Modell Komplexität und Generalisierung

Größe: px
Ab Seite anzeigen:

Download "Modell Komplexität und Generalisierung"

Transkript

1 Modell Komplexität und Generalisierung Christian Herta November, von 41 Christian Herta Bias-Variance

2 Lernziele Konzepte des maschinellen Lernens Targetfunktion Overtting, Undertting Generalisierung Out-of-sample error und Testdaten Modell-Komplexität (model complexität) 2 von 41 Christian Herta Bias-Variance

3 Outline 1 Tagetfunktion und Rauschen 2 Overtting-Undertting 3 Testdaten 4 Bias-Varianz Analyse 5 Lern Kurven 3 von 41 Christian Herta Bias-Variance

4 Targetfunktion Es soll eine unbekannte Funktion, die sogenannte Targetfunktion t( x), angenähert werden. Erhält man die Datentargets y deterministisch aus den x Werten, so kann man y als Funktion, der sogenannten Targetfunktion t, schreiben: y = t( x) 4 von 41 Christian Herta Bias-Variance

5 Verrauschte Targets Die unbekannte Targetfunktion t( x) entspricht in der Regel für ein x (i) nicht (direkt) dem y (i). Die Daten sind typischerweise verrauscht. Dies kann man folgenderweise modellieren: y (i) = t( x (i) ) + ɛ mit einer Zufallsvariable ɛ (= stochastisches Rauschen) Somit erhält man statt einer Funktion eine Wahrscheinlichkeitsverteilung p(y x) Die Wahrscheinlichkeitsverteilung des Rauschens kann dabei auch von x abhängen p(ɛ x). 5 von 41 Christian Herta Bias-Variance

6 Ziel des Lernens und Trainingsdaten Ziel des Lernens: Finden einer geeigneten Hypothese h( x) t( x) für alle interessanten x, d.h. x für die eine Vorhersage gemacht werden soll. p( x) hinreichend groÿ. Die Traingsdaten sind verrauscht: y (i) = t( x (i) ) + ɛ Welche Muster liegen der Targetfunktion zu Grunde und welche kommen zufällig aus der Auswahl der Trainingsdaten (sampling error). Die Werte der Hypothese h( x (i) ) sollte nicht perfekt den y (i) der Trainingsdaten entsprechen. Aber wie weit soll die Übereinstimmung sein? 6 von 41 Christian Herta Bias-Variance

7 Lern-Diagramm nur Training nach [Abu] 7 von 41 Christian Herta Bias-Variance

8 Outline 1 Tagetfunktion und Rauschen 2 Overtting-Undertting 3 Testdaten 4 Bias-Varianz Analyse 5 Lern Kurven 8 von 41 Christian Herta Bias-Variance

9 Beispiel: Undertting-Overtting: Polynominal Regression 9 von 41 Christian Herta Bias-Variance

10 Logistic Regression: Undertting 10 von 41 Christian Herta Bias-Variance

11 Logistic Regression: Overtting Logistische Regression mit hochgradigem Polynom: h Θ ( x) = g(θ 0 + Θ 1 x1 + Θ 2 x1x2 + Θ 3 x Θ 4x Θ 5x 2 1 x ) 11 von 41 Christian Herta Bias-Variance

12 Logistic Regression: Passend 12 von 41 Christian Herta Bias-Variance

13 Ziel des Lernens - Hypothesenmenge H Ziel des Lernens: Finden einer geeigneten Hypothese h( x) t( x) h wird aus einer Menge von Hypothesen H durch die Trainingsprozedur bestimmt. Univariate Lineare Regression als Beispiel zur Verdeutlichung der Bedeutung von H: H ist die Menge aller (unendlich vielen) Hypothesen h Θ (x) = Θ 0 + Θ 1 x, die sich durch Variation der Θ ergeben. Aus der Menge von möglichen Hypothesen H wird durch Lernen der Parameter Θ mittels den Trainingsdaten eine bestimmte Hypothese h Θnal (x) erhalten. Diese zeichnet sich durch das Minimum der Kostenfunktion aus, d.h. Θ : J(Θ nal ) J(Θ) 13 von 41 Christian Herta Bias-Variance

14 Undertting Ziel: h( x) t( x) Was passiert beim Undertting? 14 von 41 Christian Herta Bias-Variance

15 Undertting Ziel: h( x) t( x) Was passiert beim Undertting? Das Ziel kann im Undertting-Fall nicht (ausreichend) erreicht werden, da keine der Hypothesen aus H ähnlich der Targetfunktion ist. d.h.: H ist zu wenig mächtig (komplex). 14 von 41 Christian Herta Bias-Variance

16 Overtting Ziel: Was passiert beim Overtting? h( x) t( x) 15 von 41 Christian Herta Bias-Variance

17 Overtting Ziel: Was passiert beim Overtting? h( x) t( x) Die durch das Lernen gefundene Hypothese h aus H passt sich zu sehr an die spezielle Ausprägung der Trainingsdaten an. Da H sehr mächtig (komplex) ist. 15 von 41 Christian Herta Bias-Variance

18 Outline 1 Tagetfunktion und Rauschen 2 Overtting-Undertting 3 Testdaten 4 Bias-Varianz Analyse 5 Lern Kurven 16 von 41 Christian Herta Bias-Variance

19 Trainingsfehler Bisher nur Trainingsmenge D und Berechung des (durchschnittlichen) Loss der Traingsdaten (bisher genannt Kostenfunktion): Trainingsfehler (train error, in-sample error) trainingsfehler = E in (h) = 1 m m loss(h( x (i) ), y (i) ) i=0 Der Trainingsfehler wurde bisher als Funktion der Parameter J(Θ) für ein spezisches Modell (Hypothesenmenge) benutzt, um die Parameter Θ aus den Daten zu lernen. Jetzt E in (h) als Funktion der Hypothesen h, da verschiedene Modelle benutzt werden können. 17 von 41 Christian Herta Bias-Variance

20 Trainingsfehler als Kriterium nicht ausreichend Ein niedriger Trainingsfehler impliziert nicht automatisch ein gutes Modell (Overtting!), d.h. h( x) t( x) ist nicht garantiert. h( x) kann eine schlechte Prognose abgeben für x-werte, die in der Trainingsmenge nicht enthalten sind. 18 von 41 Christian Herta Bias-Variance

