Michelson-Versuche ohne Lorentz-Kontraktion

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Michelson-Versuche ohne Lorentz-Kontraktion"

Transkript

1 Miheson-Versuhe ohne Lorentz-Kontraktion Horst P. H. Meher, Potsdam Zusammenfassung Der Miheson-Versuh (MV) und seine zahreihen Wiederhoungen sowie Varianten und Modifikationen iefern mit ihren Nuresutaten reee empirishe Daten. Diese Nuergebnisse, häufig as negativ bezeihnet, widersprehen der damaigen theoretishen Erwartung. Es wird gezeigt, daß diese Diskrepanz auf Grund der inadäquaten Ausgangsgeihung zustande kommt. Das reativistishe Geshwindigkeits-Additionstheorems iefert die adäquate Ausgangsgeihung, wodurh die hypothetishe Lorentz-Kontraktion der Ätherphysik überfüssig und verzihtbar ist. Diese durh den Äther bedingte Kontraktion hat begriffih mit der reativistishen nihts zu tun und beide sind zur Interpretation des MV niht notwendig. Mit Hife des reativistishen Additions- Theorems ergeben sih in einfahster und natüriher Weise ae Nuresutate der Ätherdriftversuhe und überhaupt ausnahmsos sämtihe Resutate der Bewegungsund Navigationsaufgaben für ae Geshwindigkeiten 0 u. Die kassishe Ausgangsgeihung ist sowoh für Liht as auh für große Geshwindigkeiten inkorrekt. Bewegungen bei Rüken-, Gegen- und Seitenwind Zwei Radfahrer egen bei geiher Geshwindigkeit u eine geihange Streke bei geiher Windgeshwindigkeit v zurük, wobei der eine die Hin- und Rüktour bei Rüken- und Gegenwind und der andere hin und zurük bei rehtwinkig wirkendem Seitenwind zurükegt. Der aus dem Westen wehende Wind (x-ahse) unterstützt bei der Hinfahrt und hemmt bei der Rükfahrt die Eigengeshwindigkeit des Radfahrers, aso git u + v und u v. Seine Gesamtfahrzeit beträgt demzufoge t x = u + v + u v. Für den rehtwinkig zur Windrihtung bewegten Fahrer ergibt sih für die Hin- und Rükfahrt (y-ahse) gemäß dem Satz des Pythagoras as Gesamtfahrzeit t y = u2 v + 2 u2 v. 2 Der in y-rihtung gestartete Radfahrer ist rasher am gemeinsamen Startpunkt zurük as der in x-rihtung bewegte. Die Differenz beider Fahrzeiten beträgt t = t x t y = u + v + u v ( u2 v + 2 u2 v 2 ) > 0. (1) Diese Geihung git nur für u, d. h. sie ist für u = fash, was übera dort niht beahtet wird, wo die G. (1) mit der VLG (Vakuum-Lihtgeshwindigkeit) abgedrukt ist. 1

2 Durh ein einfahes Zahenbeispie überzeugt man sih davon, daß t > 0 ist: Die Eigengeshwindigkeit der Radfahrer auf der Streke = 50 km sei u = 25 km/h; die Windgeshwindigkeit sei 10 km/h. Dann beträgt die Gesamtfahrzeit bei Rüken- und Gegenwind t x = 4,76 h. Die Gesamtfahrzeit bei rehtwinkigem Seitenwind ergibt sih zu t y = 4,36 h. Der Zeituntershied ist aso t = 0,4 h = 24 min. Bei Windstie, aso v = 0, ist die Gesamtfahrzeit in beiden Fäen geih groß, nämih t x = t y = h = 4 h, mithin ist dann t = 0. Der Zeituntershied ist für den rehten Winke zwishen Fahrt- und Wind- bzw. Strömungsrihtung am größten. Für beiebige Winke ϕ zwishen u und v git der Kosinussatz, der den Satz des Pythagoras für ϕ = 90 bzw. ϕ = 270 as Speziafa umfaßt: Die resutierende Geshwindigkeit ergibt sih (im kassishen Fa) zu w = u 2 + v 2 + 2uv os ϕ; (2) für ϕ = 0 und ϕ = 180 ergeben sih hieraus die Nenner der G. (1), nämih u+v und u v. Den Kurs- und Navigationsberehnungen iegt im agemeinen der Kosinussatz zugrunde. Gibt es einen Ätherwind? Bei Ätherphysikern, aso in der vorreativistishen Physik, herrshte die Vorsteung, daß es einen Stoff geben müßte, der, anaog der Luft für Shaween, der Träger von Lihtween sein müßte. Dieser Stoff müßte genere raumerfüend sein, aso das gesamte Weta ausfüen, denn nur so konnte man sih den Lihttransport von Liht im Wetraum vorsteen. Die Erde müßte sih aso auf dem Weg um die Sonne um den hypothetishen Äther hindurh bewegen. Da sih die Erde um die Sonne mit der Geshwindigkeit von etwa 30 km/s bewegt, hieße das, daß ihr ein Ätherwind dieser Geshwindigkeit entgegenweht. Dieser Suhe nah einem Lihtäther (uminiferous ether) dienten die Ätherdrift-Experimente Mihesons (1881 in Potsdam und gemeinsam mit Morey 1887 in Ceveand). Mihesons für diesen Zwek erfundenes und konstruiertes Interferometer ist eine Meistereistung hoher Geniaität, ebenso die Idee zu dieser Versuhsdurhführung. Mit seiner Meßmethode hätten seinerzeit shon Zeituntershiede von s nahgewiesen werden können. Das Miheson-Interferometer hat auf vershiedenen Gebieten eine hohe Bedeutung erangt und wird (im Prinzip) im 21. Jahrhundert auf der experimenteen Suhe nah Gravitationsween eingesetzt. Um den Miheson-Versuh und seine zahreihen Modifikationen und Varianten zu verstehen, genügt es, den bewegten Radfahrer bzw. anderer Objekte durh Lihtsignae bzw. eektromagnetishe Weenzüge zu ersetzen und deren Laufzeiten parae und senkreht zur Bewegungsrihtung zu vergeihen. Es wurde erwartet, daß ein in Rihtung der Erdgeshwindigkeit emittiertes und refektiertes Lihtsigna eine größere Laufzeit hat as ein rehtwinkig dazu gemessenes sebstverständih bei geihen Laufstreken. In der Ausgangsgeihung für den MV wurde und wird (unverständiherweise) noh immer in Anaogie zur G. (1) die Geshwindigkeit u durh die Vakuum-Lihtgeshwindigkeit (VLG) ersetzt und demgemäß ein endiher Zeituntershied t > 0 erwartet. 2

