Fachhochschule Flensburg. Institut für Physik
|
|
- Kurt Zimmermann
- vor 2 Jahren
- Abrufe
Transkript
1 Name: Fachhochschule Flensburg Fachbereich Technik Institut für Physik Versuch-Nr.: W 2 Bestimmung der Verdampfungswärme von Wasser Gliederung: Seite Einleitung Versuchsaufbau (Beschreibung) Versuchsdurchführung Versuchsaufbau (Skizze) Laborgruppe: Unterschrift des/der Studenten Als Übungsergebnis anerkannt: Flensburg, den Unterschrift des Dozenten
2 flüssig Institut für Physik Versuch : W2 Blatt : 1 Einleitung Die meisten Stoffe können in drei wesentlich verschiedenen physikalischen Zuständen auftreten. Diese Aggregatzustände bezeichnen wir als fest, flüssig und gasförmig. Die Umwandlung der Zustände ineinander erfolgt bei bestimmten Temperaturen und zwar beim Schmelzpunkt vom festen zum flüssigen, beim Siedepunkt vom flüssigen zum gasförmigen. In umgekehrter Richtung erfolgt die Umwandlung bei derselben Temperatur. Der Kondensationspunkt, bei dem Dampf sich verflüssigt, stimmt also mit dem Siedepunkt überein. Das gleiche gilt für den Erstarrungspunkt und den Schmelzpunkt. C 150 Wasserdampf Schmelzen Erstarren Schmelzwärme Wasser Verdampfungswärme 2257 Verdampfen Kondensieren kj kg gasförmig Q in kj Eis fest -50 Bild 1 Wie in Bild 1 veranschaulicht, läßt sich eine Flüssigkeit nicht beliebig hoch erhitzen. Führt man z.b. einer Wassermenge ständig Wärme zu, so steigt die Temperatur der Flüssigkeit fast gleichmäßig bis zum Siedepunkt, bleibt aber dort stehen, bis alles Wasser verdampft ist. Ein in siedendes Wasser gebrachtes Thermometer zeigt also (bei Normal-Luftdruck von 1013 hpa) unverändert 100 C an, obwohl ständig Wärme zugeführt wird. Diese Wärme nennt man Verdampfungswärme; sie dient dazu, die sog. Austrittsarbeit zu leisten, die beim Austritt der verdampfenden Moleküle aus der Flüssigkeit aufgebracht werden muß, sowie zur Vergrößerung des Volumens. So ist z.b. das Volumen von 1 kg Wasser etwa 1 l (schwach abhängig von der Temperatur), während 1 kg Wasserdampf bei 100 C und1013 hpa ein Volumen von 1670 l einnimmt. Führt man nun den umgekehrten Prozeß durch, indem man das Gas wieder verflüssigt, so muß man dafür sorgen,
3 Versuch : W2 Blatt : 2 daß die dabei freiwerdende Energie(sie heißt nun Kondensationswärme und ist dem Betrag nach gleich der Verdampfungswärme) an die Umgebung abgeführt wird. Die Verflüssigung des Gases erfolgt also (ebenso wie das Verdampfen der Flüssigkeit) bei konstanter Temperatur, nämlich bei der Siedetemperatur.Der Unterschied zwischen beiden Prozessen besteht darin, daß beim Verdampfen dem Flüssigkeits-Dampf-System Energie zugeführt wird, während beim Kondensieren diesem System Energie entzogen wird. Diese Energie, die in dem Dampf enthalten ist, nennt man auch latente (verborgene) Wärme. Merksatz: Die Verdampfungswärme r einer Flüssigkeit ist die Wärmemenge, welche nötig ist, um 1 kg der Flüssigkeit bei Siedetemperatur in Dampf von gleichem Druck und gleicher Temperatur zu verwandeln. Einige Siedepunkte t s und Verdampfungswärmen r bei 1013 hpa: Stoff in C r in Quecksilber t s kj kg Wasser Alkohol Äther Benzol Sauerstoff Wasserstoff Die Siedepunkte und damit die Verdampfungswärmen sind nicht konstant, sondern sehr stark vom Druck abhängig. Deshalb beziehen sich die in der Tabelle angegebenen Zahlenwerte auf den Druck von 1013 hpa bzw. 1 atm. Bei höherem Druck liegt der Siedepunkt einer Flüssigkeit höher, bei kleinerem Druck niedriger. So siedet das Wasser unter einem Druck von 0.5 atm bei 87.7 C und unter einem Druck von 2 atm bei C Die Moleküle der Flüssigkeit, die in den gasförmigen Zustand übergegangen sind, erzeugen über der Flüssigkeit einen Druck, den sog. Dampfdruck. Weil bei zunehmender Temperatur immer mehr Moleküle verdampfen, wächst der Dampfdruck mit steigender Temperatur rasch an. Ist er ebenso groß geworden wie der äußere Luftdruck, so kann die Dampfbildung in der gesamten Flüssigkeit einsetzen; sie fängt zu