21 Out-of-sample error / expected risk Der out-of-sample error ist der durchschnittliche Loss, der sich auf typischen weiteren Daten (p(x, y ) hinreichend groÿ) ergeben würde, die nicht zum Training verwendet worden sind: E out (h) = E x,y [loss(h(x), y)] = loss(h(x), y)dp(x, y) X Y 19 von 41 Christian Herta Bias-Variance

22 Generaliserungsfehler Der Generalisierungsfehler einer Hypothese h kann folgendermaÿen deniert werden (nach [Abu]): E out (h) E in (h) Also der Fehler, die sich durch die Anpassung von h mittels Trainings an die spezielle Ausprägung der Trainingsdaten D train ergibt, im Vergleich zu dem zu erwarteten Vorhersage-Fehler. Zwei Gründe für die Dierenz: auch ohne Rauschen sind zu wenig Daten in D, so dass der Lernalgorithmus A eine wenig generalisierende Hypothese h ndet. zu wenig Trainingsdaten, so dass auch das Rauschen gelernt wird. 20 von 41 Christian Herta Bias-Variance

23 Generaliserungsfehler (cont.) In der Literatur ndet man unter dem Begri Generalisierungsfehler verschiedene Denitionen, wie z.b.: Der Generalisierungsfehler einer Hypothese h gelernt mit einem Algorithmus A und den Trainingsdaten D train ist R(A, D train ) = E out (h) inf E out (h ) h H Also die Abweichung in E out von h vom besten h. oder manchmal wird auch nur E out (h) als Generalisierungsfehler bezeichnet. 21 von 41 Christian Herta Bias-Variance

24 Testdaten Out-of-sample error E out ist nicht direkt zugänglich. Einführung von m test gelabelte Testdaten, um zu überprüfen, ob das Modell h( x) auch Werte gut vorhersagt, die nicht beim Training verwendet wurden: testdaten = D test = {( x (0), y (0) ), ( x (1), y (1) ),..., ( x (mtest), y (m test) )} 22 von 41 Christian Herta Bias-Variance

25 Testfehler Der Testfehler ist der durchschnittlicher Loss der Testdaten: testfehler = 1 m test m i=0 loss(h( x (i) ), y (i) ) Testfehler dient als Schätzung des out-of-sample error E out (h) testfehler E X,Y [loss(h(x), y)] = E out (h) 23 von 41 Christian Herta Bias-Variance

26 Modell Komplexität (model complexity, capacity) Informell: Die Komplexität von H (des Modells) beschreibt wieviele unterschiedlich komplizierte Funktionen durch H abgedeckt werden. Maÿe um die Modell Komplexität zu beschreiben: VC-Dimension d vc (VapnikChervonenkis Dimension) Rademacher Komplexität 24 von 41 Christian Herta Bias-Variance

27 Einuss der Komplexität Komplexeres Hypothesenset H gröÿere Wahrscheinlichkeit die Targetfunktion darstellen zu können, d.h. die Targetfunktion ist in H oder nahe H. Weniger komplexes Hypothesenset H gröÿere Wahrscheinlichkeit, dass der Generaliserungsfehler niedriger ist. 25 von 41 Christian Herta Bias-Variance

28 Schranke für Generalisierung aus der Theorie ergibt sich mit Wahrscheinlichkeit 1 δ: E out (h) E in (h) + Ω(m, H, δ) mit der VC-Dimension d VC als Maÿ für die Komplexität Ω(m, H, δ) 8 ln 4((2m)d VC + 1) m δ d.h. Lernen (Generalisierung) ist möglich, wenn die Modell-Komplexität nicht zu hoch ist und genügend Trainingsdaten vorhanden sind. 26 von 41 Christian Herta Bias-Variance

29 Komplexität und erwartete Fehler Quelle: [Abu] 27 von 41 Christian Herta Bias-Variance

30 Outline 1 Tagetfunktion und Rauschen 2 Overtting-Undertting 3 Testdaten 4 Bias-Varianz Analyse 5 Lern Kurven 28 von 41 Christian Herta Bias-Variance

31 Trainingsmenge, Hypothesenmenge und Hypothese Für quadratischem Loss und Regression ist die Bias-Variance Dekomposition einfach. Analoges gilt aber auch für Klassikation und andere Loss-Funktionen. Lernen der Hypothesenmenge (Modell) H mit den Trainingsdaten D führt zu Hypothese h (D) (hochgestelltes D zeigt die Abhängigkeit von den Traingsdaten D). 29 von 41 Christian Herta Bias-Variance

32 Erwartungswert des out-of-sample errors Ausgangspunkt der Bias-Varianz Analyse ist der Erwartungswert des out-of-sample errors: E D [ E out (h D (x)) ] mit h D : gelernte Hypothese mit den Traingsdaten D E out (h D ): out-of-sample error für die gelernete Hypothese E D : Erwartungswert bezüglich der Trainingsdaten. 30 von 41 Christian Herta Bias-Variance

33 Bias-Varianz Analyse ohne Rauschen in den Daten und quadratischem Fehler: [ E D E out (h D ) ] [ [ ( = E D E X h D (x) t(x) ) ]] 2 = E X [ E D [ ( h D (x) t(x) ) 2 ]] mit der durchschnittlichen Hypothese h(x) = E D [ h D (x) ] ergibt sich: [ E D E out (h D (x)) ] [ ( = E X [E D h D (x) h(x) ) ]] 2 +E X [ ( h(x) t(x) ) 2 ] = variance +bias 2 Falls die Daten verrauscht sind kommt ein dritter Term, der irreduzierbare Fehler E X [ɛ 2 ], hinzu. (siehe z.b. [Has]) 31 von 41 Christian Herta Bias-Variance

34 Interpretation: Bias 2 E x [ ( h(x) t(x) ) 2 ] Quadratische Abweichung der durchschnittlichen Hypothese h von der Targetfunktion t Undertting 32 von 41 Christian Herta Bias-Variance

35 Interpretation: Varianz [ ( E x [E D h D (x) h(x) ) ]] 2 Durchschnittliche quadratische Abweichung der gelernten Hypothesen {h D } von der durchschnittlichen Hypothese h Overtting 33 von 41 Christian Herta Bias-Variance

36 Interpretation: Varianz Veranschaulichung am Beispiel: 2 Datenpunkte und Fitten von Sinus mit Konstanter und Geraden. siehe Folien Seite 10. Quelle:[Abu] 34 von 41 Christian Herta Bias-Variance

