f () Wendepunkte: f () ( ) f (

Mehr

Übungsaufgaben zur Differential-Rechnung

Übungsaufgaben zur Differential-Rechnung Übungsaufgaben zur Differential-Recnung Weitere Übungsaufgaben mit Lösungen gibt es z.b. in Brauc/Dreyer/Haacke, Papula, Stingl, Stöcker, Minorski usw.. Bestimme allgemeines Folgen-Element, Eigenscaften

Mehr

Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 2014 Mathematik

Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 2014 Mathematik Seite von 0 Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 04 Mathematik. Aufgabenart Analysis. Aufgabenstellung Aufgabe : Untersuchung ganzrationaler Funktionen Aufgabe : Verkehrsstau

Mehr

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient Differenzenquotient Sei f : R R eine Funktion. Der Quotient Kapitel 7 Differentialrecnung f f 0 + f 0 f f 0 0 eißt Differenzenquotient an der Stelle 0. f, f Sekante 0, f 0 f 0 Josef Leydold Matematik für

Mehr

Weg zur e-funktion. Zur Einstimmung werden einige Wachstumsverläufe skizziert. 1. Exponentielles Wachstum. 2. Begrenztes (beschränktes) Wachstum

Weg zur e-funktion. Zur Einstimmung werden einige Wachstumsverläufe skizziert. 1. Exponentielles Wachstum. 2. Begrenztes (beschränktes) Wachstum Weg zur e-funktion Zur Einstimmung werden einige Wacstumsverläufe skizziert.. Eponentielles Wacstum. Begrenztes (bescränktes) Wacstum Wacstumsverläufe. Logistisces Wacstum. Vergiftetes Wacstum Eponentielles

Mehr

Mathematik für Chemiker I

Mathematik für Chemiker I Universität D U I S B U R G E S S E N Campus Essen, Matematik PD Dr. L. Strüngmann WS 007/08 Übungsmaterial sowie andere Informationen zur Veranstaltung unter: ttp://www.uni-due.de/algebra-logic/struengmann.stml

Mehr

Ableitungsfunktionen und Ableitungsregeln

Ableitungsfunktionen und Ableitungsregeln Ableitungsfunktionen und Ableitungsregeln Ableitung einer Funktion f an einer Stelle, Begriff der Ableitungsfunktion Bilden einiger Ableitungsfunktionen Ableitungsregeln und Möglickeiten irer Herleitung

Mehr

Anleitung zur Berechnung von Ableitungsfunktionen

Anleitung zur Berechnung von Ableitungsfunktionen Matematik 11d 7..009 Stefan Krissel Anleitung zur Berecnung von Ableitungsfunktionen Prolog Es gibt nict das Verfaren zur Berecnung der Ableitungsfunktion, genausowenig wie es das Verfaren zum Screiben

Mehr

Geometrisch ergibt sich deren Graph als Schnitt von G mit der senkrechten Ebene y = b bzw. x = a:

Geometrisch ergibt sich deren Graph als Schnitt von G mit der senkrechten Ebene y = b bzw. x = a: Fläcen im Raum Grap und Scnittkurven Im ganzen Artikel bezeicnet D eine Teilmenge des R 2 und eine skalarwertige Funktion in zwei Veränderlicen. Der Grap f : D R 2 R : (x, y) z = f(x, y) G = { (x, y, z)

Mehr

Grundlagen der Differentialrechnung

Grundlagen der Differentialrechnung Grundlagen der Differentialrecnung Wolfgang Kippels 26. Oktober 2018 Inaltsverzeicnis 1 Vorwort 2 2 Grundprinzip der Differenzialrecnung 3 3 Ableiten von Funktionen 7 3.1 Ableitungen wictiger Grundfunktionen:..................