4 Versuch : W2 Blatt : 3 sieden an. Daher ist der Siedepunkt dadurch gekennzeichnet, daß bei ihm der Dampfdruck gerade ebenso groß ist wie der Druck der umgebenden Atmosphäre. Jedem Druck ist somit eine genaue Siedetemperatur zugeordnet. Man bezeichnet die Werte als Sättigungsdruck p und Sättigungstemperatur T. Merksatz: Der Sättigungsdampfdruck stellt sich ein, wenn sich Flüssigkeit und Dampf in einem geschlossenen Raum im Gleichgewichtszustand befinden. Der Sättigungsdampfdruck ist nur von der Art des Stoffes und von der Temperatur, nicht aber vom Volumen des Behälters abhängig. Der Gleichgewichtszustand ist nur dann vorhanden, wenn im Mittel pro Zeit gleich viele Moleküle aus der Flüssigkeit in den Dampf übergehen, wie aus dem Dampf wieder zurück in die Flüssigkeit tauchen; wenn sich also die Anteile der Flüssigkeit und des Dampfes an der gesamten Substanz nicht gegeneinander verschieben. Vergrößert man das Volumen, so sinkt zunächst der Druck des Gases. Es verdampft dann jedoch soviel Flüssigkeit, bis sich der Sättigungsdampfdruck wieder eingestellt hat. Umgekehrt wird bei Verkleinerung des Volumens der neue Gleichgewichtszustand dadurch erreicht, daß ein Teil des Dampfes kondensiert. Daher ist der Sättigungsdampfdruck nicht vom Volumen abhängig. Trägt man den Sättigungsdampfdruck p und die Temperatur T in einem p/t- Diagramm auf, so erhält man die Spannungskurve. Die Kurve weist einen annähernd exponentiellen Charakter auf und ist unterschiedlich für die verschiedenen Stoffe. p in hpa p=f(t) Spannungskurve Flüssigkeit Dampf T in C
5 Versuch : W2 Blatt : 4 Für Wasser gelten in Abhängigkeit vom Luftdruck folgende Siedepunkte: Versuchsaufbau: p in hpa T in C In Bild 2 ist der Versuchsaufbau schematisch dargestellt. Der im Erlenmeyer-kolben erzeugte Dampf strömt durch die Schlauchverbindung in das als Kalorimeter dienende Dewargefäß und gibt bei der Kondensation seine Wärme an das im Dewargefäß befindliche kalte Wasser ab. Versuchsdurchführung: 1. Wägen des Dewargefäßes 1. leer und 2. mit Wasserfüllung zur Ermittlung der Wassermenge m 1 2. Temperatur t 1 der Wassermenge m 1 messen 3. Wasser im Erlenmeyerkolben erhitzen 4. Erst nach Erwärmung des gesamten Dampfweges bis auf Dampftemperatur wird der am Rohrende ausströmende tropfenfreie Dampf in das Dewargefäß geleitet WICHTIG: Um eine homogene Temperaturverteilung zu erhalten, muß das Wasser ständig umgerührt werden (Temperaturfühler dazu nutzen)! 5. Luftdruck zur Ermittlung der Dampftemperatur t s ablesen 6. Nach Erreichen der gewünschten Mischtemperatur t m (ca C) die Wärmezufuhr abstellen Wichtig: Erst Dampfrohr aus dem Dewargefäß entfernen, dann Hei zung abstellen! 7. Sorgfältige Ermittlung der Mischtemperatur t m nach mehrmaligem Umrühren 8. Wägen des Dewargefäßes zur Ermittlung der kondensierten Dampf menge m Bestimmen Sie die Kondensationswärme X bzw. die zahlengleiche Verdampfungswärme r inkl. Fehlerrechnung nach Gauss.
6 Versuch : W2 Blatt : 5
7 Versuch : W2 Blatt : 6 Zur Auswertung der Versuchsergebnisse: Die vom Dampf abgegebene Wärmemenge muß nach dem Gesetz der Energieerhaltung von dem im Kalorimeter befindlichen Wasser aufgenommen worden sein. Qw = m1 c w (tm -t 1) Die durch den Dampf zugeführte Wärmemenge dient aber nicht ausschließlich der Erwärmung des Wassers, sondern auch das Dewargefäß nimmt eine gewisse Wärmemenge auf. Sie läßt sich über die Wärmekapazität C des Gefäßes berechnen. QD = md c D (tm -t 1) wobei m c = C (Wärmekapazität) D D Zusammengefaßt ergibt sich also Q = Qw + QD Q = (m c + C) (t -t ) 1 w m 1 Diese Wärme ist aus zwei voneinander zu trennenden Vorgängen entstanden: a) aus der freiwerdenden Kondensationswärme der Dampfmenge m 2 Q = X m und a 2 b) aus der Abkühlung des dabei gebildeten Wassers vom Siedepunkt t s auf die Mischungstemperatur t m Qb = cw m 2 (ts -t m) Setzt man diese Formeln gleich, so erhält man (C + m1 c w) (tm - t 1) = X m2 + cw m 2 (ts -t m) Q=Qa + Q b Durch Umstellen der Formel nach der Kondensationswärme X bzw. der zahlengleichen Verdampfungswärme r ergibt sich: X m = ( C+ m c ) ( t -t )-c m ( t -t ) 2 1 w m 1 w 2 s m ( C+ m1 cw) ( tm t1) cw m2 ( ts tm) r = X = m 2
