Datenpfad einer einfachen MIPS CPU

Größe: px
Ab Seite anzeigen:

Download "Datenpfad einer einfachen MIPS CPU"

Transkript

1 Datenpfad einer einfachen MIPS CPU Die Branch Instruktion beq Grundlagen der Rechnerarchitektur Prozessor 13

2 Betrachten nun Branch Instruktion beq Erinnerung, Branch Instruktionen beq ist vom I Typ Format: opcode reg1 reg2 Offset 6 Bit 5 Bit 5 Bit 16 Bit I Typ (Immediate Typ) beq Instruktion macht immer folgendes: Ziehe zwei Register voneinander ab (reg1 und reg2) Wenn das Ergebnis ungleich 0: nächste Instruktion ist bei PC+4 Wenn das Ergebnis gleich 0 : Sign Extension von 16 Bit Offset auf 32 Bit Zahl x x = 4*x (lässt sich durch ein Links Shift von 2 erreichen) nächste Instruktion ist bei PC+4+x Berechnung reg1 reg2 ist durch den Datenpfad schon realisiert. Für den Rest brauchen wir noch zwei neue Bausteine: Grundlagen der Rechnerarchitektur Prozessor 14

3 Sign Extend und Shift Left 2 k Sign Extend n Shift Left 2 Vorzeichenbehaftetes Ausweiten von k auf n Leitungen (z.b. 16 auf 32). Links oder Rechts Shift von Leitungen (z.b. Shift Left 2) Grundlagen der Rechnerarchitektur Logik und Arithmetik 15

4 Wir müssen außerdem eine Auswahl treffen Wenn die aktuelle Instruktion ein beq ist, dann berechne den PC nach vorhin beschriebener Vorschrift. Wenn die Instruktion kein beq ist, dann bestimme den PC wie bisher gehabt; also PC=PC+4. Zum Treffen von Auswahlen brauchen wir eine weiteren Bausteintyp: Grundlagen der Rechnerarchitektur Prozessor 16

5 Multiplexer A B A 32 B 32 A 1 A 2 A 3 A 4 Select 0 Mux 1 Select 0 Mux 1 Select Mux 32 C Für ein Bit C Für n Bit (z.b. 32 Bit) C Für n Bit Select (z.b. 2 Bit) C = A, wenn Select = 0 C = B, wenn Select = 1 C = A 0, wenn Select = 00 C = A 1, wenn Select = 01 C = A 2, wenn Select = 10 C = A 3, wenn Select = 11 Grundlagen der Rechnerarchitektur Logik und Arithmetik 17

6 Erweiterung des Blockschaltbilds Grundlagen der Rechnerarchitektur Prozessor 18

7 Datenpfad einer einfachen MIPS CPU Zugriff auf den Datenspeicher Grundlagen der Rechnerarchitektur Prozessor 19

8 Betrachten nun Load und Store Word Erinnerung, Instruktionen lw und sw sind vom I Typ Format: opcode reg1 reg2 Offset 6 Bit 5 Bit 5 Bit 16 Bit I Typ (Immediate Typ) Die Adresse des Speicherzugriffs berechnet sich wie folgt: Sign Extension von 16 Bit Offset auf 32 Bit Zahl x Adresse ist Inhalt von reg1 + x Hierzu werden wir vorhandene ALU und Sign Extend mitbenutzen Der Speicherinhalt wird dann bei lw in Register reg2 geschrieben bei sw mit Registerinhalt von reg2 überschrieben Zur Vereinfachung trennen wir im Folgenden den Speicher der Instruktionen vom Speicher der Daten. Letzterer ist wie folgt: Grundlagen der Rechnerarchitektur Prozessor 20

9 Datenspeicher Speicherbaustein in dem die Daten liegen. Address, Write Data und Read Data sind 32 Bit groß. In keinem Taktzyklus wird gleichzeitig gelesen und geschrieben. Schreiben oder lesen wird über Signale an MemWrite und MemRead durchgeführt. Der Grund für ein MemRead ist, dass sicher gestellt sein muss, dass die anliegende Adresse gültig ist (mehr dazu im Kapitel Speicher). Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 21

10 Erweiterung des Blockschaltbilds Grundlagen der Rechnerarchitektur Prozessor 22

11 Eine Übung zum Abschluss Wie lässt sich das Blockschaltbild des Datenpfads erweitern, sodass auch die MIPS Instruktion j unterstützt wird? Zur Erinnerung: j 4096 # $pc = 4096<<2 + oberste vier # Bit von $pc Grundlagen der Rechnerarchitektur Prozessor 23

12 Control einer einfachen MIPS CPU Grundlagen der Rechnerarchitektur Prozessor 24

13 Ziel Bisher haben wir lediglich den Datenpfad einer einfachen MIPS CPU entworfen. Die Steuerleitungen der einzelnen Bausteine zeigen noch ins Leere. Jetzt wollen wir festlegen, wann zur Abarbeitung unserer Instruktionen (d.h. lw, sw,add, sub, and, or, slt,beq ) welche Steuerleitungen an oder aus sein sollen. Den Baustein der das macht, nennt man Control. Wir trennen die Control in zwei Teile: ALU Control: Legt für jeden Befehl die ALU Operation fest. Main Unit Control: Legt für jeden Befehl die übrigen Steuerleitungen fest. Wir verwenden auf den nächsten Folien die folgende Terminologie: Steuerleitung an: asserted Steuerleitung aus: deasserted Grundlagen der Rechnerarchitektur Prozessor 25

14 Control einer einfachen MIPS CPU ALU Control Grundlagen der Rechnerarchitektur Prozessor 26

15 Vorüberlegung: Die passenden ALU Funktionen Control Eingänge der betrachteten ALU Für Load und Store Instruktionen lw, sw brauchen wir die ALU Funktion add. Für die arithmetisch logischen Instruktionen add, sub, and, or, slt brauchen wir die entsprechende passende ALU Funktion. Für die Branch Instruktion beq brauchen wir die ALU Funktion sub. Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 27

