Literatur. [8-9] ISM WS 2018/19 Teil 8/Asymmetrische Verschlüsselung

Größe: px
Ab Seite anzeigen:

Download "Literatur. [8-9] ISM WS 2018/19 Teil 8/Asymmetrische Verschlüsselung"

Transkript

1 Literatur [8-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg 2001 [8-2] Schmeh, Klaus: Kryptografie. dpunkt, 6. Auflage, 2017 [8-3] Schneier, Bruce: Angewandte Kryptographie. Addison-Wesley [8-4] Freiermuth, Karin; Hromkovic, Juraj; Keller, Lucia; Steffen, Björn: Einführung in die Kryptologie. Vieweg+Teubner, 2010 [8-5] Buchmann, Johannes: Einführung in die Kryptographie. 5. Auflage, Springer, 2010 [8-6] Burnett, Steve; Paine, Stephen: Kryptographie. RSA Security s Official Guide. RSA Press, mitp, 2001 [8-7] Diffie-Hellman Key Agreement Method [8-8] [8-9] 2

2 Übersicht Ein bisschen Mathematik Diffie-Hellman-Verfahren RSA-Verfahren 3 Euler'sche Φ-Funktion a und b sind teilerfremd, wenn sie außer 1 keinen gemeinsamen Teiler haben, d.h. ggt(a,b)=1 Beispiel: 21=3*7 und 40=2*2*2*5 sind teilerfremd. Euler'sche Φ-Funktion Φ(n) ist die Anzahl der positiven ganzen Zahlen, die kleiner als n und zu n teilerfremd sind, also einschließlich 1. Beispiele: Φ(4)= 2, da alle Elemente aus {1,3} teilerfremd zu 4 sind Φ(6)= 2, da alle Elemente aus {1,5} teilerfremd zu 6 sind Φ(7)= 6, da {1,2,3,4,5,6} teilerfremd zu 7 (Primzahl) Für alle Primzahlen p gilt: Φ(p)= p-1 Für alle Primzahlen p und q gilt: Φ(p*q)= Φ(p)*Φ(q) mit ggt(p,q)=1 4

3 Satz von Euler Wenn zwei positive Ganzzahlen a und m teilerfremd sind, also wenn ggt(a,m)=1, dann gilt: a Φ(m) 1 (mod m), mit a>0 und ggt(a,m)=1 Beispiel: m= 5,Φ(5)= 4 mit a=3 a 4 (mod 5) = 3 4 = 3*3*3*3 81 (mod 5) = 1 5 Kleiner Satz von Fermat noch einmal Ein Spezialfall vom Euler'schen Satz ist der kleine Satz von Fermat: a p-1 1 (mod p), mit a>0 und ggt(a,p)=1 Das bedeutet auch, dass p-1 auf den Exponenten beliebig oft addiert oder subtrahiert werden kann, ohne die Kongruenz zu ändern. Es kann aber auch modulo p-1 auf den Exponenten ohne Auswirkungen auf die Kongruenz angewendet werden (Berechnung von Modulo durch Subtraktion): a r a r mod p-1 (mod p), mit a>0 und ggt(a,p)=1 Dieser Satz bzw. die dadurch ausgedrückte Eigenschaft wird in der Kryptographie oft benutzt. 6

4 Diffie-Hellman-Schlüsselaustausch Entwickelt Witfield Diffie und Martin Hellman 1976: "New Directions in Cryptography" Verfahren zum Schlüsselaustausch Idee der Public-Key-Verfahren, jedoch kein Algorithmus Epoche machende Arbeit Aus: Bemerkungen In den 90er Jahren gab es Veröffentlichungen von der NSA, dass die Ideen von Diffie-Hellman sowie auch die späteren Public- Key-Verfahren im Rahmen des Echelon-Netzwerkes (NSA, Britische und Australische "Abhör"-Geheimdienste) schon in den 60er Jahren entwickelt und benutzt wurden. Diese Verfahren wurden jedoch geheim gehalten... Clifford Cocks vom GCHQ hat 1973 die Grundlagen dazu entdeckt, was bis 1997 geheim gehalten wurde. Nach: Siehe auch: 8

5 Das Verfahren I Vorbereitung: A und B einigen sich auf eine Primzahl p und eine natürliche Zahl g mit g<p. p und g sind öffentlich. 1) A wählt zufällig x mit x<p-1 2) A berechnet a g x mod p 3) A schickt a an B (öffentlich) 4) A erhält b von B (öffentlich) 5) A berechnet K 1 b x mod p 1) B wählt zufällig y mit y<p-1 2) B berechnet b g y mod p 3) B schickt b an A (öffentlich) 4) B erhält a von A (öffentlich) 5) B berechnet K 2 a y mod p K 1 = K 2 (!) 9 Das Verfahren II - Ein Beispiel Vorarbeiten: g=3 und p=7 (1) A wählt zufällig x=2 mit x<7 (2) B wählt zufällig y=5 mit y<7 (3) A berechnet a g x mod 7 -> a 3 2 mod 7 2 mod 7 (4) A schickt a=2 an B (A's öffentlicher Schlüssel) (5) B berechnet b g y mod 7 -> b 3 5 mod 7 5 mod 7 (6) B schickt b=5 an A (B's öffentlicher Schlüssel) (7) A berechnet K 1 b x mod 7 -> K mod 7 4 mod 7 (8) B berechnet K 2 a y mod 7 -> K mod 7 4 mod 7 K 1 = K 2 = 4 10

6 Sicherheit von Diffie-Hellman (DH) Bitlängen für g, x und y sind frei wählbar - je größer, desto besser; es gibt aber bei der Wahl der Werte einschränkende Regeln (siehe später). Vollständiges Durchprobieren ist nicht effektiv, da es schnellere Algorithmen zur Lösung des diskreten Logarithmus gibt: 512 bit sind viel zu klein 1024 bit sind na ja 2048 bit sind in Ordnung 3000 bit sind zu empfehlen Bisher ist kein Verfahren bekannt, das einen 2048 bit-schlüssel innerhalb eines Menschenlebens knacken konnte. DH ist aber für den Man-in-the-Middle-Angriff empfindlich, d.h. es muss eine Authentisierung zusätzlich durchgeführt werden. 11 Einschränkungen bei der Wahl von g I g wird auch Generator genannt. Eine Zahl ist dann ein Generator g, wenn ihre Potenzierungen jedes Element der Grundmenge außer der 0 ergeben. Für die Grundmenge G kann daher geschrieben werden: G\{0}= g ={g,g 2,g 3,g 4,...,g n-1 } g n-1 ist immer 1 (Kleiner Satz des Fermat), dann kann die Folge geschrieben werden: g,g 2,g 3,g 4,...,g n-1,g,g 2,g 3,g 4,...,g n-1,... Daher auch der Name Zyklische Gruppe. Das g beim Diffie-Hellman-Verfahren sollte ein Generator sein. Warum? Siehe

