GRUNDLAGENLABOR CLASSIC RC-GLIED

Größe: px
Ab Seite anzeigen:

Download "GRUNDLAGENLABOR CLASSIC RC-GLIED"

Transkript

1 GUNDLAGNLABO LASSI -GLID Inhal: 1. inleing nd Zielsezng Theoreische Afgaben - Vorbereing Prakische Messafgaben...4 Anhang: in- nd Asschalvorgänge...5 Filename: Version: Ahor: _Glied_2_.doc 2. S. Wicki reaed: Las modified: Page: :23 1 / 9

2 Sdiengang lekroechnik Grndlagenlabor / WK lassic 1. INLITUNG UND ZILSTZUNG In der lekronik werden häfig Kombinaionen as L-Nezwerken als Filer eingesez. Vor allem in Verbindng mi MV 1 -gerechen Schalngsenwrf, kann man af solche Filer nich verzichen. Ach Schalnezeile beinhalen viele Splen als Sromgläer nd Kondensaoren als Spannngsgläer. Darm is es wichig, mi diesen wichigen Komponenen der lekroechnik verra z sein nd ihre igenschafen gena z kennen, m Schalngen schnell enwerfen nd analysieren z können. In diesem Versch sollen diese igenschafen asgemessen nd verief werden. Dieser Versch ha folgende Zielsezngen: Die passiven Grndelemene der lekroechnik z versehen Wichige Krvenformen mi ern im Zeibereich kennen lernen Fesigng der Theorie Benzng des Kahodensrahloszilloskops (KO) Benzng des Signalgeneraors Übng im Umgang mi den Messgeräen 2. THOTISH AUFGABN - VOBITUNG 2.1 Theoreische Grndlagen Sdieren Sie die Theoreischen Grndlagen im Anhang nd lösen Sie Afgaben daz (Kap.2.2). 1 MV: lekromagneische Verräglichkei Version 2. Seie 2 / 9

3 Sdiengang lekroechnik Grndlagenlabor / WK lassic 2.2 Afgaben a) Berechnen nd skizzieren Sie die Asgangsspannng für jeweils zwei Perioden für eine Signalfreqenz von 2Hz nd eine Signalfreqenz von 1kHz mi den lemenen 1 =1kΩ nd 1 =1nF. Der Kondensaor is im Zeipnk = enladen. 1 1 A Fig. 2-1 ingangssignal mi 5% Dy-ycle (ein/t) T 1 b) Vom ingangssignal wird das Tasverhälnis (Dy-ycle) von 5% af 25% geänder. Wie sieh nn das Asgangssignal as (die Schalng bleib besehen, der Kondensaor is im Zeipnk = enladen)? T 1 Fig. 2-2 ingangssignal mi 25% Dy-ycle c) Zm Kondensaor wird nn ein Widersand parallel geschale. Berechnen nd skizzieren Sie die Asgangsspannng für jeweils zwei Perioden für eine Signalfreqenz von 2Hz nd eine Signalfreqenz von 1kHz mi den lemenen 1 =1kΩ, 2 =1kΩ nd 1 =1nF. Der Kondensaor is im Zeipnk = enladen A T 1 Fig. 2-3 ingangssignal mi 5% Dy-ycle nd Widersand parallel zm Kondensaor d) Der verwendee Signalgeneraor ha einen Innenwidersand von 5Ω. Welchen inflss ha dieser Innenwidersand af die Zeikonsane des s. Version 2. Seie 3 / 9

4 Sdiengang lekroechnik Grndlagenlabor / WK lassic 3. PAKTISH MSSAUFGABN 3.1 Transienes Verhalen von -Nez Baen Sie die Schalng gemäss Fig. 3-1 af mi den lemenen 1 =1kΩ nd 1 =1nF. H1 1 H2 1 A T 1 Fig. 3-1 echecksignal mi 5% Dy-ycle a) Unerschen Sie die Af- nd nladekrve (Spannngsverlaf) mi dem KO, indem sie die Periodendaer T 1 >> τ wählen. Zeichnen Sie die Verläfe af. b) Überlegen Sie sich, wie man den Srom drch den Kondensaor messen kann nd nerschen Sie ach hier die Af- nd nladekrve (Sromverlaf) Nezwerk an periodischem echecksignal Baen Sie die Schalngen von den Theoreischen Afgaben (Kap. 2.2) af nd überprüfen Sie die echnngen mi Messngen Nezwerk an harmonischem Signal (Sins) Die Were der lemenen bleib erhalen ( 1 =1kΩ nd 1 =1nF). H1 1 H2 1 A T 1 Fig. 3-2 Sinssignal a) Messen Sie die Phasenverschiebng wie ach die Abschwächng zwischen dem Asgangssignal nd dem ingangssignal, indem Sie die ingangsfreqenz in Vernünfigem Masse ändern. Skizzieren Sie die Phasenverschiebng (linearer Massab) nd die Abschwächng (linearer nd logarihmischer Massab) in Fnkion der Freqenz. b) Schalen Sie den KO in den xy-berrieb nd variieren Sie die Freqenz. Was kann man ablesen, was erkenn man nd wie is das erklärbar? Version 2. Seie 4 / 9

5 Sdiengang lekroechnik Grndlagenlabor / WK lassic ANHANG: IN- UND AUSSHALTVOGÄNG 2 Bei den bisherigen Beispielen mi L-Nezwerken war enweder der Srom- oder der Spannngsverlaf vorgegeben. Im allgemeinen Fall sind der zeiliche Srom- nd Spannngsverlaf nbekanne Grössen. Sell man für ein beliebiges L-Nezwerk z.b. die Maschengleichng af nd sez die ohmschen Geseze ein, so reslier eine sogenanne Differenialgleichng (DGL). Die Lösng der DGL (zsammen mi den Anfangsbedingngen) beschreib dann die gesche Grösse, nämlich die zeiabhängige Spannng (oder den zeiabhängigen Srom). Die mahemaischen Vorassezngen zr Behandlng von Nezwerken im Zeibereich sind also Kennnisse von Differenialgleichngen nd Mehoden zr Lösng derselben. Die folgenden Kapiel sind beschränk af in- nd Asschalvorgänge an - oder L-Nezwerken, bei denen die Lösngsfnkionen der DGL s von der gleichen Srkr sind (xponenialfnkionen). Als einführendes Beispiel wird der Afladevorgang eines Kondensaors nersch. Figr A- 1 zeig das -Nezwerk nd die angelege Spannng 1 (). Zm Zeipnk = wird der Schaler S geschlossen; d.h. für = gil 2 () = 1 (). Der Kondensaor is ngeladen ( (<)=). S i() 2 () 1 () = U 2 () () U = Figr A- 1: Afladen eines Kondensaors: Schaler S wird zm Zeipnk = geschlossen Wie sehen die zeilichen Verläfe von Kondensaorspannng () nd Srom i() as? Mi dem Maschensaz ergib sich (nach dem Schliessen des Schalers): () + i() + () = 2 mi 2 () = U nd i d () () = = & () erhäl man: d & () + () = U, () = (1) Gleichng (1) is die z Figr A- 1 zgehörige Differenialgleichng; die Lösng der DGL beschreib dann den Verlaf der Kondensaorspannng (). 2 Qelle: Skrip Allgemeine lekroechnik, Version , Peer Niklas, FHNW Version 2. Seie 5 / 9