Mehr

3.2 Polarkoordinaten und exponentielle Darstellung

3.2 Polarkoordinaten und exponentielle Darstellung 42 3.2 Polarkoordinaten und exponentielle Darstellung Ein Punkt z = a + bi der Gaußscen Zalenebene ist durc seine kartesiscen Koordinaten a und b eindeutig festgelegt. Man kann jedoc auc zwei andere Grössen

Mehr

Musterlösung Übung 1

Musterlösung Übung 1 Allgemeine Cemie PC) Musterlösung Übung HS 07 Musterlösung Übung Aufgabe : Molmasse von Sauerstoff Da die Summe der natürlicen Häufigkeiten aller stabilen Isotope Σ i i = sein muss, ist die Häufigkeit

Mehr

= 4. = 2 π. s t. Lösung: Aufgabe 1.a) Der Erdradius beträgt 6.371km. Aufgabe 1.b) Das Meer nimmt 71% der Erdoberfläche ein.

= 4. = 2 π. s t. Lösung: Aufgabe 1.a) Der Erdradius beträgt 6.371km. Aufgabe 1.b) Das Meer nimmt 71% der Erdoberfläche ein. Aufgabe : Die Die ist der fünftgrößte der neun Planeten unseres Sonnensystems und wiegt 5,98* 0 4 kg. Sie ist zwiscen 4 und 4,5 Millionen Jaren alt und bewegt sic auf einer elliptiscen Ban in einem durcscnittlicen

Mehr

5.5. Prüfungsaufgaben zur graphischen Integration und Differentiation

5.5. Prüfungsaufgaben zur graphischen Integration und Differentiation 5.5. Prüfungsaufgaben zur graphischen Integration und Differentiation Aufgabe : Verschiebung und Streckung trigonometrischer Funktionen (5) a) Bestimmen Sie die Periode p sowie die Nullstellen der Funktion

Mehr

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Lösung - Serie 5

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Lösung - Serie 5 D-MAVT/D-MATL Analysis I HS 08 Dr. Anreas Steiger Lösung - Serie 5 MC-Aufgaben (Online-Abgabe). Es sei f : [a, b] R eine Funktion. Welce er folgenen Aussagen ist rictig? (a) (b) f ist stetig f ist ifferenzierbar.

Mehr

5 Differenzialrechnung für Funktionen einer Variablen

5 Differenzialrechnung für Funktionen einer Variablen 5 Differenzialrecnung für Funktionen einer Variablen Ist f eine ökonomisce Funktion, so ist oft wictig zu wissen, wie sic die Funktion bei kleinen Änderungen verält. Bescreibt etwa f einen Wacstumsprozess,

Mehr

Vorbereitung auf die srdp Teil A

Vorbereitung auf die srdp Teil A Vorbereitung auf die srdp Teil A -, 7 8 =,95 7 8 -,. ist rational;,. ist eine periodisce Dezimalzal 7 ist rational; wegen = 7 gilt 7 = _ und 7 kann daer als Bruc angegeben werden ( ) ist rational; wegen

Mehr

Förderaufgaben EF Arbeitsblatt 1 Abgabe Zeichne die Tangenten bei x=6 und bei x = 4 ein und bestimme die zugehörige Geradengleichung.

Förderaufgaben EF Arbeitsblatt 1 Abgabe Zeichne die Tangenten bei x=6 und bei x = 4 ein und bestimme die zugehörige Geradengleichung. Förderaufgaben EF Arbeitsblatt 1 Abgabe 20.1.15 1. Zeichne die Tangenten bei x=6 und bei x = 4 ein und bestimme die zugehörige Geradengleichung. 2. Bestimme f (x): a) f(x) = x 3 + 4x 2 x + 1 b) f(x) =

Mehr

Repetitorium Analysis I für Physiker

Repetitorium Analysis I für Physiker Micael Scrapp Ubungsblatt 3 Lösungen Tecnisce Universität Müncen Repetitorium Analysis I für Pysiker Analysis I Aufgabe Wir definieren zunäcst die Funktion g(t) = 2 0 f(t)t 2 dt Die Menge B = g (], 5[)ist

Mehr

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert PN Einfürung in die Pysik für Cemiker Prof. J. Lipfert en zu Übungsblatt 7 WS 203/4 en zu Übungsblatt 7 Aufgabe Ballscleuder. Zwei Bälle werden übereinander und gleiczeitig fallen gelassen. Die Massen

Mehr

Manfred Burghardt. Allgemeine Hochschulreife und Fachhochschulreife in den Bereichen Erziehung, Gesundheit und Soziales