3 Das Ersetzen von u = in der G. (1) ist inkorrekt. Das führt sebstverständih zu einem inkorrekten Ergebnis. Diesen Widerspruh von dem (unzutreffenden) theoretishen Ergebnis t 0 und dem experimenteen Resutat t = 0 zeigt der Miheson- Versuh. Dieses natürihe Ergebnis ist einfah damit zu verstehen, daß wegen t = 0 shießih v = 0 sein muß; und das bedeutet, das ein Ätherwind niht nahgewiesen wird. Somit kann wegen v = 0 die Geshwindigkeit der Erde auf der Umaufbahn auh niht bestimmt werden. Das aber ist die Aussage des Reativitätsprinzips: Die Eigengeshwindigkeit der Erde von a. 30 km/s maht sih in keiner Weise auf irgendwehe Versuhe in einem mit der Erde verbundenen, as abgeshossen zu betrahtenden Labor bemerkbar. Das ist von Versuhen aus der Mehanik bekannt: In einem mit konstanter (geradiniger) Geshwindigkeit bewegten Abtei (Labor) veraufen z. B. ae Wurfversuhe in geiher Weise wie bei einem gegenüber den Geisen (Erde) verbundenen Labor. Die Zuggeshwindigkeit wird aso niht addiert bei Wurfspieen im Abtei. Wirft oder shießt man mit einer Federkanone rehtwinkig zur Fahrtrihtung, so besteht kein Untershied beim Zieen, aso auh kein Vorhatewinke gegenüber der Situation, wenn der Zug im Ruhezustand ist. Die Interpretation des Nuresutates des MV ist mit dem Reativitätsprinzip, das von Einstein zunähst as Postuat erhoben, dann as naturgesetzihes Prinzip erkannt wurde, niht auf die Mehanik beshränkt, sondern für ae physikaishen Sahverhate gütig. Da sih Ätherphysiker mit dem Verziht auf den Äther niht abfinden woten oder konnten, haben sie die fäshiherweise mit der VLG geshriebenen Geihung (1), die dem Versuhsresutat widerspriht, durh eine Hypothese gewatsam zu Nu gemaht, um eine Übereinstimmung zwishen dem experimenteen und dem theoretishen Ergebnis herbeizuführen. Das geshieht etwa auf fogende Weise, deren Feherhaftigkeit eigentih seit 1905 bekannt ist und zu vermeiden wäre: Man setzte (eider noh heute) in der Ausgangsgeihung (1) inkorrekterweise u =, was beim ersten Gied wegen + v zu einer Überihtgeshwindigkeit führt. Das würde u. a. bedeuten, das Liht auh Liht überhoen könnte. Das aber ist reaiter ausgeshossen. Bereits hier iegt die Feherhaftigkeit für die von Ätherphysikern postuierte Lorentz-Kontraktion. Faßt man die G. (1) mit der unzuässigen Anwendung auf die VLG, aso u =, zusammen, so erhät man die in zahosen Bühern zu findende inadäquate Geihung t = 2 ( 1 1 v 2 / 1 ) 2. 1 v 2 / 2 Damit nun dieser Ausdruk wunshgemäß in Übereinstimmung mit dem Experiment zu Nu gemaht wird, muß der Kammerausdruk vershwinden. Das ist der Fa, wenn der erste Term im Zäher mit dem Wurzeausdruk mutipiziert wird. Dann sagt man, daß in der x-rihtung bewegte Körper niht die Länge, sondern die verkürzte (kontrahierte) Länge 1 v 2 / 2 besäße. So wurde der Äther gerettet und eine Übereinstimmung mit dem empirish einwandfreien Nuresutat herbeigeführt. 3

4 Der Gaube an den Äther und damit an die Lorentz-Kontraktion 1 (LK) ist unbefriedigend und ein Ärgernis für die Vernunft. Die adäquate Geihung - ohne Lorentz -Kontraktion Seit der Begründung der SRT im Jahre 1905 ist bekannt, daß die übihe (kassishe oder ineare) Addition von Geshwindigkeiten nur für sohe Geshwindigkeiten git, die kein gegenüber der VLG sind, so daß die VLG niht übershritten werden kann. Es gibt keine Überihtgeshwindigkeit, aso kann man durh Addition vieer keiner Geshwindigkeiten auh die VLG niht übershreiten. Das aber ist der Fa, wenn in der G. (1) für u + v einfah + v gesetzt wird. Damit erhät man dann auh ein Ergebnis, daß der Erfahrung widerspriht, das durh die formae Längenverkürzung aber angepaßt wird. Diese Ad-ho-Hypothese der ätherbeasteten LK entfät bei der adäquaten, aso korrekten Ausgangsgeihung. Man hat einfah an Stee der kassishen Addition die gemäß der SRT korrekte Addition der Geshwindigkeiten vorzunehmen. Das bedeutet, daß man in den Nennern der G. (1) die resutierenden Geshwindigkeiten durh die reativistishen Ausdrüke zu ersetzen hat. Diese Beziehungen findet man aus der bereits in Einsteins Gründungsarbeit der SRT angegebenen Geihung für die Zusammensetzung zweier Geshwindigkeiten u und v, die beiebige Winke ϕ einshießen. As resutierende Geshwindigkeit w erhät man w = u 2 + v 2 + 2uv os ϕ ( ) uv sin ϕ 2 uv os ϕ. (3) Man erkennt, daß hierin der kassishe Kosinussatz (2) as Näherung für keine Geshwindigkeiten uv 1 enthaten ist. In dieses Additionstheorem kann man u = setzen, was im kassishen Fa unzuässig ( verboten ) ist. Mit Bezug auf den Interferome- 2 ter-versuh erhät man anstatt (1) nunmehr die agemein gütige adäquate Geihung t = u+v 1+ uv 2 + u v 1 uv 2 ( u 2 + v 2 ( ) + 2 uv u 2 + v 2 ( uv ) 2 ). Man erkennt unmittebar, daß für v = 0 (Windstie im obigen Radfahrerbeispie, kein Ätherwind und für u = beim MV) das empirish triviae Ergebnis t = 0 fogt. Für v 0 und u = durhgeführte Versuhe vom Typ Miheson erbrahten ebenfas Nuresutate, die vorhersagbar gewesen wären. Es handet sih dabei um Versuhe mit Sonnen- und Sterneniht, die 1924/25 von D. C. Mier und unabhängig von R. Tomashek durhgeführt worden sind. 1 Es ist niht die reativistishe Kontraktion gemeint. Die LK hat zwar formae Ähnihkeit mit der reativistishen und wird deshab mitunter für eine frühe Vorstufe der Spezieen Reativitätstheorie (SRT) gehaten. Das aber ist unzutreffend. Aus der SRT kann diese Geihung für die LK sebstverständih niht hergeeitet werden, da diese auf einer unzuässigen kassishen Voraussetzung beruht. 4