7 Einschränkungen bei der Wahl von g II Wenn g kein Generator ist, dann kann durch g x bzw. g y nur eine Teilmenge der Grundmenge beim Potenzieren "benutzt" werden, was dem Angreifer sein Werk erleichtert. Extremes Beispiel: g=1, dann berechnen Alice und Bob a=1 und b=1 unabhängig von ihren gewählten x- und y-werten. Das erneute Potenzieren der ausgetauschten Werte führt zu K 1 =K 2 =1 als einzig möglichen Wert. Wie lässt sich prüfen, ob eine Zahl ein Generator ist? Starke Primzahl = Eine Primzahl p ist dann stark, wenn die Zahl q= (p-1)/2 auch eine Primzahl ist. Satz: Für eine starke Primzahl p ist g ein Generator, wenn g 2 mod p<>1 und g q mod p<>1 mit q= (p-1)/2 gelten. Damit kann leicht eine Prüfroutine realisiert werden. 13 Einschränkungen bei der Wahl von x bzw. y Alice und Bob können nicht alle Werte von 0 bis p-1 wählen, denn für x = 0 bzw. 1 kommt kein Geheimnis heraus, was leicht einzusehen ist. Etwas komplexer ist der Grund dafür, dass auch p-1 für x und y nicht erlaubt sind. Also muss für x 1<x<p-1 gelten. 14

8 BSI-Empfehlungen - Diffie-Hellman p sollte mindestens 3000 bit lang sein. Die zufälligen Werte x und y sollten mind. 250 bit lang sein. Die Wahl von g sollte immer ein Generator sein bzw. der Zyklus mindestens lang sein, d.h. nach Potenzierungen wiederholen sich die generierten Elemente. Für die Primzahl p sollte auch gelten, dass die Zahl (p-1)/2 auch eine Primzahl ist, d.h. p sollte eine starke Primzahl sein. 15 RSA-Verfahren Entwickelt 1977 aufgrund der Veröffentlichung von Diffie-Hellman Erfinder: R. Rivest, A. Shamir, L. Adleman (RSA) Verfahren ist im PKCS#1 beschrieben. Siehe: Das RSA-Verfahren war bis zum Jahr 2000 patentiert. Die drei vor längerer Zeit am MIT Links: Shamir, Mitte: Rivest Rechts: Adleman 16

9 RSA-Algorithmus I p und q sind ungleiche ungerade positive Primzahlen n= p*q, dieses n wird RSA-Modul genannt e und d werden aus N so gewählt, dass e*d 1 (mod Φ(n)) ist. P aus N ist der Klartext, C aus N ist der Chiffretext: Verschlüsseln (1. Anwendung): C = P e MOD n Entschlüsseln (2. Anwendung): P = C d MOD n Öffentlicher Schlüssel ist K p ={e,n} Geheimer Schlüssel ist K s ={d,n} Schlüsselpaar ist {{e,n},{d,n}} 17 RSA-Algorithmus II - Korrektheit 1) Es wurden d und e gewählt, wobei gilt: d*e 1 (mod Φ(n)) also gilt auch: d*e k*φ(n)+1 und mit P als Plaintext 2) C P e (mod n) // 1. Anwendung mit e 3) P' C d (mod n) // 2. Anwendung mit d 4) P' P e*d (mod n) // C wird ersetzt durch P (Zeile 2) 5) P' P (k*φ(n)+1) (mod n) // wegen Zeile 1 6) P' P k*φ(n) *P (mod n) // +1 aus dem Index zum Faktor P 7) P' (P Φ(n) ) k *P (mod n) // Produkt der Potenz 8) P' (1) k *P (mod n) // Euler: a Φ(n) 1 (mod n) 9) P' P (mod n) // q.e.d.. da P'=P 18

10 Bedingungen P darf nicht 0 oder 1 oder n-1 sein, da dann keine Verschlüsselungen vorliegen. P darf nicht größer als n sein, weil dann der Plaintext nach der Entschlüsselung nicht eindeutig ist (Kongruenz durch Modulo). Welche Formate bzw. Verfahren angewendet werden regelt folgendes Dokument: PKCS#1 und RFC Siehe dazu auch 19 Schlüsselerzeugung (vereinfacht) 1) Wähle zwei zufällige ungleiche Primzahlen p, q 2)Berechne n=p*q und Φ(n)= Φ(p)*Φ(q)= (p-1)*(q-1) 3) Wähle ein e und berechne ggt(e,φ(n)), falls dies ungleich 1 ist, dann wähle ein neues e (oder neues n) 4)Berechne d mit (d*e) mod Φ(n)=1 bzw. d*e 1 (mod Φ(n)) 5) Öffentlicher Schlüssel ist {e,n} 6) Geheimer Schlüssel ist {d,n} e sollte nicht zu klein gewählt werden, üblich ist der Bereich zwischen = und Die Sicherheit beruht auf der aufwendigen Bestimmung von p und q anhand von n. 20

11 Formate Die Werte-Paare der beiden Schlüssel werden in ein bestimmtes Format gebracht, z.b. nach PKCS#1. Das Format wird in ASN definiert: ftp://ftp.rsasecurity.com/pub/ pkcs/pkcs-1/pkcs-1v2-2.asn Siehe dazu: Version 2.2 (RFC 8017) 21 Ein Beispiel Wahl: p= 5, q= 17 n= p*q= 85 und e= 3 Φ(n)= Φ(85)= (p-1)*(q-1)= 4*16= 64 d*e 1 mod 64 mit d= 43 da 43*3 1 mod Φ(85) e = 3 und d = 43, d.h. Öffentlicher Schlüssel ist { 3,85} Geheimer Schlüssel ist {43,85} Beispiel Verschlüsselung m= 2 (Nachricht) C m e mod n, also C 2 3 mod 85 C= 8 Entschlüsselung m' C d mod n, also m' 8 43 mod 85 p'= 2 22

