GRUNDLAGENLABOR CLASSIC RC-GLIED

Größe: px
Ab Seite anzeigen:

Download "GRUNDLAGENLABOR CLASSIC RC-GLIED"

Transkript

1 GUNDLAGNLABO LASSI -GLID Inhal: 1. inleing nd Zielsezng Theoreische Afgaben - Vorbereing Prakische Messafgaben...4 Anhang: in- nd Asschalvorgänge...5 Filename: Version: Ahor: _Glied_2_.doc 2. S. Wicki reaed: Las modified: Page: :23 1 / 9

2 Sdiengang lekroechnik Grndlagenlabor / WK lassic 1. INLITUNG UND ZILSTZUNG In der lekronik werden häfig Kombinaionen as L-Nezwerken als Filer eingesez. Vor allem in Verbindng mi MV 1 -gerechen Schalngsenwrf, kann man af solche Filer nich verzichen. Ach Schalnezeile beinhalen viele Splen als Sromgläer nd Kondensaoren als Spannngsgläer. Darm is es wichig, mi diesen wichigen Komponenen der lekroechnik verra z sein nd ihre igenschafen gena z kennen, m Schalngen schnell enwerfen nd analysieren z können. In diesem Versch sollen diese igenschafen asgemessen nd verief werden. Dieser Versch ha folgende Zielsezngen: Die passiven Grndelemene der lekroechnik z versehen Wichige Krvenformen mi ern im Zeibereich kennen lernen Fesigng der Theorie Benzng des Kahodensrahloszilloskops (KO) Benzng des Signalgeneraors Übng im Umgang mi den Messgeräen 2. THOTISH AUFGABN - VOBITUNG 2.1 Theoreische Grndlagen Sdieren Sie die Theoreischen Grndlagen im Anhang nd lösen Sie Afgaben daz (Kap.2.2). 1 MV: lekromagneische Verräglichkei Version 2. Seie 2 / 9

3 Sdiengang lekroechnik Grndlagenlabor / WK lassic 2.2 Afgaben a) Berechnen nd skizzieren Sie die Asgangsspannng für jeweils zwei Perioden für eine Signalfreqenz von 2Hz nd eine Signalfreqenz von 1kHz mi den lemenen 1 =1kΩ nd 1 =1nF. Der Kondensaor is im Zeipnk = enladen. 1 1 A Fig. 2-1 ingangssignal mi 5% Dy-ycle (ein/t) T 1 b) Vom ingangssignal wird das Tasverhälnis (Dy-ycle) von 5% af 25% geänder. Wie sieh nn das Asgangssignal as (die Schalng bleib besehen, der Kondensaor is im Zeipnk = enladen)? T 1 Fig. 2-2 ingangssignal mi 25% Dy-ycle c) Zm Kondensaor wird nn ein Widersand parallel geschale. Berechnen nd skizzieren Sie die Asgangsspannng für jeweils zwei Perioden für eine Signalfreqenz von 2Hz nd eine Signalfreqenz von 1kHz mi den lemenen 1 =1kΩ, 2 =1kΩ nd 1 =1nF. Der Kondensaor is im Zeipnk = enladen A T 1 Fig. 2-3 ingangssignal mi 5% Dy-ycle nd Widersand parallel zm Kondensaor d) Der verwendee Signalgeneraor ha einen Innenwidersand von 5Ω. Welchen inflss ha dieser Innenwidersand af die Zeikonsane des s. Version 2. Seie 3 / 9

