Lernmaterial für die Fernuni Hagen effizient und prüfungsnah

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Lernmaterial für die Fernuni Hagen effizient und prüfungsnah"

Transkript

1 Lernmaterial für die Fernuni Hagen effizient und prüfungsnah Sie erhalten hier einen Einblick in die Dokumente Aufgaben und Lösungen sowie Erläuterungen Beim Kauf erhalten Sie zudem zusätzlich die Dokumente Übersichtsdiagrammamm sowie Altklausuranalyse dieses Themengebiets. Weitere Erläuterungen zu den einzelnen Dokumenten finden Sie auf der Startseite des Webauftritts ( Bei den folgenden Einblicken können Sie - den modularen Aufbau (durch Aufgabenvarianten) - und die Zuordnungssystematik des Komfortsystems erkennen: Die Symbole rechts oben verbinden die Abschnitte, für eine schnelle Zuordnung: Erläuterungen Aufgaben und Lösungen Diese Symbole werden auch beim Übersichtsdiagramm und bei der Altklausurenanalyse aufgegriffen und verwendet.

2 Algorithmische Mathematik Simplex-Algorithmus Erläuterungen Lernmaterial zum Modul der Fernuniversität Hagen

3 Inhaltsverzeichnis 1 Problem formulieren Problem aus Textaufgabe herleiten Erklärung Beispielaufgabe Probem in Normalform bringen Erklärung Beispielaufgabe Positivität aus gegebenen Ungleichungen ableiten Erklärung Beispielaufgabe Der Simplex-Algorithmus Hilfsproblem aufstellen (Phase 1) Erklärung Beispielaufgabe Phase 2 durchführen Erklärung Beispielaufgabe Mit Hilfsproblem starten Phase Erklärung Beispielaufgabe Ergebnistableau interpretieren Erklärung Beispielaufgabe Lineares/Duales Programm Duales Problem formulieren Erklärung Beispielaufgabe Der schwache Dualitätssatz Erklärung Beispielaufgabe Theoretisch-abstrakte Aufgaben Geometrischer Ansatz Erklärung Beispielaufgabe Lineare Optimierung ohne Simplex-Algorithmus Grafisches Lösungsverfahren Erklärung Beispielaufgabe Lösen mit einem ad-hoc-argument Erklärung

4 Beispielaufgabe

5 Algorithmische Mathematik Simplex-Algorithmus Erläuterungen S. 5 1 Problem formulieren 1.1 Problem aus Textaufgabe herleiten Erklärung In diesem Abschnitt sollen mathematische Formulierungen für in Textform gegebene Optimierungsprobleme gefunden werden. Dies ist in den Anwendungen stets der erste Schritt; und möglicherweise der wichtigste. Denn die korrekte Formulierung des Problems ist Grundvoraussetzung dafür, dass man überhaupt eine Lösung bekommt, die man in seiner Aufgabenstellung sinnvoll interpretieren kann. Wie die Formulierungen konkret aussehen hängt natürlich immer vom gegebenen Problem ab. Hilfreich zur Formulierung ist die folgende Vorgehensweise 1. Schritt: Variablenbenennung. Am besten gibt man dort möglichst vielen in der Aufgabenstellung beteiligten Größen eigene Namen. 2. Schritt: Formulierung der Zielfunktion. Dabei muss man darauf achten, ob maximiert oder minimiert werden soll. 3. Schritt: Formulierung der Nebenbedingungen. Das Wort mindestens in der Aufgabenstellung ergibt dabei immer eine Ungleichung mit, das Wort höchstens entsprechend. Beispielaufgabe Wir wollen eine formelmäßige Beschreibung folgender Aufgabenstellung erarbeiten: Eine Fabrik stellt ein einziges Produkt her. Dafür setzt sie drei unterschiedliche Maschinen ein. Maschinen 1 und 2 können pro Tag 6 Stunden laufen, Maschine 3 nur 5. Um ein Stück des Produkts zu fertigen benötigt Maschine 1 20 Sekunden, Maschine 2 25 sec und Maschine 3 15 sec. Wie müssen die einzelnen Maschinen eingesetzt werden, wenn eine möglichst große Stückzahl des Produkts hergestellt werden soll? Wir folgen dem oben beschriebenen Schema:

6 Algorithmische Mathematik Simplex-Algorithmus Erläuterungen S Schritt: Variablenbenennung. x 1 = an Maschine 1 produzierte Stückzahl des Produkst x 2 = an Maschine 2 produzierte Stückzahl des Produkst x 3 = an Maschine 3 produzierte Stückzahl des Produkst z = Gesamtstückzahl t 1 = an Maschine 1 benötigte Zeit für ein Stück in sec. t 2 = an Maschine 2 benötigte Zeit... t 3 = an Maschine 3 benötigte Zeit... T 1 = Gesamtzeit für Maschine 1 in Stunden T 2 = Gesamtzeit für Maschine 2 in Stunden T 3 = Gesamtzeit für Maschine 3 in Stunden Das ist jetzt etwas auf die Spitze getrieben, zugegeben. Aber besser wir starten mit vielen Variablen und reduzieren dann. Hier kann man sofort einsetzen: z = x 1 +x 2 +x 3 t 1 = 20 t 2 = 25 t 3 = 15 T 1 == t x 1 = x 1 T 2 = x 2 T 3 = x 3 2. Schritt: Formulierung der Zielfunktion. Es soll möglichst viel produziert werden, also wird gesucht max z = max x 1 +x 2 +x 3 3. Schritt: Formulierung der Nebenbedingungen. T 1 6 = x 1 6 = x = T 2 6 = x T 3 5 = x 3 = = 864 = 1200