8 Die Verdampfungswärme von Wasser Anlage W2 Anmerkungen : Dieser Vordruck ist von jedem Studenten während der Versuchsdurchführung mit Tinte oder Kugelschreiber auszufüllen. Tragen Sie übersichtlich die gemessenen Werte und die abgeschätzten Meßfehler ein. Diese Vordrucke sind zusammen mit den Laborberichten abzugeben Student Studiengruppe Datum Labor-Ing. Meßwerte: 1 Masse des leeren Kalorimeters g 2 Masse des Kalorimeters mit Wasser g 3 Die daraus ermittelte Wassermenge g m 1 4 Momentaner Luftdruck hpa 5 Siedetemperatur des Wassers C t s m 1 6 Temperatur der Wassermenge C t 1 7 Mischungstemperatur C t m 8 Gesamtmasse nach Beendigung des Versuches g 9 Daraus die Kondensatmenge g m 2 10 Spezifische Wärme des Wassers 11 Wärmekapazität des Kalorimeters Abgeschätzte Meßfehler : c w C J gk J K
Fachhochschule Flensburg. Die spezifische Wärmekapazität fester Körper
Name : Fachhochschule Flensburg Fachbereich Technik Institut für Physik und Werkstoffe Name: Versuch-Nr: W4 Die spezifische Wärmekapazität fester Körper Gliederung: Seite Einleitung 1 Berechnung 1 Versuchsbeschreibung
Protokoll des Versuches 7: Umwandlung von elektrischer Energie in Wärmeenergie
Name: Matrikelnummer: Bachelor Biowissenschaften E-Mail: Physikalisches Anfängerpraktikum II Dozenten: Assistenten: Protokoll des Versuches 7: Umwandlung von elektrischer Energie in ärmeenergie Verantwortlicher
Kann man Wärme pumpen? Die Wärmepumpe
Kann man Wärme pumpen? Die Wärmepumpe Inhalt 1. Was ist eine Wärmepumpe? Wie funktioniert sie? 2. Experimente 2.1 Welchen Wirkungsgrad hat die Wärmepumpe? (Experiment 1) 2.2 Wie groß ist die spezifische
Stationsunterricht im Physikunterricht der Klasse 10
Oranke-Oberschule Berlin (Gymnasium) Konrad-Wolf-Straße 11 13055 Berlin Frau Dr. D. Meyerhöfer Stationsunterricht im Physikunterricht der Klasse 10 Experimente zur spezifischen Wärmekapazität von Körpern
Physik für Bauingenieure
Fachbereich Physik Prof. Dr. Rudolf Feile Dipl. Phys. Markus Domschke Sommersemster 010 10. 14. Mai 010 Physik für Bauingenieure Übungsblatt 4 1. Wie viele Luftmoleküle befinden sich im Hörsaal Gruppenübungen
Physik für Bauingenieure
Fachbereich Physik Prof. Dr. Rudolf Feile Dipl. Phys. Markus Domschke Sommersemster 2010 17. 21. Mai 2010 Physik für Bauingenieure Übungsblatt 5 Gruppenübungen 1. Wärmepumpe Eine Wärmepumpe hat eine Leistungszahl
3.4 Änderung des Aggregatzustandes
34 Änderung des Aggregatzustandes Man unterscheidet 3 Aggregatzustände: Fest Flüssig Gasförmig Temperatur: niedrig mittel hoch Molekülbindung: Gitter lose Bindung keine Bindung schmelzen sieden erstarren
Fachhochschule Flensburg. Dichte von Flüssigkeiten
Fachhochschule Flensburg Fachbereich Technik Institut für Physik und Werkstoffe Name : Name: Versuch-Nr: M9 Dichte von Flüssigkeiten Gliederung: Seite Einleitung 1 Messung der Dichte mit der Waage nach
Wärmepumpe DT400-1P. NTL-Schriftenreihe Versuchsanleitung - Wärmepumpe
Wärmepumpe DT400-1P NTL-Schriftenreihe Versuchsanleitung - Wärmepumpe Wärmepumpe Allgemein Eine Wärmepumpe ist eine Wärmekraftmaschine. Sie hebt Wärme von einem Körper tieferer Temperatur T 1 auf einen
Verflüssigung von Gasen / Joule-Thomson-Effekt
Sieden und Kondensation: T p T p S S 0 1 RTSp0 1 ln p p0 Dampfdrucktopf, Autoklave zur Sterilisation absolute Luftfeuchtigkeit relative Luftfeuchtigkeit a ( g/m 3 ) a pw rel S ps rel 1 Taupunkt erflüssigung
Flüssigkeiten. einige wichtige Eigenschaften
Flüssigkeiten einige wichtige Eigenschaften Die Oberflächenspannung einer Flüssigkeit ist die zur Vergröß ößerung der Oberfläche um den Einheitsbetrag erforderliche Energie (H 2 O bei 20 C: 7.29 10-2 J/m
Physikalisches Praktikum Wirtschaftsingenieurwesen Physikalische Technik und Orthopädietechnik Prof. Dr. Chlebek, MSc. M. Gilbert