16 Vorüberlegung: die Instruktionsformate (I-type) (I-type) Wenn der Wert von Bit 31 bis 26 in der gefetchten Instruktion gleich 0: arithmetisch logische Instruktion (d.h. add,sub,and,or,slt). Die Funktion ist mit dem Wert von Bit 5 bis 0 festgelegt. 35 oder 43: Load bzw. Store Instruktion (d.h. lw, sw). 4: Branch Instruktion (d.h. beq). Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 28

17 Eingabe ALUOp in Abhängigkeit des Instruktionstyps 5 Bit Funct Field der Instruktion ALU Control ALU Control Ausgabe Belegung der ALU Steuerleitungen, so dass die ALU die richtigen ALU Operation ausführt. Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 29

18 In einer Wahrheitstabelle zusammengefasst 0 0 Eingabe Ausgabe Daraus lässt sich mechanisch eine kombinatorische Schaltung generieren, die wir im Folgenden mit dem ALU Control Symbol abstrakt darstellen. ALUOp Instruction[5:0] (also das Funct Field der Instruktion) ALU Control ALU Operation Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 30

19 Erweiterung des Blockschaltbilds Grundlagen der Rechnerarchitektur Prozessor 31

20 Control einer einfachen MIPS CPU Main Unit Control Grundlagen der Rechnerarchitektur Prozessor 32

21 Opcode bestimmt Steuerleitungsbelegungen Eingabe: Instruction [31 26] Ausgabe Instruction RegDst ALUSrc R format (0) lw (35) sw (43) beq (4) Memto Reg Reg Write Mem Read Mem Write Branch ALU Op1 ALU Op0 Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 33

22 Auch hier wieder Aus voriger Wahrheitstabelle lässt sich mechanisch eine kombinatorische Schaltung generieren, die wir im Folgenden mit dem Control Symbol abstrakt darstellen. Instruction[31 26] (also: das Opcode Field der Instruktion) Control RegDst Branch MemRead MemtoReg ALUOp MemWrite ALUSrc RegWrite Grundlagen der Rechnerarchitektur Prozessor 34

23 Erweiterung des Blockschaltbilds Grundlagen der Rechnerarchitektur Prozessor 35

24 Beispiel für eine R Typ Instruktion add $t1, $t2, $t3 Instruktion wird gefetched und PC um 4 erhöht. Die Register $t2 (Instruction [25 21]) und $t3 (Instruction [20 16]) werden aus dem Register File geladen. Die ALU führt die in dem Function Field (Instruction [5 0]) codierte Operation auf den gelesenen Register Daten aus. Das Ergebnis der ALU wird in Register $t1 (Instruction [15 11]) zurück geschrieben. Grundlagen der Rechnerarchitektur Prozessor 36

25 Beispiel für eine Load/Save Instruktion lw $t1, 8($t2) Instruktion wird gefetched und PC um 4 erhöht. Das Register $t2 (Instruction [25 21]) wird aus dem Register File geladen. Die ALU addiert das Register Datum und den 32 Bit Signexteded 16 Bit Immediate Wert 8 (Instruction [15 0]). Die Summe aus der ALU wird als Adresse für den Datenspeicher verwendet. Das Datum aus dem Datenspeicher wird in das Register File geschrieben. Das Register in das geschrieben wird ist $t1 (Instruction [20 16]). Grundlagen der Rechnerarchitektur Prozessor 37

26 Beispiel für eine Branch Instruktion beq $t1, $t2, 42 Instruktion wird gefetched und PC um 4 erhöht. Die Register $t1 (Instruction [25 21]) und $t2 (Instruction [20 16]) werden aus dem Register File geladen. Die Haupt ALU subtrahiert die ausgelesenen Register Daten voneinander. Die zusätzliche ALU addiert PC+4 auf den 32 Bit Signexteded und um 2 nach links geshifteten 16 Bit Immediate Wert 42 (Instruction [15 0]). Das Zero Ergebins der Haupt ALU entscheidet ob der PC auf PC+4 oder auf das Ergebnis der zusätzlichen ALU gesetzt wird. Grundlagen der Rechnerarchitektur Prozessor 38

27 Eine Übung zum Abschluss In der vorigen Übung zum Abschluss wurde das Blockschaltbild des Datenpfads so erweitert, sodass auch die MIPS Instruktion j unterstützt wird. Wie müssen Control und Alu Control modifiziert werden (wenn überhaupt), damit die MIPS Instruktion j auch von Seiten des Control unterstützt wird? Erinnerung: j addr # Springe pseudo-direkt nach addr address Opcode Bits Adresse Bits 25 0 J Typ Grundlagen der Rechnerarchitektur Prozessor 39

28 Pipelining Grundlagen der Rechnerarchitektur Prozessor 40

29 Pipelining Instruktionszyklen Grundlagen der Rechnerarchitektur Prozessor 41

30 MIPS Instruktionszyklus Ein MIPS Instruktionszklus besteht aus: 1. Instruktion aus dem Speicher holen (IF: Instruction Fetch) 2. Instruktion decodieren und Operanden aus Register lesen (ID: Instruction Decode/Register File Read) 3. Ausführen der Instruktion oder Adresse berechnen (EX: Execute/Address Calculation) 4. Datenspeicherzugriff (MEM: Memory Access) 5. Resultat in Register abspeichern (WB: Write Back) Grundlagen der Rechnerarchitektur Prozessor 42

31 Instruktionszyklen in unserem Blockschaltbild Grundlagen der Rechnerarchitektur Prozessor 43

32 Instruktionszyklen generell Instruktionszyklen anderer moderner CPUs haben diese oder eine sehr ähnliche Form von Instruktionszyklen. Unterschiede sind z.b.: Instruktion decodieren und Operanden lesen sind zwei getrennte Schritte. Dies ist z.b. notwendig, wenn Instruktionen sehr komplex codiert sind (z.b. x86 Instruktionen der Länge 1 bis 17 Byte) wenn Instruktionen Operanden im Speicher anstatt Register haben (z.b. einige Instruktionen bei x86) Grundlagen der Rechnerarchitektur Prozessor 44