7 Algorithmische Mathematik Simplex-Algorithmus Aufgaben und Lösungen Lernmaterial zum Modul der Fernuniversität Hagen

8 Inhaltsverzeichnis 1 Problem formulieren Problem aus Textaufgabe herleiten Aufgabe Aufgabe Aufgabe Problem in Normalform bringen Aufgabe Aufgabe Aufgabe Aufgabe Positivität aus gegebenen Ungleichungen ableiten Aufgabe Aufgabe Der Simplex-Algorithmus Hilfsproblem aufstellen (Phase 1) Aufgabe Aufgabe Aufgabe Aufgabe Aufgabe Phase 2 durchführen Aufgabe Aufgabe Aufgabe Aufgabe Mit Hilfsproblem starten Phase Aufgabe Aufgabe Aufgabe Aufgabe Ergebnistableau interpretieren Aufgabe Aufgabe Aufgabe Aufgabe Aufgabe Lineares/Duales Programm Duales Problem formulieren Aufgabe Aufgabe Aufgabe

9 3.2 Der schwache Dualitätssatz Aufgabe Aufgabe Aufgabe Theoretisch-abstrakte Aufgaben Geometrischer Ansatz Aufgabe Aufgabe Lineare Optimierung ohne Simplex-Algorithmus Grafisches Lösungsverfahren Aufgabe Lösen mit einem ad-hoc-argument Aufgabe Vollständige Aufgaben 63 Aufgabe Aufgabe Aufgabe

10 Algorithmische Mathematik Simplex-Algorithmus Aufgaben und Lösungen S. 5 1 Problem formulieren 1.1 Problem aus Textaufgabe herleiten Aufgabe Aufgabenstellung Formulieren Sie das lineare Programm (die lineare Optimierungsaufgabe) zu folgender Fragestellung. (Hier muss nur formuliert, noch nicht gelöst werden!) Ein Kunde möchte an der Feinkosttheke 800 g eingelegte Oliven kaufen. Es gibt die Sorten Chili zu 2,30 EUR/100 g und Knoblauch/Mandel zu 2,50/100 g. Der Kunde möchte mindestens 100 g Chili und mindestens 200 g Knoblauch/Mandel. Wie muss er wählen, damit seine Mischung möglichst günstig wird? Lösung 1. Schritt: Benennung der Variablen. c ˆ= Menge an Chili -Oliven k ˆ= Menge an Knoblauch/Mandel -Oliven 2. Schritt: Formulierung der Zielfunktion. Preis für die Oliven = 2,30 EUR EUR cg +2,50 100g 100g kg = 0,023 c+0,025 k EUR Optimierung min 0.023c+0.025k 3. Schritt: Formulierung der Nebenbedingungen (Restriktionen). Hinweis: Zunächst so viele Restriktionen formulieren, wie möglich und dann diejenigen wieder entfernen, die redundant sind, falls solche vorkommen. Gesamtmenge = c+k = 800 Mindestmenge Chili = c 100 Mindestmenge Knoblauch/Mandel = k 200 Positivität = c, k 0

Lernmaterial für die Fernuni Hagen effizient und prüfungsnah

Lernmaterial für die Fernuni Hagen effizient und prüfungsnah Lernmaterial für die Fernuni Hagen effizient und prüfungsnah www.schema-f-hagen.de Sie erhalten hier einen Einblick in die Dokumente Aufgaben und Lösungen sowie Erläuterungen Beim Kauf erhalten Sie zudem

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Lineare Optimierung Ergänzungskurs

Lineare Optimierung Ergänzungskurs Lineare Optimierung Ergänzungskurs Wintersemester 2015/16 Julia Lange, M.Sc. Literatur Werner, F.; Sotskov, Y.N. (2006): Mathematics of Economics and Business; Routledge; London Bemerkungen Diese Unterlagen

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Typische Prüfungsfragen Die folgenden Fragen dienen lediglich der Orientierung und müssen nicht den tatsächlichen Prüfungsfragen entsprechen. Auch Erkenntnisse aus den

Mehr

Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 3. Vorlesung

Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 3. Vorlesung Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 3. Vorlesung Rainer Hufnagel / Laura Wahrig 2006 Diese Woche LO - Sensitivitätsanalyse Simulation Beispiel Differenzengleichungen

Mehr

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens in einige Teilbereiche der für Studierende des Wirtschaftsingenieurwesens Sommersemester 2013 Hochschule Augsburg Kursrechnung Festverzinsliche Wertpapiere Wertpapier: Investor erwirbt für bestimmten Preis

