HA-Lösung TA-Lösung Diskrete Strukturen Tutoraufgabenblatt 10. Besprechung in KW02/2019

Größe: px
Ab Seite anzeigen:

Download "HA-Lösung TA-Lösung Diskrete Strukturen Tutoraufgabenblatt 10. Besprechung in KW02/2019"

Transkript

1 Technische Universität München Winter 2018/19 Prof. J. Esparza / Dr. M. Luttenberger, C. Welzel 2019/01/11 HA-Lösung TA-Lösung Diskrete Strukturen Tutoraufgabenblatt 10 Besprechung in KW02/2019 Beachten Sie: Soweit nicht explizit angegeben, sind Ergebnisse stets zu begründen! Lesen Sie sich bitte auf der Webpage die Bestimmungen zu den Hausaufgaben genau durch. Aufgabe 10.1 Entscheiden Sie unter Verwendung der Resolutionsmethode, ob folgende Formeln allgemeingültig sind: (a) F := (( B C D) ( B D) (C D) B). (b) G := ((A C D) (A B C) (A B C) ( A D) (A D) A). Lösungsvorschlag Hier wird verlangt, dass man zeigt, dass die Formeln gültig sind. D.h. die Resolution muss auf F angewendet werden, da F gültig gdw. F unerfüllbar. Beide Formeln sind hier in DNF gegeben, so dass sich ihre Negationen durch de Morgan wie in TA4.2 beschrieben sofort in KNF überführen lassen. Original clauses: Obtain C 12 = from C 4 = {D} and C 11 = { D} via D. Obtain C 4 = {D} from C 0 = {B, D} and C 2 = { B} via B. C 0 = {B, D}, C 1 = {B, C, D}, C 2 = { B}, C 3 = { C, D} Obtain C 11 = { D} from C 8 = {B, D} and C 2 = { B} via B. Obtain C 8 = {B, D} from C 1 = {B, C, D} and C 6 = {B, C} via C. Obtain C 6 = {B, C} from C 0 = {B, D} and C 3 = { C, D} via D. Following original clauses are not needed: { C, D} {B, C, D} {B, D} { B} {D} {B, C} {B, D} { D} 1

2 Original clauses: C 0 = { B, A, C}, C 1 = {A, D}, C 2 = {D, A}, C 3 = {A}, C 4 = {C, A, D}, C 5 = {B, A, C} Obtain C 28 = from C 20 = {C} and C 17 = { C} via C. Obtain C 20 = {C} from C 3 = {A} and C 15 = {C, A} via A. Obtain C 17 = { C} from C 3 = {A} and C 6 = { A, C} via A. Obtain C 15 = {C, A} from C 2 = {D, A} and C 11 = {C, D} via D. Obtain C 6 = { A, C} from C 5 = {B, A, C} and C 0 = { B, A, C} via B. Obtain C 11 = {C, D} from C 1 = {A, D} and C 4 = {C, A, D} via A. Following original clauses are not needed: { B, A, C} {B, A, C} {A, D} {C, A, D} {A} {D, A} {C, D} { A, C} {C, A} { C} {C} Aufgabe 10.2 Geben Sie Klauseln C 1, C 2, C 3, C 4 und Resolventen R 1, R 2, R 3, R 4 an, so dass der folgendene Resolutionsgraph eine korrekte Resolution der leeren Klausel darstellt: C 1 C 2 C 3 C 4 R 1 R 2 R 3 R 4 Lösungsvorschlag Eine mögliche Resolution: 2

3 {A, B} {B, C} {C} { A, B, C} {B} { A, B} {A} { A} Aufgabe 10.3 Eine nicht leere Klausel C heißt positiv, falls C ausschließlich positive Literale enthält. Sei K eine Klauselmenge, die weder die leere Klausel noch positive Klauseln enthält. Zeigen Sie, dass die leere Klausel nicht aus K resolviert werden kann. Lösungsvorschlag Sei K eine beliebige solche Klauselmenge. Da K nur nicht leere Klauseln enthält, jede solche Klausel aber nicht positiv ist, muss jede Klausel aus K also mindestens ein negatives Literal enthalten. Sei β daher die minimale Belegung zu K, die jede atomare Formel aus K auf false setzt. Dann ist β eine erfüllende Belegung von K, da sich in jeder Klausel mindestens ein negatives Literal unter β zu wahr auswertet. M.a.W. wendet man den DPLL (ohne PLR und OLR) auf K an, dann wird spätestens der letzte Ast im Fallunterscheidungsbaum zur leeren Klauselmenge führen. Damit K erfüllbar. Da die Resolution korrekt ist, kann die leere Klausel somit nicht aus K resolviert werden. Aufgabe 10.4 Ein klassiches (sehr einfaches) Beispiel aus der Künstlichen Intelligenz lautet: Ein (Roboter-)Affe soll eine Banane aus einem Regal nehmen. Der Affe hat nur einen Stuhl zur Verfügung, um die Banane zu erreichen. Zu Beginn gilt: Der Affe hat die Banane nicht, der Affe steht nicht auf dem Stuhl, der Stuhl steht irgendwo. Mögliche Aktionen des Affens: A1: Wenn der Affe nicht auf dem Stuhl steht, kann er auf den Stuhl steigen. A2: Wenn der Affe auf dem Stuhl steht, kann er vom Stuhl steigen. A3: Wenn der Affe nicht auf dem Stuhl steht, kann er den Stuhl unter der Banane positionieren. A4: Wenn sowohl der Stuhl unter der Banane steht, als auch der Affe auf dem Stuhl steht, dann kann der Affe die Banane nehmen. Ziel: Der (Roboter)Affe soll selbständig mittels dieser Aktionen einen Weg finden, wie er die Banane nehmen kann. Wir betrachten hierfür eine (nicht effiziente) Modellierung mittels Aussagenlogik. Es werden ausschließlich die aussagenlogischen Variablen Z a,s,b (mit a, s, b {0, 1}) verwendet, um die möglichen Zustände zu beschreiben: a gibt an, ob der Affe auf dem Stuhl ist (a = 1) oder nicht (a = 0) s gibt an, ob der Stuhl unter der Banane ist (s = 1) oder nicht (s = 0) b gibt an, ob der Affe die Banne hat (b = 1) oder nicht (b = 0) Damit lässt sich Aktion A1 wie folgt mittels einer Formel in KNF formalisieren: (Z 0,s,b Z 1,s,b ) ( Z 0,s,b Z 1,s,b ) =: F 1 3