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Zugriff auf den Datenspeicher Grundlagen der Rechnerarchitektur Prozessor 19 Betrachten nun Load und Store Word Erinnerung, Instruktionen lw und sw sind vom I Typ Format:

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Die Branch Instruktion beq Grundlagen der Rechnerarchitektur Prozessor 13 Betrachten nun Branch Instruktion beq Erinnerung, Branch Instruktionen beq ist vom I Typ Format:

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Zugriff auf den Datenspeicher Grundlagen der Rechnerarchitektur Prozessor 19 Betrachten nun Load und Store Word Erinnerung, Instruktionen lw und sw sind vom I Typ Format:

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Prozessor Übersicht Datenpfad Control Pipelining Data Hazards Control Hazards Multiple Issue Grundlagen der Rechnerarchitektur Prozessor 2 Datenpfad einer einfachen MIPS

Mehr

Auch hier wieder. Control. RegDst Branch MemRead MemtoReg ALUOp MemWrite ALUSrc RegWrite. Instruction[31 26] (also: das Opcode Field der Instruktion)

Auch hier wieder. Control. RegDst Branch MemRead MemtoReg ALUOp MemWrite ALUSrc RegWrite. Instruction[31 26] (also: das Opcode Field der Instruktion) Auch hier wieder Aus voriger Wahrheitstabelle lässt sich mechanisch eine kombinatorische Schaltung generieren, die wir im Folgenden mit dem Control Symbol abstrakt darstellen. Instruction[31 26] (also:

Mehr

Grundlagen der Rechnerarchitektur. Prozessor

Grundlagen der Rechnerarchitektur. Prozessor Grundlagen der Rechnerarchitektur Prozessor Übersicht Datenpfad Control Pipelining Data Hazards Control Hazards Multiple Issue Grundlagen der Rechnerarchitektur Prozessor 2 Datenpfad einer einfachen MIPS

Mehr

Grundlagen der Rechnerarchitektur. Prozessor

Grundlagen der Rechnerarchitektur. Prozessor Grundlagen der Rechnerarchitektur Prozessor Übersicht Datenpfad Control Pipelining Data Hazards Control Hazards Multiple Issue Grundlagen der Rechnerarchitektur Prozessor 2 Datenpfad einer einfachen MIPS

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Prozessor Übersicht Datenpfad Control Pipelining Data Hazards Control Hazards Multiple Issue Grundlagen der Rechnerarchitektur Prozessor 2 Datenpfad einer einfachen MIPS

Mehr

Arithmetik, Register und Speicherzugriff. Grundlagen der Rechnerarchitektur Assembler 9

Arithmetik, Register und Speicherzugriff. Grundlagen der Rechnerarchitektur Assembler 9 Arithmetik, Register und Speicherzugriff Grundlagen der Rechnerarchitektur Assembler 9 Arithmetik und Zuweisungen Einfache Arithmetik mit Zuweisung C Programm: a = b + c; d = a e; MIPS Instruktionen: Komplexere

Mehr

Was ist die Performance Ratio?

Was ist die Performance Ratio? Was ist die Performance Ratio? Wie eben gezeigt wäre für k Pipeline Stufen und eine große Zahl an ausgeführten Instruktionen die Performance Ratio gleich k, wenn jede Pipeline Stufe dieselbe Zeit beanspruchen

Mehr

Pipelining. Die Pipelining Idee. Grundlagen der Rechnerarchitektur Prozessor 45

Pipelining. Die Pipelining Idee. Grundlagen der Rechnerarchitektur Prozessor 45 Pipelining Die Pipelining Idee Grundlagen der Rechnerarchitektur Prozessor 45 Single Cycle Performance Annahme die einzelnen Abschnitte des MIPS Instruktionszyklus benötigen folgende Ausführungszeiten:

Mehr

Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 8 und Präsenzaufgaben Übung 9

Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 8 und Präsenzaufgaben Übung 9 Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 8 und Präsenzaufgaben Übung 9 Dominik Schoenwetter Erlangen, 30. Juni 2014 Lehrstuhl für Informatik 3 (Rechnerarchitektur)

Mehr

Assembler am Beispiel der MIPS Architektur

Assembler am Beispiel der MIPS Architektur Assembler am Beispiel der MIPS Architektur Frühere Einsatzgebiete MIPS Silicon Graphics Unix Workstations (z. B. SGI Indigo2) Silicon Graphics Unix Server (z. B. SGI Origin2000) DEC Workstations (z.b.

Mehr

Kap.3 Mikroarchitektur. Prozessoren, interne Sicht

Kap.3 Mikroarchitektur. Prozessoren, interne Sicht Kap.3 Mikroarchitektur Prozessoren, interne Sicht 3.1 Elementare Datentypen, Operationen und ihre Realisierung (siehe 2.1) 3.2 Mikroprogrammierung 3.3 Einfache Implementierung von MIPS 3.4 Pipelining Implementierung

Mehr

Grundlagen der Rechnerarchitektur. MIPS Assembler

Grundlagen der Rechnerarchitektur. MIPS Assembler Grundlagen der Rechnerarchitektur MIPS Assembler Übersicht Arithmetik, Register und Speicherzugriff Darstellung von Instruktionen Logische Operationen Weitere Arithmetik Branches und Jumps Prozeduren 32

Mehr

Datenpfaderweiterung Der Single Cycle Datenpfad des MIPS Prozessors soll um die Instruktion min $t0, $t1, $t2 erweitert werden, welche den kleineren

Datenpfaderweiterung Der Single Cycle Datenpfad des MIPS Prozessors soll um die Instruktion min $t0, $t1, $t2 erweitert werden, welche den kleineren Datenpfaderweiterung Der Single Cycle Datenpfad des MIPS Prozessors soll um die Instruktion min $t0, $t1, $t2 erweitert werden, welche den kleineren der beiden Registerwerte $t1 und $t2 in einem Zielregister