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Eine Firma stellt USB-Sticks her. Sie werden in der Fabrik ungeprüft in Packungen zu je 20 Stück verpackt und an Händler ausgeliefert. 1 Ein Händler

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

LINGO: Eine kleine Einführung

LINGO: Eine kleine Einführung LINGO: Eine kleine Einführung Jun.-Prof.Dr. T. Nieberg Lineare und Ganzzahlige Optimierung, WS 2009/10 LINDO/LINGO ist ein Software-Paket, mit dessen Hilfe (ganzzahlige) lineare Programme schnell und einfach

Mehr

Betragsgleichungen und die Methode der Fallunterscheidungen

Betragsgleichungen und die Methode der Fallunterscheidungen mathe online Skripten http://www.mathe-online.at/skripten/ Betragsgleichungen und die Methode der Fallunterscheidungen Franz Embacher Fakultät für Mathematik der Universität Wien E-mail: franz.embacher@univie.ac.at

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

Lösungsmethoden gewöhnlicher Differentialgleichungen (Dgl.)

Lösungsmethoden gewöhnlicher Differentialgleichungen (Dgl.) Lösungsmethoden gewöhnlicher Dierentialgleichungen Dgl) Allgemeine und partikuläre Lösung einer gewöhnlichen Dierentialgleichung Eine Dierentialgleichung ist eine Gleichung! Zum Unterschied von den gewöhnlichen

Mehr

Einführung. Kapitel 1. Peter Becker (H-BRS) Operations Research I Sommersemester 2015 14 / 298

Einführung. Kapitel 1. Peter Becker (H-BRS) Operations Research I Sommersemester 2015 14 / 298 Kapitel 1 Einführung Peter Becker (H-BRS) Operations Research I Sommersemester 2015 14 / 298 Inhalt Inhalt 1 Einführung Was ist Operations Research? Planungsprozess im OR Peter Becker (H-BRS) Operations

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Der IDF-Fernkurs. Ablaufschema: Durchlesen des Basistextes. Bearbeiten der Einsendeaufgaben (Arbeitsblätter, Protokolle, Transferaufgaben)

Der IDF-Fernkurs. Ablaufschema: Durchlesen des Basistextes. Bearbeiten der Einsendeaufgaben (Arbeitsblätter, Protokolle, Transferaufgaben) Der IDF-Fernkurs Ablaufschema: Durchlesen des Basistextes Bearbeiten der Einsendeaufgaben (Arbeitsblätter, Protokolle, Transferaufgaben) Einsenden der Arbeitsblätter an das Institut Rücksendung der korrigierten

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

2 Lineare Gleichungen mit zwei Variablen

2 Lineare Gleichungen mit zwei Variablen 2 Lineare Gleichungen mit zwei Variablen Die Klasse 9 c möchte ihr Klassenzimmer mit Postern ausschmücken. Dafür nimmt sie 30, aus der Klassenkasse. In Klasse 7 wurden lineare Gleichungen mit einer Variablen

Mehr

Prüfung: Produktion, Logistik und Operations Research SS 2009. Prüfungsbogen. Vom Klausurteilnehmer auszufüllen!

Prüfung: Produktion, Logistik und Operations Research SS 2009. Prüfungsbogen. Vom Klausurteilnehmer auszufüllen! Klausur: 1122 1 von 12 Prüfung: Produktion, Logistik und Operations Research SS 29 Prüfer: Prof. Dr. Karl Inderfurth Prüfungsbogen Vom Klausurteilnehmer auszufüllen! Name, Vorname : Fakultät : Matrikelnummer

Mehr

Kapitel 3 Mathematik. Kapitel 3.3. Algebra Gleichungen

Kapitel 3 Mathematik. Kapitel 3.3. Algebra Gleichungen TG TECHNOLOGISCHE GRUNDLAGEN Kapitel 3 Mathematik Kapitel 3.3 Algebra Gleichungen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 877 Nidfurn 055-654 1 87 Ausgabe: Februar 009

Mehr

Übungsserie 11: Modellierung

Übungsserie 11: Modellierung HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Wirtschaftsmathematik I Lineare Optimierung Mathematik für Wirtschaftsingenieure - Übungsaufgaben Übungsserie : Modellierung Die über die Modellierung

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

State Machine Workflow mit InfoPath Formularen für SharePoint 2010 Teil 6

State Machine Workflow mit InfoPath Formularen für SharePoint 2010 Teil 6 State Machine Workflow mit InfoPath Formularen für SharePoint 2010 Teil 6 Abstract: Im sechsten Teil der Workflow Serie verbinden wir die Formulare aus dem vorigen Teil mit unserem Workflow. Teil 6: InfoPath

Mehr

Vorkurs Mathematik Übungen zu Polynomgleichungen

Vorkurs Mathematik Übungen zu Polynomgleichungen Vorkurs Mathematik Übungen zu en 1 Aufgaben Lineare Gleichungen Aufgabe 1.1 Ein Freund von Ihnen möchte einen neuen Mobilfunkvertrag abschließen. Es gibt zwei verschiedene Angebote: Anbieter 1: monatl.