6 Sdiengang lekroechnik Grndlagenlabor / WK lassic Ohne weiere mahemaische Veriefng der DGL-Theorie wird jez die Lösng von (1) angegeben: / τ () = U e, mi τ = 1 c h (2) Drch insezen von (2) in (1) kann die Güligkei der Lösng verifizier werden. Gleichng (2) is der klassische Spannngsverlaf ( Ladekrve ) für die Afladng eines Kondensaors nd wird nn asführlich diskier. Das Prodk τ = bezeichne man als Zeikonsane der Schalng (siehe ach Figr A- 1). Figr A- 2 zeig den Spannngsverlaf am Kondensaor. U () 63% 86% 99% ( = ) = ( = +) = ( = 1 τ).63 U ( = 2 τ).86 U ( = 3 τ).95 U ( = 5 τ).99 U τ 2τ 3τ 4τ 5τ ( ) = U ( ) = U e 1 Figr A- 2: Afladen eines Kondensaors: Spannngsverlaf nd markane Were c / τ h, τ = Die Anfangsseigng der Krve (bei = ) kann mi dem Abragen der Zeikonsanen τ konsrier werden (siehe Figr). Markane Pnke sind z.b. 63% vom ndwer nach einer Zeikonsanen nd 99% vom ndwer nach fünf Zeikonsanen (Kondensaor is prakisch geladen). Die Gleichng (2) zsammen mi der Figr A- 2 sind von elemenarer Bedeng nd müssen jederzei abrfberei sein. Version 2. Seie 6 / 9

7 Sdiengang lekroechnik Grndlagenlabor / WK lassic U () Der Srom i() kann berechne werden mi i() = & (), oder i() = (siehe ach Figr A- 1). Für den Srom ergib sich dami (3). Figr A- 3 zeig den ypischen Sromverlaf. U i () e / = τ, mi τ = (3) U / i() i( = ) = i( = +) = U / i( = 1 τ).37 U / i( = 2 τ).14 U / 37% i( = 3 τ).5 U / 14% 1% τ 2τ 3τ 4τ 5τ i( = 5 τ).1 U / i( ) = Figr A- 3: Afladen eines Kondensaors: Sromverlaf nd markane Were Ach hier kann die Anfangsseigng der Krve (bei = +) mi dem Abragen der Zeikonsanen τ konsrier werden (siehe Figr). Markane Pnke sind z.b. 37% vom Anfangswer nach einer Zeikonsanen nd 1% vom Anfangswer nach fünf Zeikonsanen (Kondensaor is prakisch geladen, es fliess kein Srom mehr). Die Gleichng (3) zsammen mi der Figr A- 3 sind wiederm grndlegend nd wichig. Berache man den Spannngs- nd Sromverlaf am Kondensaor (Figr A- 2 nd Figr A- 3), so sind folgende Besonderheien feszhalen: - Die Spannng am Kondensaor spring nich! - Für = wirk der Kondensaor wie ein Krzschlss ( = ) - Für = fäll die ganze Spannng über dem Widersand ab, nd somi is i(=) = U / Version 2. Seie 7 / 9

8 Sdiengang lekroechnik Grndlagenlabor / WK lassic Als zweies Beispiel wird der nladevorgang eines Kondensaors nersch. in anfänglich geladener Kondensaor wird über einen Widersand enladen. Figr A- 4 zeig das -Nezwerk mi der Anfangsspannng U des Kondensaors. Zm Zeipnk = wird der Schaler S geschlossen; d.h. für = gil () = (). S i() () () mi ( < ) = U (anfänglich geladener Kondensaor) Figr A- 4: nladen eines Kondensaors: Schaler S wird zm Zeipnk = geschlossen Mi dem Maschensaz ergib sich (nach dem Schliessen des Schalers): () () = mi () = i() nd i d () () = = & () erhäl man (Zählpfeile beachen!): d () + & () =, () = U (4) Gleichng (4) is die z Figr A- 4 zgehörige Differenialgleichng; die Lösng der DGL beschreib dann den Verlaf der Kondensaorspannng (). Ach hier wird die Lösng von (4) angegeben (ohne Herleing): / τ () = U e, mi τ = (5) Drch insezen von (5) in (4) kann die Güligkei der Lösng verifizier werden. Gleichng (5) is der Spannngsverlaf für die nladng eines Kondensaors ( nladekrve ). Das Prodk τ = is wieder die Zeikonsane der Schalng (siehe ach Figr A- 4). Mi i () = () = () erhäl man für den Srom: U i () e / = τ, mi τ = (6) Version 2. Seie 8 / 9

9 Sdiengang lekroechnik Grndlagenlabor / WK lassic Spannngs- nd Sromverlaf für die Kondensaorenladng sind in folgenden beiden Figren dargesell. () i() U U / τ 2τ 3τ 4τ 5τ τ 2τ 3τ 4τ 5τ S wird geschlossen Figr A- 5: Kondensaorenladng: Spannngsverlaf S wird geschlossen Figr A- 6: Kondensaorenladng: Sromverlaf Vergleich man die Afladng mi der nladng des Kondensaors, so sind folgende Bemerkngen angebrach: - Der Sromverlaf is für beide Fälle idenisch (ichng ha geänder!) - Die Spannng am Kondensaor spring nich - Alle Lösngsfnkionen für Srom nd Spannng enhalen die xponenialfnkion Für ransienes Verhalen (in- nd Asschalvorgänge) in -Nezwerken (nd L-Nezwerken) is die xponenialfnkion von ässerser Wichigkei, da sie den Kern der Lösngsfnkionen für Srom nd Spannng bilde. Version 2. Seie 9 / 9

Abiturprüfung Baden-Württemberg 1986

Abiturprüfung Baden-Württemberg 1986 001 - hp://www.emah.de 1 Abirprüfng Baden-Würemberg 1986 Leisngskrs Mahemaik - Analysis Z jedem > 0 is eine Fnkion f gegeben drch f x x x e x ; x IR Ihr Schabild sei K. a Unersche K af Asympoen, Schnipnke

Mehr

Kondensator und Spule im Gleichstromkreis

Kondensator und Spule im Gleichstromkreis E2 Kondensaor und Spule im Gleichsromkreis Es sollen experimenelle nersuchungen zu Ein- und Ausschalvorgängen bei Kapaziäen und ndukiviäen im Gleichsromkreis durchgeführ werden. Als Messgerä wird dabei

Mehr

7 Drehstromgleichrichter

7 Drehstromgleichrichter Drehsromgleichricher 7 Drehsromgleichricher 7.1 Mielpnk-Schalng (Halbbrücke) (3-plsiger Gleichricher) In bbildng 7-1 sind die drei Sekndärwicklngen eines Drehsrom-Transformaors in Sernschalng dargesell.