Manfred Burghardt. Allgemeine Hochschulreife und Fachhochschulreife in den Bereichen Erziehung, Gesundheit und Soziales Manfred Burgardt Allgemeine Hocsculreife und Facocsculreife in den Bereicen Erzieung, Gesundeit und Soziales Version /4 Inaltsverzeicnis I Inaltsverzeicnis Inaltsverzeicnis... I Die Ableitungsfunktion

Mehr

Skulptur. 0,25 m. 1,65 m 1,7 m Sockel. 0,6 m 0,6 m 10 m. Aufgabe 1: Die Skulptur

Skulptur. 0,25 m. 1,65 m 1,7 m Sockel. 0,6 m 0,6 m 10 m. Aufgabe 1: Die Skulptur Aufgabe 1: Die Skulptur Um die Höe einer Skulptur zu bestimmen, die auf einem Sockel stet, stellt sic eine Person (Augenöe 1,70 m) in einer Entfernung von 10 m mit dem Rücken zur Skulptur und ält sic einen

Mehr

8. Differentiation. f(x) f(x 0 ) =: f,x0 (x) lim

8. Differentiation. f(x) f(x 0 ) =: f,x0 (x) lim 8. Differentiation Sei I R ein Intervall. Eine Funktion f : I R eißt in x 0 I differenzierbar (Steno: diffbar), wenn der für x I, x x 0 erklärte Differenzenquotient f(x) f(x 0 ) =: f,x0 (x) nac x 0 stetig

Mehr

Mathematik - Oberstufe

Mathematik - Oberstufe www.mate-aufgaben.com Matematik - Oberstufe Aufgaben und Musterlösungen zu Ableitungen, Tangenten, Normalen Zielgruppe: Oberstufe Gymnasium Scwerpunkt: Differenzenquotient, Differenzialquotient, Ableitung,

Mehr

Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 2011 Mathematik

Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 2011 Mathematik ZK M A1 (mit CAS) Seite 1 von 5 Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 011 Mathematik 1. Aufgabenart Analysis. Aufgabenstellung siehe Prüfungsaufgabe. Materialgrundlage

Mehr

9 Anhang. 9.1 Verhältnisgleichungen. 9.2 Strahlensätze. Elemente der Geometrie 22

9 Anhang. 9.1 Verhältnisgleichungen. 9.2 Strahlensätze. Elemente der Geometrie 22 Elemente der Geometrie 9 Anang 9.1 Verältnisgleicungen Verältnisgleicungen sind spezielle Formen von Gleicungen. Es a werden zwei Quotienten gleic gesetzt. Die Gleicung! b = c d kann man auc screiben als!a:b

Mehr

Zentrale Klausur am Ende der Einführungsphase 2011 Mathematik

Zentrale Klausur am Ende der Einführungsphase 2011 Mathematik ZK M A1 (mit CAS) Seite 1 von Zentrale Klausur am Ende der Einführungsphase 011 Mathematik Aufgabenstellung In Nordrhein-Westfalen sind Hochwasser nichts Unbekanntes. Insbesondere die Rheinschiene im Großraum

Mehr

Ein immer wiederkehrendes Konzept in der Mathematik ist die Zurückführung auf Bekanntes, beziehungsweise auf besonders

Ein immer wiederkehrendes Konzept in der Mathematik ist die Zurückführung auf Bekanntes, beziehungsweise auf besonders Vorlesung 14 Differentialrecnung Ein immer wiedererendes Konzept in der Matemati ist die Zurücfürung auf Beanntes, bezieungsweise auf besonders einface Fälle. Besonders einfac sind lineare Funtionen in

Mehr

Diagramm 1 Diagramm 2

Diagramm 1 Diagramm 2 Zweijärige zur Prüfung der Facsculreife fürende Berufsfacscule (BFS) Matematik (9) Hauptprüfung 008 Aufgaben Aufgabe 1 A. 1. Bestimmen Sie die Gleicungen der Geraden g und.. Geben Sie die Koordinaten der

Mehr

4.3.2 Ableitungsregeln

4.3.2 Ableitungsregeln Vorbereitungskurs auf die Aufnameprüfung der ETH: Matematik 4.3.2 Ableitungsregeln Der Differentialquotient [s. 43] zur Definition der Ableitung beinaltet eine Grenzwertbildung Limes), welce meist dadurc