4 (a) Formalisieren Sie entsprechend die restlichen Aktionen A2, A3, A4 und den Anfangszustand als Formeln F 2, F 3, F 4, F init in KNF. Sei F = F init F 1 F 2 F 3 F 4 im Weiteren. (b) Zeigen Sie: F ist erfüllbar. (c) Zeigen Sie: Wendet man das Resolutionsverfahren auf F an, so erhält man schließlich Z 1,1,1 als Resolventen. Geben Sie eine möglichst kurze Folge von Resolutionsschritten an, um Z 1,1,1 zu resolvieren. (Überlegen Sie sich, wie Sie die Banane mittels des Stuhls aus dem Regal nehmen würden. Wie spiegelt sich Ihr Vorgehen in den Resolventen wieder?) (d) Zeigen Sie: F = Z 1,1,1. Lösungsvorschlag Anfangssituation: Affe steht nicht auf dem Stuhl, Stuhl steht irgendwo, Affe hat die Banane nicht: F init = (Z 0,0,0 Z 0,1,0 ) Mögliche Aktionen des Affens: A1: Wenn der Affe nicht auf dem Stuhl steht, kann er auf den Stuhl steigen. F 1 = (Z 0,s,b Z 1,s,b ) ( Z 0,s,b Z 1,s,b ) A2: Wenn der Affe auf dem Stuhl steht, kann er vom Stuhl steigen. F 2 = (Z 1,s,b Z 0,s,b ) ( Z 1,s,b Z 0,s,b ) A3: Wenn der Affe nicht auf dem Stuhl steht, kann er den Stuhl unter der Banane positionieren. F 3 = (Z 0,s,b Z 0,1,b ) ( Z 0,s,b Z 0,1,b ) A4: Wenn sowohl der Stuhl unter der Banane steht, als auch der Affe auf dem Stuhl steht, dann kann der Affe die Banane nehmen. F 4 = (Z 1,1,b Z 1,1,1 ) ( Z 1,1,b Z 1,1,1 ) b {0,1} b {0,1} Konjunktion aller Teilformeln beschreibt alle Situationen, die der Affe erreichen kann (Wissensbasis des Affens): F = (Z 0,0,0 Z 0,1,0 ) (Start) (Z 0,s,b Z 1,s,b ) (auf Stuhl steigen) (Z 1,s,b Z 0,s,b ) (von Stuhl steigen) (Z 0,s,b Z 0,1,b ) (Stuhl unter Banane schieben) b {0,1} (Z 1,1,b Z 1,1,1 ) (Banane nehmen) F überführt man sofort in KNF, indem man einfach die Äquivalenz (F G) ( F G) verwendet. Somit erhält man auch direkt die Klauselmengendarstellung. (b) Man kann einfach alle Variablen mit 1 belegen. Damit ist in jeder Implikation die Konklusion erfüllt und damit die Implikation selbst, auch F init ist offensichtlich erfüllt. Somit ist auch die Konjunktion aller Formeln erfüllt. (c) Offensichtlicher Plan (a) Stuhl unter Banane schieben (falls nicht schon dort) (b) auf Stuhl steigen (c) Banane nehmen entspricht den logischen Schlüssen: (a) (Z 0,0,0 Z 0,1,0 ), (Z 0,0,0 Z 0,1,0 ) = Z 0,1,0 (b) Z 0,1,0, (Z 0,1,0 Z 1,1,0 ) = Z 1,1,0 4

5 (c) Z 1,1,0, (Z 1,1,0 Z 1,1,1 ) = Z 1,1,1 Als Resolventen: (a) {Z 0,1,0, Z 0,0,0 }, { Z 0,0,0, Z 0,1,0 } = {Z 0,1,0 } (b) {Z 0,1,0 }, { Z 0,1,0, Z 1,1,0 } = {Z 1,1,0 )} (c) {Z 1,1,0 }, { Z 1,1,0, Z 1,1,1 } = {Z 1,1,1 } Da man {Z 1,1,1 } aus den ursprünglichen Klauseln resolvieren kann, erhält man durch Hinzufügen von { Z 1,1,1 } eine unerfüllbar Formel, da man dann die leere Klausel resolvieren kann. (d) F = Z 1,1,1 folgt nun sofort, da allgemein gilt: Da: F = G gdw. F G ist unerfüllbar F = G gdw. = (F G) gdw. (F G) true gdw. (F G) false gdw. (F G) false gdw. (F G) unerfüllbar. (Nachlesen in den Folien!) Anmerkung: Der Punkt hier ist, dass man mittels der Resolution zeigen kann, dass Z 1,1,1 eine logische Folge aus den Annahmen über die Eigenschaften und Fähigkeiten des Affen ist (das, was man programmiert hat), d.h. wann immer die Annahmen erfüllt sind, gilt bereits die Aussage, dass der Affe die Banane erreichen kann. Tatsächlich ist eine Resolution der leeren Klausel dann nicht nur ein Beweis, dass der Affe stets die Banane erreichen kann, die Resolution beschreibt auch noch einen Plan, mittels welchem der Affe an die Banane kommt. Lässt man z.b. die Annahme über den Anfangszustand weg, dann kann der Affe die Banane zumindest unter der Belegung nicht erreichen, unter welcher er gar keinen Zustand erreichen kann. Formal: Z 1,1,1 ist keine logische Folge aus F 1 F 2 F 3 F 4, da z.b. die Belegung β(z a,s,b ) = 0 (für alle a, s, b {0, 1}) eine erfüllende Belegung für F 1... F 4 ist (alle Implikationen sind trivial erfüllt, da die Prämissen nicht erfüllt sind), aber nach Definition gilt β(z 1,1,1 ) = 0. Andererseits ist die Belegung β (Z a,s,b ) = 1 offensichtlich auch eine erfüllende Belegung von F 1... F 4 und zusätzlich Z 1,1,1 aber hier weiß man ja bereits nach Wahl von β, dass der Affe die Banane erreichen kann. 5