37 Outline 1 Tagetfunktion und Rauschen 2 Overtting-Undertting 3 Testdaten 4 Bias-Varianz Analyse 5 Lern Kurven 35 von 41 Christian Herta Bias-Variance

38 Ziel Ziel: h( x) t( x) gegeben wenn E out bzw der testfehler klein ist. Erfüllt, falls folgende beide Bedingungen erfüllt sind: E in (Trainingsfehler) klein, d.h. kein Undertting. E out E in klein bzw. testfehler trainingsfehler, d.h. kein Overtting. 36 von 41 Christian Herta Bias-Variance

39 Lern Kurve Wie kann man erkennen, dass das Model passend ist? Beachte passend bezieht sich auf die Einussgröÿen: Anzahl der Datenpunkte m der Trainingsdaten D train Komplexität der Hypothesenmenge (Modell) H Stärke des stochastischen Rauschen ɛ im Vergleich zur Targetfunktion t, d.h. das Signal-Rausch Verhältnis. 37 von 41 Christian Herta Bias-Variance

40 Lern Kurve: Einfaches Modell 38 von 41 Christian Herta Bias-Variance

41 Lern Kurve: Komplexes Modell 39 von 41 Christian Herta Bias-Variance

42 Lern-Diagramm für überwachtes Lernen nach [Abu] 40 von 41 Christian Herta Bias-Variance

43 Literaturangabe Andrew Ng: Machine Learning (Cousera Online Kurs), 2013 [Has] Trevor Hastie,Robert Tibshirani, Jerome Friedman: The Elements of Statistical Learning, insb.: Kapitel 7, Springer Verlag 2009 [Abu] Yaser Abu-Mostafa: Learning from Data, Caltech Machine Learning bzw. Yaser Abu-Mostafa et all.: Learning from Data, AMLBook von 41 Christian Herta Bias-Variance

Validation Model Selection Kreuz-Validierung Handlungsanweisungen. Validation. Oktober, von 20 Validation

Validation Model Selection Kreuz-Validierung Handlungsanweisungen. Validation. Oktober, von 20 Validation Validation Oktober, 2013 1 von 20 Validation Lernziele Konzepte des maschinellen Lernens Validierungsdaten Model Selection Kreuz-Validierung (Cross Validation) 2 von 20 Validation Outline 1 Validation

Mehr

Lineare Regression. Christian Herta. Oktober, Problemstellung Kostenfunktion Gradientenabstiegsverfahren

Lineare Regression. Christian Herta. Oktober, Problemstellung Kostenfunktion Gradientenabstiegsverfahren Lineare Regression Christian Herta Oktober, 2013 1 von 33 Christian Herta Lineare Regression Lernziele Lineare Regression Konzepte des Maschinellen Lernens: Lernen mittels Trainingsmenge Kostenfunktion

Mehr

So lösen Sie das multivariate lineare Regressionsproblem von Christian Herta

So lösen Sie das multivariate lineare Regressionsproblem von Christian Herta Multivariate Lineare Regression Christian Herta Oktober, 2013 1 von 34 Christian Herta Multivariate Lineare Regression Lernziele Multivariate Lineare Regression Konzepte des Maschinellen Lernens: Kostenfunktion

Mehr

Logistische Regression

Logistische Regression Logistische Regression Christian Herta August, 2013 1 von 45 Christian Herta Logistische Regression Lernziele Logistische Regression Konzepte des maschinellen Lernens (insb. der Klassikation) Entscheidungsgrenze,

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Hypothesenbewertung

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Hypothesenbewertung Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Hypothesenbewertung Christoph Sawade/Niels Landwehr Dominik Lahmann Tobias Scheffer Überblick Hypothesenbewertung, Risikoschätzung

Mehr

Übersicht. Definition Daten Problemklassen Fehlerfunktionen

Übersicht. Definition Daten Problemklassen Fehlerfunktionen Übersicht 1 Maschinelle Lernverfahren Definition Daten Problemklassen Fehlerfunktionen 2 Entwickeln von maschinellen Lernverfahren Aufteilung der Daten Underfitting und Overfitting Erkennen Regularisierung

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Modellevaluierung. Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Modellevaluierung. Niels Landwehr Universität Potsdam Institut für Informatik ehrstuhl Maschinelles ernen Modellevaluierung Niels andwehr ernen und Vorhersage Klassifikation, Regression: ernproblem Eingabe: Trainingsdaten Ausgabe: Modell

Mehr

Hypothesenbewertungen: Übersicht

Hypothesenbewertungen: Übersicht Hypothesenbewertungen: Übersicht Wie kann man Fehler einer Hypothese abschätzen? Wie kann man einschätzen, ob ein Algorithmus besser ist als ein anderer? Trainingsfehler, wirklicher Fehler Kreuzvalidierung

Mehr

Die Datenmatrix für Überwachtes Lernen

Die Datenmatrix für Überwachtes Lernen Die Datenmatrix für Überwachtes Lernen X j j-te Eingangsvariable X = (X 0,..., X M 1 ) T Vektor von Eingangsvariablen M Anzahl der Eingangsvariablen N Anzahl der Datenpunkte Y Ausgangsvariable x i = (x

Mehr

Wissensentdeckung in Datenbanken

Wissensentdeckung in Datenbanken Wissensentdeckung in Datenbanken Modellklassen, Verlustfunktionen Nico Piatkowski und Uwe Ligges 02.05.2017 1 von 15 Literatur Trevor Hastie, Robert Tibshirani, Jerome Friedman. The Elements of Statistical

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Christoph Sawade/Niels Landwehr Paul Prasse

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Christoph Sawade/Niels Landwehr Paul Prasse Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Hypothesenbewertung Christoph Sawade/Niels Landwehr Paul Prasse Tobias Scheffer Sawade/Landwehr/Prasse/Scheffer, Maschinelles Lernen

Mehr

Lineare Regression. Volker Tresp

Lineare Regression. Volker Tresp Lineare Regression Volker Tresp 1 Die Lernmaschine: Das lineare Modell / ADALINE Wie beim Perzeptron wird zunächst die Aktivierungsfunktion gewichtete Summe der Eingangsgrößen x i berechnet zu h i = M

