Versuch: Fourier-Spektroskopie mit dem Michelson-Interferometer: Auflösung der Natrium-D-Feinstruktur mittels Kontrastmodulation

Größe: px
Ab Seite anzeigen:

Download "Versuch: Fourier-Spektroskopie mit dem Michelson-Interferometer: Auflösung der Natrium-D-Feinstruktur mittels Kontrastmodulation"

Transkript

1 Dr. Robert Löw, Dr. Sven Ulrich Version 04/2008 Praktikum zur linearen Optik Versuch: Fourier-Spektroskopie mit dem Michelson-Interferometer: Auflösung der Natrium-D-Feinstruktur mittels Kontrastmodulation Einleitung Anhand dieses grundlegenden Versuches soll die Funktionsweise eines Michelson-Interferometers, d.h. die Zweistrahl-Interferenz kohärenter Lichtstrahlen an einem Strahlteiler, verdeutlicht werden. Auf Basis einer genauen Justage des Interferometers im ersten Versuchsteil soll im zweiten Teil schließlich die Spin-Bahn-Feinstruktur im Emissionsspektrum von Natrium anhand des charakteristischen D-Dubletts gemessen werden. Als Meßverfahren wird hierbei die Kontrastmodulation des Interferogramms verwendet. Stichwörter für die Vorbereitung des Versuches: Klassische Beschreibung von Licht im Wellenbild Kohärenz von Strahlung Interferenz Geometrische und optische Weglänge von Licht Gangunterschied und Phasenunterschied im Wellenbild Strahlteiler Fourier-Spektroskopie.

2 Theoretischer Hintergrund Eine Beschreibung der Zweistrahl-Interferenz im Michelson-Interferometer soll zunächst am Beispiel von monochromatischem Licht (also mit nur einer Spektralkomponente ω bzw. λ) erfolgen: In reeller Schreibweise kann die Feldamplitude der auf das Interferometer einfallenden Welle geschrieben werden als woraus sich die Intensität bestimmen läßt zu E(ω) = A 0 cos(ωt), (1) I ω (t) = c ε 0 E 2 = c ε 0 A 2 0 cos 2 (ωt) = I 0 cos 2 (ωt). (2) Das Licht wird innerhalb des Interferometers am Strahlteiler, charakterisiert durch Reflexionsvermögen R und Transmission T, in zwei Teilstrahlen mit den Feldamplituden A 1,2 = R T A 0 aufgespalten, an den Endspiegeln reflektiert 1 und auf dem Strahlteiler wieder vereinigt. Beim Durchlaufen des gesamten Interferometers die bis zur Detektorebene werden dabei die Wege s 1 bzw. s 2 (Wegunterschied s = s 1 s 2 ) durchlaufen. Damit ergibt sich die Intensität in der Detektionsebene zu I ges ω (t) = I 0 R T (cos(ωt+ks 1 )+cos(ωt+ks 2 )) 2. (3) Ein Detektor am Ausgang des Interferometers (in unserem Fall erfolgt die Beobachtung per Auge auf einem Schirm) kann den schnellen Oszillationen des Lichtfeldes im Bereich von ω s 1 nicht folgen, so daß das Detektorsignal proportional zum zeitlichen Mittelwert I(t) wird. Wegen cos(ωt) T = 0 und cos 2 (ωt) T = 1/2 sowie mit s 2 = s 1 +v t (v: Verfahrgeschwindigkeit des einen Interferometerarms mit resultierendem optischen Wegunterschied der Strahlwege von s = v t) erhält man somit aus Gl. (3) Īω Det (t) I ( ( cos ω v )) c t = I 0 (1+cos(δ(t))). (4) 2 Das bedeutet: Statt der echten Frequenz ω der Strahlungsquelle wird bei einem gleichmäßig mit v verfahrendem Michelson-Interferometer eine über die Detektorzeitkonstante gemittelte Intensität mit skalierter Frequenz ω = ω v/c ω (typisch: v/c ) gemessen. Entgegen der Lichtfrequenz kann die skalierte Frequenz zeitlich ohne hohen technischen Aufwand aufgelöst werden. Abbildung 1 zeigt das Intensitäts-Interferogramm I(t) einer monochromatischen Lichtquelle als Funktion der Weglängendifferenz s = v t bzw. der daraus resultierenden 1 Die Reflexion an den beiden Spiegeln des Interferometers wird hierbei als ideal mit R = 1 betrachtet.

3 Abbildung 1: Interferogramm monochromatischer Strahlung der Frequenz ω als Funktion des optischen Gangunterschiedes s = v t der Interferometerarme bzw. der resultierenden Phasendifferenz δ = 2π/λ s: Für ungradzahlige Vielfache der halben Wellenlänge ergibt sich vollständige Auslöschung des transmittierten Signals (d.h. totale Reflexion des Lichts vom Interferometer zurück zur Quelle). Grafik aus Ref. [1]. Phasendifferenz δ = 2π/λ s. Für den Fall, daß die optische Weglänge der überlagerten Strahlen gerade der Bedingung s destr = (m + 1/2) λ (m Z) genügt, kommt es zu destruktiver Interferenz, d.h. vollständiger Auslöschung. Im Falle von s konstr = m λ, also Wegdifferenzen von ganzzahligen Vielfachen der Wellenlänge, wird I(t)/I 0 = 1, d.h. das einfallende Licht wird vollständig transmittiert. Allgemein gilt: Ist das einfallende Licht nicht parallel, sondern z.b. divergent (Strahlkegel), so hängt der optische Wegunterschied des Lichts beim Durchlaufen des Interferometers zudem von der Winkelposition bzgl. der optischen Achse ab, unter der die Interferenz in der Detektionsebene beobachtet wird. Aufgrund der Symmetrie des Problems erhält man im Falle von divergenten aber koaxialen Lichtkegeln ein zweidimensionales Interferenzmuster von konzentrischen Kreisen. Hingegen liefert der Fall kollimierter Teilstrahlen unter leichter axialer Verkippung ein 2D-Interferenzmuster von parallelen Hell-Dunkel- Zonen 2. Wir können nun den allgemeineren Fall der Interferenz von polychromatischem Licht diskutieren, wie er auch Gegenstand des vorliegenden Praktikumsversuches ist: Enthält die Strahlungsquelle zwei Frequenzen ω 1 und ω 2, so interferieren jewels nur die beiden Teilstrahlen einer Frequenz (ω 1 oder ω 2 ) miteinander. Hingegen mittelt sich die Interferenz zwischen ω 1 und ω 2 zu Null, da die Phasen beider Spektralanteile in der Quelle statistisch gegeneinander schwanken, d.h. alle Werte zwischen δ = 0 und 2π in der Zeit 2 Hinweis: Diese Eigenschaften sollen bei dem vorliegenden Versuch gezielt zur Justage und Messung des Interferenzkontrastes ausgenutzt werden!