Physikalisches Praktikum Wirtschaftsingenieurwesen Physikalische Technik und Orthopädietechnik Prof. Dr. Chlebek, MSc. M. Gilbert TH 01 Wärmekapazität und Wirkungsgrad (Pr_PhI_TH01_Wärmekapazität_6, 30.8.009)
Zustandsbeschreibungen
Siedediagramme Beispiel: System Stickstoff Sauerstoff - Das Siedeverhalten des Systems Stickstoff Sauerstoff Der Übergang vom flüssigen in den gasförmigen Aggregatzustand. - Stickstoff und Sauerstoff bilden
SORTEN VON DAMPF / DAMPF UND DRUCK / VAKUUM
SORTEN VON DAMPF / DAMPF UND DRUCK / VAKUUM In diesem Kapitel werden kurz einige wichtige Begriffe definiert. Ebenso wird das Beheizen von Anlagen mit Dampf im Vakuumbereich beschrieben. Im Sprachgebrauch
Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X
Praktikum Physik Protokoll zum Versuch 1: Viskosität Durchgeführt am 26.01.2012 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das Protokoll
Chemie Zusammenfassung KA 2
Chemie Zusammenfassung KA 2 Wärmemenge Q bei einer Reaktion Chemische Reaktionen haben eine Gemeinsamkeit: Bei der Reaktion wird entweder Energie/Wärme frei (exotherm). Oder es wird Wärme/Energie aufgenommen
Physik1. Physik der Wärme. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH
3 Physik1. Physik der Wärme. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH Physik Wärme 5 Themen Begriffsklärung Anwendungen Temperaturskalen Modellvorstellung Wärmeausdehnung Thermische Ausdehnung Phasenübergänge
Allgemeine Chemie. SS 2014 Thomas Loerting. Thomas Loerting Allgemeine Chemie
Allgemeine Chemie SS 2014 Thomas Loerting 1 Inhalt 1 Der Aufbau der Materie (Teil 1) 2 Die chemische Bindung (Teil 2) 3 Die chemische Reaktion (Teil 3) 2 Definitionen von den an einer chemischen Reaktion
Vorlesung #7. M.Büscher, Physik für Mediziner
Vorlesung #7 Zustandsänderungen Ideale Gase Luftfeuchtigkeit Reale Gase Phasenumwandlungen Schmelzwärme Verdampfungswärme Dampfdruck van-der-waals Gleichung Zustandsdiagramme realer Gase Allgem. Gasgleichung
Technische Thermodynamik
Kalorimetrie 1 Technische Thermodynamik 2. Semester Versuch 1 Kalorimetrische Messverfahren zur Charakterisierung fester Stoffe Namen : Datum : Abgabe : Fachhochschule Trier Studiengang Lebensmitteltechnik
02. Was kann man über die Teilchen eines schmelzenden Stoffes aussagen?
01. Nenne je beide Übergänge zwischen a) dem festen und dem flüssigen b) dem flüssigen und dem gasförmigen c) dem festen und dem gasförmigen Aggregatzustand. 02. Was kann man über die Teilchen eines schmelzenden
Der Dampfdruck von Wasser
Physikalisches Grundpraktikum Versuch 8 Der Dampfdruck von Wasser Praktikant: Tobias Wegener Alexander Osterkorn E-Mail: tobias.wegener@stud.uni-goettingen.de a.osterkorn@stud.uni-goettingen.de Tutor:
Administratives BSL PB
Administratives Die folgenden Seiten sind ausschliesslich als Ergänzung zum Unterricht für die Schüler der BSL gedacht (intern) und dürfen weder teilweise noch vollständig kopiert oder verbreitet werden.
Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet
Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Unterrichtsmaterial - schriftliche Informationen zu Gasen für Studierende - Folien Fach Schultyp: Vorkenntnisse: Bearbeitungsdauer Thermodynamik
Physik für Bauingenieure
Fachbereich Physik Prof. Dr. Rudolf Feile Dipl. Phys. Markus Domschke Sommersemster 200 24. 28. Mai 200 Physik für Bauingenieure Übungsblatt 6. Luftfeuchtigkeit Gruppenübungen In einer Finnischen Sauna
MOL - Bestimmung der Molaren Masse nach Dumas
MOL - Bestimmung der Molaren Masse nach Dumas Anfängerpraktikum 2, 2006 Janina Fiehl Daniel Flassig Gruppe 129 Einleitung Das Mol ist, vor allem in der Chemie, als Einheit für die Basisgröße der Stoffmenge
Alles was uns umgibt!
Was ist Chemie? Womit befasst sich die Chemie? Die Chemie ist eine Naturwissenschaft, die sich mit der Materie (den Stoffen), ihren Eigenschaften und deren Umwandlung befasst Was ist Chemie? Was ist Materie?