Mehr

Labor Übertragungstechnik

Labor Übertragungstechnik Labor Überragngsechnik Pro. Dr. Ing. Lilia Laji Dipl. Ing. Irina Ikker Qadrar Aplidenodlaion Grppenner: eilneher: Nae Vornae Marikelner 3 Osalia Hochschle ür angewande Wissenschaen Hochschle Branschweig/Wolenbüel

Mehr

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ...

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ... FH D FB 3 Fachhochschule Düsseldorf Universiy of Applied Sciences Fachbereich Elekroechnik Deparmen of Elecrical Engineering Prakikum Grundlagen der Elekroechnik Versuch 5 Name Marikelnummer:... Anesa

Mehr

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild:

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild: Ein Nezgerä, auch Nezeil genann, is eine elekronische Schalungen die die Wechselspannung aus dem Sromnez (230V~) in eine Gleichspannung umwandeln kann. Ein Nezgerä sez sich meisens aus folgenden Komponenen

Mehr

V 321 Kondensator, Spule und Widerstand Zeit- u. Frequenzverhalten

V 321 Kondensator, Spule und Widerstand Zeit- u. Frequenzverhalten V 32 Kondensaor, Spule und Widersand Zei- u. Frequenzverhalen.Aufgaben:. Besimmen Sie das Zei- und Frequenzverhalen der Kombinaionen von Kondensaor und Widersand bzw. Spule und Widersand..2 Ermieln Sie

Mehr

HAW Hamburg Fakultät Life Sciences - Physiklabor Physikalisches Praktikum

HAW Hamburg Fakultät Life Sciences - Physiklabor Physikalisches Praktikum HAW Hamburg Fakulä Life Sciences - Physiklabor Physikalisches Prakikum Auf- und Enladungen von Kondensaoren in -Gliedern Messung von Kapaziäen Elekrische Schalungen mi -Gliedern finde man z. B. in Funkionsgeneraoren

Mehr

Wechselspannung. Zeitlich veränderliche Spannung mit periodischer Wiederholung

Wechselspannung. Zeitlich veränderliche Spannung mit periodischer Wiederholung Elekrische Schwingungen und Wellen. Wechselsröme i. Wechselsromgrößen ii.wechselsromwidersand iii.verhalen von LC Kombinaionen. Elekrischer Schwingkreis 3. Elekromagneische Wellen Wechselspannung Zeilich

Mehr

Abiturprüfung Baden-Württemberg 1986

Abiturprüfung Baden-Württemberg 1986 c 001 by Rainer Müller - www.emah.de 1 Lösng Abirprüfng Baden-Würemberg 1986 Leisngskrs Mahemaik - Analysis Z jedem > 0 is eine Fnkion f gegeben drch f x x x e x ; x IR a Asympoen Senkreche Asympoen Es

Mehr

Oszilloskop - Messtechnik

Oszilloskop - Messtechnik Technische Universiä Dresden Fachrichng Physik P. Ecksein / R. Schwierz Okober 2007 Versch: Grndprakikm Physik OM 1. Ziel nd Afgabensellng Oszilloskop - Messechnik Das Oszilloskop is das niverselle Insrmen

Mehr

Einleitung. Modulationsverfahren

Einleitung. Modulationsverfahren Pro. Dr.-Ing. W.-P. Bchwald Modlaionsverahren Einleing U Signale über einen Kanal überragen z können, ss i allgeeinen eine Modlaion a eine geeignee rägerreqenz erolgen, deren Lage an die Kanaleigenschaen

Mehr

Oszilloskop - Messtechnik

Oszilloskop - Messtechnik Fachrichng Physik Physikalisches Grndprakikm Ersell: Bearbeie: Versch: OM P. Ecksein R. Schwierz J. Kelling J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher Akalisier: am 29. 03. 2010 Oszilloskop - Messechnik

Mehr

Schaltungen mit nichtlinearen Widerständen

Schaltungen mit nichtlinearen Widerständen HOCHSCHLE FÜ TECHNIK ND WITSCHAFT DESDEN (FH) niversity of Applied Sciences Fachbereich Elektrotechnik Praktikm Grndlagen der Elektrotechnik Versch: Schaltngen mit nichtlinearen Widerständen Verschsanleitng

Mehr

Grundgebiete der Elektrotechnik II Feedbackaufgabe: Transiente Vorgänge

Grundgebiete der Elektrotechnik II Feedbackaufgabe: Transiente Vorgänge heinisch-wesfälische Technische Hochschule Aachen Insiu für Sromricherechni und Elerische Anriebe Universiäsprofessor Dr. ir. i W. De Doncer Grundgebiee der Eleroechni II Feedbacaufgabe: Transiene Vorgänge

Mehr

1 Physikalische Grundlagen

1 Physikalische Grundlagen Qaniaive Messng der spezifischen Wärmekapaziä nd der Schmelzwärme einer eekischen Legierng (SWE) Sichwore: Innere Energie, Schmelzenergie, hasenmwandlng hysikalische Grndlagen. Wärmekapaziä nd Schmelzkrve

Mehr

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen Unersuchung von Gleienladungen und deren Modellierung durch Funkengeseze im Vergleich zu Gasenladungen Dipl.-Ing. Luz Müller, Prof. Dr.-Ing. Kur Feser Insiu für Energieüberragung und Hochspannungsechnik,

Mehr

Signal- und Systemtheorie for Dummies

Signal- und Systemtheorie for Dummies FB Eleroechni Ewas Signal- und Sysemheorie or Dummies Version - Juli Oh No!!!! Pro. Dr.-Ing. ajana Lange Fachhochschule Merseburg FB Eleroechni Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies

Mehr

Name: Punkte: Note: Ø:

Name: Punkte: Note: Ø: Name: Punke: Noe: Ø: Kernfach Physik Abzüge für Darsellung: Rundung: 4. Klausur in K am 5. 5. 0 Ache auf die Darsellung und vergiss nich Geg., Ges., Formeln, Einheien, Rundung...! Angaben: e =,60 0-9 C

Mehr

sammeln speichern C [F = As/V] Proportionalitätskonstante Q = CU I = dq/dt sammeln i - speichern u i (t)dt d t u c = 1 C i(t) dt

sammeln speichern C [F = As/V] Proportionalitätskonstante Q = CU I = dq/dt sammeln i - speichern u i (t)dt d t u c = 1 C i(t) dt Elekronische Sseme - 3. Kapaziä und Indukiviä 1 -------------------------------------------------------------------------------------------------------------- G. Schaer 26. Mai 24 3. Kapaziä und Indukiviä

Mehr

Schaltvorgänge. Praktikum. Grundlagen der Elektrotechnik. Versuch: Versuchsanleitung. 0. Allgemeines

Schaltvorgänge. Praktikum. Grundlagen der Elektrotechnik. Versuch: Versuchsanleitung. 0. Allgemeines Prakikm Grndlagen der Elekroechnik Versch: Schalvorgänge Verschsanleing. Allgemeines Eine sinnvolle Teilnahme am Prakikm is nr drch eine ge Vorbereing af dem jeweiligen Soffgebie möglich. Von den Teilnehmern

Mehr

Grundlagen der Elektrotechnik II Übungsaufgaben

Grundlagen der Elektrotechnik II Übungsaufgaben Grundlagen der Elekroechnik II Übungsaufgaben 24) ransiene -eihenschalung Die eihenschalung einer Indukiviä ( = 100 mh) und eines Widersands ( = 20 Ω) wird zur Zei = 0 an eine Gleichspannungsquelle geleg.