4 Abbildung 2: Interferogramm einer polychromatischen Lichtquelle mit zwei gleich intensiven Frequenzanteilen ω 1 und ω 2 : Die schnelle Oszillation des Interferenzverlaufs ist durch eine langsame Schwebung mit der (skalierten) Differenzfrequenz ω v/2c der Spektralanteile moduliert. Aus dieser Schwebung kann ω bzw. λ direkt bestimmt werden. Grafik: Ref. [1]. annehmen. Folglich ergibt sich das gemessene Interferogramm beider Frequenzen einfach als additive (auch räumliche) Überlagerung der Interferogramme von ω 1 und ω 2 mit zeitlich gemittelter Intensität I(t) = I ω1 (t)+i ω2 (t). (5) In Abbildung 2 ist das Interferenzverhalten für den Fall kollimierten Lichts mit zwei Frequenzkomponenten gleicher Intensität I ω1 = I ω2 = I 0 /2 im Zentrum der Detektionsebene, d.h. auf der optischen Achse des Interferometers, gezeigt. Für das zeitlich gemittelte Intensitätssignal gilt hier: Ī Det ω1,ω2(t) I 0 2 ( ( ω1 ω 2 1+cos v ) ( 2 c t ω1 +ω 2 cos v )) 2 c t. (6) In diesem Fall weist das Interferogramm neben einer skalierten schnellen Oszillation mit Frequenz (ω 1 +ω 2 ) v/(2c) eine langsame Schwebung auf, die im wesentlichen durch die Differenzfrequenz ω = ω 1 ω 2 beider eingestrahlen Spektralanteile bestimmt ist. Aufgrund der langsamen Schwebung (Modulation) verschwindet der Interferenzkontrast periodisch an Stellen, für die der Gangunterschied gerade s = v t = (m+1/2) π c ω (mit m Z) beträgt. Im Gegensatz zur Interferenz nur einer Spektralkomponente zeigt das Interferenzbild hierbei aber nicht vollständige Auslöschung des Signals in Transmission, sondern Iω1,ω2 Det I 0 /2 (vgl. Gl. (6)). (7)

5 Prinzipiell kann aus der Messung dieser Schwebungsfrequenz bzw. dem entsprechenden räumlichen Abstand ( s) min zweier Modulationsminima im Interferogramm die Differenz ω bzw. λ bestimmt werden. Die zwischenzeitliche vollständige Auslöschung des Interferenzmusters in der Detektionsebene kann experimentell mit Hilfe von etwas divergenten Lichtstrahlen durch das Interferometer leicht verfolgt werden. Ohne Zwischenrechnung sei hier der gesuchte Zusammenhang zwischen Modulations-Periode ( s) min desoptischengangunterschiedesunddergesuchtenwellenlängendifferenz λ = λ 1 λ 2 angegeben: λ 2 λ =. (8) 2 ( s) min Aufgabe für die Studenten: Leiten Sie den o.g. Ausdruck in Gl. (8) selber explizit her! Für die Versuchsauswertung ist hierbei zu beachten, daß im Experiment jede Verschiebung des beweglichen Spiegels im Interferometer um Länge x eine Veränderung des Gangunterschiedes der beiden Strahlwege von 2 x zur Folge hat! Versuchsaufbau In Abbildung 3 ist der experimentelle Aufbau des verwendeten Michelson-Interferometers gezeigt. Als Lichtquellen dienen in unserem Fall (a) ein Helium-Neon-Laser (cw) mit einer Emissionswellenlänge von λ = nm bzw.(b) eine Natrium-Dampflampe mit intensiver Emission λ D1,D2 589 nm im gelben Bereich des sichtbaren (VIS) Spektrums. Eine Justage des Strahlengangs durch das Interferometer erfolgt über hochreflektierende Ag-Spiegel, die einzeln auf xy-haltern zur präzisen Einstellung der horizontalen und vertikalen Verkippung montiert sind. Mit Hilfe von mehreren variablen Iris-Blenden und Linsen im Strahlengang ist es möglich, das Licht geeignet zu kollimieren bzw. den Öffnungswinkel der Strahlen an die Meßapparatur anzupassen, um Interferenzeffekte sichtbar zu machen. Das Michelson-Interferometer besteht aus einem mittig angeordneten R50:T50-Strahlteiler, an dem das einfallende Licht in zwei orthogonal angeordnete Arme aufgeteilt und über Planspiegel in sich selbst zurückreflektiert wird. Eine zusätzliche Kompensationsplatte mit identischer optischer Dicke der Strahlteilerplatte dient dem Ausgleich der beiden Strahlarme. In einem der beiden Teilarme ist es möglich, den Endspiegel entlang der optischen Achse systematisch zu verschieben und somit einen variablen Gangunterschied zwischen beiden Strahlarmen zu erzeugen. Die Einstellgenauigkeit des Mikrometertisches beträgt hierbei x 1 µm. Interferenzeffekte der auf dem Strahlteiler wieder überlagerten Teilstrahlen können schließlich auf einem matten Schirm am Ausgang der Apparatur beobachtet werden (gute Justage vorausgesetzt!).

6 Streulinse Helium-Neon-Laser ( = nm) Klapp- Spiegel Linse Na Natrium- Dampflampe BS Komp. Schirm verfahrbarer Spiegel (M ) 1 Periskop (2 Spiegel) Iris-Blende manueller Lineartisch: µm-antrieb mit Digitalanzeige fester Spiegel (M ) 2 Abbildung 3: Schematischer Aufbau des im Versuch verwendeten Michelson-Interferometers: Der einfallende Lichtstrahl (HeNe-Laser bzw. Emission der Na-Dampflampe) wird mittels R50:T50-Strahlteilerplatte in zwei orthogonale Pfade aufgespalten, nach Reflexion wieder zusammengeführt und schließlich auf einem Schirm detektiert. Während einer der Strahlarme eine feste optische Weglänge besitzt, kann der Endspiegel des zweiten Arms über einen Mikrometertisch (Auflösung: 1 µm min. Schrittweite) verfahren werden. Die daraus entstehende Weg- und Phasendifferenz zwischen beiden Teilstrahlen resultiert in einer periodischen Modulation der gemittelten Intensität auf dem Detektionsschirm hinter dem Interferometer.!!! Sicherheitshinweis!!! Bei dem in diesem Versuch verwendenten HeNe-Laser handelt es sich um eine Strahlquelle der Laserklasse 3B mit der potentiellen Gefahr von dauerhaften Augenschädigungen bei unsachgemäßer Handhabung! Schauen Sie deshalb bei der Strahljustage in keinem Fall direkt in den Strahl bzw. den Ausgang des Interferometers. Legen Sie außerdem während der Arbeiten am Strahlengang Uhren u.ä. metallischen Armschmuck ab, um intensive Reflexe zu vermeiden. Weiterhin ist das Tragen der bereitgestellten Justierbrille dringend zu empfehlen, die die Laserstrahlung auf ein für das Auge ungefährliches Maß abschwächt! Bei Unklarheiten und/oder Fragen sprechen Sie bitte einen der Betreuer an!