Mischungslücke in der flüssigen Phase
Übungen in physikalischer Chemie für B. Sc.-Studierende Versuch Nr.: S05 Version 2015 Kurzbezeichnung: Mischungslücke Mischungslücke in der flüssigen Phase Aufgabenstellung Die Entmischungskurven von Phenol/Wasser
Heatpipe oder Wärmerohr
Heatpipe oder Wärmerohr Ein Wärmerohr ist ein Wärmeübertrager, der mit einer minimalen Temperaturdifferenz eine beträchtliche Wärmemenge über eine gewisse Distanz transportieren kann. Dabei nutzt die Heatpipe
Themengebiet: Thermodynamik. mol K. mol. ] eines Stoffes bestehend aus n Mol mit der Masse m gilt. M = m n. (2)
Seite 1 Themengebiet: Thermodynamik 1 Literatur D. Meschede, Gerthsen Physik, Springer F. Kohlrausch, Praktische Physik, Band 2, Teubner R.P. Feynman, R.B. Leighton und M. Sands, Feynman-Vorlesungen über
6. Tag: Chemisches Gleichgewicht und Reaktionskinetik
6. Tag: Chemisches Gleichgewicht und Reaktionskinetik 1 6. Tag: Chemisches Gleichgewicht und Reaktionskinetik 1. Das chemische Gleichgewicht Eine chemische Reaktion läuft in beiden Richtungen ab. Wenn
Hydrostatik auch genannt: Mechanik der ruhenden Flüssigkeiten
Hydrostatik auch genannt: Mechanik der ruhenden Flüssigkeiten An dieser Stelle müssen wir dringend eine neue physikalische Größe kennenlernen: den Druck. SI Einheit : Druck = Kraft Fläche p = F A 1 Pascal
Übungsaufgaben Physikalische Chemie
Übungsaufgaben Physikalische Chemie A1. Welchen Druck übt gasförmiger Stickstoff mit einer Masse von 2,045 g bei 21 C in einem Gefäß mit einem Volumen von 2,00 l aus? A2. In Haushaltgeräten zur Erzeugung
HTBL-PINKAFELD Arbeitsblatt A4/1 Wasser
HTBL-PINKAFELD Arbeitsblatt A4/1 Wasser DIE ZERDRÜCKTE ALUDOSE LEERE Alu-Getränkedose (1/2 Liter!) Tiegelzange Schüssel mit kaltem Wasser 1. Fülle die leere Getränkedose mit wenig Wasser 2. Stelle die
8.4.5 Wasser sieden bei Zimmertemperatur ******
8.4.5 ****** 1 Motivation Durch Verminderung des Luftdrucks siedet Wasser bei Zimmertemperatur. 2 Experiment Abbildung 1: Ein druckfester Glaskolben ist zur Hälfte mit Wasser gefüllt, so dass die Flüsigkeit
Versuch Nr. 7. = q + p dv
Hochschule Augsburg Versuch Nr. 7 Physikalisches Aufbauten 7 a bzw. 27 a Praktikum Spezifische Verdampfungsenthalpie - Dampfdruckkurve 1. Grundlagen_und_Versuchsidee 1.1 Definition der Verdampfungsenthalpie:E
Frühjahr 2000, Thema 2, Der elektrische Widerstand
Frühjahr 2000, Thema 2, Der elektrische Widerstand Referentin: Dorothee Abele Dozent: Dr. Thomas Wilhelm Datum: 01.02.2007 1) Stellen Sie ein schülergemäßes Modell für einen elektrisch leitenden bzw. nichtleitenden
TIPP alle Rechenaufgaben mit Einheit, Ergebnis und Antwortsatz!
1 Klassenarbeit Chemie 1/5 TIPP alle Rechenaufgaben mit Einheit, Ergebnis und Antwortsatz! 1 Stoffe und Stoffgemische 1.1 Ordne die Begriffe Verbindung, Element, Stoff, Mischung, Reinstoff, Metall, Nichtmetall,
LB1 Stoffe. LB1 Stoffe. LB1 Stoffe. Womit beschäftigt sich die Chemie?
Lernkartei Klasse 7 LB1: Stoffe Womit beschäftigt sich die Chemie? LB1 Stoffe mit den Stoffen, ihren Eigenschaften und ihren Veränderungen (Stoffumwandlungen) Was sind Stoffe? LB1 Stoffe Stoffe sind die
B Chemisch Wissenwertes. Arrhénius gab 1887 Definitionen für Säuren und Laugen an, die seither öfter erneuert wurden.
-I B.1- B C H E M I S C H W ISSENWERTES 1 Säuren, Laugen und Salze 1.1 Definitionen von Arrhénius Arrhénius gab 1887 Definitionen für Säuren und Laugen an, die seither öfter erneuert wurden. Eine Säure
Spezifische Wärmekapazität
Versuch: KA Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: L. Jahn B. Wehner J. Pöthig J. Stelzer am 01. 06. 1997 Bearbeitet: M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher am
Schulversuchspraktikum. 5. Protokoll. Wärmelehre. (2. und 3. Klasse Unterstufe) Dana Eva Ernst 9955579
Schulversuchspraktikum 5. Protokoll Wärmelehre (2. und 3. Klasse Unterstufe) Dana Eva Ernst 9955579 Linz, am 8.1.2003 Inhaltsverzeichnis Kapitel I - Thema und Ziele 3 Kapitel II - Grundlagen 2.1. Das Thermometer
Professionelle Seminare im Bereich MS-Office
Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion
3. Stoffgemische und Ihre Zerlegung
3. Stoffgemische und Ihre Zerlegung Aus Stoffgemischen lassen sich die einzelnen Bestandteile durch physikalische Trennverfahren isolieren. Wenn ein Stoff mittels physikalischen Methoden nicht weiter zerlegen
Naturwissenschaftliche Grundlagen für Maschinenbauer und Wirtschaftsingenieure
Naturwissenschaftliche Grundlagen für Maschinenbauer und Wirtschaftsingenieure Heinz W. Siesler (Vorlesung) Miriam Unger (Übungen)( Institut für f r Physikalische Chemie Universität t Duisburg-Essen Schützenbahn
UNIVERSITÄT BIELEFELD
UNIVERSITÄT BIELEFELD Elektrizitätslehre GV: Gleichstrom Durchgeführt am 14.06.06 Dozent: Praktikanten (Gruppe 1): Dr. Udo Werner Marcus Boettiger Philip Baumans Marius Schirmer E3-463 Inhaltsverzeichnis
Aggregatzustand, Wärme, Temperatur
Charlotte-Wolff-Kolleg Berlin Facharbeit im Profilkurs Physik Fachlehrer: Herr Dr. Degen Schuljahr: 2012/2013 Aggregatzustand, Wärme, Temperatur Jahrgang: A42 Beteiligte Personen: Carolin Hagenau Martin
O ber die V e r d a m p fu n g s w ä rm e von L ösu n gen
Akademie d. Wissenschaften Wien; download unter www.biologiezentrum.at 827 O ber die V e r d a m p fu n g s w ä rm e von L ösu n gen O. Tumlirz. (Vorgelegt in der Sitzung am 20. Juni 1895.) Gerade so wie
Schulversuchspraktikum. Isabel Böselt. Sommersemester Klassenstufen 5 & 6. Aggregatzustände. und deren Temperaturabhängigkeit
Schulversuchspraktikum Isabel Böselt Sommersemester 2014 Klassenstufen 5 & 6 Aggregatzustände und deren Temperaturabhängigkeit 1 Konzept und Lernziele 1 Auf einen Blick: In diesem Protokoll werden einfache
Comenius Schulprojekt The sun and the Danube. Versuch 1: Spannung U und Stom I in Abhängigkeit der Beleuchtungsstärke E U 0, I k = f ( E )
Blatt 2 von 12 Versuch 1: Spannung U und Stom I in Abhängigkeit der Beleuchtungsstärke E U 0, I k = f ( E ) Solar-Zellen bestehen prinzipiell aus zwei Schichten mit unterschiedlichem elektrischen Verhalten.