5 Das Nuergebnis ist nur für die VLG und mit sämtihen Reativgeshwindigkeiten 0 v sowie für ae Winke 0 ϕ 360 zu erwarten, niht jedoh für u <. Es ist gezeigt, daß zur Interpretation der Nuresutate die Lorentz-Kontraktion überfüssig und niht notwendig ist, zuma es sih dabei um eine künstihe und damit unphysikaishe Konstruktion bzw. um eine Fiktion handet. Prof. Dr. Dr. Horst Meher D Potsdam Auf dem Kiewitt 23 Germany Homepage: 5

Übung 6 - Musterlösung

Übung 6 - Musterlösung Experimentaphysik für Lehramtskandidaten und Meteoroogen 6. Mai 00 Übungsgruppeneiter: Heiko Dumih Übung 6 - Musterösung Aufgabe 5: Kupfereiter Cu-Leiter: Länge =.5m, Eektronenadung q =.60 0 9 C, Leitungseektronendihte

Mehr

21 Spezielle Relativitätstheorie

21 Spezielle Relativitätstheorie Spezielle Relativitätstheorie Hofer 1 21 Spezielle Relativitätstheorie 21.1. Raum und Zeit Die Relativitätstheorie ist neben der Quantentheorie eine der beiden großen Revolutionen der Physik des 20. Jahrhunderts.

Mehr

Spezielle Relativitätstheorie. Die Suche nach dem Äther

Spezielle Relativitätstheorie. Die Suche nach dem Äther Spezielle Relativitätstheorie Die Suhe nah dem Äther Wellennatur des Lihtes Sir Isaa Newton (1643 177) Ihm wird die Korpuskulattheorie des Lihtes zugeshrieben: daß das Liht etwas ist, das sih mit einer

Mehr

Physik. Lichtgeschwindigkeit

Physik. Lichtgeschwindigkeit hysik Lihtgeshwindigkeit Messung der Lihtgeshwindigkeit in Versuhsaufbau Empfänger s Spiegel Sender l osition 0 d Abb. Versuhsdurhführung Die Spiegel werden auf die osition 0 m geshoben und die hase mit

Mehr

WÄRMELEITFÄHIGKEIT UND ELEKTRISCHE LEITFÄHIGKEIT VON METALLEN

WÄRMELEITFÄHIGKEIT UND ELEKTRISCHE LEITFÄHIGKEIT VON METALLEN INSIU FÜR ANGEWANDE PHYSIK Physikaisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße WÄRMELEIFÄHIGKEI UND ELEKRISCHE LEIFÄHIGKEI VON MEALLEN Eineitung In diesem

Mehr

Geschichte und Theorie

Geschichte und Theorie Eektrotechnikprotoko 1 rspannung (EMK) und innerer Widerstand Moser Guido eines Gavanischem Eements Fuda, den 9.03.00 Geschichte und Theorie Die ersten Spannungsqueen, die gebaut wurden, waren gavanische

Mehr

Die nächste Übung ist vom 12.1. auf den 19.1.2012 verlegt worden.

Die nächste Übung ist vom 12.1. auf den 19.1.2012 verlegt worden. Allgemeines Einige Hinweise: Die nähste Üung ist vom.. auf den 9..0 verlegt worden. Die alten Klausuren findet Ihr unter folgendem Link: http://www.wiwi.uni muenster.de/vwt/studieren/pruefungen_marktpreis.htm

Mehr

Leibniz Online, Nr. 26 (2017) Zeitschrift der Leibniz-Sozietät e. V. ISSN Der bewegte Stab ist nicht verkürzt

Leibniz Online, Nr. 26 (2017) Zeitschrift der Leibniz-Sozietät e. V. ISSN Der bewegte Stab ist nicht verkürzt Leibniz Online, Nr. 6 (017) Zeitshrift der Leibniz-Sozietät e. V. ISSN 1863-385 Horst P. H. Melher Der bewegte Stab ist niht verkürzt Die physikalish-sahgemäße Erklärung des Mihelson-Versuhes In memoriam

Mehr

Leistungskurs Physik (Bayern): Abiturprüfung 2002 Aufgabe III Atomphysik

Leistungskurs Physik (Bayern): Abiturprüfung 2002 Aufgabe III Atomphysik Leistungskurs Physik (Bayern): Abiturprüfung 2002 Aufgabe III Atomphysik 1. Röntgenstrahlung und Compton-Effekt a) Je nah Entstehung untersheidet man bei Röntgenstrahlung u. a. zwishen Bremsstrahlung,

Mehr

Verkürzungsfaktor bei Antennen und Koax-Leitungen

Verkürzungsfaktor bei Antennen und Koax-Leitungen 071111 hb9tyx@lusterte.om Verkürzungsaktor bei Antennen und Koax-Leitungen Vielleiht haben Sie sih beim Bau von Antennen oder Umwegleitungen auh shon geragt, woher eigentlih der Verkürzungsaktor stammt.

Mehr

Die Lorentz-Transformation

Die Lorentz-Transformation Bernhard Szallies Die Lorentz-Transformation Die Lorentz-Transformation stellt die rehnerishe Beziehung zwishen den Ortskoordinaten und der Zeitkoordinate eines Ereignisses bezüglih zweier Inertialsysteme

Mehr

Erweiterte spezielle Relativitätstheorie

Erweiterte spezielle Relativitätstheorie Das Mihelson-Morley-Experiment als Shlüssel zur Vereinheitlihung von spezieller Relativitätstheorie und Äthertheorie von Andreas Varesi Münhen, 7. Februar 2005 von 30 Abstrat Mit Hilfe des Mihelson-Morley-Experiments

Mehr

Höhenmessung mittels Seeinterferometer unter Ausnutzung der solaren Radiostrahlung

Höhenmessung mittels Seeinterferometer unter Ausnutzung der solaren Radiostrahlung Höhenmessung mittels Seeintererometer unter Ausnutzung der solaren Radiostrahlung Christian Monstein Eine ür Amateure neue Anwendung radioastronomisher Messmethoden besteht in der relativen Höhenmessung

Mehr

1.3 Elektrothermische Energiewandlungsvorgänge in Gleichstromkreisen

1.3 Elektrothermische Energiewandlungsvorgänge in Gleichstromkreisen 6 Vorgänge in eektrischen Netzwerken bei Geichstrom.3 Eektrothermische Energiewandungsvorgänge in Geichstromkreisen.3. Grundgesetze der Erwärmung und des ärmeaustauschs Erwärmung So ein örper der Masse

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Klausur 4 Kurs 12Ph2 Physik-e

Klausur 4 Kurs 12Ph2 Physik-e 007-06-1 Kausur 4 Kurs 1Ph Physik-e Lösung Version 007-07-03 1 Eräutern Sie, warum bei er Wehsespannung ie Sheitespannung immer größer as ie effektive Spannung ist un berehnen Sie ie Sheitespannung für