7 Aufgabenstellung (a) Führen Sie zunächst eine grundlegende Justage (Kontrolle) des Michelson- Interferometers durch. Verwenden Sie dazu den Helium-Neon-Laser als stark kohärente Lichtquelle mit gerichteter Emission. Das Einschalten des Lasers erfolgt über den externen Controller. Nach Betätigen des Schalters sollte der Laser innerhalb von 5 Sekunden Emission zeigen. (Bei Fragen oder Problemen wenden Sie sich bitte an einen der Betreuer.) Überprüfen und korrigieren Sie ggf. den Verlauf des Laserlichts von der Quelle zum Interferometer auf mittige Positionierung des Spots auf allen Irisblenden im Strahlengang. Die Aperturen der Blenden sollte dabei in etwa dem Durchmesser des Strahls (ca. 2 mm) entsprechen. Kontrollieren Sie nun die Position der Laserspots auf beiden Spiegeln des Michelson- Interferometers. Die Strahllage sollte in etwa dem Zentrum der Spiegel entsprechen. Decken Sie anschließend je einen der Spiegel im Interferometer ab, um die Rückreflexe der Strahlen auf den beiden letzten Irisblenden einzeln justieren zu können. Stellen Sie nun die Interferometerspiegel jeweils so ein, daß die Teilstrahlen in sich zurückreflektiert werden (Retro-Reflex). Um abschließend den Überlapp der beiden Teilstrahlen empfindlicher einstellen zu können, setzen Sie die Sammellinse direkt hinter den Ausgang des Lasers, um den urprünglich nahezu parallelen Strahl in Richtung Interferometer zu einem Konus aufzuweiten. Indem Sie nun die beiden letzten Irisblenden etwas öffnen und dabei die Retroreflexe beider Endspiegel beobachten, können Sie eine Feinjustage der Strahllagen vornehmen. Wiederholen Sie ggf. diesen Justageschritt, bis beide Retroreflexe deckungsgleich erscheinen. Wenn Sie nun beide Interferometerarme gleichzeitig öffnen, sollten Sie ein kontrastreiches Interferenzmuster (Streifen oder Ringe) auf dem Schirm erkennen können. Mittels geringer Feinjustage der Spiegelverkippungen können Sie die Strahlkegel auf dieselbe Achse einstellen. Bei vollständig geöffneten Irisblenden besteht das resultierende Interferenzmuster aus konzentrischen Ringen (Frage: Warum ist das so?). Die Grundjustage des Interferometers für den folgenden Versuchsteil ist hiermit abgeschlossen. Schalten Sie nun den Laser wieder aus. (b) Im zweiten Versuchsteil soll die Emission einer Natrium-Dampflampe (Spektrallampe) dazu verwendet werden, um die charakteristische Doppelstruktur der intensiven gelben Emission bei 589 nm (Na-D 1,2 -Linien) aufzulösen. Wie im Theorieteil bereits erläutert wurde, kann man hierzu den Effekt der Kontrastmodulation des gemeinsamen Interferenzmusters beider Linien (Literaturwerte [3]: λ D1 = nm und λ D2 = nm) verwenden, um ausgehend von einer der beiden Wellenlängen die zweite Emissionslinie und somit den Relativabstand λ zu bestimmen. Schalten Sie zunächst die Spektrallampe über den großen Starter-Knopf an der Frontseite des Controllers ein. Anmerkung: Die Aufwärmphase der Na-Lampe bis

8 zum Erreichen der vollen Intensität beträgt etwa 5 Minuten! Kontrollieren Sie anschließend bei leicht geöffneten Blenden die Lage des Strahls zum Interferometer und korrigieren Sie diese ggf. mit Hilfe des Klappspiegels zwischen Spektrallampe und Periskop sowie einer leichten Verkippung eines der Interferometerspiegel. Eine komplette Grundjustage des Interferometers sollte nicht notwendig sein! Auf dem Schirm sollten jetzt deutliche Interferenzmuster (Ringe oder Streifen) zu erkennen sein. Sollte dies nicht der Fall sein, verfahren Sie die Position des beweglichen Spiegels um wenige Umdrehungen der Mikrometerschraube, bis Interferenz-Kontrast zu sehen ist, und optimieren Sie das Interferogramm. Zur Bestimmung der Kontrastmodulationsperiode ( s) min zwischen zwei aufeinander folgenden Minima des Interferenzkontrastes können Sie das Display der Mikrometerschraube am Lineartisch jeweils auf Null zurücksetzen(option). Nehmen Sie, ausgehend von der symmetrischen Position gleich langer Interferometerarme ( Weißlichtposition ), eine Sequenz von mindestens 10 Positionen des beweglichen Spiegels auf, an denen der Kontrast des Interferogramms der beobachteten D 1,2 - Linien gerade vollständig verschwindet. Bestimmen Sie auf Basis einer der bekannten Wellenlängen λ 1 oder λ 2 mit diesen Daten für die Verschiebung d zwischen zwei Kontrast-Minima den Wert von λ (mit Fehlerfortpflanzung!) und vergleichen Sie Ihr Ergebnis mit den oben angegebenen Literaturwerten! Literaturquellen [1] Wolfgang Demtröder, Experimentalphysik 3 Experimentelle Methoden der Atomund Molekülphysik, 3. Auflage, Springer Berlin Heidelberg (2005). [2] Wolfgang Demtröder, Laserspektroskopie Grundlagen und Techniken, 4. Auflage, Springer Berlin Heidelberg (2000). [3] Hermann Haken und Hans Christoph Wolf, Atom- und Quantenphysik Einführung in die experimenetellen und theoretischen Grundlagen, 6. Auflage, Springer Berlin Heidelberg (1996).

O10 PhysikalischesGrundpraktikum

O10 PhysikalischesGrundpraktikum O10 PhysikalischesGrundpraktikum Abteilung Optik Michelson-Interferometer 1 Lernziele Aufbau und Funktionsweise von Interferometern, Räumliche und zeitliche Kohärenz, Kohärenzeigenschaften verschiedener

Mehr

Michelson - Interferometer

Michelson - Interferometer Michelson - Interferometer Matthias Lütgens 9. April 2005 Partner: Christoph Mahnke Betreuer: Dr. Enenkel Datum der Versuchsdurchführung: 5. April 2005 0.1 Ziel Experimentelle Nutzung des Michelson-Interferometers

Mehr

5.8.8 Michelson-Interferometer ******

5.8.8 Michelson-Interferometer ****** 5.8.8 ****** Motiation Ein wird mit Laser- bzw. mit Glühlampenlicht betrieben. Durch Verschieben eines der beiden Spiegel werden Intensitätsmaxima beobachtet. Experiment S 0 L S S G Abbildung : Aufsicht

Mehr

31-1. R.W. Pohl, Bd. III (Optik) Mayer-Kuckuck, Atomphysik Lasertechnik, eine Einführung (Physik-Bibliothek).