B H 0 H definieren, die somit die Antwort des Ordnungsparameters auf eine Variation der dazu konjugierten
In Anwesenheit eines äußeren magnetischen Felds B entsteht in der paramagnetischen Phase eine induzierte Magnetisierung M. In der ferromagnetischen Phase führt B zu einer Verschiebung der Magnetisierung
Was ist eine Wärmepumpe? Und wie funktioniert die Wärmepumpe?
Was ist eine Wärmepumpe? Und wie funktioniert die Wärmepumpe? Grundlagen Dies ist zum Beispiel eine Wärmepumpe! Eine Wärmepumpe funktioniert wie ein Kühlschrank Aber was passiert jetzt genau im Kühlschrank,
Moderne Methoden der Chemie - die Differenz-Thermo- Analyse (DTA)
Moderne Methoden der Chemie - die Differenz-Thermo- Analyse (DTA) Einleitung Moderne Anaylsemethoden haben die Chemie - insbesondere in den letzten 50 Jahren - stark verändert. Sie ermöglichen völlig neue
Zersetzung von Wasser LI
Die Zersetzung von Wasser Zersetzung von Wasser LI Im Folgenden finden sich drei Ansätze zum Experiment Zersetzung von Wasser. Der Versuch eignet sich als Alternative zur Reaktion von Wasserdampf mit Magnesium.
Induktivitätsmessung bei 50Hz-Netzdrosseln
Induktivitätsmessung bei 50Hz-Netzdrosseln Ermittlung der Induktivität und des Sättigungsverhaltens mit dem Impulsinduktivitätsmeßgerät DPG10 im Vergleich zur Messung mit Netzspannung und Netzstrom Die
Der Gesamtdruck eines Gasgemisches ist gleich der Summe der Partialdrücke. p [mbar, hpa] = p N2 + p O2 + p Ar +...
Theorie FeucF euchtemessung Das Gesetz von v Dalton Luft ist ein Gemisch aus verschiedenen Gasen. Bei normalen Umgebungsbedingungen verhalten sich die Gase ideal, das heißt die Gasmoleküle stehen in keiner
Lösungen Serie 16: Kalorimetrie
en Serie 16: Kalorimetrie Aufgabe 16.1 A Sie wollen in einem Kochtopf ( =0.6, =0.4 ( =4.182 k K gegeben: =0.6 =0.4 k K ) einen halben Liter Wasser ) von 10 auf 40 erwärmen. Welche Wärmemenge ist dazu notwendig?
2.6 Zweiter Hauptsatz der Thermodynamik
2.6 Zweiter Hauptsatz der Thermodynamik Der zweite Hauptsatz der Thermodynamik ist ein Satz über die Eigenschaften von Maschinen die Wärmeenergie Q in mechanische Energie E verwandeln. Diese Maschinen
Physikalisches Praktikum I
Fachbereich Physik Physikalisches Praktikum I W21 Name: Verdampfungswärme von Wasser Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Folgende Fragen
Versuch W7 für Nebenfächler Wärmeausdehnung
Versuch W7 für Nebenfächler Wärmeausdehnung I. Physikalisches Institut, Raum 106 Stand: 7. November 2013 generelle Bemerkungen bitte Versuchspartner angeben bitte Versuchsbetreuer angeben bitte nur handschriftliche
Klexse- Experimente erprobt von Manfred Martin und Bernd Setzer
Klexse- Experimente Im Kapitel Wasser und andere Flüssigkeiten werden einige Experimente beschrieben, durch die man manches über flüssige Körper die Oberflächenspannung die Zähigkeit von Flüssigkeiten
Physik III - Anfängerpraktikum- Versuch 302
Physik III - Anfängerpraktikum- Versuch 302 Sebastian Rollke (103095) und Daniel Brenner (105292) 15. November 2004 Inhaltsverzeichnis 1 Theorie 2 1.1 Beschreibung spezieller Widerstandsmessbrücken...........