Mehr

Physik I Übung 11 - Lösungshinweise

Physik I Übung 11 - Lösungshinweise Physik I Übung 11 - Lösungshinweise Stefan Reutter SoSe 2012 Moritz Kütt Stand: 04.07.2012 Franz Fujara Aufgabe 1 Das Lied der Moreley Die shöne Moreley singe eine besondere Art von Welle, die ein sehr

Mehr

Klasse : Name : Datum :

Klasse : Name : Datum : Widerstand eins Drahtes; Widerstandmessung mit der Wheatstone-Brücke Kasse : Name : Datum : Versuchszie : Wir woen untersuchen, von wechen Größen der Widerstand eines Drahtes abhängig ist. Vermutung: Wir

Mehr

Laser und Wellenoptik, Teil B

Laser und Wellenoptik, Teil B Physikalishes Anfängerpraktikum Gruppe Mo-16 Sommersemester 006 Jens Kühenmeister (153810) Julian Merkert (1999) Versuh: P-4 Laser und Wellenoptik, Teil B - Vorbereitung - Vorbemerkung Bereits 1917 erkannte

Mehr

12. Lagrange-Formalismus III

12. Lagrange-Formalismus III Übungen zur T: Theoretishe Mehanik, SoSe3 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45. Lagrange-Formalismus III Dr. James Gray James.Gray@hysik.uni-muenhen.de Übung.: Eine Gitarrensaite Wir betrahten

Mehr

Mathematische Methoden in den Ingenieurwissenschaften 2. Übungsblatt

Mathematische Methoden in den Ingenieurwissenschaften 2. Übungsblatt Prof. Dr. T. Apel J. Mihael Mathematishe Methoden in den Ingenieurwissenshaften. Übungsblatt Wintertrimester 5 Aufgabe 4 : (Variationsrehnung Extremalen Bestimmen Sie die Extremalen der folgenden Variationsprobleme

Mehr

Weiterführende Aufgaben zu chemischen Gleichgewichten

Weiterführende Aufgaben zu chemischen Gleichgewichten Weiterführende Aufgaben zu hemishen Gleihgewihten Fahshule für Tehnik Suhe nah Ruhe, aber durh das Gleihgewiht, niht durh den Stillstand deiner Tätigkeiten. Friedrih Shiller Der Shlüssel zur Gelassenheit

Mehr

Quantenmechanikvorlesung, Prof. Lang, SS04. Comptoneffekt. Christine Krasser - Tanja Sinkovic - Sibylle Gratt - Stefan Schausberger - Klaus Passler

Quantenmechanikvorlesung, Prof. Lang, SS04. Comptoneffekt. Christine Krasser - Tanja Sinkovic - Sibylle Gratt - Stefan Schausberger - Klaus Passler Quantenmehanikvorlesung, Prof. Lang, SS04 Comptoneffekt Christine Krasser - Tanja Sinkovi - Sibylle Gratt - Stefan Shausberger - Klaus Passler Einleitung Unter dem Comptoneffekt versteht man die Streuung

Mehr

Institut für Allgemeine Mechanik der RWTH Aachen

Institut für Allgemeine Mechanik der RWTH Aachen Institut für Agemeine Mechanik der RWTH Aachen Prof. Dr.-Ing. D. Weichert 9.Übung Mechanik II SS 27 18.6.6 Abgabetermin 9.Übung: 25.7.6 14: Uhr 1. Aufgabe Der skizzierte, statisch unbestimmte aken wird

Mehr

32. Lebensdauer von Myonen 5+5 = 10 Punkte

32. Lebensdauer von Myonen 5+5 = 10 Punkte PD. Dr. R. Klesse, Prof. Dr. A. Shadshneider S. Bittihn, C. von Krühten Wintersemester 2016/2017 Theoretishe Physik in 2 Semestern I Musterlösung zu den Übungen 9 und 10 www.thp.uni-koeln.de/ rk/tpi 16.html

Mehr

Die Möbius- Transformation

Die Möbius- Transformation www.mathematik-netz.e Copyright Page of 5 Die Möius- Transformation.0 Üerik un Einführung in gerohene ineare Poynome es Kompexen Für as Verstännis er Möius-Transformation weren grunegene Kenntnisse üer

Mehr

Mathematisches Pendel und Federpendel

Mathematisches Pendel und Federpendel INSIU FÜR ANGEWANE PHYSIK Physikaisches Praktiku für Studierende der Ingenieurswissenschaften Universität Haburg, Jungiusstraße 11 Matheatisches Pende und Federpende 1 Zie In zwei Versuchsteien soen die

Mehr

Zwei Uhren, die in einem Bezugssystem synchronisiert sind, gehen in keinem relativ zum ersten Bezugssystem synchron.

Zwei Uhren, die in einem Bezugssystem synchronisiert sind, gehen in keinem relativ zum ersten Bezugssystem synchron. Die Geichzeitigkeit von Ereignissen Man war bis 1905 überzeugt, dass es eine absoute, für ae Systeme geichmäßig abaufende Zeit gibt. EINSTEIN unterzog den Zeitbegriff einer kritischen Betrachtung. Dazu

Mehr

Praktische Einführung in die Chemie Integriertes Praktikum:

Praktische Einführung in die Chemie Integriertes Praktikum: Praktische Einführung in die Chemie Integriertes Praktikum: Versuch 1-1 (ABS) Optische Absorptionsspektroskopie Versuchs-Datum: 13. Juni 2012 Gruppenummer: 8 Gruppenmitgieder: Domenico Paone Patrick Küssner

Mehr

Besprechung der thermodynamischen Grundlagen von Wärmekraftmaschinen und Wärmepumpen

Besprechung der thermodynamischen Grundlagen von Wärmekraftmaschinen und Wärmepumpen 3.5 Zustandsänderung nderung von Gasen Ziel: Besrehung der thermodynamishen Grundlagen von Wärmekraftmashinen und Wärmeumen Zustand von Gasen wird durh Druk, olumen, und emeratur beshrieben thermodyn.