Mehr

Technische Informatik I - HS 18

Technische Informatik I - HS 18 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik I - HS 8 Musterlösung zu Übung 5 Datum : 8.-9. November 8 Aufgabe : MIPS Architektur Das auf der nächsten

Mehr

Carry Lookahead Adder

Carry Lookahead Adder Carry Lookahead Adder Mittels der Generate und Propagate Ausdrücke lässt ich dann für jede Stelle i der Carry (Übertrag) für die Stelle i+1 definieren: Für einen 4 Stelligen Addierer ergibt sich damit:

Mehr

Speichern von Zuständen

Speichern von Zuständen Speichern von Zuständen Erweiterung eines R S Latch zu einem D Latch (D=Data, C=Clock) R S altes Q neues Q 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 0 1 0 1 0 R S C D altes Q neues Q 0 0 0 0 0 1 0 1 0 0 1

Mehr

Minimierung nach Quine Mc Cluskey Ermitteln der Primtermtabelle

Minimierung nach Quine Mc Cluskey Ermitteln der Primtermtabelle Minimierung nach Quine Mc Cluskey Ermitteln der Primtermtabelle # A B C D OK m9 + m11 1 0 1 P1 m7 + m15 1 1 1 P2 m11 + m15 1 1 1 P3 m0 + m1 + m4 + m5 0 0 P4 m0 + m1 + m8 + m9 0 0 P5 m4 + m5 + m6 + m7 0

Mehr

N Bit binäre Zahlen (signed)

N Bit binäre Zahlen (signed) N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101

Mehr

Steuerwerk einer CPU. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck

Steuerwerk einer CPU. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Steuerwerk einer CPU Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Übersicht Implementierung des Datenpfads Direkte Implementierung Mikroprogrammierung

Mehr

Minimierung nach Quine Mc Cluskey

Minimierung nach Quine Mc Cluskey Minimierung nach Quine Mc Cluskey F(A,B,C,D) =!A!B!C!D +!A!B!C D +!A B!C!D +!A B!C D +!A B C!D +!A B C D + A!B!C!D + A!B!C D + A!B C D + A B C D Notiere die Funktion als # A B C D Gruppe Binärelemente

Mehr

Technische Informatik 1

Technische Informatik 1 Technische Informatik 1 4 Prozessor Einzeltaktimplementierung Lothar Thiele Computer Engineering and Networks Laboratory Vorgehensweise 4 2 Prinzipieller Aufbau Datenpfad: Verarbeitung und Transport von

Mehr

Darstellung von negativen binären Zahlen

Darstellung von negativen binären Zahlen Darstellung von negativen binären Zahlen Beobachtung für eine beliebige Binärzahl B, z.b. B=110010: B + NOT(B) ---------------------------------------------- = B + NOT(B) 1 + (Carry) ----------------------------------------------

Mehr

Data Hazards. Grundlagen der Rechnerarchitektur Prozessor 74

Data Hazards. Grundlagen der Rechnerarchitektur Prozessor 74 Data Hazards Grundlagen der Rechnerarchitektur Prozessor 74 Motivation Ist die Pipelined Ausführung immer ohne Probleme möglich? Beispiel: sub $2, $1, $3 and $12, $2, $5 or $13, $6, $2 add $14, $2, $2

Mehr

32 Bit Konstanten und Adressierung. Grundlagen der Rechnerarchitektur Assembler 78

32 Bit Konstanten und Adressierung. Grundlagen der Rechnerarchitektur Assembler 78 32 Bit Konstanten und Adressierung Grundlagen der Rechnerarchitektur Assembler 78 Immediate kann nur 16 Bit lang sein Erinnerung: Laden einer Konstante in ein Register addi $t0, $zero, 200 Als Maschinen

Mehr

Technische Informatik 1

Technische Informatik 1 Technische Informatik 1 4 Prozessor Einzeltaktimplementierung Lothar Thiele Computer Engineering and Networks Laboratory Vorgehensweise 4 2 Prinzipieller Aufbau Datenpfad: Verarbeitung und Transport von

Mehr

Control Beispiel. Control wird als kombinatorische Schaltung realisiert. Hierzu die Wahrheitstabelle: Control

Control Beispiel. Control wird als kombinatorische Schaltung realisiert. Hierzu die Wahrheitstabelle: Control Control Beispiel Store R1 4 Bit Register R1 SUB 4 Bit Register R2 Store R2 R2 Bit 0 Control wird als kombinatorische Schaltung realisiert. Hierzu die Wahrheitstabelle: Eingabe R2 Bit 0 Zero 0 0 Ausgabe

Mehr

Prinzipieller Aufbau und Funktionsweise eines Prozessors

Prinzipieller Aufbau und Funktionsweise eines Prozessors Prinzipieller Aufbau und Funktionsweise eines Prozessors [Technische Informatik Eine Einführung] Univ.- Lehrstuhl für Technische Informatik Institut für Informatik Martin-Luther-Universität Halle-Wittenberg

Mehr

Allgemeine Lösung mittels Hazard Detection Unit

Allgemeine Lösung mittels Hazard Detection Unit Allgemeine Lösung mittels Hazard Detection Unit Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 83

Mehr

Darstellung von Instruktionen. Grundlagen der Rechnerarchitektur Assembler 21

Darstellung von Instruktionen. Grundlagen der Rechnerarchitektur Assembler 21 Darstellung von Instruktionen Grundlagen der Rechnerarchitektur Assembler 21 Übersetzung aus Assembler in Maschinensprache Assembler Instruktion add $t0, $s1, $s2 0 17 18 8 0 32 6 Bit Opcode Maschinen

Mehr

Computersysteme. Fragestunde

Computersysteme. Fragestunde Computersysteme Fragestunde 1 Dr.-Ing. Christoph Starke Institut für Informatik Christian Albrechts Universität zu Kiel Tel.: 8805337 E-Mail: chst@informatik.uni-kiel.de 2 Kurze Besprechung von Serie 12,