Formelsammlung Abfallwirtschaft Seite 1/6 Wärmekapazität Prof. Dr. Werner Bidlingmaier & Dr.-Ing. Christian Springer
Formelsammlung Abfallwirtschaft Seite 1/6 1 Energiebedarf zur Erwärmung von Stoffen Der Energiebetrag, der benötigt wird, um 1 kg einer bestimmten Substanz um 1 C zu erwärmen, wird als die (auch: Spezifische
Physikalische Grundlagen der Hygrometrie
Den Druck der durch die verdampfenden Teilchen entsteht, nennt man auch Dampfdru Dampfdruck einen gewissen Wert, so können keine weiteren Teilchen aus der Flüssigk Physikalische Grundlagen der Hygrometrie
Erstellen von x-y-diagrammen in OpenOffice.calc
Erstellen von x-y-diagrammen in OpenOffice.calc In dieser kleinen Anleitung geht es nur darum, aus einer bestehenden Tabelle ein x-y-diagramm zu erzeugen. D.h. es müssen in der Tabelle mindestens zwei
F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur
F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur David Riemenschneider & Felix Spanier 31. Januar 2001 1 Inhaltsverzeichnis 1 Einleitung 3 2 Auswertung 3 2.1 Darstellung sämtlicher PL-Spektren................
Übungen zur Thermodynamik (PBT) WS 2004/05
1. Übungsblatt 1. Berechnen Sie ausgehend von der allgemeinen Gasgleichung pv = nrt das totale Differential dv. Welche Änderung ergibt sich hieraus in erster Näherung für das Volumen von einem Mol eines
UNIVERSITÄT BIELEFELD -
UNIVERSITÄT BIELEFELD - FAKULTÄT FÜR PHYSIK LEHRSTUHL FÜR SUPRAMOLEKULARE SYSTEME, ATOME UND CLUSTER PROF. DR. ARMIN GÖLZHÄUSER Versuch 2.9 Thermodynamik Die Wärmepumpe Durchgeführt am 12.04.06 BetreuerIn:
Antrieb und Wärmebilanz bei Phasenübergängen. Speyer, März 2007
Antrieb und Wärmebilanz bei Phasenübergängen Speyer, 19-20. März 2007 Michael Pohlig, WHG-Durmersheim michael@pohlig.de Literatur: Physik in der Oberstufe; Duden-PAETEC Schmelzwärme wird auch als Schmelzenergie
Die Wärmepumpe. Abb. 1: Energiefluss-Diagramme für Ofen, Wärmekraftmaschine und Wärmepumpe
Die Stichworte: Thermische Maschinen; 1. und. Hauptsatz; Wirkungsgrad und Leistungsziffer 1 Einführung und Themenstellung Mit einer wird - entgegen der natürlichen Richtung eines Wärmestroms - Wärme von
Versuch 3. Frequenzgang eines Verstärkers
Versuch 3 Frequenzgang eines Verstärkers 1. Grundlagen Ein Verstärker ist eine aktive Schaltung, mit der die Amplitude eines Signals vergößert werden kann. Man spricht hier von Verstärkung v und definiert
Thermodynamik. Basics. Dietmar Pflumm: KSR/MSE. April 2008
Thermodynamik Basics Dietmar Pflumm: KSR/MSE Thermodynamik Definition Die Thermodynamik... ist eine allgemeine Energielehre als Teilgebiet der Chemie befasst sie sich mit den Gesetzmässigkeiten der Umwandlungsvorgänge
Institut für Physik und Werkstoffe Labor für Physik
Fachhochschule Flensburg Institut für Physik und Werkstoffe Labor für Physik Name : Name: Versuch-Nr: M1 Der freie Fall Gliederung: Seite Einleitung 1 Versuchsaufbau 1 Aufgabenstellung 4 Semester:... Unterschrift
Peltier-Effekt: Wärmepumpe
Peltier-Effekt: Wärmepumpe ENT Schlüsselworte Wärmepumpe, Leistungsziffer, Wirkungsgrad, Peltierelement, Elektrische Energie, Wärmeenergie Prinzip Fließt ein Gleichstrom durch ein Peltier-Element, dann
Physikalisches Anfängerpraktikum, Fakultät für Physik und Geowissenschaften, Universität Leipzig
Physikalisches Anfängerpraktikum, Fakultät für Physik und Geowissenschaften, Universität Leipzig W 10 Wärmepumpe Aufgaben 1 Nehmen Sie die Temperatur- und Druckverläufe einer Wasser-Wasser-Wärmepumpe auf!
Der Kälteanlagenbauer
Der Kälteanlagenbauer Band : Grundkenntnisse Bearbeitet von Karl Breidenbach., überarbeitete und erweiterte Auflage. Buch. XXVIII, S. Gebunden ISBN 00 Format (B x L):,0 x,0 cm Zu Inhaltsverzeichnis schnell
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als
1. Klausur ist am 5.12.! Jetzt lernen! Klausuranmeldung: Bitte heute in Listen eintragen!
1. Klausur ist am 5.12.! Jetzt lernen! Klausuranmeldung: Bitte heute in Listen eintragen! Aggregatzustände Fest, flüssig, gasförmig Schmelz -wärme Kondensations -wärme Die Umwandlung von Aggregatzuständen
auf, so erhält man folgendes Schaubild: Temperaturabhängigkeit eines Halbleiterwiderstands
Auswertung zum Versuch Widerstandskennlinien und ihre Temperaturabhängigkeit Kirstin Hübner (1348630) Armin Burgmeier (1347488) Gruppe 15 2. Juni 2008 1 Temperaturabhängigkeit eines Halbleiterwiderstands
Sekundarschule Kilchberg / Curdin Riedi
Sekundarschule Kilchberg / Curdin Riedi Inhaltsverzeichnis 1. Einführung... 3 2. Laborarbeit... 4 2.1 Laborregeln/Verhalten beim Experimentieren... 4 2.2 Gefahrensymbole... 6 3. Vertrag «Verhaltensregeln»...