Mehr

Ringbildung beim Michelson-Interferometer

Ringbildung beim Michelson-Interferometer 1 Ringbidung beim Micheson-Interferometer Ausgangspunkt ist das Hygensche Prinzip, dass von jedem Punkt einer Weenfront Kugeween, d.h. Ween in ae Raumrichtungen, ausgehen. Das erstauniche ist nun, dass

Mehr

Spezielle Relativitätstheorie

Spezielle Relativitätstheorie Spezielle Relativitätstheorie Proseminar: Kosmologie und Teilchenphysik von Evangelos Nagel Physik vor dem 20. Jhd. Newton (Principia Mathematica): Der absolute Raum bleibt vermöge seiner Natur und ohne

Mehr

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56 5 Beweistechniken Übersicht 5.1 Drei wichtige Beweistechniken................................. 55 5. Erklärungen zu den Beweistechniken............................ 56 Dieses Kapitel ist den drei wichtigsten

Mehr

Die Lorentz-Kontraktion ist irreal Warum noch immer Lorentz-Kontraktion? Horst P. H. Melcher

Die Lorentz-Kontraktion ist irreal Warum noch immer Lorentz-Kontraktion? Horst P. H. Melcher Zusammenfassung: Die Lorentz-Kontraktion ist irreal Warum noh immer Lorentz-Kontraktion? Horst P. H. Melher Es wird gezeigt, wie man an Stelle der irrealen Lorentz-Kontraktion mit Hilfe des Geshwindigkeitstheorems

Mehr

6. Trigonometrie. sin α = b c. cos α = a c. tan α = b a. 6.1 Rechtwinklige Dreiecke

6. Trigonometrie. sin α = b c. cos α = a c. tan α = b a. 6.1 Rechtwinklige Dreiecke 6. Trigonometrie Trigonometrie bedeutet dem Wortsinn nah Dreieksmessung. Mit Hilfe von trigonometrishen Funktionen lassen sih alle Probleme, die man im Prinzip zeihnerish lösen kann, auh rehnerish bewältigen.

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

3 Messprinzipien der elektronischen Entfernungsmessung

3 Messprinzipien der elektronischen Entfernungsmessung 3 Messprinzipien der elektronishen Entfernungsmessung Der Benutzer der modernen Entfernungsmessgeräte und Tahymeter ist sih der komplexen inneren Abläufe dieser hohwertigen Geräte kaum bewusst. Da die

Mehr

VORANSICHT II/D. Das Michelson-Morley-Experiment. Der Beitrag im Überblick. Spiegel. Strahlenteiler. Spiegel. Laser. Schirm. Interferenz- Muster

VORANSICHT II/D. Das Michelson-Morley-Experiment. Der Beitrag im Überblick. Spiegel. Strahlenteiler. Spiegel. Laser. Schirm. Interferenz- Muster 7. Das Mihelson-Morley-Experiment on 6 Das Mihelson-Morley-Experiment Axel Donges, Isny im Allgäu Mit dem Mihelson-Morley-Experiment sollte die Existenz des Äthers eines hypothetishen Mediums, in dem sih

Mehr

60 h+ 9. = 0.01679 60min = 1.0074 min = 1min + 0.0074min = 1min + 0.0074 60s = 1min + 0.444s = 1:00.444

60 h+ 9. = 0.01679 60min = 1.0074 min = 1min + 0.0074min = 1min + 0.0074 60s = 1min + 0.444s = 1:00.444 Seiten 5 / 6 / 7 Berechnungen mit s, v und t Seiten 3 / 4 Umrechnen von Geschwindigkeit und Zeitangaben 1 km h 36 9 158 83 30.96 50 120 54 140.4 m s 10 2.5 43.89 23.06 16.67 8.6 13.89 33.33 15 39 :3.6

Mehr

Klausuraufgaben, Prüfungsleistung 06/08, Wirtschaftsmathematik, Betriebswirtschaft

Klausuraufgaben, Prüfungsleistung 06/08, Wirtschaftsmathematik, Betriebswirtschaft Studiengang Modul Art der Leistung Klausur-Kennzeihen Betriebswirtshat Wirtshatsmathematik Prüungsleistung Datum.6.8 BB-WMT-P 86 Bezüglih der Anertigung Ihrer Arbeit sind olgende Hinweise verbindlih: Verwenden

Mehr

Ferienkurs Experimentalphysik 2

Ferienkurs Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommersemester 25 Gabriele Semino, Alexander Wolf, Thomas Maier sblatt 4 Elektromagnetishe Wellen und spezielle Relativitätstheorie Aufgabe : Leistung eines Herzshen Dipols

Mehr

Telefon- und Handyrechnung. Richtig reklamieren

Telefon- und Handyrechnung. Richtig reklamieren Teefon- und Handyrechnung Richtig rekamieren Ärger mit der Teefonrechnung gehört inzwischen zum Atag vieer Verbraucher. Hierauf hat die Poitik reagiert: Mit dem Teekommunikationsgesetz gibt es einige neue

Mehr

Materialien für den Kindergarten. Liebe Erzieherin, lieber Erzieher,

Materialien für den Kindergarten. Liebe Erzieherin, lieber Erzieher, Materialien für den Kindergarten Liebe Erzieherin, lieber Erzieher, die Musik nimmt einen ganz besonderen Platz im Herzen der Kinder ein: Kinder lieben Musik! Und ganz nebenbei hat die Musik einen außerordentlih

Mehr

Schriftliche Abschlussprüfung Physik

Schriftliche Abschlussprüfung Physik Sächsisches Staatsministerium für Kultus Schuljahr 2002/2003 Geltungsbereich: für Klassen 10 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlussprüfung Physik Realschulabschluss

Mehr

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,

Mehr

a) Welche der beiden Halbgeraden stehen für die Tarife REGENBOGEN und UFO? Begründe. b) Hat Lena recht oder Giuseppe? Begründe.

a) Welche der beiden Halbgeraden stehen für die Tarife REGENBOGEN und UFO? Begründe. b) Hat Lena recht oder Giuseppe? Begründe. 38 3 Lineare Gleichungsssteme mit zwei Variablen Lineare Gleichungsssteme grafisch lösen Beim Tarif REGENBGEN zahle ich für das Telefonieren mit dem Hand zwar einen Grundpreis. Dafür sind aber die Gesprächseinheiten

Mehr

Abhandlung Akontoforderungen

Abhandlung Akontoforderungen 1. Vorwort In kaum einem geschäftlichen Bereich herrscht soviel Unklarheit und Unsicherheit wie im Bereich der Akontoforderungen. Dies betrifft vor allem den Status einer Akontoforderung in Hinblick auf

Mehr

für die bessere Energieeffizienz...

für die bessere Energieeffizienz... Premium Armaturen + Systeme Automatisher Hydraulisher Abgleih durh Q-Teh Produktübersiht für die bessere Energieeffizienz... Einleitung Automatisher / manueller Hydraulisher Abgleih zu heiß! zu kalt! 3

Mehr

Quantitative Analyse mittels Titration

Quantitative Analyse mittels Titration Quantitative Anayse mittes Titration - Ermittung des Säuregehats in Speiseessig - Hausarbeit im Seminarfach Chemie Patrick Heinecke 25. November 2008 Inhatsverzeichnis 1 Einführung 3 2 Theorie 3 2.1 Titration.......................................

Mehr

Die Magnetkraft wirkt nur auf bestimmt Stoffe, nämlich Eisen, Nickel und Cobalt. Auf welche Stoffe wirkt die Magnetkraft?