Mehr

Rechteckgenerator mit Schmitt-Trigger Eine Anwendung des Schmitt-Triggers als Multivibrator stellt der Rechteckgenerator nach Bild 1 dar:

Rechteckgenerator mit Schmitt-Trigger Eine Anwendung des Schmitt-Triggers als Multivibrator stellt der Rechteckgenerator nach Bild 1 dar: echeckgeneraor mi Schmi-rigger echeckgeneraor mi Schmi-rigger Eine Anwendng des Schmi-riggers als Mlivibraor sell der echeckgeneraor nach Bild dar U sa 0 Bild -U sa- C echeckgeneraor mi inverierendem Schmi-rigger.

Mehr

4. Kippschaltungen mit Komparatoren

4. Kippschaltungen mit Komparatoren 4. Kippschalungen mi Komparaoren 4. Komparaoren Wird der Operaionsversärker ohne Gegenkopplung berieben, so erhäl man einen Komparaor ohne Hserese. Seine Ausgangsspannung beräg: a max für > = a min für

Mehr

Versuch 1 Schaltungen der Messtechnik

Versuch 1 Schaltungen der Messtechnik Fachhochschule Merseburg FB Informaik und Angewande Naurwissenschafen Prakikum Messechnik Versuch 1 Schalungen der Messechnik Analog-Digial-Umsezer 1. Aufgaben 1. Sägezahn-Umsezer 1.1. Bauen Sie einen

Mehr

Mathematik III DGL der Technik

Mathematik III DGL der Technik Mahemaik III DGL der Technik Grundbegriffe: Differenialgleichung: Bedingung in der Form einer Gleichung in der Ableiungen der zu suchenden Funkion bis zu einer endlichen Ordnung aufreen. Funkions- und

Mehr

1. Theoretische Grundlagen

1. Theoretische Grundlagen Fachbereich Elektrotechnik / Informationstechnik Elektrische Mess- nd Prüftechnik Laborpraktikm Abgabe der Aswertng dieses Verschs ist Vorassetzng für die Zlassng zm folgenden ermin Grndlagen der Leistngsmessng

Mehr

Labor Messtechnik Versuch 4 Dehnungsmesstechnik

Labor Messtechnik Versuch 4 Dehnungsmesstechnik F Ingenierwesen FR Maschinenba Versch 4 Dehnngsmesstechnik Seite 1 von 8 Versch 4: Dehnngsmesstechnik 1. Verschsafba 1.1. Umfang des Versches Im Versch werden folgende Themenkreise behandelt: - Verschsstand

Mehr

Für die sekundäre Scheinleistung S und die primäre Netzleistung S Netz gelten bei reiner Widerstandslast:

Für die sekundäre Scheinleistung S und die primäre Netzleistung S Netz gelten bei reiner Widerstandslast: 4. Fremdgeführe Sromricher Fremdgeführe Sromricher benöigen eine fremde, nich zum Sromricher gehörende Wechselspannungsquelle, die ihnen während der Dauer der Kommuierung die Kommuierungsspannung zur Verfügung

Mehr

Schriftliche Abiturprüfung Technik/Datenverarbeitungstechnik - Leistungskurs - Hauptprüfung. Pflichtteil

Schriftliche Abiturprüfung Technik/Datenverarbeitungstechnik - Leistungskurs - Hauptprüfung. Pflichtteil Sächsisches Saasminiserium Gelungsbereich: Berufliches Gymnasium für Kulus und Spor Fachrichung: Technikwissenschaf Schuljahr 20/202 Schwerpunk: Daenverarbeiungsechnik Schrifliche Abiurprüfung Technik/Daenverarbeiungsechnik

Mehr

4. Zeitabhängige Spannungen und Ströme in Netzwerken

4. Zeitabhängige Spannungen und Ströme in Netzwerken 86 4 Zeiabhängige Spannungen und Sröme 4 Zeiabhängige Spannungen und Sröme in Nezwerken m vorigen Abschni wurde dargeleg, wie durch zeiliche Änderung des magneischen Flusses Spannungen in Leiern induzier

Mehr

Die Untersuchungen beschränken sich auf harmonische Wechselspannungen und -ströme

Die Untersuchungen beschränken sich auf harmonische Wechselspannungen und -ströme WS 8. Wechselsröme 8.1 Einleiung n Wechselsromkreisen spielen neben Ohmschen Widersänden auch Kondensaoren (Kapaziäen) und Spulen (ndukiviäen) wichige Rolle. n diesem Versuch soll am Beispiel einfacher

Mehr

Berücksichtigung naturwissenschaftlicher und technischer Gesetzmäßigkeiten. Industriemeister Metall / Neu

Berücksichtigung naturwissenschaftlicher und technischer Gesetzmäßigkeiten. Industriemeister Metall / Neu Fragen / Themen zur Vorbereiung auf die mündliche Prüfung in dem Fach Berücksichigung naurwissenschaflicher und echnischer Gesezmäßigkeien Indusriemeiser Meall / Neu Die hier zusammengesellen Fragen sollen

Mehr

Analog-Elektronik Protokoll - Transitorgrundschaltungen. Janko Lötzsch Versuch: 07. Januar 2002 Protokoll: 25. Januar 2002

Analog-Elektronik Protokoll - Transitorgrundschaltungen. Janko Lötzsch Versuch: 07. Januar 2002 Protokoll: 25. Januar 2002 Analog-Elekronik Prookoll - Transiorgrundschalungen André Grüneberg Janko Lözsch Versuch: 07. Januar 2002 Prookoll: 25. Januar 2002 1 Vorberachungen Bei Verwendung verschiedene Transisor-Grundschalungen

Mehr

Versuche mit Oszilloskop und Funktionsgenerator

Versuche mit Oszilloskop und Funktionsgenerator Fachhochschule für Technik und Wirschaf Berlin EMT- Labor Versuche mi Oszilloskop und Funkionsgeneraor Sephan Schreiber Olaf Drzymalski Messung am 4.4.99 Prookoll vom 7.4.99 EMT-Labor Versuche mi Oszilloskop

Mehr

Grundschaltung, Diagramm

Grundschaltung, Diagramm Grundschalung, Diagramm An die gegebene Schalung wird eine Dreieckspannung von Vs (10Vs) angeleg. Gesuch: Spannung an R3, Srom durch R, I1 Der Spannungsverlauf von soll im oberen Diagramm eingezeichne

Mehr

Elementare RC- und RL-Glieder

Elementare RC- und RL-Glieder ANGEWANDTE ELEKTRONIK EINFÜHRNG WS 09/0 Elemenare RC- und RL-Glieder. Der Sromluß durch einen Kondensaor Abb.. veranschaulich einen Kondensaor, der durch Anschalen an eine Spannungsquelle geladen und anschließend