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

Matrix42. Use Case - Sicherung und Rücksicherung persönlicher Einstellungen über Personal Backup. Version 1.0.0. 23. September 2015 - 1 -

Matrix42. Use Case - Sicherung und Rücksicherung persönlicher Einstellungen über Personal Backup. Version 1.0.0. 23. September 2015 - 1 - Matrix42 Use Case - Sicherung und Rücksicherung persönlicher Version 1.0.0 23. September 2015-1 - Inhaltsverzeichnis 1 Einleitung 3 1.1 Beschreibung 3 1.2 Vorbereitung 3 1.3 Ziel 3 2 Use Case 4-2 - 1 Einleitung

Mehr

Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 2. Vorlesung

Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 2. Vorlesung Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 2. Vorlesung Rainer Hufnagel / Laura Wahrig 2006 Diese Woche LO - Rechnerische Lösung - Simplex- Algorithmus LO - Auswertung des

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

DAS ABI-PFLICHTTEIL Büchlein

DAS ABI-PFLICHTTEIL Büchlein DAS ABI-PFLICHTTEIL Büchlein für Baden-Württemberg Alle Originalaufgaben Haupttermine 004 0 Ausführlich gerechnete und kommentierte Lösungswege Mit vielen Zusatzhilfen X π Von: Jochen Koppenhöfer und Pascal

Mehr

Auf den Schlussspurt kommt es an!

Auf den Schlussspurt kommt es an! 72h-Wahlkampf Auf den Schlussspurt kommt es an! Wir können und MÜSSEN bis zum letzten Tag um WählerInnen werben! In den letzten Tagen kommt es gerade darauf an, Erst- und JungwählerInnen und vor allem

Mehr

Microsoft Excel 2010 Mehrfachoperation

Microsoft Excel 2010 Mehrfachoperation Hochschulrechenzentrum Justus-Liebig-Universität Gießen Microsoft Excel 2010 Mehrfachoperation Mehrfachoperationen in Excel 2010 Seite 1 von 6 Inhaltsverzeichnis Einleitung... 2 Mehrfachoperation mit

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Zwei Gleichungen mit zwei Unbekannten Es kommt häufig vor, dass man nicht mit einer Variablen alleine auskommt, um ein Problem zu lösen. Das folgende Beispiel soll dies verdeutlichen

Mehr

Vorlesung Analysis I / Lehramt

Vorlesung Analysis I / Lehramt Vorlesung Analysis I / Lehramt TU Dortmund, Wintersemester 2012/ 13 Winfried Kaballo Die Vorlesung Analysis I für Lehramtsstudiengänge im Wintersemester 2012/13 an der TU Dortmund basiert auf meinem Buch

Mehr

3. Grundlagen der Linearen Programmierung

3. Grundlagen der Linearen Programmierung 3. Grundlagen der linearen Programmierung Inhalt 3. Grundlagen der Linearen Programmierung Lineares Programm Grafische Lösung linearer Programme Normalform Geometrie linearer Programme Basislösungen Operations

Mehr

Aufgabe 1: Malerarbeiten

Aufgabe 1: Malerarbeiten Aufgabe 1: Malerarbeiten Fritz braucht zwei Stunden, um ein Zimmer zu streichen. Susi braucht für das gleiche Zimmer drei Stunden. Wie lange brauchen beide zusammen, um das Zimmer zu streichen? Lösung:

Mehr

Modellbildungssysteme: Pädagogische und didaktische Ziele

Modellbildungssysteme: Pädagogische und didaktische Ziele Modellbildungssysteme: Pädagogische und didaktische Ziele Was hat Modellbildung mit der Schule zu tun? Der Bildungsplan 1994 formuliert: "Die schnelle Zunahme des Wissens, die hohe Differenzierung und

Mehr

Zahlenwinkel: Forscherkarte 1. alleine. Zahlenwinkel: Forschertipp 1

Zahlenwinkel: Forscherkarte 1. alleine. Zahlenwinkel: Forschertipp 1 Zahlenwinkel: Forscherkarte 1 alleine Tipp 1 Lege die Ziffern von 1 bis 9 so in den Zahlenwinkel, dass jeder Arm des Zahlenwinkels zusammengezählt das gleiche Ergebnis ergibt! Finde möglichst viele verschiedene

Mehr

Master Planning mit Advanced Planning Systems

Master Planning mit Advanced Planning Systems Horst Tempelmeier Master Planning mit Advanced Planning Systems Modelle und Beispiele Vorwort Vorwort Der vorliegende Text soll einen Einblick in die Grundstruktur der mathematischen Modelle verschaffen,

Mehr

Nützliche Werkzeuge für das Coaching

Nützliche Werkzeuge für das Coaching Nützliche Werkzeuge für das Coaching Fragen stellen, statt Anweisungen geben, was zu tun ist Eine Frage zu stellen, ist ein Befehl, der Teil der normalen gesellschaftlichen Konversation ist. Nach unseren

Mehr

Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten!

Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten! Mathefritz 5 Terme und Gleichungen Meine Mathe-Seite im Internet kostenlose Matheaufgaben, Skripte, Mathebücher Lernspiele, Lerntipps, Quiz und noch viel mehr http:// www.mathefritz.de Seite 1 Copyright

Mehr

Rechnerpraktikum zur Optimierung III

Rechnerpraktikum zur Optimierung III TU München Lehrstuhl Mathematische Optimierung Prof. Dr. M. Ulbrich Dipl.-Math. Florian Lindemann Sommersemester 2007 Teil I Rechnerpraktikum zur Optimierung III P1. Durchhängenes Seil Die senkrechten

Mehr

predigt am 5.1. 2014, zu römer 16,25-27

predigt am 5.1. 2014, zu römer 16,25-27 predigt am 5.1. 2014, zu römer 16,25-27 25 ehre aber sei ihm, der euch zu stärken vermag im sinne meines evangeliums und der botschaft von jesus christus. so entspricht es der offenbarung des geheimnisses,

Mehr

Die Verbindung von Linearer Programmierung und Graphentheorie

Die Verbindung von Linearer Programmierung und Graphentheorie Die Verbindung von Linearer Programmierung und Graphentheorie Definition 5.9. Ein kombinatorisches Optimierungsproblem entspricht einem LP, bei dem statt der Vorzeichenbedingungen x i 0 Bedingungen der

Mehr

Einleitung. Hinweise zur Kompatibilität: Vorbereitung. Konfiguration des DSL-320T / DSL-380T unter Mac OS X

Einleitung. Hinweise zur Kompatibilität: Vorbereitung. Konfiguration des DSL-320T / DSL-380T unter Mac OS X Konfiguration des DSL-320T / DSL-380T unter Mac OS X Einleitung Diese Anleitung beschreibt, wie Sie ein DSL-Modem vom Typ DSL-320T / DSL-380T unter Mac OS X (10.4. Tiger ) konfigurieren, und wie Sie eine

Mehr

Mandant in den einzelnen Anwendungen löschen

Mandant in den einzelnen Anwendungen löschen Mandant in den einzelnen Anwendungen löschen Bereich: ALLGEMEIN - Info für Anwender Nr. 6056 Inhaltsverzeichnis 1. Allgemein 2. FIBU/ANLAG/ZAHLUNG/BILANZ/LOHN/BELEGTRANSFER 3. DMS 4. STEUERN 5. FRISTEN

Mehr

a) Welche der beiden Halbgeraden stehen für die Tarife REGENBOGEN und UFO? Begründe. b) Hat Lena recht oder Giuseppe? Begründe.

a) Welche der beiden Halbgeraden stehen für die Tarife REGENBOGEN und UFO? Begründe. b) Hat Lena recht oder Giuseppe? Begründe. 38 3 Lineare Gleichungsssteme mit zwei Variablen Lineare Gleichungsssteme grafisch lösen Beim Tarif REGENBGEN zahle ich für das Telefonieren mit dem Hand zwar einen Grundpreis. Dafür sind aber die Gesprächseinheiten

Mehr

Dokumentation. Serienbriefe mit Galileo-Daten im Word erstellen

Dokumentation. Serienbriefe mit Galileo-Daten im Word erstellen Dokumentation Serienbriefe mit Galileo-Daten im Word erstellen K:\Dokumentationen\Galileo bibwin Kunden Dokus\Kurz-Doku Seriendruck.doc 04.03.2008 1 Ablauf...2 2 Kundenadressen...3 3 Datenexport...4 3.1

Mehr

HANDBUCH PHOENIX II - DOKUMENTENVERWALTUNG

HANDBUCH PHOENIX II - DOKUMENTENVERWALTUNG it4sport GmbH HANDBUCH PHOENIX II - DOKUMENTENVERWALTUNG Stand 10.07.2014 Version 2.0 1. INHALTSVERZEICHNIS 2. Abbildungsverzeichnis... 3 3. Dokumentenumfang... 4 4. Dokumente anzeigen... 5 4.1 Dokumente

Mehr

Was ist Sozial-Raum-Orientierung?

Was ist Sozial-Raum-Orientierung? Was ist Sozial-Raum-Orientierung? Dr. Wolfgang Hinte Universität Duisburg-Essen Institut für Stadt-Entwicklung und Sozial-Raum-Orientierte Arbeit Das ist eine Zusammen-Fassung des Vortrages: Sozialräume

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen

Mehr

Lineare Differentialgleichungen erster Ordnung erkennen

Lineare Differentialgleichungen erster Ordnung erkennen Lineare Differentialgleichungen erster Ordnung In diesem Kapitel... Erkennen, wie Differentialgleichungen erster Ordnung aussehen en für Differentialgleichungen erster Ordnung und ohne -Terme finden Die

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 27. Aussagenlogik: Logisches Schliessen und Resolution Malte Helmert Universität Basel 28. April 2014 Aussagenlogik: Überblick Kapitelüberblick Aussagenlogik: 26.