31-1. R.W. Pohl, Bd. III (Optik) Mayer-Kuckuck, Atomphysik Lasertechnik, eine Einführung (Physik-Bibliothek). 31-1 MICHELSON-INTERFEROMETER Vorbereitung Michelson-Interferometer, Michelson-Experiment zur Äthertheorie und Konsequenzen, Wechselwirkung von sichtbarem Licht mit Materie (qualitativ: spontane und stimulierte

Mehr

Gitterherstellung und Polarisation

Gitterherstellung und Polarisation Versuch 1: Gitterherstellung und Polarisation Bei diesem Versuch wollen wir untersuchen wie man durch Überlagerung von zwei ebenen Wellen Gttterstrukturen erzeugen kann. Im zweiten Teil wird die Sichtbarkeit

Mehr

Vortrag 2: Kohärenz VON JANIK UND JONAS

Vortrag 2: Kohärenz VON JANIK UND JONAS Vortrag 2: Kohärenz VON JANIK UND JONAS Vortrag 2: Kohärenz Inhalt: Kohärenz im Allgemeinen Kohärenzlänge Kohärenzbedingungen Zeitliche Kohärenz Räumliche Kohärenz MICHELSON Interferometer zum Nachweis

Mehr

Licht + Licht = Dunkelheit? Das Mach-Zehnderund das Michelson-Interferometer

Licht + Licht = Dunkelheit? Das Mach-Zehnderund das Michelson-Interferometer Licht + Licht = Dunkelheit? Das Mach-Zehnderund das Michelson-Interferometer Inhalt 1. Grundlagen 1.1 Interferenz 1.2 Das Mach-Zehnder- und das Michelson-Interferometer 1.3 Lichtgeschwindigkeit und Brechzahl

Mehr

Michelson Interferometer: Aufbau und Anwendungen. 21. Mai 2015

Michelson Interferometer: Aufbau und Anwendungen. 21. Mai 2015 Michelson Interferometer: Aufbau und Anwendungen 1. Mai 015 1 Prinzipieller Aufbau eines Michelson Interferometers Interferenz zweier ebener elektromagnetischer Wellen gleicher Frequenz, aber unterschiedlicher

Mehr

Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert

Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert O07 Michelson-Interferometer (Pr_PhII_O07_Michelson_7, 5.10.015) 1.. Name Matr. Nr. Gruppe

Mehr

Michelson-Interferometer & photoelektrischer Effekt

Michelson-Interferometer & photoelektrischer Effekt Michelson-Interferometer & photoelektrischer Effekt Branche: TP: Autoren: Klasse: Physik / Physique Michelson-Interferometer & photoelektrischer Effekt Cedric Rey David Schneider 2T Datum: 01.04.2008 &

Mehr

Protokoll zum Anfängerpraktikum

Protokoll zum Anfängerpraktikum Protokoll zum Anfängerpraktikum Michelson Interferometer Gruppe 2, Team 5 Sebastian Korff Frerich Max 26.06.06 Inhaltsverzeichnis 1. Einleitung -3-1.1 Allgemeines -3-1.2 Funktionsweise -4-1.3 Relative

Mehr

Interferometer OPL 29

Interferometer OPL 29 Interferometer OPL 29 Material: 1 Interferometer nach Michelson DL408-2I 1 Rundfuß mit Klemmsäule DS100-1R Theoretische Grundlagen: Beim Interferometer nach Michelson wird das von der Lichtquelle L kommende

Mehr

Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am 24.11.2011

Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am 24.11.2011 Praktikum Physik Protokoll zum Versuch: Geometrische Optik Durchgeführt am 24.11.2011 Gruppe X Name1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das

Mehr

MS Michelson-Interferometer

MS Michelson-Interferometer MS Michelson-Interferometer Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis 1 Grunlagen 2 1.1 Aufbau.................................... 2 1.2 Interferenzmuster...............................

Mehr

PO Doppelbrechung und elliptisch polarisiertes Licht

PO Doppelbrechung und elliptisch polarisiertes Licht PO Doppelbrechung und elliptisch polarisiertes Licht Blockpraktikum Herbst 27 (Gruppe 2b) 24. Oktober 27 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Polarisation.................................. 2 1.2 Brechung...................................

Mehr

Unternehmen Sie unter keinen Umständen einen eigenen Reinigungsversuch!

Unternehmen Sie unter keinen Umständen einen eigenen Reinigungsversuch! FACHHOCHSCHULE BINGEN PHYSIKLABOR Energie- und Prozesstechnik/Biotechnik Gruppennummer Anwesenheit Name / Datum V 2.4 Wellenoptik / LASER Version 17.9.2012 Testat WICHTIG: Vor der Versuchsdurchführung

Mehr

Labor Optische Messtechnik

Labor Optische Messtechnik Fachbereich MN Fachhochschule Darmstadt Studiengang Optotechnik und Bildverarbeitung Labor Optische Messtechnik Versuch: Michelson Interferometer durchgeführt am: 30. April 003 Gruppe: Tobias Crößmann,

Mehr

Praktikum I BL Brennweite von Linsen

Praktikum I BL Brennweite von Linsen Praktikum I BL Brennweite von Linsen Hanno Rein, Florian Jessen Betreuer: Gunnar Ritt 5. Januar 2004 Motivation Linsen spielen in unserem alltäglichen Leben eine große Rolle. Ohne sie wäre es uns nicht

Mehr

1.1 Auflösungsvermögen von Spektralapparaten

1.1 Auflösungsvermögen von Spektralapparaten Physikalisches Praktikum für Anfänger - Teil Gruppe Optik. Auflösungsvermögen von Spektralapparaten Einleitung - Motivation Die Untersuchung der Lichtemission bzw. Lichtabsorption von Molekülen und Atomen

Mehr

5.9.301 Brewsterscher Winkel ******

5.9.301 Brewsterscher Winkel ****** 5.9.301 ****** 1 Motivation Dieser Versuch führt vor, dass linear polarisiertes Licht, welches unter dem Brewsterwinkel auf eine ebene Fläche eines durchsichtigen Dielektrikums einfällt, nur dann reflektiert

Mehr

Laser B Versuch P2-23,24,25

Laser B Versuch P2-23,24,25 Vorbereitung Laser B Versuch P2-23,24,25 Iris Conradi und Melanie Hauck Gruppe Mo-02 20. Mai 2011 Inhaltsverzeichnis Inhaltsverzeichnis 1 Fouriertransformation 3 2 Michelson-Interferometer 4 2.1 Magnetostriktion...............................