Mehr

Universität Ulm Samstag,

Universität Ulm Samstag, Universiä Ulm Samsag, 5.6. Prof. Dr. W. Arend Robin Nika Sommersemeser Punkzahl: Lösungen Gewöhnliche Differenialgleichungen: Klausur. Besimmen Sie die Lösung (in möglichs einfacher Darsellung) folgender

Mehr

Mathematische Methoden der klassischen Physik Zusammenfassung Differentialgleichungen

Mathematische Methoden der klassischen Physik Zusammenfassung Differentialgleichungen Dr. G. Lechner Mahemaische Mehoden der klassischen Physik Zusammenfassung Differenialgleichungen In der Vorlesung wurden drei unerschiedliche Typen von Differenialgleichungen (DGL) besprochen, die jeweils

Mehr

Flip - Flops 7-1. 7 Multivibratoren

Flip - Flops 7-1. 7 Multivibratoren Flip - Flops 7-7 Mulivibraoren Mulivibraoren sind migekoppele Digialschalungen. Ihre Ausgangsspannung spring nur zwischen zwei fesen Weren hin und her. Mulivibraoren (Kippschalungen) werden in bisabile,

Mehr

Motivation. Finanzmathematik in diskreter Zeit

Motivation. Finanzmathematik in diskreter Zeit Moivaion Finanzmahemaik in diskreer Zei Eine Hinführung zu akuellen Forschungsergebnissen Alber-Ludwigs-Universiä Freiburg Prof. Dr. Thorsen Schmid Abeilung für Mahemaische Sochasik Freiburg, 22. April

Mehr

Latente Wärme und Wärmeleitfähigkeit

Latente Wärme und Wärmeleitfähigkeit Versuch 5 Laene Wärme und Wärmeleifähigkei Aufgabe: Nehmen Sie für die Subsanz,6-Hexandiol Ersarrungskurven auf und ermieln Sie daraus die laene Wärme beim Phasenübergang flüssig-fes sowie den Wärmedurchgangskoeffizienen

Mehr

26 31 7 60 64 10. 16 6 12 32 33 9

26 31 7 60 64 10. 16 6 12 32 33 9 Lineare Algebra / Analyische Geomerie Grundkurs Zenrale schrifliche Abiurprüfungen im Fach Mahemaik Aufgabe 4 Fruchsäfe in Berieb der Geränkeindusrie produzier in zwei Werken an verschiedenen Sandoren

Mehr

Übungsserie: Single-Supply, Gleichrichter Dioden Anwendungen

Übungsserie: Single-Supply, Gleichrichter Dioden Anwendungen 1. Mai 216 Elekronik 1 Marin Weisenhorn Übungsserie: Single-Supply, Gleichricher Dioden Anwendungen Aufgabe 1. Gleichricher In dieser Gleichricherschalung für die USA sei f = 6 Hz. Der Effekivwer der Ausgangspannung

Mehr

1. Oszilloskop. Das Oszilloskop besitzt zwei Betriebsarten: Schaltsymbol Oszilloskop

1. Oszilloskop. Das Oszilloskop besitzt zwei Betriebsarten: Schaltsymbol Oszilloskop . Oszilloskop Grndlagen Ein Oszilloskop ist ein elektronisches Messmittel zr grafischen Darstellng von schnell veränderlichen elektrischen Signalen in einem kartesischen Koordinaten-System (X- Y- Darstellng

Mehr

Stand: 25. Juni 2001 Seite 3-1

Stand: 25. Juni 2001 Seite 3-1 Formelsammlng hema Bereiche eie Wechselspannng Begriffsdefiniion 3- eiger- nd iniendiagramm 3- mrechnng Bogenmaß Gradmaß 3-3 Kreisfreqenz 3-3 Effekivwer 3-3 hasenverschiebngswinkel 3-3 Mahemaische Darsellng

Mehr

1 Abtastung, Quantisierung und Codierung analoger Signale

1 Abtastung, Quantisierung und Codierung analoger Signale Abasung, Quanisierung und Codierung analoger Signale Analoge Signale werden in den meisen nachrichenechnischen Geräen heuzuage digial verarbeie. Um diese digiale Verarbeiung zu ermöglichen, wird das analoge

Mehr

Praktikum Elektronik für FB Informatik

Praktikum Elektronik für FB Informatik Fakulä Elekroechnik Hochschule für Technik und Wirschaf resden Universiy of Applied Sciences Friedrich-Lis-Plaz, 0069 resden ~ PF 2070 ~ 0008 resden ~ Tel.(035) 462 2437 ~ Fax (035) 462 293 Prakikum Elekronik

Mehr

1 Theorie. Versuch 3: Halbleiterbauelemente im Schaltbetrieb. 1.1 Bipolarer Transistor als Schalter in Emitterschaltung

1 Theorie. Versuch 3: Halbleiterbauelemente im Schaltbetrieb. 1.1 Bipolarer Transistor als Schalter in Emitterschaltung Labor Elekronische Prof. Dr. P. Suwe Dipl.-ng. B. Ahrend Versuch 3: Halbleierbauelemene im Schalberieb 1 Theorie Bipolare Transisoren und Feldeffekransisoren lassen sich sowohl zum Versärken von Klein-

Mehr

1. Mathematische Grundlagen und Grundkenntnisse

1. Mathematische Grundlagen und Grundkenntnisse 8 1. Mahemaische Grundlagen und Grundkennnisse Aufgabe 7: Gegeben sind: K = 1; = 18; p = 1 (p.a.). Berechnen Sie die Zinsen z. 18 1 Lösung: z = 1 = 5 36 Man beache, dass die kaufmännische Zinsformel als

Mehr

AUFGABENSAMMLUNG ZUM LEHRGEBIET. AUTOMATISIERUNGSTECHNIK bzw. KONTINUIERLICHE SYSTEME

AUFGABENSAMMLUNG ZUM LEHRGEBIET. AUTOMATISIERUNGSTECHNIK bzw. KONTINUIERLICHE SYSTEME Dr.-Ing. Tatjana Lange Fachhochschle für Technik nd Wirtschaft Fachbereich Elektrotechnik AUFGABENSAMMLUNG ZUM LEHRGEBIET AUTOMATISIERUNGSTECHNIK bzw. KONTINUIERLICHE SYSTEME. Differentialgleichngen Afgabe.:

Mehr

Fachrichtung Mess- und Regelungstechniker

Fachrichtung Mess- und Regelungstechniker Fachrichung Mess- und egelungsechniker 4.3.2.7-2 chüler Daum:. Tiel der L.E. : Digiale euerungsechnik 3 2. Fach / Klasse : Arbeiskunde, 3. Ausbildungsjahr 3. Themen der Unerrichsabschnie :. -Kippglied

Mehr

DSS1. Digitaler Sprachspeicher Einschub mit RAM- und Flash- Speicherbänken. Abb. DSS1 (L- Nr. 2.600) 16 Speicheradressen für Sprachaufzeichnung:

DSS1. Digitaler Sprachspeicher Einschub mit RAM- und Flash- Speicherbänken. Abb. DSS1 (L- Nr. 2.600) 16 Speicheradressen für Sprachaufzeichnung: mi RAM- und Flash- peicherbänken Abb. (L- Nr. 2.600) Auf einen Blick: 16 peicheradressen für prachaufzeichnung: - bis zu 8 Bänke im RAM- peicher (flüchig) - bis zu 8 Bänke im Flash- peicher (permanen)