TU9 Aussagenlogik. Daniela Andrade

TU9 Aussagenlogik. Daniela Andrade TU9 Aussagenlogik Daniela Andrade daniela.andrade@tum.de 18.12.2017 1 / 21 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds findet ;) 2 /

Mehr

Klauselmengen. Definition Sei

Klauselmengen. Definition Sei Klauselmengen Definition 2.38 Sei α = (p 11... p 1k1 )... (p n1... p nkn ) eine in aussagenlogische Formel in KNF. Dann heißen die Mengen {p i1,..., p iki }, 1 i n, der jeweils disjunktiv verknüpften Literale

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 5. Aussagenlogik Normalformen Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Normalformen Definition: Literal Atom (aussagenlogische

Mehr

Resolution (Idee) Aus der Herleitung der leeren Disjunktion (= leere Klausel) folgt Unerfüllbarkeit.

Resolution (Idee) Aus der Herleitung der leeren Disjunktion (= leere Klausel) folgt Unerfüllbarkeit. Resolution (Idee) (F A) (F A) (F A) (F A) (F F ) Aus der Herleitung der leeren Disjunktion (= leere Klausel) folgt Unerfüllbarkeit. Zwei Fragen: Kann man aus einer unerfüllbaren Formel immer die leere

Mehr

Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Hornformeln

Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Hornformeln Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Frank Heitmann heitmann@informatik.uni-hamburg.de 9. Juni 2015 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/36 Ersetzbarkeitstheorem

Mehr

Übung 4: Aussagenlogik II

Übung 4: Aussagenlogik II Übung 4: Aussagenlogik II Diskrete Strukturen im Wintersemester 2013/2014 Markus Kaiser 8. Januar 2014 1/10 Äquivalenzregeln Identität F true F Dominanz F true true Idempotenz F F F Doppelte Negation F

Mehr

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25 Aussagenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Modellierung und Beweise Aussagenlogik H. Kleine Büning 1/25 Einführendes Beispiel Falls Lisa Peter trifft, dann trifft Lisa auch Gregor.

Mehr

Diskrete Strukturen Nachholklausur

Diskrete Strukturen Nachholklausur Technische Universität München Winter 0/7 Prof. H. J. Bungartz / Dr. M. Luttenberger, J. Bräckle, K. Röhner HA- Diskrete Strukturen Nachholklausur.04.07 Beachten Sie: Soweit nicht anders angegeben, ist

Mehr

Resolutionskalkül. wird t als eine Menge K t von Klauseln geschrieben, welche die einzelnen Maxterme repräsentieren:

Resolutionskalkül. wird t als eine Menge K t von Klauseln geschrieben, welche die einzelnen Maxterme repräsentieren: Resolutionskalkül Ein Kalkül ist eine Kollektion von syntaktischen Umformungsregeln, die unter gegebenen Voraussetzungen aus bereits vorhandenen Formeln neue Formeln erzeugen. Der Resolutionskalkül besteht

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 3 06.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax (Formeln) Semantik Wertebelegungen/Valuationen/Modelle

Mehr

23. Vorlesung: Logisches Schließen Markus Kr otzsch Professur f ur Wissensbasierte Systeme Normalformen

23. Vorlesung: Logisches Schließen Markus Kr otzsch Professur f ur Wissensbasierte Systeme Normalformen Logik: Glossar FORMALE SYSTEME 23. Vorlesung: Logisches Schließen Markus Krötzsch Professur für Wissensbasierte Systeme TU Dresden, 15. Januar 2018 Atom kleinste mögliche Formel p P Teilformel Unterausdruck,

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 4 7.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge

Mehr

FORMALE SYSTEME. 23. Vorlesung: Logisches Schließen. TU Dresden, 16. Januar Markus Krötzsch Lehrstuhl Wissensbasierte Systeme

FORMALE SYSTEME. 23. Vorlesung: Logisches Schließen. TU Dresden, 16. Januar Markus Krötzsch Lehrstuhl Wissensbasierte Systeme FORMALE SYSTEME 23. Vorlesung: Logisches Schließen Markus Krötzsch Lehrstuhl Wissensbasierte Systeme TU Dresden, 16. Januar 2017 Rückblick Markus Krötzsch, 16. Januar 2017 Formale Systeme Folie 2 von 31

Mehr

TU5 Aussagenlogik II

TU5 Aussagenlogik II TU5 Aussagenlogik II Daniela Andrade daniela.andrade@tum.de 21.11.2016 1 / 21 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds findet ;)

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Beweise)

Diskrete Strukturen Kapitel 2: Grundlagen (Beweise) WS 2014/15 Diskrete Strukturen Kapitel 2: Grundlagen (Beweise) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_14

Mehr

Resolution für die Aussagenlogik

Resolution für die Aussagenlogik Resolution für die Aussagenlogik Der Resolutionskakül ist ein Beweiskalkül, der auf Klauselmengen, d.h. Formeln in KNF arbeitet und nur eine Schlußregel besitzt. Der Resolution liegt die folgende Vorstellung

Mehr

Aussagenlogik: Syntax von Aussagen

Aussagenlogik: Syntax von Aussagen Aussagenlogik: Syntax von Aussagen A ::= X (A A) (A A) ( A) (A A) (A A) 0 1 Prioritätsreihenfolge :,,,,. A B: Konjunktion (Verundung). A B: Disjunktion (Veroderung). A B: Implikation. A B: Äquivalenz.