Mehr

Physikalisches Praktikum 4. Semester

Physikalisches Praktikum 4. Semester Torsten Leddig 18.Mai 2005 Mathias Arbeiter Betreuer: Dr.Enenkel Physikalisches Praktikum 4. Semester - Michelson Inteferometer - 1 1 Vorbetrachtung: zwei wellen heißen kohärent wenn sie bis auf eine Phase

Mehr

Versuchsvorbereitung: P1-42, 44: Lichtgeschwindigkeitsmessung

Versuchsvorbereitung: P1-42, 44: Lichtgeschwindigkeitsmessung Praktikum Klassische Physik I Versuchsvorbereitung: P1-42, 44: Lichtgeschwindigkeitsmessung Christian Buntin Gruppe Mo-11 Karlsruhe, 30. November 2009 Inhaltsverzeichnis 1 Drehspiegelmethode 2 1.1 Vorbereitung...............................

Mehr

1.6 Michelson-Interferometer und Newtonsche Ringe

1.6 Michelson-Interferometer und Newtonsche Ringe Physikalisches Praktikum für Anfänger - Teil 1 Gruppe 1 - Optik 1.6 Michelson-Interferometer und Newtonsche Ringe 1 Michelson-Interferometer Interferometer dienen zur Messung von Längen oder Längendifferenzen

Mehr

Versuchsprotokoll - Michelson Interferometer

Versuchsprotokoll - Michelson Interferometer Versuchsprotokoll im Fach Physik LK Radkovsky August 2008 Versuchsprotokoll - Michelson Interferometer Sebastian Schutzbach Jörg Gruber Felix Cromm - 1/6 - Einleitung: Nachdem wir das Interferenzphänomen

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007 Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #45 am 18.07.2007 Vladimir Dyakonov Erzeugung von Interferenzen: 1) Durch Wellenfrontaufspaltung

Mehr

Lichtbrechung an Linsen

Lichtbrechung an Linsen Sammellinsen Lichtbrechung an Linsen Fällt ein paralleles Lichtbündel auf eine Sammellinse, so werden die Lichtstrahlen so gebrochen, dass sie durch einen Brennpunkt der Linse verlaufen. Der Abstand zwischen

Mehr

Michelson - Interferometer

Michelson - Interferometer Michelson - Interferometer Team 1: Daniela Poppinga und Jan Christoph Bernack Betreuer: Dr. Gerd Gülker 7. Juli 2009 1 2 Daniela Poppinga, Jan Christoph Bernack Inhaltsverzeichnis 1 Aufbau und Justage

Mehr

Grundbegriffe Brechungsgesetz Abbildungsgleichung Brechung an gekrümmten Flächen Sammel- und Zerstreuungslinsen Besselmethode

Grundbegriffe Brechungsgesetz Abbildungsgleichung Brechung an gekrümmten Flächen Sammel- und Zerstreuungslinsen Besselmethode Physikalische Grundlagen Grundbegriffe Brechungsgesetz Abbildungsgleichung Brechung an gekrümmten Flächen Sammel- und Zerstreuungslinsen Besselmethode Linsen sind durchsichtige Körper, die von zwei im

Mehr

Eine solche Anordnung wird auch Fabry-Pérot Interferometer genannt

Eine solche Anordnung wird auch Fabry-Pérot Interferometer genannt Interferenz in dünnen Schichten Interferieren die an dünnen Schichten reflektierten Wellen miteinander, so können diese sich je nach Dicke der Schicht und Winkel des Einfalls auslöschen oder verstärken

Mehr

1. Theorie: Kondensator:

1. Theorie: Kondensator: 1. Theorie: Aufgabe des heutigen Versuchstages war es, die charakteristische Größe eines Kondensators (Kapazität C) und einer Spule (Induktivität L) zu bestimmen, indem man per Oszilloskop Spannung und

Mehr

Michelson-Interferometer. Jannik Ehlert, Marko Nonho

Michelson-Interferometer. Jannik Ehlert, Marko Nonho Michelson-Interferometer Jannik Ehlert, Marko Nonho 4. Juni 2014 Inhaltsverzeichnis 1 Einführung 1 2 Auswertung 2 2.1 Thermische Ausdehnung... 2 2.2 Magnetostriktion... 3 2.2.1 Beobachtung mit dem Auge...

Mehr

Optik II (Beugungsphänomene)

Optik II (Beugungsphänomene) Optik II (Beugungsphänomene) 1 Wellenoptik 2 1 Interferenz von Wellen, Interferenzversuche 3 Überlagerung von Wellen 4 2 Konstruktive und destruktive Interferenz 5 Beugungsphänomene 6 Bei der Interferenz

Mehr

Musterlösungen zur Linearen Algebra II Blatt 5

Musterlösungen zur Linearen Algebra II Blatt 5 Musterlösungen zur Linearen Algebra II Blatt 5 Aufgabe. Man betrachte die Matrix A := über dem Körper R und über dem Körper F und bestimme jeweils die Jordan- Normalform. Beweis. Das charakteristische

Mehr

Einführungsexperiment mit Hellraumprojektor. Spiegel zuklappen. Behälter mit Wasser gefüllt. zuklappen. Schwarzes Papier als Abdeckung.

Einführungsexperiment mit Hellraumprojektor. Spiegel zuklappen. Behälter mit Wasser gefüllt. zuklappen. Schwarzes Papier als Abdeckung. Einführungsexperiment mit Hellraumprojektor Spiegel zuklappen Behälter mit Wasser gefüllt zuklappen Schwarzes Papier als Abdeckung zuklappen schmaler Lichtstreifen ergibt bessere Ergebnisse Tipps: Je höher

Mehr

1 topologisches Sortieren

1 topologisches Sortieren Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

BL Brennweite von Linsen

BL Brennweite von Linsen BL Brennweite von Linsen Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Geometrische Optik................... 2 2.2 Dünne Linse........................

Mehr

2.8 Grenzflächeneffekte

2.8 Grenzflächeneffekte - 86-2.8 Grenzflächeneffekte 2.8.1 Oberflächenspannung An Grenzflächen treten besondere Effekte auf, welche im Volumen nicht beobachtbar sind. Die molekulare Grundlage dafür sind Kohäsionskräfte, d.h.

Mehr

Spektroskopie. im IR- und UV/VIS-Bereich. Spektrometer. http://www.analytik.ethz.ch

Spektroskopie. im IR- und UV/VIS-Bereich. Spektrometer. http://www.analytik.ethz.ch Spektroskopie im IR- und UV/VIS-Bereich Spektrometer Dr. Thomas Schmid HCI D323 schmid@org.chem.ethz.ch http://www.analytik.ethz.ch Allgemeiner Aufbau eines Spektrometers Lichtintensität d I 0 Probe I

Mehr

Geometrische Optik. Ausserdem gilt sin ϕ = y R. Einsetzen in die Gleichung für die Brennweite ergibt unmittelbar: 1 2 1 sin 2 ϕ

Geometrische Optik. Ausserdem gilt sin ϕ = y R. Einsetzen in die Gleichung für die Brennweite ergibt unmittelbar: 1 2 1 sin 2 ϕ Geometrische Optik GO: 2 Leiten Sie für einen Hohlspiegel die Abhängigkeit der Brennweite vom Achsabstand des einfallenden Strahls her (f = f(y))! Musterlösung: Für die Brennweite des Hohlspiegels gilt:

Mehr

GT- Labor. Inhaltsverzeichnis

GT- Labor. Inhaltsverzeichnis Inhaltsverzeichnis Seite 1. Versuchsvorbereitung 2 1.1 Qualitatives Spektrum der Ausgangsspannung des Eintaktmodulators 2 1.2 Spektrum eines Eintaktmodulators mit nichtlinearem Element 2 1.3 Bandbreite

Mehr

Experimentierfeld 5. Optisches Präzisionsinterferometer. 1. Sicherheitshinweise. 2. Beschreibung und Bedienung der Geräte

Experimentierfeld 5. Optisches Präzisionsinterferometer. 1. Sicherheitshinweise. 2. Beschreibung und Bedienung der Geräte Experimentierfeld 5 Optisches Präzisionsinterferometer 1. Sicherheitshinweise Laserstrahlen können in biologisches Gewebe insbesondere die Netzhaut des Auges schädigen. Der im Experiment verwendete HeNe-Laser

Mehr

Versuch 3. Frequenzgang eines Verstärkers

Versuch 3. Frequenzgang eines Verstärkers Versuch 3 Frequenzgang eines Verstärkers 1. Grundlagen Ein Verstärker ist eine aktive Schaltung, mit der die Amplitude eines Signals vergößert werden kann. Man spricht hier von Verstärkung v und definiert

Mehr

Physik & Musik. Stimmgabeln. 1 Auftrag

Physik & Musik. Stimmgabeln. 1 Auftrag Physik & Musik 5 Stimmgabeln 1 Auftrag Physik & Musik Stimmgabeln Seite 1 Stimmgabeln Bearbeitungszeit: 30 Minuten Sozialform: Einzel- oder Partnerarbeit Voraussetzung: Posten 1: "Wie funktioniert ein

Mehr

Anleitung zur Erstellung von Serienbriefen (Word 2003) unter Berücksichtigung von Titeln (wie Dr., Dr. med. usw.)

Anleitung zur Erstellung von Serienbriefen (Word 2003) unter Berücksichtigung von Titeln (wie Dr., Dr. med. usw.) Seite 1/7 Anleitung zur Erstellung von Serienbriefen (Word 2003) unter Berücksichtigung von Titeln (wie Dr., Dr. med. usw.) Hier sehen Sie eine Anleitung wie man einen Serienbrief erstellt. Die Anleitung

Mehr

Übungsaufgaben Tilgungsrechnung

Übungsaufgaben Tilgungsrechnung 1 Zusatzmaterialien zu Finanz- und Wirtschaftsmathematik im Unterricht, Band 1 Übungsaufgaben Tilgungsrechnung Überarbeitungsstand: 1.März 2016 Die grundlegenden Ideen der folgenden Aufgaben beruhen auf

Mehr

Erstellen einer Collage. Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu])

Erstellen einer Collage. Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu]) 3.7 Erstellen einer Collage Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu]) Dann Größe des Dokuments festlegen beispielsweise A4 (weitere

Mehr

Instrumenten- Optik. Mikroskop

Instrumenten- Optik. Mikroskop Instrumenten- Optik Mikroskop Gewerblich-Industrielle Berufsschule Bern Augenoptikerinnen und Augenoptiker Der mechanische Aufbau Die einzelnen mechanischen Bauteile eines Mikroskops bezeichnen und deren

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

Informatik Kurs Simulation. Hilfe für den Consideo Modeler

Informatik Kurs Simulation. Hilfe für den Consideo Modeler Hilfe für den Consideo Modeler Consideo stellt Schulen den Modeler kostenlos zur Verfügung. Wenden Sie sich an: http://consideo-modeler.de/ Der Modeler ist ein Werkzeug, das nicht für schulische Zwecke

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 7. Übungsblatt - 6.Dezember 2010 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (8 Punkte) Optische

Mehr

AOK Pflege: Praxisratgeber Sturzprävention Übungen zur Stärkung des Gleichgewichts

AOK Pflege: Praxisratgeber Sturzprävention Übungen zur Stärkung des Gleichgewichts Gut für das Gleichgewicht Ein trainierter Gleichgewichtssinn gibt dem Pflegebedürftigen Sicherheit und Selbstvertrauen. Je abwechslungsreicher die Bewegungen, desto besser wird das Zusammenspiel von Muskeln

Mehr

Die Kurzsichtigkeit. Korrekturmöglichkeiten

Die Kurzsichtigkeit. Korrekturmöglichkeiten Die Kurzsichtigkeit Korrekturmöglichkeiten Der Aufbau des kurzsichtigen Auges Das Auge ist im Verhältnis zum Brechwert zu lang. Das Licht bündelt sich vor der Netzhaut. Deshalb müssen Minuslinsen aus parallele

Mehr

Lasertechnik Praktikum. Nd:YAG Laser

Lasertechnik Praktikum. Nd:YAG Laser Lasertechnik Praktikum Nd:YAG Laser SS 2013 Gruppe B1 Arthur Halama Xiaomei Xu 1. Theorie 2. Messung und Auswertung 2.1 Justierung und Beobachtung des Pulssignals am Oszilloskop 2.2 Einfluss der Verstärkerspannung

Mehr

22 Optische Spektroskopie; elektromagnetisches Spektrum

22 Optische Spektroskopie; elektromagnetisches Spektrum 22 Optische Spektroskopie; elektromagnetisches Spektrum Messung der Wellenlänge von Licht mithilfedes optischen Gitters Versuch: Um das Spektrum einer Lichtquelle, hier einer Kohlenbogenlampe, aufzunehmen

Mehr

P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK

P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK GRUPPE 19 - SASKIA MEIßNER, ARNOLD SEILER 1 Bestimmung der Brennweite 11 Naives Verfahren zur Bestimmung der Brennweite Es soll nur mit Maÿstab und Schirm die

Mehr

Info zum Zusammenhang von Auflösung und Genauigkeit

Info zum Zusammenhang von Auflösung und Genauigkeit Da es oft Nachfragen und Verständnisprobleme mit den oben genannten Begriffen gibt, möchten wir hier versuchen etwas Licht ins Dunkel zu bringen. Nehmen wir mal an, Sie haben ein Stück Wasserrohr mit der

Mehr

Optik: Teilgebiet der Physik, das sich mit der Untersuchung des Lichtes beschäftigt

Optik: Teilgebiet der Physik, das sich mit der Untersuchung des Lichtes beschäftigt -II.1- Geometrische Optik Optik: Teilgebiet der, das sich mit der Untersuchung des Lichtes beschäftigt 1 Ausbreitung des Lichtes Das sich ausbreitende Licht stellt einen Transport von Energie dar. Man

Mehr

PO - Doppelbrechung und elliptisch polarisiertes Licht Blockpraktikum Herbst 2005

PO - Doppelbrechung und elliptisch polarisiertes Licht Blockpraktikum Herbst 2005 PO - Doppelbrechung und elliptisch polarisiertes Licht Blockpraktikum Herbst 00 Assistent Florian Jessen Tübingen, den. Oktober 00 1 Vorwort In diesem Versuch ging es um das Phänomen der Doppelbrechung