Mehr

Logische Bausteine. Addierwerke. Grundlagen der Rechnerarchitektur Logik und Arithmetik 48

Logische Bausteine. Addierwerke. Grundlagen der Rechnerarchitektur Logik und Arithmetik 48 Logische Bausteine Addierwerke Grundlagen der Rechnerarchitektur Logik und Arithmetik 48 Addition eines einzigen Bits Eingang Ausgang a b CarryIn CarryOut Sum 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 1 1 0 1

Mehr

Beispiele von Branch Delay Slot Schedules

Beispiele von Branch Delay Slot Schedules Beispiele von Branch Delay Slot Schedules Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 97 Weniger

Mehr

Datapath. Data Register# Register# PC Address instruction. Register#

Datapath. Data Register# Register# PC Address instruction. Register# Überblick über die Implementation Datapath Um verschiedene Instruktionen, wie MIPS instructions, interger arithmatic-logical instruction und memory-reference instructions zu implementieren muss man für

Mehr

N Bit Binärzahlen. Stelle: Binär-Digit:

N Bit Binärzahlen. Stelle: Binär-Digit: N Bit Binärzahlen N Bit Binärzahlen, Beispiel 16 Bit: Stelle: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Binär-Digit: 0 0 1 0 1 0 0 1 1 1 0 0 1 0 0 0 Least Significant Bit (LSB) und Most Significant Bit (MSB)

Mehr

Struktur der CPU (1) Die Adress- und Datenpfad der CPU: Befehl holen. Vorlesung Rechnerarchitektur und Rechnertechnik SS Memory Adress Register

Struktur der CPU (1) Die Adress- und Datenpfad der CPU: Befehl holen. Vorlesung Rechnerarchitektur und Rechnertechnik SS Memory Adress Register Struktur der CPU (1) Die Adress- und Datenpfad der CPU: Prog. Counter Memory Adress Register Befehl holen Incrementer Main store Instruction register Op-code Address Memory Buffer Register CU Clock Control

Mehr

TECHNISCHE HOCHSCHULE NÜRNBERG GEORG SIMON OHM Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten, z.b. Befehl

Mehr

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation nach der Schulmethode Gegeben seien die Binärzahlen A und B. Was ist a * b? Beispiel: Multiplikand A: 1 1 0 1 0 Multiplikator

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Speicher Übersicht Speicherhierarchie Cache Grundlagen Verbessern der Cache Performance Virtueller Speicher SS 2012 Grundlagen der Rechnerarchitektur Speicher 2 Speicherhierarchie

Mehr

Digitaltechnik und Rechnerstrukturen. 2. Entwurf eines einfachen Prozessors

Digitaltechnik und Rechnerstrukturen. 2. Entwurf eines einfachen Prozessors Digitaltechnik und Rechnerstrukturen 2. Entwurf eines einfachen Prozessors 1 Rechnerorganisation Prozessor Speicher Eingabe Steuereinheit Instruktionen Cachespeicher Datenpfad Daten Hauptspeicher Ausgabe

Mehr

Lehrveranstaltung: PR Rechnerorganisation Blatt 8. Thomas Aichholzer

Lehrveranstaltung: PR Rechnerorganisation Blatt 8. Thomas Aichholzer Aufgabe 8.1 Ausnahmen (Exceptions) a. Erklären Sie den Begriff Exception. b. Welche Arten von Exceptions kennen Sie? Wie werden sie ausgelöst und welche Auswirkungen auf den ablaufenden Code ergeben sich

Mehr

Das Prinzip an einem alltäglichen Beispiel

Das Prinzip an einem alltäglichen Beispiel 3.2 Pipelining Ziel: Performanzsteigerung é Prinzip der Fließbandverarbeitung é Probleme bei Fließbandverarbeitung BB TI I 3.2/1 Das Prinzip an einem alltäglichen Beispiel é Sie kommen aus dem Urlaub und

Mehr

Grundlagen der Rechnerarchitektur. Einführung

Grundlagen der Rechnerarchitektur. Einführung Grundlagen der Rechnerarchitektur Einführung Unsere erste Amtshandlung: Wir schrauben einen Rechner auf Grundlagen der Rechnerarchitektur Einführung 2 Vorlesungsinhalte Binäre Arithmetik MIPS Assembler

Mehr

Minimierung nach Quine Mc Cluskey

Minimierung nach Quine Mc Cluskey Minimierung nach Quine Mc Cluskey F(A,B,C,D) =!A!B!C!D +!A!B!C D +!A B!C!D +!A B!C D +!A B C!D +!A B C D + A!B!C!D + A!B!C D + A!B C D + A B C D Notiere die Funktion als # A B C D Gruppe Binärelemente

Mehr

Pipelining for DLX 560 Prozessor. Pipelining : implementation-technique. Pipelining makes CPUs fast. pipe stages

Pipelining for DLX 560 Prozessor. Pipelining : implementation-technique. Pipelining makes CPUs fast. pipe stages Pipelining for DLX 560 Prozessor Pipelining : implementation-technique Pipelining makes CPUs fast. pipe stages As many instructions as possible in one unit of time 1 Pipelining can - Reduce CPI - Reduce

Mehr

Rechnerstrukturen, Teil 2

Rechnerstrukturen, Teil 2 2 Rechnerstrukturen, Teil 2 Vorlesung 4 SWS WS 7/8 2.3 Register-Transfer-Strukturen Prof. Dr. Jian-Jia Chen Fakultät für Informatik Technische Universität Dortmund jian-jia.chen@cs.uni-.de http://ls2-www.cs.tu-.de

Mehr

Lösungsvorschlag 10. Übung Technische Grundlagen der Informatik II Sommersemester 2009

Lösungsvorschlag 10. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Fachgebiet Rechnerarchitektur Fachbereich Informatik Lösungsvorschlag. Übung Technische Grundlagen der Informatik II Sommersemester 29 Aufgabe.: MIPS-Kontrollsignale Für die 5 Befehlstypen a) R-Format

Mehr

Beispielhafte Prüfungsaufgaben zur Vorlesung TI I, gestellt im Frühjahr 2009

Beispielhafte Prüfungsaufgaben zur Vorlesung TI I, gestellt im Frühjahr 2009 Beispielhafte Prüfungsaufgaben zur Vorlesung TI I, gestellt im Frühjahr 2009 Die beigefügte Lösung ist ein Vorschlag. Für Korrektheit, Vollständigkeit und Verständlichkeit wird keine Verantwortung übernommen.