12 Sicherheit von RSA Schlüssellängen Unter 512 bit nicht zu empfehlen 1024 bit nur für Hausgebrauch 2048 bit in Ordnung, besser länger 3000 bit ist gut Faktorisierungsattacke 155 bit bit bit bit 2009 Siehe: 23 BSI-Empfehlungen - RSA p und q sollten ähnlich groß, aber nicht gleich sein: 0.1< abs(log 2 p-log 2 q) <30 Die Wahrscheinlichkeit, dass p oder q doch keine Primzahlen sind, sollte kleiner als sein. Die Schlüssellänge von n sollte mindestens 3000 bit lang sein. Für e darf kein kleiner Wert, wie z.b. 3, benutzt werden; Werte ab bis sind in Ordnung. Falls d gewählt wird, so muss die Bitlänge von d größer als ¼ der Bitlänge von n sein. Die Nachricht m muss kleiner als n sein. Das obige Verfahren ist die Lehrbuch-Variante, die nicht so in der Praxis benutzt werden sollte. 24

13 Weitere asymmetrische Verfahren Digital Signature Algorithm (DSA) Elliptic Curve Cryptography (ECC) Cailey-Purser ElGamal Es gibt ca Variationen bei den Verfahren der Gruppe, die auf den diskreten Logarithmen beruhen. 25 Nach dieser Anstrengung etwas Entspannung... 26

IT-Sicherheitsmanagement. Teil 8: Asymmetrische Verschlüsselung

IT-Sicherheitsmanagement. Teil 8: Asymmetrische Verschlüsselung IT-Sicherheitsmanagement Teil 8: Asymmetrische Verschlüsselung 02.01.18 1 Literatur [8-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg 2001

Mehr

Literatur. ISM SS 2017 Teil 8/Asymmetrische Verschlüsselung

Literatur. ISM SS 2017 Teil 8/Asymmetrische Verschlüsselung Literatur [8-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg 2001 [8-2] Schmeh, Klaus: Kryptografie. dpunkt, 4. Auflage, 2009 [8-3] Schneier,

Mehr

IT-Security. Teil 9: Asymmetrische Verschlüsselung

IT-Security. Teil 9: Asymmetrische Verschlüsselung IT-Security Teil 9: Asymmetrische Verschlüsselung 20.09.18 1 Literatur [9-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg 2001 [9-2] Schmeh,

Mehr

IT-Security. Teil 13: Asymmetrische Verschlüsselung

IT-Security. Teil 13: Asymmetrische Verschlüsselung IT-Security Teil 13: Asymmetrische Verschlüsselung 09.05.17 1 Literatur [13-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg 2001 [13-2]

Mehr

IT-Sicherheitsmanagement. Teil 12: Asymmetrische Verschlüsselung

IT-Sicherheitsmanagement. Teil 12: Asymmetrische Verschlüsselung IT-Sicherheitsmanagement Teil 12: Asymmetrische Verschlüsselung 10.12.15 1 Literatur [12-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg

Mehr

VI.3 RSA. - RSA benannt nach seinen Erfindern R. Rivest, A. Shamir und L. Adleman. - vorgestellt erstes Public-Key Verschlüsselungsverfahren

VI.3 RSA. - RSA benannt nach seinen Erfindern R. Rivest, A. Shamir und L. Adleman. - vorgestellt erstes Public-Key Verschlüsselungsverfahren VI.3 RSA - RSA benannt nach seinen Erfindern R. Rivest, A. Shamir und L. Adleman - vorgestellt 1977 - erstes Public-Key Verschlüsselungsverfahren - auch heute noch das wichtigste Public-Key Verfahren 1

Mehr

6: Public-Key Kryptographie (Grundidee)

6: Public-Key Kryptographie (Grundidee) 6: Public-Key Kryptographie (Grundidee) Ein Teil des Schlüssels ist nur dem Empfänger bekannt. Der auch dem Sender bekannte Teil kann sogar veröffentlicht werden. Man spricht dann von einem Schlüsselpaar.

Mehr

Public Key Kryptographie

Public Key Kryptographie 3. Juni 2006 1 Algorithmen für Langzahlen 1 RSA 1 Das Rabin-Kryptosystem 1 Diskrete Logarithmen Grundlagen der PK Kryptographie Bisher: Ein Schlüssel für Sender und Empfänger ( Secret-Key oder symmetrische

Mehr

Literatur. ISM SS 2018 Teil 3/Restklassen

Literatur. ISM SS 2018 Teil 3/Restklassen Literatur [3-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg 2001 [3-2] Schmeh, Klaus: Kryptografie. dpunkt, 5. Auflage, 2013 [3-3] Hoffmann,

Mehr

Betriebssysteme und Sicherheit

Betriebssysteme und Sicherheit Betriebssysteme und Sicherheit Asymmetrische Kryptographie WS 2012/2012 Dr.-Ing. Elke Franz Elke.Franz@tu-dresden.de 1 Überblick 1 Prinzip asymmetrischer (Konzelations-)Systeme 2 Mathematische Grundlagen

Mehr

Public-Key Kryptographie mit dem RSA Schema. Torsten Büchner

Public-Key Kryptographie mit dem RSA Schema. Torsten Büchner Public-Key Kryptographie mit dem RSA Schema Torsten Büchner 7.12.2004 1.Einleitung 1. symmetrische-, asymmetrische Verschlüsselung 2. RSA als asymmetrisches Verfahren 2.Definition von Begriffen 1. Einwegfunktionen

Mehr

Das RSA-Verfahren. Proseminar Kryptographische Protokolle SS Armin Litzel

Das RSA-Verfahren. Proseminar Kryptographische Protokolle SS Armin Litzel in der Praxis Proseminar Kryptographische Protokolle SS 2009 5.5.2009 in der Praxis Gliederung 1 Grundlegendes über RSA 2 in der Praxis Allgemeine Vorgehensweise zur Verschlüsselung Signieren mit RSA 3

Mehr

Proseminar Datensicherheit & Versicherungsmathematik RSA-Verfahren

Proseminar Datensicherheit & Versicherungsmathematik RSA-Verfahren Proseminar Datensicherheit & Versicherungsmathematik RSA-Verfahren Herwig Stütz 2007-11-23 1 Inhaltsverzeichnis 1 Einführung 2 2 Das RSA-Verfahren 2 2.1 Schlüsselerzeugung.................................