Mehr

Aufgabe. Gelten die folgenden Äquivalenzen?. 2/??

Aufgabe. Gelten die folgenden Äquivalenzen?. 2/?? Äquivalenz Zwei Formeln F und G heißen (semantisch) äquivalent, falls für alle Belegungen A, die sowohl für F als auch für G passend sind, gilt A(F ) = A(G). Hierfür schreiben wir F G.. 1/?? Aufgabe Gelten

Mehr

Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2.

Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2. Theorie der Informatik 24. Februar 2014 2. Aussagenlogik II Theorie der Informatik 2. Aussagenlogik II 2.1 Äquivalenzen Malte Helmert Gabriele Röger 2.2 Vereinfachte Schreibweise Universität Basel 24.

Mehr

Formale Grundlagen der Informatik 1 Kapitel 15 Normalformen und Hornformeln

Formale Grundlagen der Informatik 1 Kapitel 15 Normalformen und Hornformeln Formale Grundlagen der Informatik 1 Kapitel 15 Normalformen und Frank Heitmann heitmann@informatik.uni-hamburg.de 30. Mai 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/42 Zusammenfassung Syntax

Mehr

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/37

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/37 Aussagenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Modellierung und Beweise Aussagenlogik H. Kleine Büning 1/37 Modellierungsaufgabe Es gibt drei Tauben und zwei Löcher. Jede Taube soll in

Mehr

Syntax. 1 Jedes A AS AL ist eine (atomare) Formel. 2 Ist F eine Formel, so ist auch F eine Formel. 3 Sind F und G Formeln, so sind auch

Syntax. 1 Jedes A AS AL ist eine (atomare) Formel. 2 Ist F eine Formel, so ist auch F eine Formel. 3 Sind F und G Formeln, so sind auch Formale der Informatik 1 Kapitel 15 Folgerbarkeit, Äquivalenzen und Normalformen Frank Heitmann heitmann@informatik.uni-hamburg.de 8. Juni 2015 Syntax Definition (Syntax der Aussagenlogik) Mit AS AL sei

Mehr

Künstliche Intelligenz Logische Agenten & Resolution

Künstliche Intelligenz Logische Agenten & Resolution Künstliche Intelligenz Logische Agenten & Resolution Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Inferenz-Algorithmus Wie könnte ein

Mehr

Aussagenlogische Widerlegungsverfahren zum Nachweis logischer Eigenschaften und Beziehungen

Aussagenlogische Widerlegungsverfahren zum Nachweis logischer Eigenschaften und Beziehungen Einführung in die Logik - 4 Aussagenlogische Widerlegungsverfahren zum Nachweis logischer Eigenschaften und Beziehungen Widerlegungsverfahren zum Aufwärmen: Bestimmung von Tautologien mittels Quick Falsification

Mehr

Aufgabe 13 (Markierungsalgorithmus). Gegeben ist die Formel F = (A D C) (E A) ( ( B D) E) A B (B D)

Aufgabe 13 (Markierungsalgorithmus). Gegeben ist die Formel F = (A D C) (E A) ( ( B D) E) A B (B D) INTA - Lösungshinweise zum Übungsblatt 4, Version 1.0α. Wenn sie Fehler finden oder Ihnen etwas auch nach dem Gespräch mit ihren Kommilitonen noch unklar ist, dann schicken sie mir bitte eine Email! Aufgabe

Mehr

Aussagenlogik. Formale Methoden der Informatik WiSe 2012/2013 teil 6, folie 1

Aussagenlogik. Formale Methoden der Informatik WiSe 2012/2013 teil 6, folie 1 Aussagenlogik Formale Methoden der Informatik WiSe 22/23 teil 6, folie Teil VI: Aussagenlogik. Einführung 2. Boolesche Funktionen 3. Boolesche Schaltungen Franz-Josef Radermacher & Uwe Schöning, Fakultät

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 6 14.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge

Mehr

Formale Systeme, WS 2008/2009 Lösungen zum Übungsblatt 2

Formale Systeme, WS 2008/2009 Lösungen zum Übungsblatt 2 UNIVERSITÄT KARLSRUHE (TH) Institut für Theoretische Informatik Prof. Dr. B. Beckert M. Ulbrich Formale Systeme, WS 2008/2009 Lösungen zum Übungsblatt 2 Dieses Blatt wurde in der Übung am 14.11.2008 besprochen.

Mehr

Logik. Logik. Vorkurs Informatik Theoretischer Teil WS 2013/ September Vorkurs Informatik - Theorie - WS2013/14

Logik. Logik. Vorkurs Informatik Theoretischer Teil WS 2013/ September Vorkurs Informatik - Theorie - WS2013/14 Logik Logik Vorkurs Informatik Theoretischer Teil WS 2013/14 30. September 2013 Logik > Logik > logische Aussagen Logik Logik > Logik > logische Aussagen Motivation Logik spielt in der Informatik eine

Mehr

Diskrete Strukturen Wiederholungsklausur

Diskrete Strukturen Wiederholungsklausur Technische Universität München (I7) Winter 2013/14 Prof. J. Esparza / Dr. M. Luttenberger LÖSUNG Diskrete Strukturen Wiederholungsklausur Beachten Sie: Soweit nicht anders angegeben, ist stets eine Begründung

Mehr

Zusammenfassung Syntax: Formale Grundlagen der Informatik 1 Kapitel 15 Normalformen und Hornformeln. Zusammenfassung

Zusammenfassung Syntax: Formale Grundlagen der Informatik 1 Kapitel 15 Normalformen und Hornformeln. Zusammenfassung Formale der Informatik 1 Kapitel 15 und Frank Heitmann heitmann@informatik.uni-hamburg.de 30. Mai 2016 Zusammenfassung Syntax Zusammenfassung Syntax: Motivation Definition der Syntax: Alphabet, Junktor