Mehr

Logische Bausteine. Grundlagen der Rechnerarchitektur Logik und Arithmetik 31

Logische Bausteine. Grundlagen der Rechnerarchitektur Logik und Arithmetik 31 Logische Bausteine Sequentielle Schaltungen Shlt Grundlagen der Rechnerarchitektur Logik und Arithmetik 31 Sequentielle Schaltungen n Eingänge m Ausgänge n Eingänge m Ausgänge Zustand Ausgänge hängen nur

Mehr

N Bit binäre Zahlen (signed)

N Bit binäre Zahlen (signed) N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101

Mehr

Rechnerarchitektur (RA)

Rechnerarchitektur (RA) 2 Rechnerarchitektur (RA) Sommersemester 27 Pipelines Jian-Jia Chen Informatik 2 http://ls2-www.cs.tu.de/daes/ 27/5/3 Diese Folien enthalten Graphiken mit Nutzungseinschränkungen. Das Kopieren der Graphiken

Mehr

Rechnerarchitektur (RA)

Rechnerarchitektur (RA) 2 Rechnerarchitektur (RA) Sommersemester 26 Pipelines Jian-Jia Chen Informatik 2 http://ls2-www.cs.tu.de/daes/ 26/5/25 Diese Folien enthalten Graphiken mit Nutzungseinschränkungen. Das Kopieren der Graphiken

Mehr

Prozessorarchitektur. Kapitel 1 - Wiederholung. M. Schölzel

Prozessorarchitektur. Kapitel 1 - Wiederholung. M. Schölzel Prozessorarchitektur Kapitel - Wiederholung M. Schölzel Wiederholung Kombinatorische Logik: Ausgaben hängen funktional von den Eingaben ab. x x 2 x 3 z z = f (x,,x n ) z 2 z m = f m (x,,x n ) Sequentielle

Mehr

2.3 Register-Transfer-Strukturen

2.3 Register-Transfer-Strukturen 2 2.3 Register-Transfer-Strukturen Kontext Die Wissenschaft Informatik befasst sich mit der Darstellung, Speicherung, Übertragung und Verarbeitung von Information [Gesellschaft für Informatik] 2, 24-2

Mehr

Technische Informatik 1 Übung 8 Instruktionsparallelität (Rechenübung) Andreas Tretter 8./9. Dezember Bitte immer eine Reihe freilassen

Technische Informatik 1 Übung 8 Instruktionsparallelität (Rechenübung) Andreas Tretter 8./9. Dezember Bitte immer eine Reihe freilassen Technische Informatik 1 Übung 8 Instruktionsparallelität (Rechenübung) Andreas Tretter 8./9. Dezember 2016 Bitte immer eine Reihe freilassen Ziele der Übung Verschiedene Arten von Instruktionsparallelität

Mehr

Kap.3 Mikroarchitektur. Prozessoren, interne Sicht

Kap.3 Mikroarchitektur. Prozessoren, interne Sicht Kap.3 Mikroarchitektur Prozessoren, interne Sicht Kapitel 3 Mikroarchitektur 3.1 elementare Datentypen, Operationen und ihre Realisierung (siehe 2.1) 3.2 Mikroprogrammierung (zur Realisierung der Befehlsabarbeitung

Mehr

Quiz. Gegeben sei ein 16KB Cache mit 32 Byte Blockgröße. Wie verteilen sich die Bits einer 32 Bit Adresse auf: Tag Index Byte Offset.

Quiz. Gegeben sei ein 16KB Cache mit 32 Byte Blockgröße. Wie verteilen sich die Bits einer 32 Bit Adresse auf: Tag Index Byte Offset. Quiz Gegeben sei ein 16KB Cache mit 32 Byte Blockgröße. Wie verteilen sich die Bits einer 32 Bit Adresse auf: Tag Index Byte Offset 32 Bit Adresse 31 3 29... 2 1 SS 212 Grundlagen der Rechnerarchitektur

Mehr

Beispiel: A[300] = h + A[300]

Beispiel: A[300] = h + A[300] Beispiel: A[300] = h + A[300] $t1 sei Basisadresse von A und h in $s2 gespeichert. Assembler Code? Maschinen Code (der Einfachheit halber mit Dezimalzahlen)? op rs rt rd adr/shamt funct Instruktion Format

Mehr

Wie groß ist die Page Table?

Wie groß ist die Page Table? Wie groß ist die Page Table? Im vorigen (typischen) Beispiel verwenden wir 20 Bits zum indizieren der Page Table. Typischerweise spendiert man 32 Bits pro Tabellen Zeile (im Vorigen Beispiel brauchten

Mehr

Übung Praktische Informatik II

Übung Praktische Informatik II Übung Praktische Informatik II FSS 2009 Benjamin Guthier Lehrstuhl für Praktische Informatik IV Universität Mannheim guthier@pi4.informatik.uni-mannheim.de 20.03.09 4-1 Heutige große Übung Ankündigung

Mehr

Das Verfahren in Hardware

Das Verfahren in Hardware Das Verfahren in Hardware Links Shift 8 Bit Multiplikand Demonstration mit 1001 * 0110 = 110110 2.Links Shift 8 Bit ALU Rechts Shift 4 Bit Multiplikator 3.Rechts Shift 8 Bit Produkt 1. Produkt = Produkt