Mehr

5. Flipflops. 5.1 Nicht-taktgesteuerte Flipflops. 5.1.1 NOR-Flipflop. Schaltung: zur Erinnerung: E 1 A 1 A 2 E 2.

5. Flipflops. 5.1 Nicht-taktgesteuerte Flipflops. 5.1.1 NOR-Flipflop. Schaltung: zur Erinnerung: E 1 A 1 A 2 E 2. AO TIF 5. Nich-akgeseuere Flipflops 5.. NO-Flipflop chalung: E A zur Erinnerung: A B A B 0 0 0 0 0 0 0 E 2 A 2 Funkionsabelle: Fall E E 2 A A 2 0 0 2 0 3 0 4 Erklärungen: Im peicherfall behalen die Ausgänge

Mehr

Übungsaufgaben Mathematik 3 MST Lösung zu Blatt 4 Differentialgleichungen

Übungsaufgaben Mathematik 3 MST Lösung zu Blatt 4 Differentialgleichungen Übngsafgaben Mathematik MST Lösng z Blatt 4 Differentialgleichngen Prof. Dr. B.Grabowski Z Afgabe ) Lösen Sie folgende Differentialgleichngen nd Anfangswertprobleme drch mehrfaches Integrieren nach y(x)

Mehr

Einführung in die Grundlagen der Tontechnik

Einführung in die Grundlagen der Tontechnik Einführng in die Grndlagen der Tonechnik Dieses Skrip sell eine Krz Zsammenfassng einiger Seminarinhale dar. Ohne Ansprch af Vollsändigkei; nd ohne allz ief af echnische Deails nd elekroechnische/- elekronische

Mehr

Seminar Bewertungsmethoden in der Personenversicherungsmathematik

Seminar Bewertungsmethoden in der Personenversicherungsmathematik Seminar Bewerungsmehoden in der Personenversicherungsmahemaik Technische Reserven und Markwere I Sefanie Schüz Mahemaisches Insiu der Universiä zu Köln Sommersemeser 2010 Bereuung: Prof. Hanspeer Schmidli,

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Wechselströme (WS) Frühjahrssemester Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Wechselströme (WS) Frühjahrssemester Physik-Institut der Universität Zürich Anleiung zum Physikprakikum für Obersufenlehrpersonen Wechselsröme (WS) Frühjahrssemeser 2017 Physik-nsiu der Universiä Zürich nhalsverzeichnis 11 Wechselsröme (WS) 11.1 11.1 Einleiung........................................

Mehr

IV Kalibrierung an einem Multimeter (z.b. HP 3458A, Fluke 8508A, Keithley 617 etc.)

IV Kalibrierung an einem Multimeter (z.b. HP 3458A, Fluke 8508A, Keithley 617 etc.) H EW LET T PC K RD On Off 3458 MULTIMETER DCV CV OHM DCI CI FREQ Men croll CDCV OHMF CDCI PER Hold Tes Rese ddress Display/Window Local C o Cal L R T o Zero Trig Recall ae E NPLC N? Offse Comp N Rdgs/

Mehr

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 www.mahe-aufgaben.com Abiurprüfung Mahemaik 009 (Baden-Würemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (7 Punke) Das Schaubild P einer Polynomfunkion drien Grades ha den Wendepunk W(-/-) und

Mehr

Praktikum Grundlagen der Elektrotechnik

Praktikum Grundlagen der Elektrotechnik Prakkm Grndlagen der Elekroechnk 1. Versch GET 3: Schalverhalen an C nd Faklä für Elekroechnk nd Informaonsechnk Ins für Informaonsechnk ehrgrppe Grndlagen der Elekroechnk. Sandor In nseren aboren m Helmholzba

Mehr

Unterschied 2: kurzfristige vs langfristige Zinssätze. Arbitrage impliziert: r = i e i = r + e (1) (2)

Unterschied 2: kurzfristige vs langfristige Zinssätze. Arbitrage impliziert: r = i e i = r + e (1) (2) Unerschied : kurzfrisige vs langfrisige Zinssäze Inermediae Macro - Uni Basel 10 Arbirage implizier: (1) () Es gib eine klare Beziehung zwischen langfrisigen Zinsen und erwareen künfigen Kurzfriszinsen

Mehr

C Die Gleichung. Passive Netzwerke Differentialgleichungen H. Friedli. Darstellung der passiven Bauelemente Widerstand Kondensator Spule

C Die Gleichung. Passive Netzwerke Differentialgleichungen H. Friedli. Darstellung der passiven Bauelemente Widerstand Kondensator Spule Passive Neweke Diffeenialgleichungen H. Fiedli Dasellung de passiven auelemene Widesand Kondensao Spule du U R I( ) I U& di( ) ( ) U L L I& d d Mi diesen Definiionen lassen sich alle passiven Kombinaionen

Mehr

T6 THERMOELEMENT UND ABKÜHLUNGSGESETZ

T6 THERMOELEMENT UND ABKÜHLUNGSGESETZ PHYSIKALISCHE GRUNDLAGEN Wichtige Grndbegriffe: ermspannng, ermelement, ermkraft, Astrittsarbeit, Newtnsches Abkühlngsgesetz Beschreibng eines ermelementes: Ein ermelement besteht as zwei Drähten verschiedenen

Mehr

DIE ZUTEILUNGSREGELN 2008 2012: BRANCHENBEISPIEL PAPIER- UND ZELLSTOFFERZEUGUNG (TÄTIGKEITEN XIV UND XV TEHG)

DIE ZUTEILUNGSREGELN 2008 2012: BRANCHENBEISPIEL PAPIER- UND ZELLSTOFFERZEUGUNG (TÄTIGKEITEN XIV UND XV TEHG) 26. November 2007 DIE ZUTEILUNGSREGELN 2008 2012: BRANCHENBEISPIEL PAPIER- UND ZELLSTOFFERZEUGUNG (TÄTIGKEITEN XIV UND XV TEHG) Informion zur Anwendung der gesezlichen Regelungen zur Zueilung von Kohlendioxid-Emissionsberechigungen

Mehr

4 Bauteile kennenlernen

4 Bauteile kennenlernen 4 Baueile kennenlernen 4.1 Widersand Widersände sind Baueile mi einem gewünschen Widersandsverhalen. Sie sezen der Elekronensrömung Widersand engegen. Man unerscheide zwischen linearen und nichlinearen

Mehr

7.3. Partielle Ableitungen und Richtungsableitungen

7.3. Partielle Ableitungen und Richtungsableitungen 7.3. Parielle Ableiungen und Richungsableiungen Generell vorgegeben sei eine Funkion f von einer Teilmenge A der Ebene R oder allgemeiner des n-dimensionalen Raumes R n nach R. Für x [x 1,..., x n ] aus

Mehr

Nachtrag Nr. 93 a. gemäß 10 Verkaufsprospektgesetz (in der vor dem 1. Juli 2005 geltenden Fassung) Unvollständiger Verkaufsprospekt