Die Magnetkraft wirkt nur auf bestimmt Stoffe, nämlich Eisen, Nickel und Cobalt. Auf welche Stoffe wirkt die Magnetkraft? Auf welche Stoffe wirkt die Magnetkraft? Die Magnetkraft wirkt nur auf bestimmt Stoffe, nämlich Eisen, Nickel und Cobalt. Wie nennt man den Bereich, in dem die Magnetkraft wirkt? Der Bereich in dem die

Mehr

Übungen zur Vorlesung. Mobile und Verteilte Datenbanken. WS 2008/2009 Übung 2 Anfrageoptimierung in zentralisierten Datenbanksystemen LÖSUNG

Übungen zur Vorlesung. Mobile und Verteilte Datenbanken. WS 2008/2009 Übung 2 Anfrageoptimierung in zentralisierten Datenbanksystemen LÖSUNG Dr. rer. nat. Sven Groppe Übungen zur Voresung Mobie und Verteite Datenbanken WS 28/29 Übung 2 Anfrageoptimierung in zentraisierten Datenbanksystemen Aufgabe 1: Fogende Reationen seien gegeben: LÖSUNG

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Die numerische Behandlung der zeitabhängigen Schrödinger-Gleichung für chemische Reaktionen

Die numerische Behandlung der zeitabhängigen Schrödinger-Gleichung für chemische Reaktionen Kapite 2 Die numerische Behandung der zeitabhängigen Schrödinger-Geichung für chemische Reationen In diesem Abschnitt soen grundegende Verfahren zur numerischen Behandung der Schrödinger-Geichung besprochen

Mehr

Relativitätstheorie. Relativitätstheorie 345. Um das Jahr 1600. Um das Jahr 1900. Um das Jahr 2000. Wie wird es im Jahr 2200 aussehen?

Relativitätstheorie. Relativitätstheorie 345. Um das Jahr 1600. Um das Jahr 1900. Um das Jahr 2000. Wie wird es im Jahr 2200 aussehen? Relatiitätstheorie Zeitreisen Reisen in die Vergangenheit oder Zukunft sind beliebte Themen für Siene- Fition-Romane. Darin lassen sih mit Hilfe on Zeitmashinen Personen in beliebige Epohen ersetzen. Man

Mehr

Erstes Nyquistkriterium im Zeitbereich

Erstes Nyquistkriterium im Zeitbereich Erstes Nyquistkriterium im Zeitbereich Für dieses Kapitel wurde vorausgesetzt, dass die Detektion eines Symbols nicht durch Nachbarimpulse beeinträchtigt werden soll. Dies erreicht man durch die Detektion

Mehr

Blatt 5. - Lösungsvorschlag

Blatt 5. - Lösungsvorschlag Fautät für Physi der LMU München Lehrstuh für Kosoogie, Prof Dr V Muhanov Übungen zu Kassischer Mechani (T) i SoSe Batt 5 - Lösungsvorschag Aufgabe 5 Binäres Sternsyste a) Wieviee Freiheitsgrade hat das

Mehr

Betragsgleichungen und die Methode der Fallunterscheidungen

Betragsgleichungen und die Methode der Fallunterscheidungen mathe online Skripten http://www.mathe-online.at/skripten/ Betragsgleichungen und die Methode der Fallunterscheidungen Franz Embacher Fakultät für Mathematik der Universität Wien E-mail: franz.embacher@univie.ac.at

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

Übungsblatt 11. PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, und

Übungsblatt 11. PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, und Übungsblatt 11 PHYS11 Grundkurs I Physik, Wirtshaftsphysik, Physik Lehramt Othmar Marti, othmar.marti@uni-ulm.de. 1. 6 und 3. 1. 6 1 Aufgaben 1. In Röhrenfernsehgeräten werden Elektronen typisherweise

Mehr

Planungsblatt Mathematik für die 4E

Planungsblatt Mathematik für die 4E Planungsblatt Mathematik für die 4E Woche 26 (von 09.03 bis 13.03) Hausaufgaben 1 Bis Mittwoch 11.03: Auf dem Planungsblatt stehen einige Aufgaben als Übung für die SA. Bereite diese Aufgaben vor! Vor

Mehr

IX.3 Potentiale und Felder einer bewegten Punktladung

IX.3 Potentiale und Felder einer bewegten Punktladung N.BORGHINI Elektrodynamik einer Punktladung Theoretishe Physik IV IX.3 Potentiale und Felder einer bewegten Punktladung Dieser Abshnitt beginnt mit der Berehnung der Potentiale und Felder, die durh eine

Mehr

Versuchsprotokoll - Michelson Interferometer

Versuchsprotokoll - Michelson Interferometer Versuchsprotokoll im Fach Physik LK Radkovsky August 2008 Versuchsprotokoll - Michelson Interferometer Sebastian Schutzbach Jörg Gruber Felix Cromm - 1/6 - Einleitung: Nachdem wir das Interferenzphänomen

Mehr

teleffekt. EFFEKTVOLLE VERTRIEBSUNTERSTÜZUNG Erhöhte Produktivität im Außendienst Effektiv im Dialog.

teleffekt. EFFEKTVOLLE VERTRIEBSUNTERSTÜZUNG Erhöhte Produktivität im Außendienst Effektiv im Dialog. EFFEKTVOLLE VERTRIEBSUNTERSTÜZUNG Erhöhte Produktivität im Außendienst teeffekt Geseshaft für Direkt-Marketing mbh Management Center Ebroih Am Fader 4 40589 Düssedorf Teefon 0211/7 57 07 81 Teefa 0211/9

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 45: Gesucht ist die Schnittmenge der beiden Zylinder

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 45: Gesucht ist die Schnittmenge der beiden Zylinder Übungen ur Ingenieur-Mathematik III WS 2/2 Blatt..22 Aufgabe 45: Gesuht ist die Shnittmenge der beiden Zlinder 2 + 2 =, 2 + 2 =. (i Zeigen Sie, dass die Shnittmenge aus wei geshlossenen Kurven besteht

Mehr

Lorentzkraft. 1. Einleitung

Lorentzkraft. 1. Einleitung Lorentzkraft Einleitung Ein gerader stromführender Draht lenkt eine Kompassnadel ab Wir shreiben diese Wirkung dem Magnetfeld zu, das von ihm ausgeht Streut man Eisenfeilspäne auf eine Unterlage, die vom

Mehr

Kreiselphysik. dl dt. Kreisel nach Magnus (mit kardanischer Aufhängung): freie Bewegung in 3D und drehmomentfrei!