Mehr

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist. Matrizennorm Es seien r,s N Mit M r,s (R bezeichnen wir die Menge der reellen r s- Matrizen (also der linearen Abbildungen R s R r, und setze M s (R := M s,s (R (also die Menge der linearen Abbildungen

Mehr

Lernerfolge sichern - Ein wichtiger Beitrag zu mehr Motivation

Lernerfolge sichern - Ein wichtiger Beitrag zu mehr Motivation Lernerfolge sichern - Ein wichtiger Beitrag zu mehr Motivation Einführung Mit welchen Erwartungen gehen Jugendliche eigentlich in ihre Ausbildung? Wir haben zu dieser Frage einmal die Meinungen von Auszubildenden

Mehr

easytipp Die Arbeit mit einem USB-Stick Teil 1: Was ist ein Stick und wie beginne ich die Arbeit damit?

easytipp Die Arbeit mit einem USB-Stick Teil 1: Was ist ein Stick und wie beginne ich die Arbeit damit? Die Arbeit mit einem USB-Stick Teil 1: Was ist ein Stick und wie beginne ich die Arbeit damit? Sämtliche Angaben erfolgen ohne Gewähr. Irrtum und Druckfehler vorbehalten. Im Zweifelsfall fragen Sie uns

Mehr

Predigt an Silvester 2015 Zuhause bei Gott (Mt 11,28)

Predigt an Silvester 2015 Zuhause bei Gott (Mt 11,28) Predigt an Silvester 2015 Zuhause bei Gott (Mt 11,28) Irgendwann kommt dann die Station, wo ich aussteigen muss. Der Typ steigt mit mir aus. Ich will mich von ihm verabschieden. Aber der meint, dass er

Mehr

Einführung in. Logische Schaltungen

Einführung in. Logische Schaltungen Einführung in Logische Schaltungen 1/7 Inhaltsverzeichnis 1. Einführung 1. Was sind logische Schaltungen 2. Grundlegende Elemente 3. Weitere Elemente 4. Beispiel einer logischen Schaltung 2. Notation von

Mehr

Mediator 9 - Lernprogramm

Mediator 9 - Lernprogramm Mediator 9 - Lernprogramm Ein Lernprogramm mit Mediator erstellen Mediator 9 bietet viele Möglichkeiten, CBT-Module (Computer Based Training = Computerunterstütztes Lernen) zu erstellen, z. B. Drag & Drop

Mehr

6 Lösungsverfahren für lineare Gleichungssysteme

6 Lösungsverfahren für lineare Gleichungssysteme 6 Lösungsverfahren für lineare Gleichungssysteme Jörn Loviscach Versionsstand:. März 04, :07 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.jl7h.de/videos.html

Mehr

AVIRA ANTIVIRUS Pro - LIZENZERNEUERUNG

AVIRA ANTIVIRUS Pro - LIZENZERNEUERUNG AVIRA ANTIVIRUS Pro - LIZENZERNEUERUNG Autor: Dipl.-Inform.(FH) Markus Weis - www.markus.weis.de Inhaltsverzeichnis 1: Allgemeines zur Vorgehensweise...1 2: So erneuern Sie Ihre Avira Antivir-Lizenz...2

Mehr

LIFO -Stärkenmanagement: Übungen und Spiele

LIFO -Stärkenmanagement: Übungen und Spiele LIFO -Stärkenmanagement: Übungen und Spiele Kirsten Möbius Mai 2011 1 Inhaltsangabe Übung zur Interpretation des LIFO - Fragebogens Übung zur Vertiefund der LIFO - Stile (Aufstellung) Übung zur Vertiefung

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

Sudoku-Informatik oder wie man als Informatiker Logikrätsel löst

Sudoku-Informatik oder wie man als Informatiker Logikrätsel löst Sudoku-Informatik oder wie man als Informatiker Logikrätsel löst Peter Becker Hochschule Bonn-Rhein-Sieg Fachbereich Informatik peter.becker@h-brs.de Kurzvorlesung am Studieninformationstag, 13.05.2009

Mehr

Dokumentation von Ük Modul 302

Dokumentation von Ük Modul 302 Dokumentation von Ük Modul 302 Von Nicolas Kull Seite 1/ Inhaltsverzeichnis Dokumentation von Ük Modul 302... 1 Inhaltsverzeichnis... 2 Abbildungsverzeichnis... 3 Typographie (Layout)... 4 Schrift... 4

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

Ressourceneinsatzplanung in der Fertigung

Ressourceneinsatzplanung in der Fertigung Fakultät Informatik, Institut für Angewandte Informatik, Professur Modellierung und Simulation Ressourceneinsatzplanung in der Fertigung Dr. Christoph Laroque Sommersemester 2012 Dresden, Ausblick: Ab

Mehr

Lenstras Algorithmus für Faktorisierung

Lenstras Algorithmus für Faktorisierung Lenstras Algorithmus für Faktorisierung Bertil Nestorius 9 März 2010 1 Motivation Die schnelle Faktorisierung von Zahlen ist heutzutage ein sehr wichtigen Thema, zb gibt es in der Kryptographie viele weit

Mehr

Warum Sie jetzt kein Onlinemarketing brauchen! Ab wann ist Onlinemarketing. So finden Sie heraus, wann Ihre Website bereit ist optimiert zu werden