Mehr

Rudolphs Schlitten. Aufgabe. Autor: Jochen Ricker

Rudolphs Schlitten. Aufgabe. Autor: Jochen Ricker Rudolps Sclitten Autor: Jocen Ricker Aufgabe Endlic ist es wieder soweit: Weinacten stet vor der Tür! Diesmal at der Weinactsmann sic ein ganz besonderes Gescenk für seine Rentiere einfallen lassen. Sie

Mehr

Schriftliche Prüfung Schuljahr: 2008/2009 Schulform: Gymnasium. Mathematik

Schriftliche Prüfung Schuljahr: 2008/2009 Schulform: Gymnasium. Mathematik Ministerium für Bildung, Jugend und Sport Prüfungen am Ende der Jargangsstufe 10 Scriftlice Prüfung Sculjar: 2008/2009 Sculform: Matematik Allgemeine Arbeitsinweise Die Prüfungszeit beträgt 160 Minuten.

Mehr

Aufgabe 2: Analysis (WTR)

Aufgabe 2: Analysis (WTR) Abitur Mathematik: Nordrhein-Westfalen 2013 Aufgabe 2 a) (1) STARTPUNKT BERECHNEN Der x Wert des Startpunktes ist mit 8 gegeben. Der zugehörige y Wert ist 8 1 50 8 3 106 8 4,24. 4 25 Der Startpunkt liegt

Mehr

Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 2011 Mathematik

Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 2011 Mathematik ZK M A (ohne CAS) Seite 1 von 10 Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 011 Mathematik 1. Aufgabenart Analysis. Aufgabenstellung Aufgabe 1: Hochwasser am Rhein Aufgabe

Mehr

ANALYSIS Differenzialrechnung Kapitel 1 5

ANALYSIS Differenzialrechnung Kapitel 1 5 TELEKOLLEG MULTIMEDIAL ANALYSIS Differenzialrecnung Kapitel 5 Ferdinand Weber BRmedia Service GmbH Inaltsverzeicnis Jedes Kapitel beginnt mit der Seitenzal.. Das Tangentenproblem. Steigung einer Geraden

Mehr

VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA

VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA Mittwoc: Ableiten, Kurvendiskussionen, Optimieren, Folgen und Reien Betracte auf einem Hügel einen Weg, dessen Seitenansict

Mehr

Der Hauptsatz der Differential und Integralrechnung

Der Hauptsatz der Differential und Integralrechnung Der Hauptsatz der Differential und Integralrecnung Micael Karkulik, Stepan Scmeissl Präsentation für Logik als Arbeitssprace ê Präsentationstecnik 2 Inalt: 1.0 Zusammenfassung 2.0 Einleitung 3.0 Der Hauptsatz

Mehr

Analysis I. Vorlesung 18. Differenzierbare Funktionen. f: D K

Analysis I. Vorlesung 18. Differenzierbare Funktionen. f: D K Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Vorlesung 18 Differenzierbare Funktionen In dieser Vorlesung betracten wir Funktionen, wobei D K eine offene Menge in K ist. Das ist eine Menge derart,

Mehr

Analysis. A1 Funktionen/Funktionsklassen. 1 Grundbegriffe. 2 Grundfunktionen

Analysis. A1 Funktionen/Funktionsklassen. 1 Grundbegriffe. 2 Grundfunktionen A1 Funktionen/Funktionsklassen 1 Grundbegriffe Analysis A 1.1 Gegeben sei die Funktion f mit f(x) = 2 x 2 + x. a) Bestimme, wenn möglich, die Funktionswerte an den Stellen 0, 4 und 2. b) Gib die maximale

Mehr

(1 + h) 2 + (1 + h) 2 (1 + h) 1. + h) = lim. die Definititionslücke. (1 + 2h + h 2 ) h 2. = lim. 3h + h 2 = lim. h(3 + h) = lim.