Mehr

Teil 2: Rechnerorganisation

Teil 2: Rechnerorganisation Teil 2: Rechnerorganisation Inhalt: Zahlendarstellungen Rechnerarithmetik schrittweiser Entwurf eines hypothetischen Prozessors mit Daten-, Adreß- und Kontrollpfad Speicherorganisation Mikroprogrammierung

Mehr

Übungsblatt 7 Implementierung von Programmsteuerbefehlen in einer Befehlspipeline Abgabefrist: Mittwoch , 14:00 Uhr

Übungsblatt 7 Implementierung von Programmsteuerbefehlen in einer Befehlspipeline Abgabefrist: Mittwoch , 14:00 Uhr Praktikum zur Vorlesung Prozessorarchitektur SS 2017 Übungsblatt 7 Implementierung von Programmsteuerbefehlen in einer Befehlspipeline Abgabefrist: Mittwoch 21.06.2017, 14:00 Uhr 1.1. Einführung Programmsteuerbefehle

Mehr

Rechnerarchitekturen I Datenpfad Dr. Michael Wahl

Rechnerarchitekturen I Datenpfad Dr. Michael Wahl Rechnerarchitekturen I Datenpfad Dr. Michael Wahl 3.3.2 Rechnerarchitekturen I Die fünf Komponenten eines Rechensystems und Steuerung:! Datenpfad! Der Ort,! an dem! ein Rechner! rechnet.! 3.3.2 Rechnerarchitekturen

Mehr

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation nach der Schulmethode Gegeben seien die Binärzahlen A und B. Was ist a * b? Beispiel: Multiplikand A: 1 1 0 1 0 Multiplikator

Mehr

Schreiben von Pages. Schreiben einer Page in den Swap Space ist sehr teuer (kostet millionen von CPU Zyklen).

Schreiben von Pages. Schreiben einer Page in den Swap Space ist sehr teuer (kostet millionen von CPU Zyklen). Schreiben von Pages Schreiben einer Page in den Swap Space ist sehr teuer (kostet millionen von CPU Zyklen). Write Through Strategie (siehe Abschnitt über Caching) ist hier somit nicht sinnvoll. Eine sinnvolle

Mehr

Lösungsvorschlag 9. Übung Technische Grundlagen der Informatik II Sommersemester 2009

Lösungsvorschlag 9. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Fachgebiet Rechnerarchitektur Fachbereich Informatik Lösungsvorschlag 9. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Aufgabe 9.1: Dinatos-Algorithmus-Analyse Die folgenden Verilog-Zeilen

Mehr

Technische Informatik I - HS 18

Technische Informatik I - HS 18 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik I - HS 18 Übung 7 Datum : 22.-23. November 2018 Pipelining Aufgabe 1: Taktrate / Latenz In dieser Aufgabe

Mehr

Cache Blöcke und Offsets

Cache Blöcke und Offsets Cache Blöcke und Offsets Ein Cache Eintrag speichert in der Regel gleich mehrere im Speicher aufeinander folgende Bytes. Grund: räumliche Lokalität wird wie folgt besser ausgenutzt: Bei Cache Miss gleich

Mehr

28. März Name:. Vorname. Matr.-Nr:. Studiengang

28. März Name:. Vorname. Matr.-Nr:. Studiengang Klausur 28. März 2011 Name:. Vorname Matr.-Nr:. Studiengang Hinweise: Bitte füllen Sie vor dem Bearbeiten der Aufgaben das Deckblatt sorgfältig aus. Zur Klausur zugelassen sind ausschließlich Schreibutensilien,

Mehr

24. Februar Name:. Vorname. Matr.-Nr:. Studiengang

24. Februar Name:. Vorname. Matr.-Nr:. Studiengang Klausur 24. Februar 2012 Name:. Vorname Matr.-Nr:. Studiengang Hinweise: Bitte füllen Sie vor dem Bearbeiten der Aufgaben das Deckblatt sorgfältig aus. Die Klausur besteht aus 6 doppelseitig bedruckten

Mehr

1 Rechnerstrukturen 1: Der Sehr Einfache Computer

1 Rechnerstrukturen 1: Der Sehr Einfache Computer David Neugebauer, Informationsverarbeitung - Universität zu Köln, Seminar BIT I Inhaltsverzeichnis 1 Rechnerstrukturen 1: Der Sehr Einfache Computer 1 1.1 Komponenten................................. 1

Mehr

Die Mikroprogrammebene eines Rechners

Die Mikroprogrammebene eines Rechners Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten, z.b. Befehl holen Befehl dekodieren Operanden holen etc.

Mehr

Rechnergrundlagen SS Vorlesung

Rechnergrundlagen SS Vorlesung Rechnergrundlagen SS 2007 8. Vorlesung Inhalt Gleitkomma-Darstellung Normalisierte Darstellung Denormalisierte Darstellung Rechnerarchitekturen Von Neumann-Architektur Harvard-Architektur Rechenwerk (ALU)

Mehr

Name: Vorname: Matr.-Nr.: 4. a) RISC-Architekturen müssen zur Decodierung von Maschinenbefehlen stets ein mikroprogrammierbares Steuerwerk verwenden.

Name: Vorname: Matr.-Nr.: 4. a) RISC-Architekturen müssen zur Decodierung von Maschinenbefehlen stets ein mikroprogrammierbares Steuerwerk verwenden. Name: Vorname: Matr.-Nr.: 4 Aufgabe 1 (8 Punkte) Entscheiden Sie, welche der folgenden Aussagen zum Thema CISC/RISC-Prinzipien korrekt sind. a) RISC-Architekturen müssen zur Decodierung von Maschinenbefehlen

Mehr

Technische Informatik 1 - HS 2017

Technische Informatik 1 - HS 2017 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik 1 - HS 2017 Übung 8 Datum: 30. 11. 1. 12. 2017 In dieser Übung soll mit Hilfe des Simulators WinMIPS64 die

Mehr

Weitere Arithmetik. Grundlagen der Rechnerarchitektur Assembler 33

Weitere Arithmetik. Grundlagen der Rechnerarchitektur Assembler 33 Weitere Arithmetik Grundlagen der Rechnerarchitektur Assembler 33 Die speziellen Register lo und hi Erinnerung: ganzzahliges Produkt von zwei n Bit Zahlen benötigt bis zu 2n Bits Eine MIPS Instruktion