Warum Sie jetzt kein Onlinemarketing brauchen! Ab wann ist Onlinemarketing. So finden Sie heraus, wann Ihre Website bereit ist optimiert zu werden CoachingBrief 02/2016 Warum Sie jetzt kein Onlinemarketing brauchen! Eine Frage gleich zu Anfang: Wie viele Mails haben Sie in dieser Woche erhalten, in denen behauptet wurde: Inhalt Ihre Webseite sei

Mehr

Teil II. Nichtlineare Optimierung

Teil II. Nichtlineare Optimierung Teil II Nichtlineare Optimierung 60 Kapitel 1 Einleitung In diesem Abschnitt wird die Optimierung von Funktionen min {f(x)} x Ω betrachtet, wobei Ω R n eine abgeschlossene Menge und f : Ω R eine gegebene

Mehr

1.5. Passwort-geschützte Seiten

1.5. Passwort-geschützte Seiten TYPO3 - the Enterprise Open Source CMS: Documentation: Der... 1 von 5 1.4.Editieren und erstellen von Seiten und Inhalt Table Of Content 1.6.Spezielle Content Elemente 1.5. Passwort-geschützte Seiten Nun

Mehr

1. Mathematik-Schularbeit 6. Klasse AHS

1. Mathematik-Schularbeit 6. Klasse AHS . Mathematik-Schularbeit 6. Klasse AHS Arbeitszeit: 50 Minuten Lernstoff: Mathematische Grundkompetenzen: (Un-)Gleichungen und Gleichungssysteme: AG. Einfache Terme und Formeln aufstellen, umformen und

Mehr

Mathematik. Stoffplan Wirtschaftsschule Thun. Kaufleute M-Profil (BM 1)

Mathematik. Stoffplan Wirtschaftsschule Thun. Kaufleute M-Profil (BM 1) Mathematik Stoffplan Wirtschaftsschule Thun Kaufleute M-Profil (BM 1) Der römische Schriftsteller Stobäus berichtet, dass Euklid (er lebte im 4./3. Jahrhundert v.chr.) von einem jungen Zuhörer gefragt

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Anleitung zur Erstellung von Serienbriefen (Word 2003) unter Berücksichtigung von Titeln (wie Dr., Dr. med. usw.)

Anleitung zur Erstellung von Serienbriefen (Word 2003) unter Berücksichtigung von Titeln (wie Dr., Dr. med. usw.) Seite 1/7 Anleitung zur Erstellung von Serienbriefen (Word 2003) unter Berücksichtigung von Titeln (wie Dr., Dr. med. usw.) Hier sehen Sie eine Anleitung wie man einen Serienbrief erstellt. Die Anleitung

Mehr

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005 Paradigmen im Algorithmenentwurf Problemlösen Problem definieren Algorithmus entwerfen

Mehr

Statistik I für Betriebswirte Vorlesung 11

Statistik I für Betriebswirte Vorlesung 11 Statistik I für Betriebswirte Vorlesung 11 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 22. Juni 2012 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

Geld Verdienen im Internet leicht gemacht

Geld Verdienen im Internet leicht gemacht Geld Verdienen im Internet leicht gemacht Hallo, Sie haben sich dieses E-book wahrscheinlich herunter geladen, weil Sie gerne lernen würden wie sie im Internet Geld verdienen können, oder? Denn genau das

Mehr

PISA-Test. mit Jörg Pilawa. Das Buch zur Sendereihe

PISA-Test. mit Jörg Pilawa. Das Buch zur Sendereihe -Test mit Jörg Pilawa Das Buch zur Sendereihe 100 spannende Aufgaben zum Nachlesen und Mitraten Von Jonas Kern und Thomas Klarmeyer Mit einem Vorwort von Jörg Pilawa und vielen Fotos aus der Fernsehshow

Mehr

Handreichung für Studierende Philosophische Arbeiten schreiben

Handreichung für Studierende Philosophische Arbeiten schreiben Handreichung für Studierende Philosophische Arbeiten schreiben Bezüglich der Länge und den Leistungspunkten für die schriftlichen Leistungen in Hauptmodulen beachten Sie bitte die für Sie geltenden fächerspezifischen

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

Einfache Differentialgleichungen

Einfache Differentialgleichungen Differentialgleichungen (DGL) spielen in der Physik eine sehr wichtige Rolle. Im Folgenden behandeln wir die grundlegendsten Fälle 1, jeweils mit einer kurzen Herleitung der Lösung. Dann schliesst eine

Mehr

IV. Spieltheorie. H. Weber, FHW, OR SS07, Teil 7, Seite 1

IV. Spieltheorie. H. Weber, FHW, OR SS07, Teil 7, Seite 1 IV. Spieltheorie 1. Gegenstand der Spieltheorie 2. Einführung in Matrixspiele 3. Strategien bei Matrixspielen 4. Weitere Beispiele 5. Mögliche Erweiterungen H. Weber, FHW, OR SS07, Teil 7, Seite 1 1. Gegenstand

Mehr

6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum

6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum 6 ALLGEMEINE THEORIE DES ELEKTROMAGNETISCHEN FELDES IM VAKUUM 25 Vorlesung 060503 6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum 6.1 Grundaufgabe der Elektrodynamik Gegeben: Ladungsdichte