(1 + h) 2 + (1 + h) 2 (1 + h) 1. + h) = lim. die Definititionslücke. (1 + 2h + h 2 ) h 2. = lim. 3h + h 2 = lim. h(3 + h) = lim. Grenzwerte an ebbaren Deinitionslücken Musterbeispiel: Berecne den Grenzwert an der Deinitionelücke, bzw. den elenden Punkt des Grapen von, von der Funktion (x) = x + x x Scritt : Deinitionslücke bestimmen,

Mehr

Orientierungsaufgaben für die BESONDERE LEISTUNGSFESTSTELLUNG ab 2015 MATHEMATIK

Orientierungsaufgaben für die BESONDERE LEISTUNGSFESTSTELLUNG ab 2015 MATHEMATIK Orientierungsaufgaben für die BESONDERE LEISTUNGSFESTSTELLUNG ab 2015 MATHEMATIK Im Auftrag des TMBWK erarbeitet von den Facberaterinnen und Facberatern Matematik Gymnasium. Hinweise für Prüfungsteilnemerinnen

Mehr

Vorkurs Mathematik Herbst Skript Teil VI

Vorkurs Mathematik Herbst Skript Teil VI Vorkurs Matematik Herbst 2009 M. Carl E. Bönecke Skript Teil VI. Stetigkeit Definition. Eine Funktion f : R R eißt stetig im Punkt p, wenn für alle konvergente Folgen x : N R, n x n mit gleicen Grenzwert

Mehr

Einstieg in die Differenzialrechnung

Einstieg in die Differenzialrechnung Lern-Online.net Matematikportal Dierenzialrecnung (Einstieg) Einstieg in die Dierenzialrecnung Einstiegsbeispiel: Der ideale Kasten Augabenstellung: Ein DIN-A4-Blatt soll zu einem (deckellosen) Kasten

Mehr

Reise nach Rio Klimadiagramme lesen

Reise nach Rio Klimadiagramme lesen Reise nac Rio Klimadiagramme lesen Maria will im Juli nac Brasilien fliegen und dort Urlaub macen. Um iren Koffer passend zu packen und Unternemungen planen zu können, suct sie im Internet zunäcst nac

Mehr

6. Die Exponentialfunktionen (und Logarithmen).

6. Die Exponentialfunktionen (und Logarithmen). 6- Funktionen 6 Die Eponentialfunktionen (und Logaritmen) Eine ganz wictige Klasse von Funktionen f : R R bilden die Eponentialfunktionen f() = c ep( ) = c e, ier sind, c feste reelle Zalen (um Trivialfälle

Mehr

Lösungen zu den Vermischten Aufgaben Kapitel 5

Lösungen zu den Vermischten Aufgaben Kapitel 5 Band 10 - Einführungsphase NRW Lösungen zu den Vermischten Aufgaben Kapitel 5 1. Qualitative Skizzen der Füllgraphen (oben) und der zugehörigen Geschwindigkeitsgraphen (unten). a) b) c) d). a) IV) b) II)

Mehr

Anwendungsaufgaben zur allgemeinen Exponentialfunktion

Anwendungsaufgaben zur allgemeinen Exponentialfunktion Anwendungsaufgaben zur allgemeinen Exponentialfunktion.0 Im Jare 975 gab es auf der Erde 4,033 Milliarden Menscen. Man recnet mit einer Verdoppelungszeit der Erdbevölkerung von etwa 40 Jaren.. Nemen Sie

Mehr

9. Differentialrechnung 133. t t. ist besser bekannt unter dem Namen Geschwindigkeit, abgekürzt mit v. Für die Einheit gilt bekanntlich km. 5.

9. Differentialrechnung 133. t t. ist besser bekannt unter dem Namen Geschwindigkeit, abgekürzt mit v. Für die Einheit gilt bekanntlich km. 5. 9. Differentialrecnung 33 9 Von derr Änderrungsrratte zurr Diifffferrenttiiallrrecnung 9.. Gerradensttei igung als Änderrungsrratte Beispiel 9. Das nebensteende Zeit- Weg-Diagramm zeigt eine gleicförmige

Mehr

14 B Steigung. 1 Miss bei den drei Keilen die Winkel und Strecken und übertrage sie in die Tabelle. Berechne die Steigung.