Mehr

Logische und funktionale Programmierung

Logische und funktionale Programmierung Logische und funktionale Programmierung Vorlesung 2 und 3: Resolution Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 3. November 2017 1/43 HERBRAND-STRUKTUR Sei

Mehr

Logische Äquivalenz. Definition Beispiel 2.23

Logische Äquivalenz. Definition Beispiel 2.23 Logische Äquivalenz Definition 2.22 Zwei aussagenlogische Formeln α, β A heißen logisch äquivalent, falls für jede Belegung I von α und β gilt: Schreibweise: α β. Beispiel 2.23 Aus Folgerung 2.6 ergibt

Mehr

Allgemeingültige Aussagen

Allgemeingültige Aussagen Allgemeingültige Aussagen Definition 19 Eine (aussagenlogische) Formel p heißt allgemeingültig (oder auch eine Tautologie), falls p unter jeder Belegung wahr ist. Eine (aussagenlogische) Formel p heißt

Mehr

Erfüllbarkeitstests. Im folgenden: Ein sehr effizienter Erfüllbarkeitstest für eine spezielle Klasse von Formeln in KNF, sogenannte Hornformeln (vgl.

Erfüllbarkeitstests. Im folgenden: Ein sehr effizienter Erfüllbarkeitstest für eine spezielle Klasse von Formeln in KNF, sogenannte Hornformeln (vgl. Erfüllbarkeitstests Im folgenden: Ein sehr effizienter Erfüllbarkeitstest für eine spezielle Klasse von Formeln in KNF, sogenannte Hornformeln (vgl. Grundlagen und diskrete Strukturen ) Ein für Formeln

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 5 14.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Normalformen Atome, Literale, Klauseln Konjunktive

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 7 15.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Unser Ziel Kalkül(e) zur systematischen Überprüfung

Mehr

Problem der Resolution: Kombinatorische Explosion Ziel: Einschränkung der Möglichkeiten

Problem der Resolution: Kombinatorische Explosion Ziel: Einschränkung der Möglichkeiten 2.6 Verfeinerung der Resolution Problem der Resolution: Kombinatorische Explosion Ziel: Einschränkung der Möglichkeiten Resolutions-Strategien: heuristische Regeln für die Auswahl der Resolventen Resolutions-Restriktionen:

Mehr

Diskrete Strukturen Endterm

Diskrete Strukturen Endterm Technische Universität München Winter 201/16 Prof. H. J. Bungartz / Dr. M. Luttenberger, J. Bräckle, C. Uphoff Lösung HA-Lösung LÖSUNG Diskrete Strukturen Endterm Beachten Sie: Soweit nicht anders angegeben,

Mehr

Diskrete Strukturen Endterm

Diskrete Strukturen Endterm Technische Universität München Winter 016/17 Prof H J ungartz / Dr M Luttenberger, J räckle, K Röhner H- Diskrete Strukturen Endterm eachten Sie: Soweit nicht anders angegeben, ist stets eine egründung

Mehr

Formale Grundlagen der Informatik 1 Wiederholung zum Logik-Teil

Formale Grundlagen der Informatik 1 Wiederholung zum Logik-Teil Formale Grundlagen der Informatik 1 zum Logik-Teil Frank Heitmann heitmann@informatik.uni-hamburg.de 20. Juni 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/32 Überblick Im hatten wir Aussagenlogik

Mehr

Resolutionsalgorithmus

Resolutionsalgorithmus 112 Resolutionskalkül Mit dem Begriff Kalkül bezeichnet man eine Menge von syntaktischen Umformungsregeln, mit denen man semantische Eigenschaften der Eingabeformel herleiten kann. Für den Resolutionskalkül:

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 5 8.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge

Mehr

Deduktion in der Aussagenlogik. Semantische Folgerungsbeziehung. Zusammenhang zwischen semantischer und syntaktischer Folgerung

Deduktion in der Aussagenlogik. Semantische Folgerungsbeziehung. Zusammenhang zwischen semantischer und syntaktischer Folgerung Deduktion in der Aussagenlogik Menge von Ausdrücken der Aussagenlogik beschreibt einen bestimmten Sachverhalt, eine "Theorie" des Anwendungsbereiches Was folgt logisch aus dieser Theorie? Deduktion: aus

Mehr

Deduktion in der Aussagenlogik

Deduktion in der Aussagenlogik Deduktion in der Aussagenlogik Menge von Ausdrücken der Aussagenlogik beschreibt einen bestimmten Sachverhalt, eine "Theorie" des Anwendungsbereiches. Was folgt logisch aus dieser Theorie? Deduktion: aus

Mehr

1. Zwischentest Formale Systeme Fakultät für Informatik WS 2009/2010

1. Zwischentest Formale Systeme Fakultät für Informatik WS 2009/2010 1. Zwischentest Formale Systeme Fakultät für Informatik WS 2009/2010 Prof. Dr. Bernhard Beckert 10. Dezember 2009 Vorname: Matrikel-Nr.: Bitte geben Sie auf jedem benutzten Blatt rechts oben Ihren Namen

Mehr

Grundlagen der Logik

Grundlagen der Logik Grundlagen der Logik Denken Menschen logisch? Selektionsaufgabe nach Watson (1966): Gegeben sind vier Karten von denen jede auf der einen Seite mit einem Buchstaben, auf der anderen Seite mit einer Zahl

Mehr

Logische und funktionale Programmierung

Logische und funktionale Programmierung Logische und funktionale Programmierung Vorlesung 11: Logikprogramme Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 19. Dezember 2016 1/55 WIEDERHOLUNG: HORN-KLAUSELN

Mehr

1 Aussagenlogischer Kalkül

1 Aussagenlogischer Kalkül 1 Aussagenlogischer Kalkül Ein Kalkül in der Aussagenlogik soll die Wahrheit oder Algemeingültigkeit von Aussageformen allein auf syntaktischer Ebene zeigen. Die Wahrheit soll durch Umformung von Formeln