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 5 Kryptosysteme auf der Basis diskreter Logarithmen 1. Diffie Hellman Schlüsselaustausch 2. El Gamal Systeme 3. Angriffe auf Diskrete Logarithmen 4. Elliptische Kurven

Mehr

IT-Sicherheit Kapitel 4 Public Key Algorithmen

IT-Sicherheit Kapitel 4 Public Key Algorithmen IT-Sicherheit Kapitel 4 Public Key Algorithmen Dr. Christian Rathgeb Sommersemester 2014 1 Einführung Der private Schlüssel kann nicht effizient aus dem öffentlichen Schlüssel bestimmt werden bzw. die

Mehr

Asymmetrische Algorithmen

Asymmetrische Algorithmen Asymmetrische Algorithmen Abbildung 9. Leonhard Euler Leonhard Euler, geboren am 15. April 1707 in Basel, gestorben am 18. September 1783 in Sankt Petersburg, war einer der produktivsten Mathematiker aller

Mehr

Literatur. ITSec SS 2017 Teil 7/Restklassen

Literatur. ITSec SS 2017 Teil 7/Restklassen Literatur [7-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg 2001 [7-2] Schmeh, Klaus: Kryptografie. dpunkt, 5. Auflage, 2013 [7-3] Hoffmann,

Mehr

RSA-Verfahren Schnelle Ver- / Entschlüsselung Zusammenhang mit dem Faktorisierungsproblem. RSA-Verfahren. Herwig Stütz

RSA-Verfahren Schnelle Ver- / Entschlüsselung Zusammenhang mit dem Faktorisierungsproblem. RSA-Verfahren. Herwig Stütz 2007-11-23 Überblick 1 2 Schnelle modulare Exponentiation Chinesischer Restsatz 3 Allgemeines Public-Key Methode Rivest, Shamir und Adleman 1977 Sicherheit des Verfahrens beruht auf Schwierigkeit der Primfaktorenzerlegung

Mehr

VI.4 Elgamal. - vorgestellt 1985 von Taher Elgamal. - nach RSA das wichtigste Public-Key Verfahren

VI.4 Elgamal. - vorgestellt 1985 von Taher Elgamal. - nach RSA das wichtigste Public-Key Verfahren VI.4 Elgamal - vorgestellt 1985 von Taher Elgamal - nach RSA das wichtigste Public-Key Verfahren - besitzt viele unterschiedliche Varianten, abhängig von zugrunde liegender zyklischer Gruppe - Elgamal

Mehr

Kryptographie und elliptische Kurven - oder: Wie macht man Mathematikern das Leben schwer?

Kryptographie und elliptische Kurven - oder: Wie macht man Mathematikern das Leben schwer? Kryptographie und elliptische Kurven - oder: Wie macht man Mathematikern das Leben schwer? Harold Gutch logix@foobar.franken.de KNF Kongress 2007, 25. 11. 2007 Outline Worum geht es überhaupt? Zusammenhang

Mehr

Regine Schreier

Regine Schreier Regine Schreier 20.04.2016 Kryptographie Verschlüsselungsverfahren Private-Key-Verfahren und Public-Key-Verfahren RSA-Verfahren Schlüsselerzeugung Verschlüsselung Entschlüsselung Digitale Signatur mit

Mehr

Public-Key-Verschlüsselung und Diskrete Logarithmen

Public-Key-Verschlüsselung und Diskrete Logarithmen Public-Key-Verschlüsselung und Diskrete Logarithmen Carsten Baum Institut für Informatik Universität Potsdam 10. Juni 2009 1 / 30 Inhaltsverzeichnis 1 Mathematische Grundlagen Gruppen, Ordnung, Primitivwurzeln

Mehr

Proseminar Schlüsselaustausch (Diffie - Hellman)

Proseminar Schlüsselaustausch (Diffie - Hellman) Proseminar Schlüsselaustausch (Diffie - Hellman) Schlüsselaustausch Mathematische Grundlagen Das DH Protokoll Sicherheit Anwendung 23.06.2009 Proseminar Kryptographische Protokolle SS 2009 : Diffie Hellman

Mehr

IT-Security. Teil 7: Restklassen

IT-Security. Teil 7: Restklassen IT-Security Teil 7: Restklassen 20.04.17 1 Literatur [7-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg 2001 [7-2] Schmeh, Klaus: Kryptografie.

Mehr

7: Grundlagen der Public-Key-Kryptographie

7: Grundlagen der Public-Key-Kryptographie 7: Grundlagen der Public-Key-Kryptographie 214 7: Public-Key-Kryptographie 7: Grundlagen der Public-Key-Kryptographie Wiederholung: Symmetrische Kryptographie 1 Schlüssel für Sender und Empfänger Benötigt

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 5.2 ElGamal Systeme 1. Verschlüsselungsverfahren 2. Korrektheit und Komplexität 3. Sicherheitsaspekte Das ElGamal Verschlüsselungsverfahren Public-Key Verfahren von

Mehr

AES und Public-Key-Kryptographie

AES und Public-Key-Kryptographie Jens Kubieziel jens@kubieziel.de Friedrich-Schiller-Universität Jena Fakultät für Mathem atik und Informatik 22. Juni 2009 Beschreibung des Algorithmus Angriffe gegen AES Wichtige Algorithmen im 20. Jahrhundert

Mehr

IT-Sicherheitsmanagement. Teil 3: Restklassen

IT-Sicherheitsmanagement. Teil 3: Restklassen IT-Sicherheitsmanagement Teil 3: Restklassen 26.10.18 1 Literatur I [3-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg 2001 [3-2] Schmeh,

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 12.05.2014 1 / 26 Überblick 1 Hashfunktionen Erinnerung Angriffe auf Hashfunktionen Zusammenfassung Hashfunktionen 2 Asymmetrische Verschlüsselung Idee Beispiel:

Mehr

Proseminar Datensicherheit & Versicherungsmathematik ElGamal-Verfahren

Proseminar Datensicherheit & Versicherungsmathematik ElGamal-Verfahren Proseminar Datensicherheit & Versicherungsmathematik ElGamal-Verfahren Markus Kröll 14. Jänner 2009 Inhaltsverzeichnis 1 Einführung 2 2 Das ElGamal-Verfahren 2 2.1 Schlüsselerzeugung.................................