Nachtrag Nr. 93 a. gemäß 10 Verkaufsprospektgesetz (in der vor dem 1. Juli 2005 geltenden Fassung) Unvollständiger Verkaufsprospekt Nachrag Nr. 93 a gemäß 10 Verkaufsprospekgesez (in der vor dem 1. Juli 2005 gelenden Fassung) vom 27. Okoer 2006 zum Unvollsändiger Verkaufsprospek vom 31. März 2005 üer Zerifikae auf * ezogen auf opzins

Mehr

III.2 Radioaktive Zerfallsreihen

III.2 Radioaktive Zerfallsreihen N.BORGHINI Version vom 5. November 14, 13:57 Kernphysik III. Radioakive Zerfallsreihen Das Produk eines radioakiven Zerfalls kann selbs insabil sein und späer zerfallen, und so weier, sodass ganze Zerfallsreihen

Mehr

Thema : Rendite und Renditemessung

Thema : Rendite und Renditemessung Thema : Rendie und Rendiemessung Lernziele Es is wichig, die Zeigewichung der Rendie als ennzahl zu versehen, den Unerschied zwischen einer koninuierlichen und einer diskreen erzinsung zu begreifen und

Mehr

3. Das Identifikationsproblem

3. Das Identifikationsproblem 3. Das Idenifikaionsroblem 3. 3. Idenifizierbarkei eines Modells Den Parameern des Modells können afgrnd der Beobachngswere für die Variablen eindeig Were zgewiesen werden. Zlässige Srkr des Modells: jede

Mehr

11. Flipflops. 11.1 NOR-Flipflop. Schaltung: zur Erinnerung: E 1 A 1 A 2 E 2. Funktionstabelle: Fall E 1 E 2 A 1 A 2 1 0 0 2 0 1 3 1 0 4 1 1

11. Flipflops. 11.1 NOR-Flipflop. Schaltung: zur Erinnerung: E 1 A 1 A 2 E 2. Funktionstabelle: Fall E 1 E 2 A 1 A 2 1 0 0 2 0 1 3 1 0 4 1 1 TONI T0EL. Flipflops. Flipflops. NO-Flipflop chalung: E A zur Erinnerung: A B A B 0 0 0 0 0 0 0 E 2 A 2 Funkionsabelle: Fall E E 2 A A 2 0 0 2 0 3 0 4 Beobachung: Das NO-Flipflop unerscheide sich von allen

Mehr

Physikalische Analyse der Dimensionierungsgrundlagen zur Entwicklung einer Methode zur Konzipierung und Optimierung eines Elektromobils

Physikalische Analyse der Dimensionierungsgrundlagen zur Entwicklung einer Methode zur Konzipierung und Optimierung eines Elektromobils Physikalische Aalyse der Dimesioierugsgrudlage zur Ewicklug eier ehode zur Kozipierug ud Opimierug eies Elekromobils Auore: K. Brikma, W. Köhler Lehrgebie Elekrische Eergieechik Feihsraße 140, Philipp-eis-Gebäude,

Mehr

Diskrete Integratoren und Ihre Eigenschaften

Diskrete Integratoren und Ihre Eigenschaften Diskree Inegraoren und Ihre Eigenschafen Whie Paper von Dipl.-Ing. Ingo Völlmecke Indusrielle eglersrukuren werden im Allgemeinen mi Hilfe von Inegraoren aufgebau. Aufgrund des analogen Schalungsaufbaus

Mehr

Leistungselektronik Grundlagen und Standardanwendungen. Übung 3: Kommutierung

Leistungselektronik Grundlagen und Standardanwendungen. Übung 3: Kommutierung Lehrsuhl für Elekrische Anriebssyseme und Leisungselekronik Technische Universiä München Arcissraße 1 D 8333 München Email: eal@ei.um.de Inerne: hp://www.eal.ei.um.de Prof. Dr.-Ing. Ralph Kennel Tel.:

Mehr

Vom singenden Draht zum DVB-C

Vom singenden Draht zum DVB-C Vom singenden Drah zum DVB-C Is digiale Kommunikaion effiziener? Gerolf Ziegenhain TU Kaiserslauern Übersich Einleiung Begriffsklärung Ziel Analoge Modulaion AM FM Muliplexverfahren Digiale Modulaion QPSK

Mehr

Energietechnisches Praktikum I Versuch 11

Energietechnisches Praktikum I Versuch 11 INSI FÜR HOCHSPANNNGSECHNIK Rheinisch-Wesfälische echnische Hochschule Aachen niv.-prof. Dr.-Ing. Armin Schneler INSI FÜR HOCHSPANNNGS ECHNIK RHEINISCH- WESFÄLISCHE ECHNISCHE HOCHSCHLE AACHEN Energieechnisches

Mehr

Übungen zur Vorlesung Nachrichtenübertragungstechnik E5iK Blatt 10

Übungen zur Vorlesung Nachrichtenübertragungstechnik E5iK Blatt 10 Fachhochschule Augsburg SS 20001 Fachbereich Elekroechnik Modulaion digialer Signale Übungen zur Vorlesung Nachrichenüberragungsechnik E5iK Bla 10 Fragen 1. Welche Voreile biee die digiale Überragung von

Mehr

SERVICE NEWSLETTER. Einführung in die Mechanik Teil 2: Kinematik (2)

SERVICE NEWSLETTER. Einführung in die Mechanik Teil 2: Kinematik (2) Einührung in ie Mechanik Teil : Kinemaik Ausgabe: 9 / 4 In iesem Teil er Reihe wollen wir anhan eines Zahlenbeispiels en Deomaionsgraienen als zenrale Größe zur Beschreibung er Deormaion in er Kinemaik

Mehr

Warum ist die Frage, wem ein Leasingobjekt zugerechnet wird, wichtig? Welche Vorteile kann ein Leasinggeber (eine Leasinggesellschaft) ggf. erzielen?

Warum ist die Frage, wem ein Leasingobjekt zugerechnet wird, wichtig? Welche Vorteile kann ein Leasinggeber (eine Leasinggesellschaft) ggf. erzielen? 1) Boschafen von Kapiel 7 Welche Eigenschafen ha ein Finanzierungs-Leasing-Verrag? Warum is die Frage, wem ein Leasingobjek zugerechne wird, wichig? FLV, vollkommener Kapialmark und Gewinnseuer Welche

Mehr

Interne und Externe Ratings

Interne und Externe Ratings Inerne nd Exerne Raings - Eine Simlaionssdie - Seminararbei Im Rahmen des speziellen Seminars mi dem Generalhema Kredirisiko Winersemeser 00/003 eingereich bei Prof. Dr. Mark Wahrenbrg Professr für Bankberiebslehre

Mehr

Energiespeicherelemente der Elektrotechnik Kapazität und Kondensator

Energiespeicherelemente der Elektrotechnik Kapazität und Kondensator 1.7 Energiespeicherelemene der Elekroechnik 1.7.1 Kapaziä und Kondensaor Influenz Eine Ladung befinde sich in einer Kugelschale. Auf der Oberfläche des Leiers werden Ladungen influenzier (Influenz). Das