Kreiselphysik. dl dt. Kreisel nach Magnus (mit kardanischer Aufhängung): freie Bewegung in 3D und drehmomentfrei! Kreiselphysik Kreisel sind starre Körper mit hoher Symmetrie, die bei Rotation um diese Symmetrieahsen sehr stabil laufen können. Lagert man den Kreisel so, dass keine Drehmomente M auf ihn wirken, so

Mehr

Straf-Taten sind kriminelle Handlungen und Gewalt-Taten.

Straf-Taten sind kriminelle Handlungen und Gewalt-Taten. Liebe Düsseldorfer und Düsseldorferinnen. Die Stadt-Verwaltung Düsseldorf bittet alle Düsseldorfer Bürger um ihre Mithilfe. Bitte füllen Sie den Fragebogen aus. Shiken Sie den ausgefüllten Fragebogen an

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

Approximation durch Taylorpolynome

Approximation durch Taylorpolynome TU Berlin Fakultät II - Mathematik und Naturwissenschaften Sekretariat MA 4-1 Straße des 17. Juni 10623 Berlin Hochschultag Approximation durch Taylorpolynome Im Rahmen der Schülerinnen- und Schüler-Uni

Mehr

Frequenzanalyse. Der Abstand der diskreten Frequenzlinien ist der Kehrwert der Periodendauer:

Frequenzanalyse. Der Abstand der diskreten Frequenzlinien ist der Kehrwert der Periodendauer: WS 0 Fourier-Reihe: Jede einigrermaßen gutartige 1 periodishe reelle Zeitfuntion x(t) ann mittels einer Fourier-Reihe dargestellt werden als eine Summe omplexer Amplituden (Fourier-Synthese): xt () e n

Mehr

Anmerkungen zum Chinesischen Kalender Andreas Walter Schöning (Dasha)

Anmerkungen zum Chinesischen Kalender Andreas Walter Schöning (Dasha) Anmerkungen zum Chinesischen Kalender Andreas Walter Schöning (Dasha) - dies ist i.w. die Übersetzung eines Artikels, der im November 2010 im Newsletter der Chue Foundation erschienen ist - Korrektheit

Mehr

T7 - Bestimmung der Oberflächenspannung homologer wässriger Alkohollösungen (Traubesche Regel)

T7 - Bestimmung der Oberflächenspannung homologer wässriger Alkohollösungen (Traubesche Regel) T7 - Bestimmung der Oberflähenspannung homologer wässriger Alkohollösungen (Traubeshe Regel) Aufgaben:. Messung der Oberflähenspannung von vershieden konzentrierten wässrigen Lösungen der homologen Alkohole

Mehr

Evangelisieren warum eigentlich?

Evangelisieren warum eigentlich? Predigtreihe zum Jahresthema 1/12 Evangelisieren warum eigentlich? Ich evangelisiere aus Überzeugung Gründe, warum wir nicht evangelisieren - Festes Bild von Evangelisation - Negative Erfahrungen von und

Mehr

C Mathematische Grundlagen

C Mathematische Grundlagen C Mathematische Grundagen C.1 Summen Mit dem Summenzeichen werden Rechenanweisungen zum Addieren kompakt geschrieben. Sie assen sich oft mit Hife der Summenregen vereinfachen. C.1 Gibt es insgesamt n Werte

Mehr

Tconverter Produkthandbuch. LCAI 2x038/0500 K013 one4all LCAI 2x050/0500 K013 one4all

Tconverter Produkthandbuch. LCAI 2x038/0500 K013 one4all LCAI 2x050/0500 K013 one4all Tonverter Produkthandbuh LCAI 2x038/0500 K013 one4all LCAI 2x050/0500 K013 one4all Inhaltsverzeihnis Inhaltsverzeihnis Funktion hronostep..................................................................

Mehr

Datenbanken. Allg. Einführung in Datenbanken 1. Ich kenne Datenbanken. Wo werden Datenbanken eingesetzt. Welchen Zweck haben Datenbanken.

Datenbanken. Allg. Einführung in Datenbanken 1. Ich kenne Datenbanken. Wo werden Datenbanken eingesetzt. Welchen Zweck haben Datenbanken. Vorshau Einführung und Begriffe ER-Modell Relationales Datenodell Entities, Relations, Attribute Beispiele, Grafishe Darstellung Ipleentationsentwurf: Datenbanken konkret konzipieren Die Arbeit it Datenbanken

Mehr

Wellen und Dipolstrahlung

Wellen und Dipolstrahlung Wellen und Dipolstrahlung Florian Hrubesh 7. März 200 Inhaltsverzeihnis Wellen. Wellen im Vakuum........................... 2.. Lösung der Wellengleihung................. 2..2 Energietransport / Impuls

Mehr

Kapitel 15. Lösung linearer Gleichungssysteme

Kapitel 15. Lösung linearer Gleichungssysteme Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren

Mehr

Prof. Dr. Schmidt-Thieme / Michael Rottmann Arbeitsblatt Algebra SS 2005

Prof. Dr. Schmidt-Thieme / Michael Rottmann Arbeitsblatt Algebra SS 2005 Prof. Dr. Shmidt-Thieme / Mihael Rottmann Areitslatt Algera SS 2005 Gruppen Lösungen.) i) Die ist neutrales Element der Multiplikation. (M, é ) ist damit keine Gruppe, denn es git keine inversen Elemente

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Lösungsvorschlag 8. Übungsblatt zur Vorlesung Finanzmathematik I Aufgabe Hedging Amerikanischer Optionen Wir sind in einem arbitragefreien

Mehr

Farbe blaues ist ein Sinneseindruck. Physikalisch gesehen gibt es nur Licht verschiedener

Farbe blaues ist ein Sinneseindruck. Physikalisch gesehen gibt es nur Licht verschiedener $ Spektrum Info Additive Farbmischung Durch Addition von verschiedenfarbigem kann man das Spektrum erweitern. Z. B. wird aus rotem, grünem und blauem bei Monitoren jeder Farbeindruck gemischt: rotes! grünes

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen

Mehr

Zyklische Ungleichungen in 3 Variablen und Wege der Symmetrisierung

Zyklische Ungleichungen in 3 Variablen und Wege der Symmetrisierung Zyklishe Ungleihungen in Varilen und Wege der Symmetrisierung Yimin Ge August 006 Symmetrishe Ungleihungen hen gegenüber zyklishen Ungleihungen mehrere Vorteile. Einerseits kann man ohne Beshänkung der

Mehr

Lichtgeschwindigkeit

Lichtgeschwindigkeit Vorbereitung Lihtgeshwindigkeit Carsten Röttele 2. Dezember 20 Inhaltsverzeihnis Drehspiegelmethode 2. Vorbereitung auf den Versuh......................... 2.2 Justierung der Apparatur und Messung...................