Mehr

3: Zahlentheorie / Primzahlen

3: Zahlentheorie / Primzahlen Stefan Lucks Diskrete Strukturen (WS 2009/10) 96 3: Zahlentheorie / Primzahlen 3: Zahlentheorie / Primzahlen Stefan Lucks Diskrete Strukturen (WS 2009/10) 97 Definition 37 (Teiler, Vielfache, Primzahlen,

Mehr

Kryptographische Protokolle

Kryptographische Protokolle Kryptographische Protokolle Lerneinheit 4: Schlüsselvereinbarung Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2017 8.5.2017 Einleitung Einleitung In dieser Lerneinheit

Mehr

Kryptologie. Bernd Borchert. Univ. Tübingen SS Vorlesung. Teil 10. Signaturen, Diffie-Hellman

Kryptologie. Bernd Borchert. Univ. Tübingen SS Vorlesung. Teil 10. Signaturen, Diffie-Hellman Kryptologie Bernd Borchert Univ. Tübingen SS 2017 Vorlesung Teil 10 Signaturen, Diffie-Hellman Signatur Signatur s(m) einer Nachricht m Alice m, s(m) Bob K priv K pub K pub Signatur Signatur (Thema Integrity

Mehr

Einführung in die asymmetrische Kryptographie

Einführung in die asymmetrische Kryptographie !"#$$% Einführung in die asymmetrische Kryptographie Dipl.-Inform. Mel Wahl Prof. Dr. Christoph Ruland Universität Siegen Institut für digitale Kommunikationssysteme Grundlagen Verschlüsselung Digitale

Mehr

Übungen zur Vorlesung Systemsicherheit

Übungen zur Vorlesung Systemsicherheit Übungen zur Vorlesung Systemsicherheit Asymmetrische Kryptographie Tilo Müller, Reinhard Tartler, Michael Gernoth Lehrstuhl Informatik 1 + 4 24. November 2010 c (Lehrstuhl Informatik 1 + 4) Übungen zur

Mehr

6.2 Asymmetrische Verschlüsselung

6.2 Asymmetrische Verschlüsselung 6.2 Asymmetrische Verschlüsselung (asymmetric encryption, public-key encryption) Prinzip (Diffie, Hellman, Merkle 1976-78): Statt eines Schlüssels K gibt es ein Schlüsselpaar K E, K D zum Verschlüsseln

Mehr

Verschlüsselung durch Exponentiation (Pohlig, Hellman, 1976)

Verschlüsselung durch Exponentiation (Pohlig, Hellman, 1976) Verschlüsselung durch Exponentiation (Pohlig, Hellman, 1976) p : eine (grosse) Primzahl e : Zahl 0 < e < p mit ggt(e, p 1) = 1 d Inverses von e in Z p 1, dh d e 1 mod p 1 (= φ(p)) M : numerisch codierter

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 4 Public Key Kryptographie mit RSA 1. Ver- und Entschlüsselung 2. Schlüsselerzeugung und Primzahltests 3. Angriffe auf das RSA Verfahren 4. Sicherheit von RSA Probleme

Mehr

3: Primzahlen. 111 S. Lucks Diskr Strukt. (WS 18/19) 3: Primzahlen

3: Primzahlen. 111 S. Lucks Diskr Strukt. (WS 18/19) 3: Primzahlen 3: Primzahlen 111 S. Lucks Diskr Strukt. (WS 18/19) 3: Primzahlen Definition 40 (Teiler, Vielfache, Primzahlen, zusammengesetzte Zahlen) Seien a, b N. a ist ein Teiler von b ( a b ), falls es ein k N gibt

Mehr

4 Der diskrete Logarithmus mit Anwendungen

4 Der diskrete Logarithmus mit Anwendungen 4 Der diskrete Logarithmus mit Anwendungen 62 4.1 Der diskrete Logarithmus Für eine ganze Zahl a Z mit ggt(a, n) = 1 hat die Exponentialfunktion mod n zur Basis a exp a : Z M n, x a x mod n, die Periode

Mehr

3 Public-Key-Kryptosysteme

3 Public-Key-Kryptosysteme Stand: 05.11.2013 Vorlesung Grundlagen und Methoden der Kryptographie Dietzfelbinger 3 Public-Key-Kryptosysteme 3.1 Verschlüsselung von Nachrichten Wir betrachten ganz einfache Kommunikationsszenarien.

Mehr

Elliptic Curve Cryptography

Elliptic Curve Cryptography Elliptic Curve Cryptography Institut für Informatik Humboldt-Universität zu Berlin 10. November 2013 ECC 1 Aufbau 1 Asymmetrische Verschlüsselung im Allgemeinen 2 Elliptische Kurven über den reellen Zahlen

Mehr

Kryptographie - eine mathematische Einführung

Kryptographie - eine mathematische Einführung Kryptographie - eine mathematische Einführung Rosa Freund 28. Dezember 2004 Überblick Grundlegende Fragestellungen Symmetrische Verschlüsselung: Blockchiffren, Hashfunktionen

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 15.05.2017 1 / 25 Überblick 1 Hashfunktionen Angriffe auf Hashfunktionen Zusammenfassung Hashfunktionen 2 Asymmetrische Verschlüsselung Idee Beispiel: RSA

Mehr

Kryptograhie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik

Kryptograhie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Kryptograhie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Übersicht Zwecke der Krytographie Techniken Symmetrische Verschlüsselung( One-time Pad,

Mehr

Public Key Kryptographie

Public Key Kryptographie 4. Dezember 2007 Outline 1 Einführung 2 3 4 Einführung 1976 Whitefield Diffie und Martin Hellman 2 Schlüsselprinzip Asymmetrische Verschlüsselungsverfahren public Key private Key Anwendung E-Mail PGP openpgp

Mehr

VP WAP Kryptographie

VP WAP Kryptographie VP WAP Kryptographie Martin Hargassner, Claudia Horner, Florian Krisch Universität Salzburg 11. Juli 2002 header 1 Übersicht Definiton Ziele Entwicklung Private- / Public-Key Verfahren Sicherheit Anwendungsbeispiel:

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 4 Public Key Kryptographie mit RSA 1. Ver- und Entschlüsselung 2. Schlüsselerzeugung und Primzahltests 3. Angriffe auf das RSA Verfahren 4. Sicherheit von RSA Probleme

Mehr

3. Vortrag: Das RSA-Verschlüsselungsverfahren

3. Vortrag: Das RSA-Verschlüsselungsverfahren Westfälische Wilhelms-Universität Münster Mathematik Sommersemester 2017 Seminar: Verschlüsselungs- und Codierungstheorie Leitung: Thomas Timmermann 3. Vortrag: Das RSA-Verschlüsselungsverfahren Hendrik

Mehr

Asymmetrische Kryptographie u

Asymmetrische Kryptographie u Asymmetrische Kryptographie u23 2015 Simon, Florob e.v. https://koeln.ccc.de Cologne 2015-10-05 1 Zahlentheorie Modulare Arithmetik Algebraische Strukturen Referenzprobleme 2 Diffie-Hellman Diffie-Hellman-Schlüsselaustausch