14 B Steigung. 1 Miss bei den drei Keilen die Winkel und Strecken und übertrage sie in die Tabelle. Berechne die Steigung. Steigung 4 6 Arbeitseft+ Teste dic selbst Miss bei den drei Keilen die Winkel und Strecken und übertrage sie in die Tabelle. Berecne die Steigung. a a a Keil Keil 2 Keil 3 Keil Keil 2 Keil 3 Horizontale

Mehr

Kraft F in N Dehnung s in m

Kraft F in N Dehnung s in m . Klausur Pysik Leistungskurs Klasse 7. 9. 00 Dauer: 90 in. Wilel T., ein junger, talentierter Bogenscütze darf sic einen neuen Bogen kaufen. Er kann den Bogen it axial 50 N spannen und seine Are reicen

Mehr

Teil A hilfsmittelfreier Teil

Teil A hilfsmittelfreier Teil Klassenarbeit GYM Klasse 10 Seite 1 Datum: Thema: Ableitungen Name: Zeit: Erreichte Punkte: Note: Hilfsmittel: keine Teil A hilfsmittelfreier Teil Aufgabe 1: (6 Punkte) Bestimme jeweils mithilfe geeigneter

Mehr

(1) gegeben. Für x a (und stetige f ) nähert sich (x,f(x)) dem Punkt (a,f(a)), und die Sekante

(1) gegeben. Für x a (und stetige f ) nähert sich (x,f(x)) dem Punkt (a,f(a)), und die Sekante 88 III. Grundlagen der Differential - und Integralrecnung III. Grundlagen der Differential- und Integralrecnung 8. Differenzierbare Funktionen 88 9. Maima und Minima 93 0. Mittelwertsätze und Anwendungen

Mehr

Analysis 2. f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt:

Analysis 2.  f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt: Analysis 2 www.schulmathe.npage.de Aufgaben 1. Gegeben ist die Funktion f durch f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt: f (x) = 6(x

Mehr

Basisaufgaben - Lösungen

Basisaufgaben - Lösungen Arbeitsplan: Trigonometrie am rectwinkligen Dreieck Jargangsstufe 9 Aufgabe 1 Basisaufgaben - Lösungen a) sin δ k m l ; cos δ l m q l ; tan δ k l q, sin ε l m k ; cos ε k m p k ; tan ε l k p b) sin μ 1

Mehr

Lösung - Serie 3. D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe)

Lösung - Serie 3. D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe) D-MAVT/D-MATL Analysis I HS 07 Dr. Anreas Steiger Lösung - Serie 3. MC-Aufgaben (Online-Abgabe). Es sei ie Funktion f : [0, ) [0, ) efiniert urc f() = ln( + ), wobei er Logaritmus ln zur Basis e ist. Welce

Mehr

Polynome. Ein Term der Form. mit n und a 0 heißt Polynom. Die Zahlen a, a, a,... heißen Koeffizienten des Polynoms.

Polynome. Ein Term der Form. mit n und a 0 heißt Polynom. Die Zahlen a, a, a,... heißen Koeffizienten des Polynoms. Polynome Ein Term der Form a x + a x + a x + a x +... + a x + a x + a n n 1 n 2 n 3 2 1 2 3 4 n 2 n 1 n mit n und a 0 heißt Polynom. 1 Die Zahlen a, a, a,... heißen Koeffizienten des Polynoms. 1 2 3 Als

Mehr

Analysis 1. Torsten Wedhorn. f(x) f( x) x x. (2) Die Funktion f heißt auf D differenzierbar, falls f in jedem Punkt x D differenzierbar ist.

Analysis 1. Torsten Wedhorn. f(x) f( x) x x. (2) Die Funktion f heißt auf D differenzierbar, falls f in jedem Punkt x D differenzierbar ist. Analysis Torsten Wedorn 8 Differentiation (A) Differenzierbare Funktionen (B) Recenregeln für die Ableitung (C) Lokale Extrema und Mittelwertsatz (D) Ableitung und Monotonie (E) Der Satz von l Hospital

Mehr

C(5 1) 1 Ballmaschine Netzhöhe 0,91 m Netz Spieler

C(5 1) 1 Ballmaschine Netzhöhe 0,91 m Netz Spieler Aufträge Modellieren mitilfe der Ableitung. Modellieren mit Parabeln Auftrag Tennis Ein Spieler stet beim Training 5 m inter dem Netz. Er muss einscätzen, ob er den von einer Ballmascine gescossenen Ball

Mehr

Ableitungs- und Stammfunktion*

Ableitungs- und Stammfunktion* Ableitungs- und Stammfunktion* Aufgabennummer: 1_57 Aufgabentyp: Typ 1 T Typ Aufgabenformat: Multiple Choice ( aus 5) Grundkompetenz: AN 3.1 Es sei f eine Polynomfunktion und F eine ihrer Stammfunktionen.