Mehr

Vorlesung Wissensentdeckung in Datenbanken

Vorlesung Wissensentdeckung in Datenbanken Vorlesung Wissensentdeckung in Datenbanken Bias und Varianz Kristian Kersting, (Katharina Morik), Claus Weihs LS 8 Informatik Computergestützte Statistik Technische Universität Dortmund 22.05.2014 1 von

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Teil 12 Bernhard Nessler Institut für Grundlagen der Informationsverabeitung TU Graz SS 2007 Übersicht 1 Maschinelles Lernen Definition Lernen 2 agnostic -learning Definition

Mehr

Statistical Learning

Statistical Learning Statistical Learning M. Gruber KW 42 Rev.1 1 Neuronale Netze Wir folgen [1], Lec 10. Beginnen wir mit einem Beispiel. Beispiel 1 Wir konstruieren einen Klassifikator auf der Menge, dessen Wirkung man in

Mehr

Ridge Regression und Kernalized Support Vector Machines : Einführung und Vergleich an einem Anwendungsbeispiel

Ridge Regression und Kernalized Support Vector Machines : Einführung und Vergleich an einem Anwendungsbeispiel Ridge Regression und Kernalized Support Vector Machines : Einführung und Vergleich an einem Anwendungsbeispiel Dr. Dominik Grimm Probelehrveranstaltung Fakultät für Informatik und Mathematik Hochschule

Mehr

Numerische Methoden und Algorithmen in der Physik

Numerische Methoden und Algorithmen in der Physik Numerische Methoden und Algorithmen in der Physik Hartmut Stadie, Christian Autermann 15.01.2009 Numerische Methoden und Algorithmen in der Physik Christian Autermann 1/ 47 Methode der kleinsten Quadrate

Mehr

Grundlagen zu neuronalen Netzen. Kristina Tesch

Grundlagen zu neuronalen Netzen. Kristina Tesch Grundlagen zu neuronalen Netzen Kristina Tesch 03.05.2018 Gliederung 1. Funktionsprinzip von neuronalen Netzen 2. Das XOR-Beispiel 3. Training des neuronalen Netzes 4. Weitere Aspekte Kristina Tesch Grundlagen

Mehr

Textmining Klassifikation von Texten Teil 2: Im Vektorraummodell

Textmining Klassifikation von Texten Teil 2: Im Vektorraummodell Textmining Klassifikation von Texten Teil 2: Im Vektorraummodell Dept. Informatik 8 (Künstliche Intelligenz) Friedrich-Alexander-Universität Erlangen-Nürnberg (Informatik 8) Klassifikation von Texten Teil

Mehr

BZQ II: Stochastikpraktikum

BZQ II: Stochastikpraktikum BZQ II: Stochastikpraktikum Block 5: Markov-Chain-Monte-Carlo-Verfahren Randolf Altmeyer February 1, 2017 Überblick 1 Monte-Carlo-Methoden, Zufallszahlen, statistische Tests 2 Nichtparametrische Methoden

Mehr

Wissensentdeckung in Datenbanken

Wissensentdeckung in Datenbanken Wissensentdeckung in Datenbanken, Häufige Mengen Nico Piatkowski und Uwe Ligges 09.05.2017 1 von 15 Überblick Was bisher geschah... Heute Modellklassen Verlustfunktionen Numerische Optimierung Regularisierung

Mehr

Eine zweidimensionale Stichprobe

Eine zweidimensionale Stichprobe Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,

Mehr

Marina Sedinkina Folien von Benjamin Roth Planen (CIS LMU andmünchen) Evaluieren von Machine Learning Experimenten 1 / 38

Marina Sedinkina Folien von Benjamin Roth Planen (CIS LMU andmünchen) Evaluieren von Machine Learning Experimenten 1 / 38 Planen and Evaluieren von Machine Learning Eperimenten Marina Sedinkina Folien von Benjamin Roth CIS LMU München Evaluieren von Machine Learning Eperimenten 1 / 38 Übersicht 1 Entwickeln von maschinellen

Mehr

Vorlesung 2. Maschinenlernen: Klassische Ansätze I

Vorlesung 2. Maschinenlernen: Klassische Ansätze I Vorlesung 2 Maschinenlernen: Klassische Ansätze I Martin Giese Martin.giese@tuebingen.mpg.de Übersicht! Statistische Formulierung des überwachten Lernproblems! Einfache Klassifikatoren! Regression I. Statistiche

Mehr

Funktionslernen. 5. Klassifikation. 5.6 Support Vector Maschines (SVM) Reale Beispiele. Beispiel: Funktionenlernen

Funktionslernen. 5. Klassifikation. 5.6 Support Vector Maschines (SVM) Reale Beispiele. Beispiel: Funktionenlernen 5. Klassifikation 5.6 Support Vector Maschines (SVM) übernommen von Stefan Rüping, Katharina Morik, Universität Dortmund Vorlesung Maschinelles Lernen und Data Mining, WS 2002/03 und Katharina Morik, Claus

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

Neural Networks: Architectures and Applications for NLP

Neural Networks: Architectures and Applications for NLP Neural Networks: Architectures and Applications for NLP Session 02 Julia Kreutzer 8. November 2016 Institut für Computerlinguistik, Heidelberg 1 Overview 1. Recap 2. Backpropagation 3. Ausblick 2 Recap

Mehr

Pareto optimale lineare Klassifikation

Pareto optimale lineare Klassifikation Seminar aus Maschinellem Lernen Pareto optimale lineare Klassifikation Vesselina Poulkova Betreuer: Eneldo Loza Mencía Gliederung 1. Einleitung 2. Pareto optimale lineare Klassifizierer 3. Generelle Voraussetzung

Mehr

Lineare Regression 2: Gute Vorhersagen

Lineare Regression 2: Gute Vorhersagen Lineare Regression 2: Gute Vorhersagen Markus Kalisch 23.09.2014 1 Big Picture: Statistisches Lernen Supervised Learning (X,Y) Unsupervised Learning X VL 7, 11, 12 Regression Y kontinuierlich VL 1, 2,

Mehr

Fakultät Verkehrswissenschaften Friedrich List Professur für Ökonometrie und Statistik, insb. im Verkehrswesen. Statistik II. Prof. Dr.