Mehr

Kurzskript MfI:AGS WS 2018/19 Teil II: Gruppen / Teil III: Ringe 34

Kurzskript MfI:AGS WS 2018/19 Teil II: Gruppen / Teil III: Ringe 34 Kurzskript MfI:AGS WS 2018/19 Teil II: Gruppen / Teil III: Ringe 34 Satz 4.2.11 (Chinesischer Restsatz, Ring-Version) Sind N teilerfremd (d.h. ggt( ) =1), so ist die Abbildung ein Ring-Isomorphismus. :

Mehr

Technikseminar SS2012

Technikseminar SS2012 Technikseminar SS2012 ECC - Elliptic Curve Cryptography Kryptosysteme basierend auf elliptischen Kurven 11.06.2012 Gliederung Was ist ECC? ECC und andere Verfahren Diffie-Hellman-Schlüsselaustausch Funktionsweise

Mehr

Vorlesung Datensicherheit. Sommersemester 2010

Vorlesung Datensicherheit. Sommersemester 2010 Vorlesung Datensicherheit Sommersemester 2010 Harald Baier Kapitel 3: Hashfunktionen und asymmetrische Verfahren Inhalt Hashfunktionen Asymmetrische kryptographische Verfahren Harald Baier Datensicherheit

Mehr

Kryptographie mit elliptischen Kurven

Kryptographie mit elliptischen Kurven Kryptographie mit elliptischen Kurven Dr. Dirk Feldhusen SRC Security Research & Consulting GmbH Bonn - Wiesbaden Inhalt Elliptische Kurven! Grafik! Punktaddition! Implementation Kryptographie! Asymmetrische

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Elliptische Kurven und ihre Anwendung in der Kryptographie

Elliptische Kurven und ihre Anwendung in der Kryptographie Elliptische Kurven und ihre Anwendung in der Kryptographie Carsten Baum Institut für Informatik Universität Potsdam 17. Juni 2009 1 / 29 Inhaltsverzeichnis 1 Mathematische Grundlagen Charakteristik eines

Mehr

Mathematische Methoden für Informatiker

Mathematische Methoden für Informatiker Prof. Dr. 29.11.2018 32. Vorlesung Homomorphiesatz für Ringe Chinesischer Restsatz, speziell für Ringe Z n Lösen von t simultanen linearen Kongruenzen Sonderfall t = 2 Anwendungen, z.b. schnelle Addition

Mehr

Sicherheit: Fragen und Lösungsansätze

Sicherheit: Fragen und Lösungsansätze Vorlesung (WS 2014/15) Sicherheit: Fragen und Lösungsansätze Dr. Thomas P. Ruhroth TU Dortmund, Fakultät Informatik, Lehrstuhl XIV 1 Asymmetrische Verschlüsselung [mit freundlicher Genehmigung basierend

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Diskrete Strukturen Kapitel 5: Algebraische Strukturen (RSA-Verfahren)

Diskrete Strukturen Kapitel 5: Algebraische Strukturen (RSA-Verfahren) WS 2016/17 Diskrete Strukturen Kapitel 5: Algebraische Strukturen (RSA-Verfahren) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Kryptographie Reine Mathematik in den Geheimdiensten

Kryptographie Reine Mathematik in den Geheimdiensten Kryptographie Reine Mathematik in den Geheimdiensten Priska Jahnke 10. Juli 2006 Kryptographie Reine Mathematik in den Geheimdiensten Kryptographie (Kryptologie) = Lehre von den Geheimschriften Kaufleute,

Mehr

Zahlentheorieseminar: Einführung in die Public-Key-Kryptographie

Zahlentheorieseminar: Einführung in die Public-Key-Kryptographie Dozent: Dr. Ralf Gerkmann Referenten: Jonathan Paulsteiner (10939570) und Roman Lämmel ( ) Zahlentheorieseminar: Einführung in die Public-Key-Kryptographie 0. Inhalt 1. Einführung in die Kryptographie

Mehr

n ϕ n

n ϕ n 1 3. Teiler und teilerfremde Zahlen Euler (1707-1783, Gymnasium und Universität in Basel, Professor für Physik und Mathematik in Petersburg und Berlin) war nicht nur einer der produktivsten Mathematiker

Mehr

4 Der diskrete Logarithmus mit Anwendungen

4 Der diskrete Logarithmus mit Anwendungen 4 Der diskrete Logarithmus mit Anwendungen 53 4.1 Der diskrete Logarithmus Sei G eine Gruppe (multiplikativ geschrieben) und a G ein Element der Ordnung s (die auch sein kann). Dann ist die Exponentialfunktion

Mehr

Mathematische Grundlagen der Kryptografie (1321) SoSe 06

Mathematische Grundlagen der Kryptografie (1321) SoSe 06 Mathematische Grundlagen der Kryptografie (1321) SoSe 06 Klausur am 19.08.2006: Lösungsvorschläge zu den Aufgaben zu Aufgabe I.1 (a) Das numerische Äquivalent zu KLAUSUR ist die Folge [10, 11, 0, 20, 18,

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz IKS, KIT 06.05.2013 1 / 25 Überblick 1 Hashfunktionen Erinnerung Angriffe auf Hashfunktionen Zusammenfassung Hashfunktionen 2 Asymmetrische Verschlüsselung Idee Beispiel:

Mehr

Kryptographie. Nachricht

Kryptographie. Nachricht Kryptographie Kryptographie Sender Nachricht Angreifer Empfänger Ziele: Vertraulichkeit Angreifer kann die Nachricht nicht lesen (Flüstern). Integrität Angreifer kann die Nachricht nicht ändern ohne dass

Mehr

Anwendungen der Linearen Algebra: Kryptologie

Anwendungen der Linearen Algebra: Kryptologie Anwendungen der Linearen Algebra: Kryptologie Philip Herrmann Universität Hamburg 5.12.2012 Philip Herrmann (Universität Hamburg) AnwLA: Kryptologie 1 / 28 No one has yet discovered any warlike purpose

Mehr

3.5 Kryptographie - eine Anwendung der Kongruenzrechnung

3.5 Kryptographie - eine Anwendung der Kongruenzrechnung 1 3.5 Kryptographie - eine Anwendung der Kongruenzrechnung Das Wort Kryptographie leitet sich aus der griechischen Sprache ab, nämlich aus den beiden Worten κρυπτ oς(kryptos)=versteckt, geheim und γραϕɛιν(grafein)=schreiben.