Mehr

1 Aussagenlogik AL: Verknüpfung von Aussagen

1 Aussagenlogik AL: Verknüpfung von Aussagen 1 Aussagenlogik AL: Verknüpfung von Aussagen Syntax atomare Formeln A,B,C sind AL-Formeln F und G AL-Formeln (F G),(F G) und F AL-Formeln müssen in endlich vielen Schritten gebildet werden können echtes

Mehr

Wozu formale Logik? Programmiersprachen Logik im Fingerhut. Formeln. Logik im Fingerhut (24. Januar 2005) Belegung und Interpretation

Wozu formale Logik? Programmiersprachen Logik im Fingerhut. Formeln. Logik im Fingerhut (24. Januar 2005) Belegung und Interpretation Wozu formale Logik? Logik im Fingerhut Studiengang Informatik Universität Bremen präzise Beschreibung von Aussagen über die Welt bzw. über verschiedene Welten Ziehen und Überprüfen von Schlussfolgerungen

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 6. Aussagenlogik Resolution Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Der aussagenlogische Resolutionkalkül Wesentliche

Mehr

Vorlesung Logik Wintersemester 2012/13 Universität Duisburg-Essen

Vorlesung Logik Wintersemester 2012/13 Universität Duisburg-Essen Vorlesung Logik Wintersemester 2012/13 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume & Dr. Sander Bruggink Barbara König Logik 1 (Motivation) Wir benötigen Algorithmen für Erfüllbarkeitstests,

Mehr

Logik. Gabriele Kern-Isberner LS 1 Information Engineering. TU Dortmund Wintersemester 2014/15 WS 2014/15

Logik. Gabriele Kern-Isberner LS 1 Information Engineering. TU Dortmund Wintersemester 2014/15 WS 2014/15 Logik Gabriele Kern-Isberner LS 1 Information Engineering TU Dortmund Wintersemester 2014/15 WS 2014/15 G. Kern-Isberner (TU Dortmund) Logik WS 2014/15 1 / 125 Übersicht Modallogik 5. Grundlagen 6. Erfüllbarkeit

Mehr

Einiges zu Resolutionen anhand der Aufgaben 6 und 7

Einiges zu Resolutionen anhand der Aufgaben 6 und 7 Einiges zu Resolutionen anhand der Aufgaben 6 und 7 Es gibt eine Fülle von verschiedenen Resolutionen. Die bis jetzt behandelten möchte ich hier noch ein Mal kurz erläutern. Ferner möchte ich noch auf

Mehr

Das SAT Problem oder Erfüllbarkeitsproblem. Formale Systeme. Teilklassen. Satz von Cook. SAT Instanz: Eine aussagenlogische Formel F For 0

Das SAT Problem oder Erfüllbarkeitsproblem. Formale Systeme. Teilklassen. Satz von Cook. SAT Instanz: Eine aussagenlogische Formel F For 0 Das SAT Problem oder Erfüllbarkeitsproblem Formale Systeme Prof. Dr. Bernhard Beckert Fakultät für Informatik Universität Karlsruhe TH SAT Instanz: Eine aussagenlogische Formel F For 0 Frage: Ist F erfüllbar?

Mehr

Einführung in die Logik, Übungsklausur 2016/07/11

Einführung in die Logik, Übungsklausur 2016/07/11 Institut für Theoretische Informatik ITI Dr. Jürgen Koslowski Einführung in die Logik, Übungsklausur 2016/07/11 Diese Aufgaben werden in der Extra-Übung am Freitag, 2016-07-15, 13:15, im SN 19.4 besprochen,

Mehr

5.1 Inferenz. Theorie der Informatik. Theorie der Informatik. 5.1 Inferenz. 5.2 Resolutionskalkül. 5.3 Zusammenfassung. Inferenz: Motivation

5.1 Inferenz. Theorie der Informatik. Theorie der Informatik. 5.1 Inferenz. 5.2 Resolutionskalkül. 5.3 Zusammenfassung. Inferenz: Motivation Theorie der Informatik 9. März 2015 5. Aussagenlogik III Theorie der Informatik 5. Aussagenlogik III 5.1 Inferenz Malte Helmert Gabriele Röger 5.2 Resolutionskalkül Universität Basel 9. März 2015 5.3 Zusammenfassung

Mehr

Beispiel Aussagenlogik nach Schöning: Logik...

Beispiel Aussagenlogik nach Schöning: Logik... Beispiel Aussagenlogik nach Schöning: Logik... Worin besteht das Geheimnis Ihres langen Lebens? wurde ein 100-jähriger gefragt. Ich halte mich streng an die Diätregeln: Wenn ich kein Bier zu einer Mahlzeit

Mehr

Aufgabe 1: MC (10 Punkte) wahr 1P, falsch 0P, keine Ahnung 0.5P. Jede Struktur hat mindestens eine Substruktur

Aufgabe 1: MC (10 Punkte) wahr 1P, falsch 0P, keine Ahnung 0.5P. Jede Struktur hat mindestens eine Substruktur Aufgabe 1: MC (10 Punkte) wahr 1P, falsch 0P, keine Ahnung 0.5P Jede Struktur hat mindestens eine Substruktur JA Jeder Isomorphismus ist ein Homomorphismus JEIN? jeder bijektive Homomorphismus ist ein

Mehr

Logik. c Javier Esparza und Michael Luttenberger 2018/02/06

Logik. c Javier Esparza und Michael Luttenberger 2018/02/06 Logik c Javier Esparza und Michael Luttenberger Chair for Foundations of Software Reliability and Theoretical Computer Science Technische Universität München 2018/02/06 Logik und Inferenzen 2 Logik ist

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Ronja Düffel WS2018/19 01. Oktober 2018 Theoretische Informatik Wieso, weshalb, warum??!? 1 Modellieren und Formalisieren von Problemen und Lösungen 2 Verifikation (Beweis der