Fakultät Verkehrswissenschaften Friedrich List Professur für Ökonometrie und Statistik, insb. im Verkehrswesen. Statistik II. Prof. Dr. Statistik II Fakultät Verkehrswissenschaften Friedrich List Professur für Ökonometrie und Statistik, insb. im Verkehrswesen Statistik II 2. Parameterschätzung: 2.1 Grundbegriffe; 2.2 Maximum-Likelihood-Methode;

Mehr

Zusammenfassung: diskrete und stetige Verteilungen. Woche 4: Gemeinsame Verteilungen. Zusammenfassung: diskrete und stetige Verteilungen

Zusammenfassung: diskrete und stetige Verteilungen. Woche 4: Gemeinsame Verteilungen. Zusammenfassung: diskrete und stetige Verteilungen Zusammenfassung: e und e Verteilungen Woche 4: Gemeinsame Verteilungen Wahrscheinlichkeitsverteilung p() Wahrscheinlichkeitsdichte f () WBL 15/17, 11.05.2015 Alain Hauser P(X = k

Mehr

Data Mining - Wiederholung

Data Mining - Wiederholung Data Mining - Wiederholung Norbert Fuhr 18. Januar 2006 Problemstellungen Problemstellungen Daten vs. Information Def. Data Mining Arten von strukturellen Beschreibungen Regeln (Klassifikation, Assoziations-)

Mehr

DOKUMENTENKLASSIFIKATION MIT MACHINE LEARNING

DOKUMENTENKLASSIFIKATION MIT MACHINE LEARNING DOKUMENTENKLASSIFIKATION MIT MACHINE LEARNING Andreas Nadolski Softwareentwickler andreas.nadolski@enpit.de Twitter: @enpit Blogs: enpit.de/blog medium.com/enpit-developer-blog 05.10.2018, DOAG Big Data

Mehr

Wie können Computer lernen?

Wie können Computer lernen? Wie können Computer lernen? Ringvorlesung Perspektiven der Informatik, 18.2.2008 Prof. Jun. Matthias Hein Department of Computer Science, Saarland University, Saarbrücken, Germany Inferenz I Wie lernen

Mehr

Bayessche Lineare Regression

Bayessche Lineare Regression Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Baessche Lineare Regression Niels Landwehr Überblick Baessche Lernproblemstellung. Einführendes Beispiel: Münzwurfexperimente.

Mehr

Bayes sches Lernen: Übersicht

Bayes sches Lernen: Übersicht Bayes sches Lernen: Übersicht Bayes sches Theorem MAP, ML Hypothesen MAP Lernen Minimum Description Length Principle Bayes sche Klassifikation Naive Bayes Lernalgorithmus Teil 10: Naive Bayes (V. 1.0)

Mehr

i =1 i =2 i =3 x i y i 4 0 1

i =1 i =2 i =3 x i y i 4 0 1 Aufgabe (5+5=0 Punkte) (a) Bei einem Minigolfturnier traten 6 Spieler gegeneinander an. Die Anzahlen der von ihnen über das gesamte Turnier hinweg benötigten Schläge betrugen x = 24, x 2 = 27, x = 2, x

Mehr

Statistische Tests (Signifikanztests)

Statistische Tests (Signifikanztests) Statistische Tests (Signifikanztests) [testing statistical hypothesis] Prüfen und Bewerten von Hypothesen (Annahmen, Vermutungen) über die Verteilungen von Merkmalen in einer Grundgesamtheit (Population)

Mehr

Moderne Methoden der KI: Maschinelles Lernen

Moderne Methoden der KI: Maschinelles Lernen Moderne Methoden der KI: Maschinelles Lernen Prof. Dr.Hans-Dieter Burkhard Vorlesung Sommer-Semester 2008 Konzept-Lernen Konzept-Lernen Lernen als Suche Inductive Bias Konzept-Lernen: Problemstellung Ausgangspunkt:

Mehr

Lernalgorithmen SoSe 2008 in Trier. Henning Fernau Universität Trier

Lernalgorithmen SoSe 2008 in Trier. Henning Fernau Universität Trier Lernalgorithmen SoSe 2008 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Lernalgorithmen Gesamtübersicht 0. Einführung 1. Identifikation (aus positiven Beispielen) 2. Zur Identifikation

Mehr

Statistik, Geostatistik

Statistik, Geostatistik Geostatistik Statistik, Geostatistik Statistik Zusammenfassung von Methoden (Methodik), die sich mit der wahrscheinlichkeitsbezogenen Auswertung empirischer (d.h. beobachteter, gemessener) Daten befassen.

Mehr

Woche 2: Zufallsvariablen

Woche 2: Zufallsvariablen Woche 2: Zufallsvariablen Patric Müller ETHZ WBL 17/19, 24.04.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Teil III Zufallsvariablen Wahrscheinlichkeit

Mehr

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar "Statistische Methoden in der Physik"

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar Statistische Methoden in der Physik Studentenseminar "Statistische Methoden in der Physik" Gliederung 1 2 3 Worum geht es hier? Gliederung 1 2 3 Stichproben Gegeben eine Beobachtungsreihe x = (x 1, x 2,..., x n ): Realisierung der n-dimensionalen

Mehr

Mehrdimensionale Zufallsvariablen

Mehrdimensionale Zufallsvariablen Mehrdimensionale Zufallsvariablen Im Folgenden Beschränkung auf den diskreten Fall und zweidimensionale Zufallsvariablen. Vorstellung: Auswerten eines mehrdimensionalen Merkmals ( ) X Ỹ also z.b. ω Ω,

Mehr

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell 1 Lineare Regression Parameterschätzung 13 Im einfachen linearen Regressionsmodell sind also neben σ ) insbesondere β 1 und β Parameter, deren Schätzung für die Quantifizierung des linearen Zusammenhangs

Mehr

Brownsche Bewegung. M. Gruber. 19. März Zusammenfassung

Brownsche Bewegung. M. Gruber. 19. März Zusammenfassung Brownsche Bewegung M. Gruber 19. März 2014 Zusammenfassung Stochastische Prozesse, Pfade; Brownsche Bewegung; Eigenschaften der Brownschen Bewegung: Kovarianz, Stationarität, Selbstähnlichkeit, quadratische

Mehr

Man kann also nicht erwarten, dass man immer den richtigen Wert trifft.

Man kann also nicht erwarten, dass man immer den richtigen Wert trifft. 2.2.2 Gütekriterien Beurteile die Schätzfunktionen, also das Verfahren an sich, nicht den einzelnen Schätzwert. Besonders bei komplexeren Schätzproblemen sind klar festgelegte Güteeigenschaften wichtig.