Mehr

Public Key Kryptographie

Public Key Kryptographie Public Key Kryptographie Georg Stütz 4. Dezember 2007 Inhaltsverzeichnis 1 Einführung 2 1.1 Anwendungsbeispiel................................ 2 1.2 Unterschiede zwischen symmetrischen und asymmetrischen

Mehr

Elliptische Kurven in der Kryptographie. Prusoth Vijayakumar / 16

Elliptische Kurven in der Kryptographie. Prusoth Vijayakumar / 16 1 / 16 06. 06. 2011 2 / 16 Übersicht Motivation Verfahren 3 / 16 Motivation Relativ sicher, da auf der Schwierigkeit mathematischer Probleme beruhend (z.b. Diskreter Logarithmus, Faktorisieren) Schnellere

Mehr

INFORMATIONSSICHERHEIT

INFORMATIONSSICHERHEIT Fakultät Informatik/Mathematik Professur Informatikrecht/Informationssysteme INFORMATIONSSICHERHEIT Prof. Dr. Andreas Westfeld Dresden, Wintersemester 2017/2018 Die revolutionäre Idee Diffie und Hellman

Mehr

Abschnitt 5: Kryptographie. j (p j 1). 1 (p 1 1)p α 2

Abschnitt 5: Kryptographie. j (p j 1). 1 (p 1 1)p α 2 Abschnitt 5: Kryptographie. Zunächst wollen wir die Struktur von (Z/mZ) untersuchen. 5.1 Definition: Die Eulersche ϕ-funktion: ϕ : N N; ϕ(m) := (Z/mZ) 5.2 Bemerkung: (Z/mZ) {a {1,..., m 1} ggt(a, m) =

Mehr

VI. Public-Key Kryptographie

VI. Public-Key Kryptographie VI. Public-Key Kryptographie Definition 2.1 Ein Verschlüsselungsverfahren ist ein 5-Tupel (P,C,K,E,D), wobei 1. P die Menge der Klartexte ist. 2. C die Menge der Chiffretexte ist. 3. K die Menge der Schlüssel

Mehr

Public Key Kryptographie mit dem RSA Schema. Karsten Fischer, Sven Kauer

Public Key Kryptographie mit dem RSA Schema. Karsten Fischer, Sven Kauer Public Key Kryptographie mit dem RSA Schema Karsten Fischer, Sven Kauer Gliederung I. Historischer Hintergrund II. Public Key Kryptographie III. Beispielszenario IV. Einweg-Funktion V. RSA Verfahren VI.

Mehr

Kryptologie. K l a u s u r WS 2006/2007, Prof. Dr. Harald Baier

Kryptologie. K l a u s u r WS 2006/2007, Prof. Dr. Harald Baier Kryptologie K l a u s u r WS 2006/2007, 2007-02-01 Prof. Dr. Harald Baier Name, Vorname: Matrikelnummer: Hinweise: (a) Als Hilfsmittel ist nur der Taschenrechner TI-30 zugelassen. Weitere Hilfsmittel sind

Mehr

KRYPTOSYSTEME & RSA IM SPEZIELLEN

KRYPTOSYSTEME & RSA IM SPEZIELLEN KRYPTOSYSTEME & RSA IM SPEZIELLEN Kryptosysteme allgemein Ein Kryptosystem ist eine Vorrichtung oder ein Verfahren, bei dem ein Klartext mithilfe eines Schlüssels in einen Geheimtext umgewandelt wird (Verschlüsselung)

Mehr

Seminar 11. Spiralcurriculum. Fachgebiet Didaktik der Informatik Bergische Universität Wuppertal. 6ff982f :40

Seminar 11. Spiralcurriculum. Fachgebiet Didaktik der Informatik Bergische Universität Wuppertal. 6ff982f :40 Seminar 11 fachdidaktik Seminar Didaktik der vom 11. Januar 2016 Version: 6ff982f Stand: 2016-01-27 16:40 Bearbeitet von: Cemre Tayyar Lizenz : http://creativecommons.org/licenses/by-nc-sa/4.0/ cbea Fachgebiet

Mehr

Kryptographie. ein erprobter Lehrgang. AG-Tagung Informatik, April 2011 Alfred Nussbaumer, LSR für NÖ. LSR für NÖ, 28. April 2011 Alfred Nussbaumer

Kryptographie. ein erprobter Lehrgang. AG-Tagung Informatik, April 2011 Alfred Nussbaumer, LSR für NÖ. LSR für NÖ, 28. April 2011 Alfred Nussbaumer Kryptographie ein erprobter Lehrgang AG-Tagung Informatik, April 2011 Alfred Nussbaumer, LSR für NÖ 1 Variante: Kryptographie in 5 Tagen Ein kleiner Ausflug in die Mathematik (Primzahlen, Restklassen,

Mehr

Satz von Euler. Satz von Euler. Korollar 1. Korollar 2 Kleiner Fermat. Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G.

Satz von Euler. Satz von Euler. Korollar 1. Korollar 2 Kleiner Fermat. Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G. Satz von Euler Satz von Euler Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G. Beweis: Sei G = {g 1,..., g n } und a G. Betrachte die Abbildung f : G G, g ag. Da a G, besitzt a ein

Mehr

Satz von Euler. Satz von Euler. Korollar 1. Korollar 2 Kleiner Fermat. Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G.

Satz von Euler. Satz von Euler. Korollar 1. Korollar 2 Kleiner Fermat. Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G. Satz von Euler Satz von Euler Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G. Beweis: Sei G = {g 1,..., g n } und a G. Betrachte die Abbildung f : G G, g ag. Da a G, besitzt a ein

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 11 Prof. Peter F. Stadler & Dr. Christian Höner zu Siederdissen Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität

Mehr

INFORMATIONSSICHERHEIT

INFORMATIONSSICHERHEIT Fakultät Informatik/Mathematik Professur Informatikrecht/Informationssysteme Modulare Reduktion INFORMATIONSSICHERHEIT Prof. Dr. Andreas Westfeld Die basiert auf einer festen ganzen Zahl m > 1, die Modulus

Mehr

Wiederholung. Symmetrische Verfahren: klassische Verfahren / grundlegende Prinzipien: Substitution, Transposition, One-Time-Pad DES AES

Wiederholung. Symmetrische Verfahren: klassische Verfahren / grundlegende Prinzipien: Substitution, Transposition, One-Time-Pad DES AES Wiederholung Symmetrische Verfahren: klassische Verfahren / grundlegende Prinzipien: Substitution, Transposition, One-Time-Pad DES AES Mathematische Grundlagen: algebraische Strukturen: Halbgruppe, Monoid,