Mehr

Logik Vorlesung 5: Grundlagen Resolution

Logik Vorlesung 5: Grundlagen Resolution Logik Vorlesung 5: Grundlagen Resolution Andreas Maletti 21. November 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen Weitere

Mehr

4.0 VU Theoretische Informatik und Logik Teil 2 zum SS

4.0 VU Theoretische Informatik und Logik Teil 2 zum SS 4.0 VU Theoretische Informatik und Logik Teil 2 zum SS 2011 11.1.2012 Matrikelnummer Familienname Vorname Gruppe Lösung A 6.) Es gelten folgende Aussagen: (a) Wenn Ada groß ist, dann ist Berta klein, aber

Mehr

Ersetzbarkeitstheorem

Ersetzbarkeitstheorem Ersetzbarkeitstheorem Die Abgeschlossenheit läßt sich auch folgendermaßen formulieren: Ersetzbarkeitstheorem Seien F und G Formeln mit F G. SeienH und H Formeln, so daß H aus H hervorgeht, indem ein Vorkommen

Mehr

Aussagenlogik Prädikatenlogik erster Stufe. Logik. Logik

Aussagenlogik Prädikatenlogik erster Stufe. Logik. Logik Grundzeichen Aussagenlogik Aussagenvariablen P, Q, R,... Junktoren nicht und oder Runde Klammern (, ) Formeln Aussagenlogik Formeln sind spezielle Zeichenreihen aus Grundzeichen, und zwar 1 Jede Aussagenvariable

Mehr

Resolution (Motivation) Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Resolution (Idee) Resolution (Idee)

Resolution (Motivation) Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Resolution (Idee) Resolution (Idee) (Motivation) Vorlesung Logik Sommersemester 0 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume Wir benötigen Algorithmen für Erfüllbarkeitstests, die zumindest in vielen Fällen gutartiges

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Vorsemesterkurs Informatik Mario Holldack WS2015/16 30. September 2015 Vorsemesterkurs Informatik 1 Einleitung 2 Aussagenlogik 3 Mengen Vorsemesterkurs Informatik > Einleitung

Mehr

Motivation. Formale Grundlagen der Informatik 1 Kapitel 14 Aussagenlogik Syntax & Semantik. Motivation. Motivation

Motivation. Formale Grundlagen der Informatik 1 Kapitel 14 Aussagenlogik Syntax & Semantik. Motivation. Motivation Formale Grundlagen der Informatik 1 Kapitel 14 Aussagenlogik & Frank Heitmann heitmann@informatik.uni-hamburg.de Mit der Aussagenlogik lassen sich einfache Verknüpfungen zwischen (atomaren) Gebilden ausdrücken

Mehr

Formale Systeme, WS 2015/2016. Lösungen zu Übungsblatt 7

Formale Systeme, WS 2015/2016. Lösungen zu Übungsblatt 7 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Bernhard Beckert Dr. Thorsten Bormer, Dr. Vladimir Klebanov, Dr. Mattias Ulbrich Formale Systeme, WS 2015/2016 Lösungen

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Sommersemester 2018 Ronja Düffel 14. März 2018 Theoretische Informatik Wieso, weshalb, warum??!? 1 Modellieren und Formalisieren von Problemen und Lösungen 2 Verifikation (Beweis

Mehr

Theoretische Informatik: Logik

Theoretische Informatik: Logik Theoretische Informatik: Logik Vorlesung mit Übungen im WS 2006/2007 Vorlesung: Montag Montag 9-10 Uhr, Raum 1603 WAneu 14-16 Uhr, Raum 1603 WAneu Beginn: Montag, den 23.10.2006, 9 15 Uhr. Übungen in 3

Mehr

wenn es regnet ist die Straße nass:

wenn es regnet ist die Straße nass: Aussagenlogik 2 In der Aussagenlogik werden, wie der Name schon sagt, Aussagen über logische Operatoren verknüpft. Der Satz die Straße ist nass ist eine Aussage, genauso wie es regnet. Diese beiden Aussagen

Mehr

Logik für Informatiker Logic for Computer Scientists

Logik für Informatiker Logic for Computer Scientists Logik für Informatiker Logic for Computer Scientists Till Mossakowski Wintersemester 2014/15 Till Mossakowski Logik 1/ 18 Vollständigkeit der Aussagenlogik Till Mossakowski Logik 2/ 18 Objekt- und Metatheorie

Mehr

3. Logik 3.1 Aussagenlogik

3. Logik 3.1 Aussagenlogik 3. Logik 3.1 Aussagenlogik WS 06/07 mod 301 Kalkül zum logischen Schließen. Grundlagen: Aristoteles 384-322 v. Chr. Aussagen: Sätze, die prinzipiell als ahr oder falsch angesehen erden können. z. B.: Es

Mehr

Hilbert-Kalkül (Einführung)

Hilbert-Kalkül (Einführung) Hilbert-Kalkül (Einführung) Es gibt viele verschiedene Kalküle, mit denen sich durch syntaktische Umformungen zeigen läßt, ob eine Formel gültig bzw. unerfüllbar ist. Zwei Gruppen von Kalkülen: Kalküle

Mehr

Aussagenlogik. (MAF2) MAF(I, t) = t und MAF(I, f ) = f. Die Semantik aussagenlogischer Formeln ist durch die Funktion

Aussagenlogik. (MAF2) MAF(I, t) = t und MAF(I, f ) = f. Die Semantik aussagenlogischer Formeln ist durch die Funktion 43 Vergleiche mit MBA! (MAF4) MAF(I, (F G)) = MAF(I, F) MAF(I, G), wobei die zum Symbol gehörende Funktion ist. (MAF3) MAF(I, F) = MAF(I, F) (MAF2) MAF(I, t) = t und MAF(I, f ) = f (MAF1) MAF(I, A) = I(A),