Mehr

Grundlagen des Maschinellen Lernens Kapitel 4: PAC Lernen

Grundlagen des Maschinellen Lernens Kapitel 4: PAC Lernen Kapitel 4:. Motivation 2. Lernmodelle Teil I 2.. Lernen im Limes 2.2. Fallstudie: Lernen von Patternsprachen 3. Lernverfahren in anderen Domänen 3.. Automatensynthese 3.2. Entscheidungsbäume 3.3. Entscheidungsbäume

Mehr

Lernalgorithmen SoSe 2008 in Trier. Henning Fernau Universität Trier

Lernalgorithmen SoSe 2008 in Trier. Henning Fernau Universität Trier Lernalgorithmen SoSe 2008 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Lernalgorithmen Gesamtübersicht 0. Einführung 1. Identifikation (aus positiven Beispielen) 2. Zur Identifikation

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Hypothesenbewertung. Tobias Scheffer Michael Brückner

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Hypothesenbewertung. Tobias Scheffer Michael Brückner Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Hypothesenbewertung Tobias Scheffer Michael Brückner Hypothesenbewertung Ziel: gute Vorhersagen treffen. Bayesian model averaging,

Mehr

Gewöhnliche Autokorrelationsfunktion (ACF) eines stationären Prozesses {X t } t Z zum Lag h

Gewöhnliche Autokorrelationsfunktion (ACF) eines stationären Prozesses {X t } t Z zum Lag h 5. Die partielle Autokorrelationsfunktion 5.1 Definition, Berechnung, Schätzung Bisher: Gewöhnliche Autokorrelationsfunktion (ACF) eines stationären Prozesses {X t } t Z zum Lag h ρ X (h) = Corr(X t, X

Mehr

Inhalt. 4.1 Motivation. 4.2 Evaluation. 4.3 Logistische Regression. 4.4 k-nächste Nachbarn. 4.5 Naïve Bayes. 4.6 Entscheidungsbäume

Inhalt. 4.1 Motivation. 4.2 Evaluation. 4.3 Logistische Regression. 4.4 k-nächste Nachbarn. 4.5 Naïve Bayes. 4.6 Entscheidungsbäume 4. Klassifikation Inhalt 4.1 Motivation 4.2 Evaluation 4.3 Logistische Regression 4.4 k-nächste Nachbarn 4.5 Naïve Bayes 4.6 Entscheidungsbäume 4.7 Support Vector Machines 4.8 Neuronale Netze 4.9 Ensemble-Methoden

Mehr

Punktschätzer Optimalitätskonzepte

Punktschätzer Optimalitätskonzepte Kapitel 1 Punktschätzer Optimalitätskonzepte Sei ein statistisches Modell gegeben: M, A, P ϑ Sei eine Funktion des Parameters ϑ gegeben, γ : Θ G, mit irgendeiner Menge G, und sei noch eine Sigma-Algebra

Mehr

Goethe-Universität Frankfurt

Goethe-Universität Frankfurt Goethe-Universität Frankfurt Fachbereich Wirtschaftswissenschaft PD Dr. Martin Biewen Dr. Ralf Wilke Sommersemester 2006 Klausur Statistik II 1. Alle Aufgaben sind zu beantworten. 2. Bitte runden Sie Ihre

Mehr

Optimal-trennende Hyperebenen und die Support Vector Machine. Volker Tresp

Optimal-trennende Hyperebenen und die Support Vector Machine. Volker Tresp Optimal-trennende Hyperebenen und die Support Vector Machine Volker Tresp 1 (Vapnik s) Optimal-trennende Hyperebenen (Optimal Separating Hyperplanes) Wir betrachten wieder einen linearen Klassifikator

Mehr

Kapitel 10. Maschinelles Lernen Lineare Regression. Welche Gerade? Problemstellung. Th. Jahn. Sommersemester 2017

Kapitel 10. Maschinelles Lernen Lineare Regression. Welche Gerade? Problemstellung. Th. Jahn. Sommersemester 2017 10.1 Sommersemester 2017 Problemstellung Welche Gerade? Gegeben sind folgende Messungen: Masse (kg) 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 Kraft (N) 1.6 2.2 3.2 3.0 4.9 5.7 7.1 7.3 8.1 Annahme: Es gibt eine Funktion

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Sprachtechnologie. Tobias Scheffer Thomas Vanck

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Sprachtechnologie. Tobias Scheffer Thomas Vanck Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Sprachtechnologie Tobias Scheffer Thomas Vanck Statistik & Maschinelles Lernen Statistik: Deskriptive Statistik: Beschreibung (Tabellen,

Mehr

Reinforcement Learning

Reinforcement Learning Reinforcement Learning 1. Allgemein Reinforcement Learning 2. Neuronales Netz als Bewertungsfunktion 3. Neuronales Netz als Reinforcement Learning Nils-Olaf Bösch 1 Allgemein Reinforcement Learning Unterschied

Mehr

Zusammenfassung 11. Sara dos Reis.

Zusammenfassung 11. Sara dos Reis. Zusammenfassung 11 Sara dos Reis sdosreis@student.ethz.ch Diese Zusammenfassungen wollen nicht ein Ersatz des Skriptes oder der Slides sein, sie sind nur eine Sammlung von Hinweise zur Theorie, die benötigt

Mehr

Statistik, Datenanalyse und Simulation

Statistik, Datenanalyse und Simulation Dr. Michael O. Distler distler@kph.uni-mainz.de Mainz, 31. Mai 2011 4. Methode der kleinsten Quadrate Geschichte: Von Legendre, Gauß und Laplace zu Beginn des 19. Jahrhunderts eingeführt. Die Methode der

Mehr

Die Probabilistische Methode

Die Probabilistische Methode Die Probabilistische Methode Wladimir Fridman 233827 Hauptseminar im Sommersemester 2004 Extremal Combinatorics Zusammenfassung Die Probabilistische Methode ist ein mächtiges Werkzeug zum Führen von Existenzbeweisen.