Mehr

Datensicherheit durch Kryptographie

Datensicherheit durch Kryptographie Datensicherheit durch Kryptographie Dr. Michael Hortmann Fachbereich Mathematik, Universität Bremen T-Systems Michael.Hortmann@gmx.de 1 Kryptographie: Klassisch: Wissenschaft und Praxis der Datenverschlüsselung

Mehr

Kryptografie Die Mathematik hinter den Geheimcodes

Kryptografie Die Mathematik hinter den Geheimcodes Kryptografie Die Mathematik hinter den Geheimcodes Rick Schumann www.math.tu-freiberg.de/~schumann Institut für Diskrete Mathematik und Algebra, TU Bergakademie Freiberg Akademische Woche Sankt Afra /

Mehr

Zufallsprimzahlen und eine Revolution in der Kryptographie Stefan Edelkamp

Zufallsprimzahlen und eine Revolution in der Kryptographie Stefan Edelkamp Zufallsprimzahlen und eine Revolution in der Kryptographie Stefan Edelkamp Fakultät für Mathematik und Informatik Universität of Bremen Übersicht des Vortrags 1 Einfache Kryptosysteme 2 Einmalschlüssel

Mehr

Einführung in die Zahlentheorie

Einführung in die Zahlentheorie Einführung in die Zahlentheorie von Peter Hellekalek Institut für Mathematik Universität Salzburg Hellbrunner Straße 34 A-5020 Salzburg, Austria Tel: +43-(0)662-8044-5310 Fax: +43-(0)662-8044-137 e-mail:

Mehr

Das Verschlüsseln verstehen

Das Verschlüsseln verstehen Das Verschlüsseln verstehen Kurz-Vorlesung Security Day 2014 Prof. (FH) Univ.-Doz. DI. Dr. Ernst Piller Kurzvorlesung "Das Verschlüsseln verstehen", Security Day 2014, Ernst Piller 1 Warum eigentlich Verschlüsselung

Mehr

Public-Key-Kryptographie

Public-Key-Kryptographie Kapitel 2 Public-Key-Kryptographie In diesem Kapitel soll eine kurze Einführung in die Kryptographie des 20. Jahrhunderts und die damit verbundene Entstehung von Public-Key Verfahren gegeben werden. Es

Mehr

Übung GSS Blatt 6. SVS Sicherheit in Verteilten Systemen

Übung GSS Blatt 6. SVS Sicherheit in Verteilten Systemen Übung GSS Blatt 6 SVS Sicherheit in Verteilten Systemen 1 Einladung zum SVS-Sommerfest SVS-Sommerfest am 12.07.16 ab 17 Uhr Ihr seid eingeladen! :-) Es gibt Thüringer Bratwürste im Brötchen oder Grillkäse

Mehr

Gruppenbasierte Kryptographie. ElGamal Sicherheit. Drei Probleme. ElGamal Verschlüsselung. Benutzt zyklische Gruppen von (fast) Primzahlordnung:

Gruppenbasierte Kryptographie. ElGamal Sicherheit. Drei Probleme. ElGamal Verschlüsselung. Benutzt zyklische Gruppen von (fast) Primzahlordnung: Gruppenbasierte Kryptographie Benutzt zyklische Gruppen von (fast) Primzahlordnung: G = g und #G = l = cl 0 mit c klein und l 0 prim. b G : x Z : b = g x. Das Element x heißt diskreter Logarithmus von

Mehr

IT-Sicherheit: Kryptographie. Asymmetrische Kryptographie

IT-Sicherheit: Kryptographie. Asymmetrische Kryptographie IT-Sicherheit: Kryptographie Asymmetrische Kryptographie Fragen zur Übung 5 C oder Java? Ja (gerne auch Python); Tips waren allerdings nur für C Wie ist das mit der nonce? Genau! (Die Erkennung und geeignete

Mehr

VIII. Digitale Signaturen

VIII. Digitale Signaturen VIII. Digitale Signaturen Bob Eve Eve möchte - lauschen - ändern - personifizieren Alice 1 Aufgaben - Vertraulichkeit - Lauschen - Authentizität - Tauschen des Datenursprungs - Integrität - Änderung der

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 4.4 Semantische Sicherheit 1. Sicherheit partieller Informationen 2. Das Verfahren von Rabin 3. Sicherheit durch Randomisierung Semantische Sicherheit Mehr als nur

Mehr

Mathematisches Kaleidoskop 2014 Materialien Teil 2. Dr. Hermann Dürkop

Mathematisches Kaleidoskop 2014 Materialien Teil 2. Dr. Hermann Dürkop Mathematisches Kaleidoskop 2014 Materialien Teil 2 Dr. Hermann Dürkop 1 1.6 Quadratische Reste und das Legendre-Symbol Im folgenden seien die Moduln p immer Primzahlen. Wir haben bisher gesehen, ob und

Mehr

4 Kryptologie. Übersicht

4 Kryptologie. Übersicht 4 Kryptologie Übersicht 4.1 Der erweiterte euklidische Algorithmus................................ 38 4.2 Rechnen mit Restklassen modulo p................................... 39 4.3 Der kleine Satz von

Mehr

4: Algebraische Strukturen / Gruppen

4: Algebraische Strukturen / Gruppen Stefan Lucks Diskrete Strukturen (WS 2009/10) 120 4: Algebraische Strukturen / Gruppen Definition 46 Sei G eine nichtleere Menge. Eine Funktion : G G G bezeichnen wir als Verknüpfung auf G. Das Paar (G,

Mehr

RSA Verfahren. Kapitel 7 p. 103

RSA Verfahren. Kapitel 7 p. 103 RSA Verfahren RSA benannt nach den Erfindern Ron Rivest, Adi Shamir und Leonard Adleman war das erste Public-Key Verschlüsselungsverfahren. Sicherheit hängt eng mit der Schwierigkeit zusammen, große Zahlen

Mehr

Entwicklung der Asymmetrischen Kryptographie und deren Einsatz

Entwicklung der Asymmetrischen Kryptographie und deren Einsatz Entwicklung der Asymmetrischen Kryptographie und deren Einsatz Peter Kraml, 5a hlw Facharbeit Mathematik Schuljahr 2013/14 Caesar-Verschlüsselung Beispiel Verschiebung der Buchstaben im Alphabet sehr leicht

Mehr