Mehr

Bedienungsanleitung für das Tektronix Oszilloskop TDS 2002B

Bedienungsanleitung für das Tektronix Oszilloskop TDS 2002B Bedienungsanleitung für das Tektronix Oszilloskop TDS 2002B 1.0 Darstellen von Spannungsverläufen periodischer Signale Um das Gerät in Betrieb zu nehmen, schalten Sie es zunächst mit dem Netzschalter,

Mehr

Erstellen von x-y-diagrammen in OpenOffice.calc

Erstellen von x-y-diagrammen in OpenOffice.calc Erstellen von x-y-diagrammen in OpenOffice.calc In dieser kleinen Anleitung geht es nur darum, aus einer bestehenden Tabelle ein x-y-diagramm zu erzeugen. D.h. es müssen in der Tabelle mindestens zwei

Mehr

2 Naturwissenschaftliche Grundlagen Druckweiterverarbeitung

2 Naturwissenschaftliche Grundlagen Druckweiterverarbeitung Im Kapitel 2.6 werden die Grundlagen der Sensorik behandelt. Nachfolgend zeigen wir Beispiele von Sensoren in der Druckweiterverarbeitung, vornehmlich aus dem Bereich der Zeitungsproduktion. 2.7.1 Induktive

Mehr

1 Anregung von Oberflächenwellen (30 Punkte)

1 Anregung von Oberflächenwellen (30 Punkte) 1 Anregung von Oberflächenwellen (30 Punkte) Eine ebene p-polarisierte Welle mit Frequenz ω und Amplitude E 0 trifft aus einem dielektrischen Medium 1 mit Permittivität ε 1 auf eine Grenzfläche, die mit

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

1 Aufgabe: Absorption von Laserstrahlung

1 Aufgabe: Absorption von Laserstrahlung 1 Aufgabe: Absorption von Laserstrahlung Werkstoff n R n i Glas 1,5 0,0 Aluminium (300 K) 25,3 90,0 Aluminium (730 K) 36,2 48,0 Aluminium (930 K) 33,5 41,9 Kupfer 11,0 50,0 Gold 12,0 54,7 Baustahl (570

Mehr

1 mm 20mm ) =2.86 Damit ist NA = sin α = 0.05. α=arctan ( 1.22 633 nm 0.05. 1) Berechnung eines beugungslimitierten Flecks

1 mm 20mm ) =2.86 Damit ist NA = sin α = 0.05. α=arctan ( 1.22 633 nm 0.05. 1) Berechnung eines beugungslimitierten Flecks 1) Berechnung eines beugungslimitierten Flecks a) Berechnen Sie die Größe eines beugungslimitierten Flecks, der durch Fokussieren des Strahls eines He-Ne Lasers (633 nm) mit 2 mm Durchmesser entsteht.

Mehr

RS-Flip Flop, D-Flip Flop, J-K-Flip Flop, Zählschaltungen

RS-Flip Flop, D-Flip Flop, J-K-Flip Flop, Zählschaltungen Elektronik Praktikum / Digitaler Teil Name: Jens Wiechula, Philipp Fischer Leitung: Prof. Dr. U. Lynen Protokoll: Philipp Fischer Versuch: 3 Datum: 24.06.01 RS-Flip Flop, D-Flip Flop, J-K-Flip Flop, Zählschaltungen

Mehr

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

Theoretische Grundlagen Physikalisches Praktikum. Versuch 5: Linsen (Brennweitenbestimmung)

Theoretische Grundlagen Physikalisches Praktikum. Versuch 5: Linsen (Brennweitenbestimmung) Theoretische Grundlagen hysikalisches raktikum Versuch 5: Linsen (Brennweitenbestimmung) Allgemeine Eigenschaften von Linsen sie bestehen aus einem lichtdurchlässigem Material sie weisen eine oder zwei

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

Outlook. sysplus.ch outlook - mail-grundlagen Seite 1/8. Mail-Grundlagen. Posteingang

Outlook. sysplus.ch outlook - mail-grundlagen Seite 1/8. Mail-Grundlagen. Posteingang sysplus.ch outlook - mail-grundlagen Seite 1/8 Outlook Mail-Grundlagen Posteingang Es gibt verschiedene Möglichkeiten, um zum Posteingang zu gelangen. Man kann links im Outlook-Fenster auf die Schaltfläche

Mehr

myphotonics Optik & Photonik mit LEGO -Bausteinen Fachbereich Physik www.imlau.physik.uos.de

myphotonics Optik & Photonik mit LEGO -Bausteinen Fachbereich Physik www.imlau.physik.uos.de Prof. Dr. Mirco Imlau Stefan Klompmaker B. Sc. Felix Lager B. Sc. Universität Osnabrück Fachbereich Physik Barbarastraße 7 49076 Osnabrück Tel.: +49 541 969 2654 E-Mail: mimlau@uni-osnabrueck.de www.imlau.physik.uos.de

Mehr

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben

Mehr

Anleitung über den Umgang mit Schildern

Anleitung über den Umgang mit Schildern Anleitung über den Umgang mit Schildern -Vorwort -Wo bekommt man Schilder? -Wo und wie speichert man die Schilder? -Wie füge ich die Schilder in meinen Track ein? -Welche Bauteile kann man noch für Schilder

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit sin() f() =. Aufgabe : ( VP) Berechnen Sie das Integral ( )

Mehr

Wie Sie mit Mastern arbeiten

Wie Sie mit Mastern arbeiten Wie Sie mit Mastern arbeiten Was ist ein Master? Einer der großen Vorteile von EDV besteht darin, dass Ihnen der Rechner Arbeit abnimmt. Diesen Vorteil sollten sie nutzen, wo immer es geht. In PowerPoint

Mehr

Versuchsziel. Literatur. Grundlagen. Physik-Labor Fachbereich Elektrotechnik und Informatik Fachbereich Mechatronik und Maschinenbau

Versuchsziel. Literatur. Grundlagen. Physik-Labor Fachbereich Elektrotechnik und Informatik Fachbereich Mechatronik und Maschinenbau Physik-Labor Fachbereich Elektrotechnik und Inormatik Fachbereich Mechatronik und Maschinenbau O Physikalisches Praktikum Brennweite von Linsen Versuchsziel Es sollen die Grundlaen der eometrischen Optik

Mehr

Folienmodell zur Veranschaulichung der Bewegung von Erde und Mond um ihren gemeinsamen Schwerpunkt: (Verfasser: Werner B. Schneider, Stand 2/2010)

Folienmodell zur Veranschaulichung der Bewegung von Erde und Mond um ihren gemeinsamen Schwerpunkt: (Verfasser: Werner B. Schneider, Stand 2/2010) Folienmodell zur Veranschaulichung der Bewegung von Erde und Mond um ihren gemeinsamen Schwerpunkt: (Verfasser: Werner B. Schneider, Stand 2/2010) Das mit dem Modell verfolgte Ziel besteht darin, die Bewegung