Mehr

Formale Systeme. Aussagenlogik: Resolutionskalku l. Prof. Dr. Bernhard Beckert, WS 2018/2019

Formale Systeme. Aussagenlogik: Resolutionskalku l. Prof. Dr. Bernhard Beckert, WS 2018/2019 Formale Systeme Prof. Dr. Bernhard Beckert, WS 2018/2019 Aussagenlogik: Resolutionskalku l KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Mehr

Formale Systeme, WS 2011/2012 Lösungen zu Übungsblatt 1

Formale Systeme, WS 2011/2012 Lösungen zu Übungsblatt 1 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter H. Schmitt David Farago, Christoph Scheben, Mattias Ulbrich Formale Systeme, WS 2/22 Lösungen zu Übungsblatt Dieses

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 4. Aussagenlogik Syntax und Semantik der Aussagenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Syntax der Aussagenlogik:

Mehr

1.1 Motivation. Theorie der Informatik. Theorie der Informatik. 1.1 Motivation. 1.2 Syntax. 1.3 Semantik. 1.4 Formeleigenschaften. 1.

1.1 Motivation. Theorie der Informatik. Theorie der Informatik. 1.1 Motivation. 1.2 Syntax. 1.3 Semantik. 1.4 Formeleigenschaften. 1. Theorie der Informatik 19. Februar 2014 1. Aussagenlogik I Theorie der Informatik 1. Aussagenlogik I Malte Helmert Gabriele Röger Universität Basel 19. Februar 2014 1.1 Motivation 1.2 Syntax 1.3 Semantik

Mehr

Formale Systeme. Das Erfu llbarkeitsproblem. Prof. Dr. Bernhard Beckert, WS 2017/2018

Formale Systeme. Das Erfu llbarkeitsproblem. Prof. Dr. Bernhard Beckert, WS 2017/2018 Formale Systeme Prof. Dr. Bernhard Beckert, WS 2017/2018 Das Erfu llbarkeitsproblem KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Mehr

Definition (Modus Ponens) Wenn A, dann B. A gilt Also, gilt B

Definition (Modus Ponens) Wenn A, dann B. A gilt Also, gilt B Zusammenfassung der letzten LVA Wenn das Kind schreit, hat es Hunger Das Kind schreit Also, hat das Kind Hunger Fakt Korrektheit dieser Schlussfigur ist unabhängig von den konkreten Aussagen Einführung

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 28. Aussagenlogik: DPLL-Algorithmus Malte Helmert Universität Basel 2. Mai 2014 Aussagenlogik: Überblick Kapitelüberblick Aussagenlogik: 26. Grundlagen 27. Logisches

Mehr

Tableaukalkül für Aussagenlogik

Tableaukalkül für Aussagenlogik Tableaukalkül für Aussagenlogik Tableau: Test einer Formel auf Widersprüchlichkeit Fallunterscheidung baumförmig organisiert Keine Normalisierung, d.h. alle Formeln sind erlaubt Struktur der Formel wird

Mehr

Kapitel 1.3. Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln

Kapitel 1.3. Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln Kapitel 1.3 Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln Mathematische Logik (WS 2011/12) Kapitel 1.3: Normalformen 1/ 29 Übersicht

Mehr

Computational Logic Algorithmische Logik Boolesche Algebra und Resolution

Computational Logic Algorithmische Logik Boolesche Algebra und Resolution Computational Logic Algorithmische Logik Boolesche Algebra und Resolution Ralf Moeller Hamburg Univ. of Technology Boole'sche Algebra Äquivalenzen als "Transformationsgesetze" Ersetzbarkeitstheorem Zentrale

Mehr

De Morgan sche Regeln

De Morgan sche Regeln De Morgan sche Regeln Durch Auswerten der Wahrheitswertetabelle stellen wir fest, dass allgemeingültig ist; ebenso (p q) p q (p q) p q. Diese beiden Tautologien werden als die De Morgan schen Regeln bezeichnet,

Mehr

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung Zusammenfassung Zusammenfassung der letzten LVA Einführung in die Theoretische Informatik Wenn das Kind schreit, hat es Hunger Das Kind schreit Also, hat das Kind Hunger Christina Kohl Alexander Maringele

Mehr

Semantik der Aussagenlogik (Kurzform)

Semantik der Aussagenlogik (Kurzform) Semantik der Aussagenlogik (Kurzform) Eine Interpretation ist eine Abbildung der Aussagevariablen je in {true,false} (entspr. Wahrheit und Falschheit, abk.,) Interpretation zusammengesetzter Formeln definiere

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker Wintersemester 2007/08 Thomas Schwentick Teil A: Aussagenlogik 3. Erfüllbarkeit Version von: 23. Januar 2008(16:11) Inhalt 3.1 Grundbegriffe 3.2 Aussagenlogische Resolution 3.3 Endlichkeitssatz

Mehr

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung Zusammenfassung Zusammenfassung der letzten LVA Einführung in die Theoretische Informatik Christina Kohl Alexander Maringele Georg Moser Michael Schaper Manuel Schneckenreither Institut für Informatik

Mehr

Formale Methoden II. Gerhard Jäger. SS 2005 Universität Bielefeld. Teil 3, 12. Mai Formale Methoden II p.1/23

Formale Methoden II. Gerhard Jäger. SS 2005 Universität Bielefeld. Teil 3, 12. Mai Formale Methoden II p.1/23 Formale Methoden II SS 2005 Universität Bielefeld Teil 3, 12. Mai 2005 Gerhard Jäger Formale Methoden II p.1/23 Logische Folgerung Definition 6 (Folgerung) Eine Formel ϕ folgt logisch aus einer Menge von

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 27. Aussagenlogik: Logisches Schliessen und Resolution Malte Helmert Universität Basel 28. April 2014 Aussagenlogik: Überblick Kapitelüberblick Aussagenlogik: 26.

Mehr