Praktikum. Technische Chemie. Europa Fachhochschule Fresenius, Idstein. Versuch 05. Wärmeübergang in Gaswirbelschichten
Praktikum Technische Chemie Europa Fachhochschule Fresenius, Idstein SS 2010 Versuch 05 Wärmeübergang in Gaswirbelschichten Betreuer: Michael Jusek (jusek@dechema.de, Tel: +49-69-7564-339) Symbolverzeichnis
Martin Raiber 21.02.07 Elektrolyse: Strom - Spannungskurven
Martin Raiber 21.02.07 Elektrolyse: Strom - Spannungskurven Geräte: U-Rohr, verschiedene Platin-Elektroden (blank, platiniert), Graphit-Elektroden, spannungsstabilisierte Gleichspannungsquelle, CASSY-Spannungs/Stromstärkemessgerät
Ideale und Reale Gase. Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig)
Ideale und Reale Gase Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig) Wann sind reale Gase ideal? Reale Gase verhalten sich wie ideale Gase
OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland
OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben
1 Grundwissen Energie. 2 Grundwissen mechanische Energie
1 Grundwissen Energie Die physikalische Größe Energie E ist so festgelegt, dass Energieerhaltung gilt. Energie kann weder erzeugt noch vernichtet werden. Sie kann nur von einer Form in andere Formen umgewandelt
Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden.
PCG-Grundpraktikum Versuch 1- Dampfdruckdiagramm Multiple-Choice Test Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Dampfdruckdiagramm wird dieses Vorgespräch durch einen Multiple-Choice
1.1 Auflösungsvermögen von Spektralapparaten
Physikalisches Praktikum für Anfänger - Teil Gruppe Optik. Auflösungsvermögen von Spektralapparaten Einleitung - Motivation Die Untersuchung der Lichtemission bzw. Lichtabsorption von Molekülen und Atomen
Tutorium Physik 1. Wärme
1 Tutorium Physik 1. Wärme WS 15/16 1.Semester BSc. Oec. und BSc. CH 2 Themen 1. Einführung, Umrechnen von Einheiten / Umformen von Formeln 2. Kinematik, Dynamik 3. Arbeit, Energie, Leistung 4. Impuls
Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen
Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in
Versuch 3: Säure-Base Titrationen Chemieteil, Herbstsemester 2008
Versuch 3: Säure-Base Titrationen Chemieteil, Herbstsemester 2008 Verfasser: Zihlmann Claudio Teammitglied: Knüsel Philippe Datum: 29.10.08 Assistent: David Weibel E-Mail: zclaudio@student.ethz.ch 1. Abstract
oder 10 = 1bar = = 10 Pa Für viele Zwecke wird die Umrechnung 1bar = 10 verwendet.
R. Brinkmann http://brinkmann-du.de Seite 1 5.11.013 HF14S Arbeitsblatt Wärme als Energieform Die Celsius-Skala ist durch folgende Fixpunkte definiert: 0 0 C: Schmelzpunkt des Eises bei einem Druck von
6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum
6 ALLGEMEINE THEORIE DES ELEKTROMAGNETISCHEN FELDES IM VAKUUM 25 Vorlesung 060503 6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum 6.1 Grundaufgabe der Elektrodynamik Gegeben: Ladungsdichte
Löschen. 1. einen : Das Material muss sein. kein Feuer entstehen oder unterhalten werden. Zündtemperatur erreicht, kann ebenfalls kein Feuer
Löschen 1. Was braucht man, damit ein Feuer brennt? Zum Entfachen eines Feuers braucht man: 1. einen : Das Material muss sein 2. : Ohne den notwendigen kann kein Feuer entstehen oder unterhalten werden
Ressourcen sparen unter Wasser Information
Ressourcen sparen unter Wasser Information Tauchregel: Vermeide schnelle, ruckartige Bewegungen und schwimme langsam und gleichförmig. Information: Damit beim Tauchen der Sauerstoff in der Druckluftflasche
Informationsblatt Induktionsbeweis
Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln
Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Absoluter Nullpunkt (AN) Herbstsemester 2015. Physik-Institut der Universität Zürich
Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Absoluter Nullpunkt (AN) Herbstsemester 2015 Physik-Institut der Universität Zürich Inhaltsverzeichnis 5 Absoluter Nullpunkt der Temperaturskala
Wie funktioniert ein Heißluftballon? Einen Mini-Heißluftballon aufsteigen lassen
Wie funktioniert ein Heißluftballon? Einen Mini-Heißluftballon aufsteigen lassen In aller Kürze Hast du schon mal einen Heißluftballon am Himmel beobachtet? Wie kommt es eigentlich, dass er fliegen kann?
Hausaufgabe: Der Energieeffizienz auf der Spur
Bevor du startest, lass bitte die folgenden Zeilen deine Eltern lesen und unterschreiben: Ihre Tochter/ Ihr Sohn hat heute ein Energiemessgerät für Energiemessungen zu Hause erhalten. Achten Sie bitte
Kleines Wasserlexikon
Kleines Wasserlexikon Lösung von Kohlenstoffdioxid. Kohlenstoffdioxid CO 2 ist leicht wasserlöslich und geht mit manchen Inhaltsstoffen des Wassers auch chemische Reaktionen ein. In einem ersten Schritt
Gleichungen Lösen. Ein graphischer Blick auf Gleichungen
Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term