Mehr

08 Aufgaben zur Wellenoptik

08 Aufgaben zur Wellenoptik 1Profilkurs Physik ÜA 08 Aufgaben zur Wellenoptik 2011 Seite 1 A Überlagerung zweier Kreiswellen Aufgabe A 1 08 Aufgaben zur Wellenoptik Zwei Lautsprecher schwingen mit f = 15 khz und befinden sich im

Mehr

A Lösungen zu Einführungsaufgaben zu QueueTraffic

A Lösungen zu Einführungsaufgaben zu QueueTraffic A Lösungen zu Einführungsaufgaben zu QueueTraffic 1. Selber Phasen einstellen a) Wo im Alltag: Baustelle, vor einem Zebrastreifen, Unfall... 2. Ankunftsrate und Verteilungen a) poissonverteilt: b) konstant:

Mehr

Technical Note Nr. 101

Technical Note Nr. 101 Seite 1 von 6 DMS und Schleifringübertrager-Schaltungstechnik Über Schleifringübertrager können DMS-Signale in exzellenter Qualität übertragen werden. Hierbei haben sowohl die physikalischen Eigenschaften

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

Optik. Optik. Optik. Optik. Optik

Optik. Optik. Optik. Optik. Optik Nenne das Brechungsgesetz! Beim Übergang von Luft in Glas (Wasser, Kunststoff) wird der Lichtstrahl zum Lot hin gebrochen. Beim Übergang von Glas (Wasser...) in Luft wird der Lichtstrahl vom Lot weg gebrochen.

Mehr

Professionelle Seminare im Bereich MS-Office

Professionelle Seminare im Bereich MS-Office Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion

Mehr

3. Beschreibe wie eine Mondfinsternis entstehen kann. + möglichst exakte, beschriftete Skizze

3. Beschreibe wie eine Mondfinsternis entstehen kann. + möglichst exakte, beschriftete Skizze Probetest 1 1. Wann wird Licht für uns sichtbar? (2 Möglichkeiten) 2. Den Lichtkegel eines Scheinwerfers sieht man besser wenn a) Rauch in der Luft ist b) die Luft völlig klar ist c) Nebeltröpfchen in

Mehr

AGROPLUS Buchhaltung. Daten-Server und Sicherheitskopie. Version vom 21.10.2013b

AGROPLUS Buchhaltung. Daten-Server und Sicherheitskopie. Version vom 21.10.2013b AGROPLUS Buchhaltung Daten-Server und Sicherheitskopie Version vom 21.10.2013b 3a) Der Daten-Server Modus und der Tresor Der Daten-Server ist eine Betriebsart welche dem Nutzer eine grosse Flexibilität

Mehr

Michelson-Interferometer

Michelson-Interferometer D02a Sie werden ein (MI) kenne lernen und justieren. Mit einem MI lassen sich Wegdifferenzen mit einer Genauigkeit in nm-bereich (Lichtwellenla nge λ) messen. Schriftliche VORbereitung: Was versteht man

Mehr

Konstruktion eines günstigen Michelson-Interferometers für den Schuleinsatz

Konstruktion eines günstigen Michelson-Interferometers für den Schuleinsatz Konstruktion eines günstigen Michelson-Interferometers für den Schuleinsatz Benjamin Hütz Sebastian Wallkötter Martin Heizenreder Hohenstaufen-Gymnasium Kaiserslautern 13.09.2011 2 1 Vorbemerkungen Im

Mehr

Laborversuche zur Physik II

Laborversuche zur Physik II Laborversuche zur Physik II Versuch 5: Michelson-Interferometer Versuchsleiter: Autoren: Herr Imbrock Daniel Heißelmann Michael Beimforde Gruppe: 2 Versuchsdatum: Montag, 19. Mai 2003 Datum : 21. Juli

Mehr

Lineare Algebra und analytische Geometrie II (Unterrichtsfach)

Lineare Algebra und analytische Geometrie II (Unterrichtsfach) MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Prof. Dr. D. Rost SS 0 Blatt.06.0 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie II (Unterrichtsfach) Abgabe: Dienstag, 0. Juli 0, bis 4:00

Mehr

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Leistungskurs Mathematik

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Leistungskurs Mathematik Abitur 8 II. Insektenpopulation LA/AG In den Tropen legen die Weibchen einer in Deutschland unbekannten Insektenpopulation jedes Jahr kurz vor Beginn der Regenzeit jeweils 9 Eier und sterben bald darauf.

Mehr

Anleitung für die Online-Bewerbung über LSF auf Lehrveranstaltungen aller Lehramtsstudiengänge

Anleitung für die Online-Bewerbung über LSF auf Lehrveranstaltungen aller Lehramtsstudiengänge Einloggen: Eingabe von Benutzername und Passwort Benutzername = Matrikelnummer (z.b. 999999) Passwort = Geburtsdatum (z.b. 31.12.1998) wird angezeigt als ********** Nach dem ersten Einloggen sollten sie

Mehr

Protokoll des Versuches 7: Umwandlung von elektrischer Energie in Wärmeenergie

Protokoll des Versuches 7: Umwandlung von elektrischer Energie in Wärmeenergie Name: Matrikelnummer: Bachelor Biowissenschaften E-Mail: Physikalisches Anfängerpraktikum II Dozenten: Assistenten: Protokoll des Versuches 7: Umwandlung von elektrischer Energie in ärmeenergie Verantwortlicher

Mehr

Animationen erstellen

Animationen erstellen Animationen erstellen Unter Animation wird hier das Erscheinen oder Bewegen von Objekten Texten und Bildern verstanden Dazu wird zunächst eine neue Folie erstellt : Einfügen/ Neue Folie... Das Layout Aufzählung

Mehr

Wachstum 2. Michael Dröttboom 1 LernWerkstatt-Selm.de

Wachstum 2. Michael Dröttboom 1 LernWerkstatt-Selm.de 1. Herr Meier bekommt nach 3 Jahren Geldanlage 25.000. Er hatte 22.500 angelegt. Wie hoch war der Zinssatz? 2. Herr Meiers Vorfahren haben bei der Gründung Roms (753. V. Chr.) 1 Sesterze auf die Bank gebracht

Mehr

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!. 040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl

Mehr

Messtechnik bei der Auslegung des Ventiltriebs moderner Verbrennungsmotoren. Seminar Sensoren 12.07.2010 Thomas Mayer

Messtechnik bei der Auslegung des Ventiltriebs moderner Verbrennungsmotoren. Seminar Sensoren 12.07.2010 Thomas Mayer Inhaltsübersicht Einführung Dehnungsmessstreifen Laservibrometer Druckmessdose Temperatursensor PT100 Beispiel einer Messung Einführung Ziel: Auslegung und Beurteilung des Ventiltriebs (max. Belastungen,

Mehr