Mehr

Physik Übung * Jahrgangsstufe 9 * Versuche mit Dioden

Physik Übung * Jahrgangsstufe 9 * Versuche mit Dioden Physik Übung * Jahrgangssufe 9 * Versuche mi Dioden Geräe: Nezgerä mi Spannungs- und Sromanzeige, 2 Vielfachmessgeräe, 8 Kabel, ohmsche Widersände 100 Ω und 200 Ω, Diode 1N4007, Leuchdiode, 2 Krokodilklemmen

Mehr

Coulomb Oersted Ampére Ohm Kirchhoff Gauß Faraday Maxwell

Coulomb Oersted Ampére Ohm Kirchhoff Gauß Faraday Maxwell FO chwerpnkfach Elekroechnik in der Fachoberschle Klasse Organisaionsform B Heinrich-Emanel-Merck-chle Darmsad Fachoberschle Didakisches Konzep www.hems.de Technik komm ohne Physik as, wie der Filmsar

Mehr

9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION

9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION Eponenialfunkion, Logarihmusfunkion 9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION 9.. Eponenialfunkion (a) Definiion Im Abschni Zinseszinsrechnung konne die Berechnung eines Kapials K n nach n Perioden der

Mehr

2 Messsignale. 2.1 Klassifizierung von Messsignalen

2 Messsignale. 2.1 Klassifizierung von Messsignalen 7 2 Messsignale Messwere beinhalen Informaionen über physikalische Größen. Die Überragung dieser Informaionen erfolg in Form eines Signals. Allerdings wird der Signalbegriff im äglichen Leben mehrdeuig

Mehr

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit SS 2008

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit SS 2008 Phillips Kurve (Blanchard Ch.8) 151 Einleiung Inflaion und Arbeislosigkei in den Vereinigen Saaen, 1900-1960 In der beracheen Periode war in den USA eine niedrige Arbeislosigkei ypischerweise von hoher

Mehr

11.8 Digitale Filter. Vorteile digitaler Filter

11.8 Digitale Filter. Vorteile digitaler Filter Fachhochschule usbur Fachbereich Elekroechnik Pro. Dr. C. Clemen.8 Diiale Filer Nachrichenüberraunsechnik.8 Diiale Filer ls wichies Beispiel ür diiale Sinalverarbeiun sollen nun diiale Filer behandel werden.

Mehr

3. TRANSISTOREN 3.1. EINLEITUNG 3.2. AUFBAU UND WIRKUNGSWEISE DES TRANSISTORS 3.2.1. PRINZIPIELLER AUFBAU DES TRANSISTORS

3. TRANSISTOREN 3.1. EINLEITUNG 3.2. AUFBAU UND WIRKUNGSWEISE DES TRANSISTORS 3.2.1. PRINZIPIELLER AUFBAU DES TRANSISTORS 3. TRANSISTOREN 3.. EINLEITUNG Der hete verwendete (Bipolar-) Transistor wrde von Bardeen Brattain nd Shockley 948 in den Bell Laboratorien af der Grndlage der Gleichrichtertheorie von Schottky erfnden.

Mehr

Schriftliche Prüfung aus Control Systems 1 am

Schriftliche Prüfung aus Control Systems 1 am TU Graz, Institt für Regelngs- nd Atomatisierngstechnik A Schriftliche Prüfng as Control Systems am 5 0 006 Name / Vorname(n): Kenn-MatrNr: Gebrtsdatm: BONUSPUNKTE as Compterrechenübng: 3 erreichbare Pnkte

Mehr

Bericht zur Prüfung im Oktober 2007 über Finanzmathematik und Investmentmanagement

Bericht zur Prüfung im Oktober 2007 über Finanzmathematik und Investmentmanagement Berich zur Prüfung im Okober 7 über Finanzmahemaik und Invesmenmanagemen (Grundwissen) Peer Albrech (Mannheim) Am 5 Okober 7 wurde zum zweien Mal eine Prüfung im Fach Finanzmahemaik und Invesmenmanagemen

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Zenrale schrifliche Abiurprüfungen im Fach Mahemaik Aufgabe 9: Radioakiver Zerfall Beim radioakiven Zerfall einer Subsanz S 1 beschreib m 1 () die Masse der noch nich zerfallenen Subsanz zum Zeipunk mi

Mehr

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R.

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R. Abiuraufgaben Grundkurs 9 Bayern Analysis I I.). Die Abbildung zeig den Graphen G f einer ganzraionalen Funkion f drien Grades mi dem Definiionsbereich D f R. Die in der Abbildung angegebenen Punke P(

Mehr

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff Die Bioverfügbarkei is eine Messgröße dafür, wie schnell und in welchem Umfang ein Arzneimiel resorbier wird und am Wirkor zur Verfügung seh. Zur Messung der Bioverfügbarkei wird die Wirksoffkonzenraion

Mehr

5. Selbstgeführte Stromrichter

5. Selbstgeführte Stromrichter 5. Selbsgeführe Sromricher Selbsgeführe Sromricher benöigen ke fremde Wechselspannungsquelle zur Kommuierung. Die Kommuierungsspannung wird von em zum Sromricher gehörenden öschkondensaor zur Verfügung

Mehr

Zwei Rechenbeispiele für die einfache lineare Regression

Zwei Rechenbeispiele für die einfache lineare Regression Einfache Regression mi Ecel Prof. Dr. Peer von der Lippe Zwei Rechenbeispiele für die einfache lineare Regression 1.1. Daen 1. Mindeslöhne Beispiel 1 Ennommen aus Rolf Ackermann, pielball des Lobbyisen,

Mehr

10. Wechselspannung Einleitung

10. Wechselspannung Einleitung 10.1 Einleiung In Sromnezen benuz man sa Gleichspannung eine sinusförmige Wechselspannung, uner anderem weil diese wesenlich leicher zu erzeugen is. Wie der Name es sag wechsel bei einer Wechselspannung

Mehr

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge Dr. Dirk Windelberg Leibniz Universiä Hannover Mahemaik für Ingenieure Mahemaik hp://www.windelberg.de/agq 14 Kurven in Parameerdarsellung, Tangenenvekor und Bogenlänge Aufgabe 14.1 (Tangenenvekor und

Mehr

1 Experimentelle Entwurfsverfahren für Strecken mit Ausgleich Summenzeitverfahren nach Kuhn... 2

1 Experimentelle Entwurfsverfahren für Strecken mit Ausgleich Summenzeitverfahren nach Kuhn... 2 Inhalsverzeichnis Eperimenelle Enwrfsverfahren für recken mi Asleich.... mmenzeiverfahren nach hn.... erfahren nach Chien, Hrones nd eswick... 4.3 erfahren nach Zieler nd ichols... 6.4 Eperimenelles Einsellverfahren

Mehr

Freie Schwingung - Lösungsfälle

Freie Schwingung - Lösungsfälle Freie Schwingungen Seie von 6 Peer Schüller peer.schueller@bbw.gv.a Freie Schwingung - Lösungsfälle Maheaische / Fachliche Inhale in Sichworen: Differenialgleichung.Ornung i onsanen Koeffizienen, Schwingung

Mehr