Mehr

Ministerium für Schule und Weiterbildung NRW M GK HT 2 Seite 1 von 7. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Grundkurs

Ministerium für Schule und Weiterbildung NRW M GK HT 2 Seite 1 von 7. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Grundkurs Seite 1 von 7 Unterlagen für die Lehrkraft Abiturprüfung 010 Mathematik, Grundkurs 1. Aufgabenart Analysis. Aufgabenstellung siehe Prüfungsaufgabe 3. Materialgrundlage entfällt 4. Bezüge zu den Vorgaben

Mehr

Vorlesung für Schüler

Vorlesung für Schüler Universität Siegen Facbereic Matematik Vorlesung für Scüler 1.12.2 Emmy-Noeter-Campus Prof. Dr. H. J. Reinardt Computerlösungen dynamiscer Probleme Zusammenfassung Es werden zunäcst einface dynamisce Probleme

Mehr

Ableitungsfunktion einer linearen Funktion

Ableitungsfunktion einer linearen Funktion Ableitungsfunktion einer linearen Funktion Aufgabennummer: 1_009 Prüfungsteil: Typ 1! Typ 2 " Aufgabenformat: Konstruktionsformat Grundkompetenz: AN 3.1! keine Hilfsmittel! gewohnte Hilfsmittel möglich

Mehr

Grundkurs Physik: Abiturprüfung 1997 Aufgabe 3 Atomphysik

Grundkurs Physik: Abiturprüfung 1997 Aufgabe 3 Atomphysik Grundkurs Pysik: Abiturprüfung 1997 Aufgabe 3 Atompysik 1. Der gesamte sictbare Bereic (00 nm λ 750 nm) des elektromagnetiscen Spektrums soll auf einem Scirm dargestellt werden. a) Begründen Sie, warum

Mehr

Ferienkurs Theoretische Mechanik SS 2011

Ferienkurs Theoretische Mechanik SS 2011 Ferienkurs Teoretisce Mecanik SS Lösungen Freitag Aufgabe : Rotation eines Quaders um die Raumdiagonale Die Hauptacsen verlaufen durc den Scwerpunkt des Quaders parallel zu den Kanten. Die Kante der Länge

Mehr

g 2 g 1 15/16 I Übungen 2 EF Be Sept. 15 p 1 p 2

g 2 g 1 15/16 I Übungen 2 EF Be Sept. 15 p 1 p 2 15/16 I Übungen EF Be Sept. 15 Nr. 1: a) Funktion oder Relation? Welcher Graph gehört zu einer Funktion, welcher nicht? Begründe Deine Antwort kurz. a) und d) sind keine Funktionen, da die Zuordnungen

Mehr

Schwerpunktaufgaben zur Vorbereitung auf die Leistungsfeststellung

Schwerpunktaufgaben zur Vorbereitung auf die Leistungsfeststellung Schwerpunktaufgaben zur Vorbereitung auf die Leistungsfeststellung 1. Lösen Sie folgendes Gleichungssystem mit Hilfe des Gauß-Verfahrens. Überprüfen Sie Ihr Ergebnis mit dem Taschenrechner. ganzzahlig

Mehr

13 3. a) Uhrzeit Wasseranstieg (in cm pro Stunde)

13 3. a) Uhrzeit Wasseranstieg (in cm pro Stunde) 1 Funktionen als mathematische Modelle Noch it in Dierenzialrechnung? 1 1. a) Höhenänderung zwischen 0 m und 1 00 m (in der Horizontalen): ca. 800 m 600 m = 00 m durchschnittliche Änderungsrate im Intervall

Mehr