Mehr

Kapitel 3 Schließende Statistik

Kapitel 3 Schließende Statistik Motivation Grundgesamtheit mit unbekannter Verteilung F Stichprobe X 1,...,X n mit Verteilung F Realisation x 1,...,x n der Stichprobe Rückschluss auf F Dr. Karsten Webel 160 Motivation (Fortsetzung) Kapitel

Mehr

Nichtlineare Klassifikatoren

Nichtlineare Klassifikatoren Nichtlineare Klassifikatoren Mustererkennung und Klassifikation, Vorlesung No. 11 1 M. O. Franz 12.01.2008 1 falls nicht anders vermerkt, sind die Abbildungen entnommen aus Duda et al., 2001. Übersicht

Mehr

Flussdiagramm der ökonometrischen Methode

Flussdiagramm der ökonometrischen Methode Flussdiagramm der ökonometrischen Methode z.b Sättigungs modell Parameter schätzung Daten Sach verhalt oder Spezifikation des ökonometrischen Modells geschätztes Modell phäno menologische Modellierung

Mehr

Statistik II. Regressionsrechnung+ Regressionsanalyse. Statistik II

Statistik II. Regressionsrechnung+ Regressionsanalyse. Statistik II Statistik II Regressionsrechnung+ Regressionsanalyse Statistik II - 16.06.2006 1 Regressionsrechnung Nichtlineare Ansätze In einigen Situation könnte man einen nichtlinearen Zusammenhang vermuten. Bekannte

Mehr

Lineare Methoden zur Klassifizierung

Lineare Methoden zur Klassifizierung Lineare Methoden zur Klassifizierung Kapitel 3 Spezialvorlesung Modul 10-202-2206 (Fortgeschrittene Methoden in der Bioinformatik) Jana Hertel Professur für Bioinformatik Institut für Informatik Universität

Mehr

Teil: lineare Regression

Teil: lineare Regression Teil: lineare Regression 1 Einführung 2 Prüfung der Regressionsfunktion 3 Die Modellannahmen zur Durchführung einer linearen Regression 4 Dummyvariablen 1 Einführung o Eine statistische Methode um Zusammenhänge

Mehr

Überblick. Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung

Überblick. Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Grundlagen Überblick Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Klassifikation bei bekannter Wahrscheinlichkeitsverteilung Entscheidungstheorie Bayes-Klassifikator

Mehr

Textklassifikation, Informationsextraktion

Textklassifikation, Informationsextraktion Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Textklassifikation, Informationsextraktion Tobias Scheffer Thomas Vanck Textklassifikation, Informationsextraktion 2 Textklassifikation,

Mehr

Linear nichtseparable Probleme

Linear nichtseparable Probleme Linear nichtseparable Probleme Mustererkennung und Klassifikation, Vorlesung No. 10 1 M. O. Franz 20.12.2007 1 falls nicht anders vermerkt, sind die Abbildungen entnommen aus Duda et al., 2001. Übersicht

Mehr

Neuronale Netze. Anna Wallner. 15. Mai 2007

Neuronale Netze. Anna Wallner. 15. Mai 2007 5. Mai 2007 Inhalt : Motivation Grundlagen Beispiel: XOR Netze mit einer verdeckten Schicht Anpassung des Netzes mit Backpropagation Probleme Beispiel: Klassifikation handgeschriebener Ziffern Rekurrente

Mehr

Teil VI. Gemeinsame Verteilungen. Lernziele. Beispiel: Zwei Würfel. Gemeinsame Verteilung

Teil VI. Gemeinsame Verteilungen. Lernziele. Beispiel: Zwei Würfel. Gemeinsame Verteilung Zusammenfassung: diskrete und stetige Verteilungen Woche 4: Verteilungen Patric Müller diskret Wahrscheinlichkeitsverteilung p() stetig Wahrscheinlichkeitsdichte f ()

Mehr

2.3 Intervallschätzung

2.3 Intervallschätzung 2.3.1 Motivation und Hinführung Bsp. 2.11. [Wahlumfrage] Der wahre Anteil der rot-grün Wähler 2009 war genau 33.7%. Wie groß ist die Wahrscheinlichkeit, in einer Zufallsstichprobe von 1000 Personen genau

Mehr

Statistik II. Lineare Regressionsrechnung. Wiederholung Skript 2.8 und Ergänzungen (Schira: Kapitel 4) Statistik II

Statistik II. Lineare Regressionsrechnung. Wiederholung Skript 2.8 und Ergänzungen (Schira: Kapitel 4) Statistik II Statistik II Lineare Regressionsrechnung Wiederholung Skript 2.8 und Ergänzungen (Schira: Kapitel 4) Statistik II - 09.06.2006 1 Mit der Kovarianz und dem Korrelationskoeffizienten können wir den statistischen

Mehr

5. Klassifikation. 5.6 Support Vector Maschines (SVM)

5. Klassifikation. 5.6 Support Vector Maschines (SVM) 5. Klassifikation 5.6 Support Vector Maschines (SVM) übernommen von Stefan Rüping, Katharina Morik, Universität Dortmund Vorlesung Maschinelles Lernen und Data Mining, WS 2002/03 und Katharina Morik, Claus

Mehr

Statistik I für Betriebswirte Vorlesung 3

Statistik I für Betriebswirte Vorlesung 3 Statistik I für Betriebswirte Vorlesung 3 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 15. April 2019 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 3 Version: 1. April

Mehr

Decision Tree Learning

Decision Tree Learning Decision Tree Learning Computational Linguistics Universität des Saarlandes Sommersemester 2011 28.04.2011 Entscheidungsbäume Repräsentation von Regeln als Entscheidungsbaum (1) Wann spielt Max Tennis?

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayes sches Lernen. Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayes sches Lernen. Niels Landwehr Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Bayes sches Lernen Niels Landwehr Überblick Grundkonzepte des Bayes schen Lernens Wahrscheinlichstes Modell gegeben Daten Münzwürfe

Mehr

Musterlösung. Modulklausur Multivariate Verfahren

Musterlösung. Modulklausur Multivariate Verfahren Musterlösung Modulklausur 31821 Multivariate Verfahren 25. September 2015 Aufgabe 1 (15 Punkte) Kennzeichnen Sie die folgenden Aussagen zur Regressionsanalyse mit R für richtig oder F für falsch. F Wenn

Mehr

Konvexe Menge. Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, d.h.