Mehr

Grundlagen der Rechnerarchitektur. Speicher

Grundlagen der Rechnerarchitektur. Speicher Grundlagen der Rechnerarchitektur Speicher Übersicht Speicherhierarchie Cache Grundlagen Verbessern der Cache Performance Virtueller Speicher SS 2012 Grundlagen der Rechnerarchitektur Speicher 2 Speicherhierarchie

Mehr

Notwendigkeit für andere Instruktionsformate

Notwendigkeit für andere Instruktionsformate Notwendigkeit für andere Instruktionsformate add $t0, $s1, $s2 op rs rt rd shamt funct 6 Bit 5 Bit 5 Bit 5 Bit 5 Bit 6 Bit R Typ? lw $t0, 32($s3) I Typ Opcode 6 Bit Source 5 Bit Dest 5 Bit Konstante oder

Mehr

Johann Wolfgang Goethe-Universität

Johann Wolfgang Goethe-Universität Flynn sche Klassifikation SISD (single instruction, single data stream): IS IS CU PU DS MM Mono (Mikro-)prozessoren CU: Control Unit SM: Shared Memory PU: Processor Unit IS: Instruction Stream MM: Memory

Mehr

H E F B G D. C. DLX Rechnerkern

H E F B G D. C. DLX Rechnerkern C. DLX Rechnerkern C.1. Einordnung DLX Architektur und Konzepte: Einfache "Gesamtzyklus"-DLX Maschine (non-pipelined), Verarbeitungsschritte einer Instruktion, Taktverhalten im Rechner, RISC & CISC...

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Technische Informatik - Eine Einführung Rechnerarchitektur Aufgabe

Mehr

Rechnerstrukturen 1: Der Sehr Einfache Computer

Rechnerstrukturen 1: Der Sehr Einfache Computer Inhaltsverzeichnis 1: Der Sehr Einfache Computer 1 Komponenten.................................... 1 Arbeitsweise..................................... 1 Instruktionen....................................

Mehr

13.2 Übergang zur realen Maschine

13.2 Übergang zur realen Maschine 13.2 Übergang zur realen Maschine Bernd Becker Technische Informatik II Unterschiede zwischen abstrakter und realer Maschine 1. Bei realer Maschine nur ein Speicher M für Daten und Befehle. M ist endlich.

Mehr

Mikrocomputertechnik

Mikrocomputertechnik Mikrocomputertechnik Bernd-Dieter Schaaf Mit Mikrocontrollern der Familie 8051 ISBN 3-446-40017-6 Leseprobe Weitere Informationen oder Bestellungen unter http://www.hanser.de/3-446-40017-6 sowie im Buchhandel

Mehr

Kap.3 Mikroarchitektur. Prozessoren, interne Sicht

Kap.3 Mikroarchitektur. Prozessoren, interne Sicht Kap.3 Mikroarchitektur Prozessoren, interne Sicht 1 3.1 Elementare Datentypen, Operationen und ihre Realisierung (siehe 2.1) 3.2 Mikroprogrammierung 3.3 Einfache Implementierung von MIPS 3.4 Pipelining

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur ARM, x86 und ISA Prinzipien Übersicht Rudimente des ARM Assemblers Rudimente des Intel Assemblers ISA Prinzipien Grundlagen der Rechnerarchitektur Assembler 2 Rudimente

Mehr

Cache Grundlagen. Schreibender Cache Zugriff. SS 2012 Grundlagen der Rechnerarchitektur Speicher 22

Cache Grundlagen. Schreibender Cache Zugriff. SS 2012 Grundlagen der Rechnerarchitektur Speicher 22 Cache Grundlagen Schreibender Cache Zugriff SS 212 Grundlagen der Rechnerarchitektur Speicher 22 Eine einfache Strategie Schreibt man nur in den Cache, werden Cache und darunter liegender Speicher inkonsistent.

Mehr

Technische Informatik 1

Technische Informatik 1 Technische Informatik 1 2 Instruktionssatz Lothar Thiele Computer Engineering and Networks Laboratory Instruktionsverarbeitung 2 2 Übersetzung Das Kapitel 2 der Vorlesung setzt sich mit der Maschinensprache

Mehr

CPU. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011

CPU. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 CPU Dr.-Ing. Volkmar Sieh Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 CPU 1/62 2012-02-29 CPU Übersicht: Pipeline-Aufbau Pipeline- Hazards CPU

Mehr

Technische Informatik 1 Übung 6 Pipelining (Rechenübung) Andreas Tretter 24./25. November 2016

Technische Informatik 1 Übung 6 Pipelining (Rechenübung) Andreas Tretter 24./25. November 2016 Technische Informatik 1 Übung 6 Pipelining (Rechenübung) Andreas Tretter 24./25. November 2016 Aufgabe 1: Taktrate / Latenz TI1 - Übung 6: Pipelining Einzeltakt-Architektur TI1 - Übung 6: Pipelining Pipelining-Architektur

Mehr

Rechnerarchitektur. Marián Vajteršic und Helmut A. Mayer

Rechnerarchitektur. Marián Vajteršic und Helmut A. Mayer Rechnerarchitektur Marián Vajteršic und Helmut A. Mayer Fachbereich Computerwissenschaften Universität Salzburg marian@cosy.sbg.ac.at und helmut@cosy.sbg.ac.at Tel.: 8044-6344 und 8044-6315 30. Mai 2017

Mehr

Vorlesung Rechnerarchitektur. Einführung

Vorlesung Rechnerarchitektur. Einführung Vorlesung Rechnerarchitektur Einführung Themen der Vorlesung Die Vorlesung entwickelt an Hand von zwei Beispielen wichtige Prinzipien der Prozessorarchitektur und der Speicherarchitektur: MU0 Arm Speicher

Mehr