Mehr

Zahlen und Größen Beitrag 36 Vermehrter und verminderter Grundwert 1 von 32

Zahlen und Größen Beitrag 36 Vermehrter und verminderter Grundwert 1 von 32 I Zahlen und Größen Beitrag 36 Vermehrter und verminderter Grundwert 1 von 32 Schöne neue Schnäppchen-Welt? Sonderangebote mithilfe des vermehrten und verminderten Grundwerts kritisch prüfen Von Alessandro

Mehr

Becker I Brucker. Erfolg in Mathe 2015. Realschulabschluss Baden-Württemberg Wahlteil. Übungsbuch mit Tipps und Lösungen

Becker I Brucker. Erfolg in Mathe 2015. Realschulabschluss Baden-Württemberg Wahlteil. Übungsbuch mit Tipps und Lösungen Becker I Brucker Erfolg in Mathe 2015 Realschulabschluss Baden-Württemberg Wahlteil Übungsbuch mit Tipps und Lösungen Inhaltsverzeichnis Vorwort 1 Aufgaben 5 1 Algebra.......................................

Mehr

Qualität und Verlässlichkeit Das verstehen die Deutschen unter Geschäftsmoral!

Qualität und Verlässlichkeit Das verstehen die Deutschen unter Geschäftsmoral! Beitrag: 1:43 Minuten Anmoderationsvorschlag: Unseriöse Internetanbieter, falsch deklarierte Lebensmittel oder die jüngsten ADAC-Skandale. Solche Fälle mit einer doch eher fragwürdigen Geschäftsmoral gibt

Mehr

Fall 3: Mehrere Kapazitätsengpässe

Fall 3: Mehrere Kapazitätsengpässe Fall 3: Mehrere Kapazitätsengpässe ei Vorliegen mehrerer Engpässe ist zunächst zu prüfen, ob ein Engpass die anderen Engpässe dominiert. Ist dies der Fall, reduziert sich das Optimierungsproblem auf den

Mehr

Prozentrechnung. Wir können nun eine Formel für die Berechnung des Prozentwertes aufstellen:

Prozentrechnung. Wir können nun eine Formel für die Berechnung des Prozentwertes aufstellen: Prozentrechnung Wir beginnen mit einem Beisiel: Nehmen wir mal an, ein Handy kostet 200 und es gibt 5% Rabatt (Preisnachlass), wie groß ist dann der Rabatt in Euro und wie viel kostet dann das Handy? Wenn

Mehr

Programmierung Tiny45 für DCC Lokdecoder

Programmierung Tiny45 für DCC Lokdecoder Programmierung Tiny45 für DCC Lokdecoder Hier eine Beschreibung, der Programmierung des Tiny45 für den Lokdecoder. Zur Erstprogrammierung ist ein Programmer für Atmels AVR Mikrokontroller nötig (AVRISP

Mehr

Penelope. Bügel BH und Pant

Penelope. Bügel BH und Pant Penelope Bügel BH und Pant In der Farbe weiß ist Penelope ein wunderschöner, modischer Klassiker wie er immer wieder gesucht wird. In der Modefarbe atlantic ist die Serie ein absoluter Hingucker. Der Bügel-Bh

Mehr

Menschen haben Bedürfnisse

Menschen haben Bedürfnisse 20 Menschen haben Bedürfnisse 1. Menschen haben das Bedürfnis nach... Findet zehn Möglichkeiten, wie diese Aussage weitergehen könnte. 21 22 Allein auf einer Insel 5 10 15 20 25 Seit einem Tag war Robinson

Mehr

Extrema von Funktionen in zwei Variablen

Extrema von Funktionen in zwei Variablen Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen in zwei Variablen Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Werkstatt Euler und die Lösung der quadratischen Gleichung

Werkstatt Euler und die Lösung der quadratischen Gleichung Werkstatt Leonhard Euler und die Lösung der quadratischen Gleichungen Im Jahr 1767 hat der Mathematiker Leonhard Euler (1707 1783) das Buch Vollständige Anleitung zu Algebra im russischen Original veröffentlicht,

Mehr

Erstellen einer Collage. Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu])

Erstellen einer Collage. Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu]) 3.7 Erstellen einer Collage Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu]) Dann Größe des Dokuments festlegen beispielsweise A4 (weitere

Mehr

JOHANNES BONNEKOH. Analysis. Allgemeine Hochschulreife und Fachabitur

JOHANNES BONNEKOH. Analysis. Allgemeine Hochschulreife und Fachabitur JOHANNES BONNEKOH Analysis Allgemeine Hochschulreife und Fachabitur Vorwort Vorwort Mathematik ist eine Sprache, die uns hilft die Natur und allgemeine naturwissenschaftliche Vorgänge zu beschreiben. Johannes

Mehr

Inhaltsverzeichnis. Vorwort... V. Symbolverzeichnis... XIII

Inhaltsverzeichnis. Vorwort... V. Symbolverzeichnis... XIII Inhaltsverzeichnis Vorwort................................................................. V Symbolverzeichnis...................................................... XIII Kapitel 1: Einführung......................................................

Mehr