Konvexe Menge. Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, d.h. Konvexe Menge Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, dh Kapitel Extrema konvex: h x + h y D für alle h [0, ], und x,

Mehr

Klassische Klassifikationsalgorithmen

Klassische Klassifikationsalgorithmen Klassische Klassifikationsalgorithmen Einführung in die Wissensverarbeitung 2 VO 708.560+ 1 UE 442.072 SS 2013 Institut für Signalverarbeitung und Sprachkommunikation TU Graz Inffeldgasse 12/1 www.spsc.tugraz.at

Mehr

Ensemble Models - Boosting, Bagging and Stacking

Ensemble Models - Boosting, Bagging and Stacking Ensemble Models - Boosting, Bagging and Stacking Maximilian Schwinger 3. Februar 2004 1 Inhaltsverzeichnis 1 Einführung 3 1.1 Überblick............................... 3 2 Boosting 4 2.1 Beispiel................................

Mehr

Statistik II für Betriebswirte Vorlesung 11

Statistik II für Betriebswirte Vorlesung 11 Statistik II für Betriebswirte Vorlesung 11 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 07. Januar 2019 Dr. Andreas Wünsche Statistik II für Betriebswirte Vorlesung 11 Version:

Mehr

Wissensentdeckung in Datenbanken

Wissensentdeckung in Datenbanken Wissensentdeckung in Datenbanken Organisation und Überblick Nico Piatkowski und Uwe Ligges 8.0.07 von Fakten Team Vorlesung: Uwe Ligges, Nico Piatkowski Übung: Sarah Schnackenberg, Sebastian Buschjäger

Mehr

Überblick. Überblick. Bayessche Entscheidungsregel. A-posteriori-Wahrscheinlichkeit (Beispiel) Wiederholung: Bayes-Klassifikator

Überblick. Überblick. Bayessche Entscheidungsregel. A-posteriori-Wahrscheinlichkeit (Beispiel) Wiederholung: Bayes-Klassifikator Überblick Grundlagen Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Klassifikation bei bekannter Wahrscheinlichkeitsverteilung Entscheidungstheorie Bayes-Klassifikator

Mehr

Statistisches Lernen

Statistisches Lernen Statistisches Lernen Einheit 12: Modellwahl und Regularisierung Dr. rer. nat. Christine Pausch Institut für Medizinische Informatik, Statistik und Epidemiologie Universität Leipzig WS 2014/2015 1 / 28

Mehr

Woche 2: Zufallsvariablen

Woche 2: Zufallsvariablen Woche 2: Zufallsvariablen Patric Müller ETHZ WBL 19/21, 29.04.2019 Wahrscheinlichkeit und Statistik Patric Müller WBL 2019 Teil III Zufallsvariablen Wahrscheinlichkeit

Mehr

Stochastik in den Ingenieu rwissenschaften

Stochastik in den Ingenieu rwissenschaften ---_..,.'"--.---------- Christine Müller Liesa Denecke Stochastik in den Ingenieu rwissenschaften Eine Einführung mit R ~ Springer Vieweg 1 Fragestellungen........................................... Teil

Mehr

Schweizer Statistiktage, Aarau, 18. Nov. 2004

Schweizer Statistiktage, Aarau, 18. Nov. 2004 Schweizer Statistiktage, Aarau, 18. Nov. 2004 Qualitative Überprüfung der Modellannahmen in der linearen Regressionsrechnung am Beispiel der Untersuchung der Alterssterblichkeit bei Hitzeperioden in der

Mehr

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Stefan Etschberger für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Sommersemester 2017 Rechenregeln für den Erwartungswert Ist f symmetrisch bzgl. a, so gilt E(X)

Mehr

Stochastik-Praktikum

Stochastik-Praktikum Stochastik-Praktikum Markov Chain Monte Carlo Peter Frentrup Humboldt-Universität zu Berlin 16. Januar 2018 (Humboldt-Universität zu Berlin) Markov Chain Monte Carlo 16. Januar 2018 1 / 17 Übersicht 1

Mehr

Bayes sches Lernen: Übersicht

Bayes sches Lernen: Übersicht Bayes sches Lernen: Übersicht Bayes sches Theorem MAP, ML Hypothesen MAP Lernen Minimum Description Length Principle Bayes sche Klassifikation Naive Bayes Lernalgorithmus Teil 5: Naive Bayes + IBL (V.

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2

Mehr

Wahrscheinlichkeiten

Wahrscheinlichkeiten Wahrscheinlichkeiten August, 2013 1 von 21 Wahrscheinlichkeiten Outline 1 Wahrscheinlichkeiten 2 von 21 Wahrscheinlichkeiten Zufallsexperimente Die möglichen Ergebnisse (outcome) i eines Zufallsexperimentes

Mehr

Frequentisten und Bayesianer. Volker Tresp

Frequentisten und Bayesianer. Volker Tresp Frequentisten und Bayesianer Volker Tresp 1 Frequentisten 2 Die W-Verteilung eines Datenmusters Nehmen wir an, dass die wahre Abhängigkeit linear ist, wir jedoch nur verrauschte Daten zur Verfügung haben

Mehr

1 Einleitung. 1.1 Was ist Ökonometrie und warum sollte man etwas darüber lernen?

1 Einleitung. 1.1 Was ist Ökonometrie und warum sollte man etwas darüber lernen? 1 Einleitung 1.1 Was ist Ökonometrie und warum sollte man etwas darüber lernen? Idee der Ökonometrie: Mithilfe von Daten und statistischen Methoden Zusammenhänge zwischen verschiedenen Größen messen. Lehrstuhl

Mehr

7. Stochastische Prozesse und Zeitreihenmodelle

7. Stochastische Prozesse und Zeitreihenmodelle 7. Stochastische Prozesse und Zeitreihenmodelle Regelmäßigkeiten in der Entwicklung einer Zeitreihe, um auf zukünftige Entwicklung zu schließen Verwendung zu Prognosezwecken Univariate Zeitreihenanalyse

Mehr

Statistik, Datenanalyse und Simulation

Statistik, Datenanalyse und Simulation Dr. Michael O. Distler distler@kph.uni-mainz.de Mainz, 13. Juli 2011 Ziel der Vorlesung Vermittlung von Grundkenntnissen der Statistik, Simulationstechnik und numerischen Methoden (Algorithmen) Aufgabe:

Mehr

Teil XII. Einfache Lineare Regression. Woche 10: Lineare Regression. Lernziele. Zusammenfassung. Patric Müller

Teil XII. Einfache Lineare Regression. Woche 10: Lineare Regression. Lernziele. Zusammenfassung. Patric Müller Woche 10: Lineare Regression Patric Müller Teil XII Einfache Lineare Regression ETHZ WBL 17/19, 03.07.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Wahrscheinlichkeit

Mehr