Mehr

Physik 1 MW, WS 2014/15 Aufgaben mit Lösung 6. Übung (KW 03/04) Aufzugskabine )

Physik 1 MW, WS 2014/15 Aufgaben mit Lösung 6. Übung (KW 03/04) Aufzugskabine ) 6. Übung (KW 03/04) Aufgabe (M 9. Aufzugskabine ) In einem Aufzug hängt ein Wägestück der Masse m an einem Federkraftmesser. Dieser zeigt die Kraft F an. Auf welche Beschleunigung a z (z-koordinate nach

Mehr

10. Grassmannsche Vektoren und die Drehungen im Raum.

10. Grassmannsche Vektoren und die Drehungen im Raum. 10. Grassmannshe Vektoren und die Drehungen im Raum. Wir haen in der vorigen Vorlesung gesehen wie man Gegenstände im Raum vermöge der Zentralprojektion als Figuren in der Eene perspektivish genau darstellen

Mehr

7. Grassmannsche Vektoren und die Drehungen im Raum.

7. Grassmannsche Vektoren und die Drehungen im Raum. 7. Grassmannshe Vektoren und die Drehungen im Raum. Wir haen im vorigen Kapitel gesehen, wie man Gegenstände im Raum vermöge der Zentralprojektion als Figuren in der Eene perspektivish genau darstellen

Mehr

Vorwort 6 1 Der TI-Nspire CX CAS 7

Vorwort 6 1 Der TI-Nspire CX CAS 7 Inhatsverzeichnis 3 Inhatsverzeichnis Vorwort 6 1 Der TI-Nspire CX CAS 7 1.1 Der Hauptbidschirm............................... 8 1.2 Die Bidschirmeemente des TI-Nspire CX CAS................ 9 1.3 Das

Mehr

A Lösungen zu Einführungsaufgaben zu QueueTraffic

A Lösungen zu Einführungsaufgaben zu QueueTraffic A Lösungen zu Einführungsaufgaben zu QueueTraffic 1. Selber Phasen einstellen a) Wo im Alltag: Baustelle, vor einem Zebrastreifen, Unfall... 2. Ankunftsrate und Verteilungen a) poissonverteilt: b) konstant:

Mehr

Beispiellösungen zu Blatt 111

Beispiellösungen zu Blatt 111 µ κ Mathematisches Institut Georg-August-Universität Göttingen Beispiellösungen zu Blatt 111 Aufgabe 1 Ludwigshafen hat einen Bahnhof in Dreiecksform. Markus, Sabine und Wilhelm beobachten den Zugverkehr

Mehr

Wie funktioniert eigentlich ein Start?

Wie funktioniert eigentlich ein Start? Wie funktioniert eigentlich ein Start? Ein Schuss! Die Russen kommen! Ach ne, die kommen ja nicht mehr- und wenn, dann nur als Teilnehmer an der Regatta. Dann wird es wohl die Wettfahrtleitung gewesen

Mehr

Wellen. Wellen treten in der Natur in großer Zahl auf: Wasserwellen, Schallwellen, Lichtwellen, Radiowellen, La Ola im Stadion

Wellen. Wellen treten in der Natur in großer Zahl auf: Wasserwellen, Schallwellen, Lichtwellen, Radiowellen, La Ola im Stadion Wellen Wellen treten in der Natur in großer Zahl au: Wasserwellen, Shallwellen, Lihtwellen, Radiowellen, La Ola im Stadion Von den oben genannten allen die ersten beiden in die Kategorie mehanishe Wellen,

Mehr

P 2. Bemerkung 3: Im Folgenden wird das Konstruktionsverfahren beschrieben. Die Beweise überlassen wir dem der Lust hat.

P 2. Bemerkung 3: Im Folgenden wird das Konstruktionsverfahren beschrieben. Die Beweise überlassen wir dem der Lust hat. Hans Walser, [20150318] Brennpunkte der Ellipse 1 Worum geht es? Eine Ellipse sei durh fünf Punkte,...,P 5 gegeben (Abb. 1). P5 P 4 P 3 Abb. 1: Eine Ellipse durh fünf Punkte Gesuht sind die Brennpunkte

Mehr

Mt 22,15-22. Leichte Sprache

Mt 22,15-22. Leichte Sprache Mt 22,15-22 Leichte Sprache Als Jesus lebte, gab es im Land Israel fromme Leute. Die frommen Leute hießen Pharisäer. Einige Pharisäer mochten Jesus nicht leiden. Diese Pharisäer wollten, dass Jesus ins

Mehr

3. Lager und Lagerreaktionen

3. Lager und Lagerreaktionen 3. Lager und Lagerreaktionen 3.1. Beispiee, Grundbegriffe 3.2. Ebene Beanspruchung 3.3. Räumiche Beanspruchung HAW Hamburg M+P Ihenburg TM1/ Lager, Lagerreaktionen 1 Beispiee (Bauwesen) HAW Hamburg M+P

Mehr

ZUGFeRD erleichtert Rechnungsprozesse für KMU

ZUGFeRD erleichtert Rechnungsprozesse für KMU Hintergrundinformation Juni 2013 Elektronische Rechnung / ZUGFeRD ZUGFeRD erleichtert Rechnungsprozesse für KMU ZUGFeRD - das neue Rechnungsformat steht für den Zentralen User Guide des Forums elektronische

Mehr

Einstein-Wellen-Mobil

Einstein-Wellen-Mobil Arbeitsvorschlag für interaktive Station Relativistische Fahrradfahrt Bebachten Sie die Szenerie beim Anfahren und Beschleunigen. Bewegen Sie sich tatsächlich zunächst rückwärts? Wie können Sie das feststellen?

Mehr

Download. Mathe an Stationen. Mathe an Stationen. Das Kreisgeobrett in der Sekundarstufe I. Marco Bettner, Erik Dinges

Download. Mathe an Stationen. Mathe an Stationen. Das Kreisgeobrett in der Sekundarstufe I. Marco Bettner, Erik Dinges Download Maro Bettner, Erik Dinges Mathe an Stationen Das in der Sekundarstufe I Downloadauszug aus dem Originaltitel: Sekundarstufe I Maro Bettner Erik Dinges Mathe an Stationen Umgang mit dem Geobrett

Mehr

Mean Time Between Failures (MTBF)

Mean Time Between Failures (MTBF) Mean Time Between Failures (MTBF) Hintergrundinformation zur MTBF Was steht hier? Die Mean Time Between Failure (MTBF) ist ein statistischer Mittelwert für den störungsfreien Betrieb eines elektronischen

Mehr

Insiderwissen 2013. Hintergrund

Insiderwissen 2013. Hintergrund Insiderwissen 213 XING EVENTS mit der Eventmanagement-Software für Online Eventregistrierung &Ticketing amiando, hat es sich erneut zur Aufgabe gemacht zu analysieren, wie Eventveranstalter ihre Veranstaltungen

Mehr