4 Sdiengang lekroechnik Grndlagenlabor / WK lassic 3. PAKTISH MSSAUFGABN 3.1 Transienes Verhalen von -Nez Baen Sie die Schalng gemäss Fig. 3-1 af mi den lemenen 1 =1kΩ nd 1 =1nF. H1 1 H2 1 A T 1 Fig. 3-1 echecksignal mi 5% Dy-ycle a) Unerschen Sie die Af- nd nladekrve (Spannngsverlaf) mi dem KO, indem sie die Periodendaer T 1 >> τ wählen. Zeichnen Sie die Verläfe af. b) Überlegen Sie sich, wie man den Srom drch den Kondensaor messen kann nd nerschen Sie ach hier die Af- nd nladekrve (Sromverlaf) Nezwerk an periodischem echecksignal Baen Sie die Schalngen von den Theoreischen Afgaben (Kap. 2.2) af nd überprüfen Sie die echnngen mi Messngen Nezwerk an harmonischem Signal (Sins) Die Were der lemenen bleib erhalen ( 1 =1kΩ nd 1 =1nF). H1 1 H2 1 A T 1 Fig. 3-2 Sinssignal a) Messen Sie die Phasenverschiebng wie ach die Abschwächng zwischen dem Asgangssignal nd dem ingangssignal, indem Sie die ingangsfreqenz in Vernünfigem Masse ändern. Skizzieren Sie die Phasenverschiebng (linearer Massab) nd die Abschwächng (linearer nd logarihmischer Massab) in Fnkion der Freqenz. b) Schalen Sie den KO in den xy-berrieb nd variieren Sie die Freqenz. Was kann man ablesen, was erkenn man nd wie is das erklärbar? Version 2. Seie 4 / 9

5 Sdiengang lekroechnik Grndlagenlabor / WK lassic ANHANG: IN- UND AUSSHALTVOGÄNG 2 Bei den bisherigen Beispielen mi L-Nezwerken war enweder der Srom- oder der Spannngsverlaf vorgegeben. Im allgemeinen Fall sind der zeiliche Srom- nd Spannngsverlaf nbekanne Grössen. Sell man für ein beliebiges L-Nezwerk z.b. die Maschengleichng af nd sez die ohmschen Geseze ein, so reslier eine sogenanne Differenialgleichng (DGL). Die Lösng der DGL (zsammen mi den Anfangsbedingngen) beschreib dann die gesche Grösse, nämlich die zeiabhängige Spannng (oder den zeiabhängigen Srom). Die mahemaischen Vorassezngen zr Behandlng von Nezwerken im Zeibereich sind also Kennnisse von Differenialgleichngen nd Mehoden zr Lösng derselben. Die folgenden Kapiel sind beschränk af in- nd Asschalvorgänge an - oder L-Nezwerken, bei denen die Lösngsfnkionen der DGL s von der gleichen Srkr sind (xponenialfnkionen). Als einführendes Beispiel wird der Afladevorgang eines Kondensaors nersch. Figr A- 1 zeig das -Nezwerk nd die angelege Spannng 1 (). Zm Zeipnk = wird der Schaler S geschlossen; d.h. für = gil 2 () = 1 (). Der Kondensaor is ngeladen ( (<)=). S i() 2 () 1 () = U 2 () () U = Figr A- 1: Afladen eines Kondensaors: Schaler S wird zm Zeipnk = geschlossen Wie sehen die zeilichen Verläfe von Kondensaorspannng () nd Srom i() as? Mi dem Maschensaz ergib sich (nach dem Schliessen des Schalers): () + i() + () = 2 mi 2 () = U nd i d () () = = & () erhäl man: d & () + () = U, () = (1) Gleichng (1) is die z Figr A- 1 zgehörige Differenialgleichng; die Lösng der DGL beschreib dann den Verlaf der Kondensaorspannng (). 2 Qelle: Skrip Allgemeine lekroechnik, Version , Peer Niklas, FHNW Version 2. Seie 5 / 9

6 Sdiengang lekroechnik Grndlagenlabor / WK lassic Ohne weiere mahemaische Veriefng der DGL-Theorie wird jez die Lösng von (1) angegeben: / τ () = U e, mi τ = 1 c h (2) Drch insezen von (2) in (1) kann die Güligkei der Lösng verifizier werden. Gleichng (2) is der klassische Spannngsverlaf ( Ladekrve ) für die Afladng eines Kondensaors nd wird nn asführlich diskier. Das Prodk τ = bezeichne man als Zeikonsane der Schalng (siehe ach Figr A- 1). Figr A- 2 zeig den Spannngsverlaf am Kondensaor. U () 63% 86% 99% ( = ) = ( = +) = ( = 1 τ).63 U ( = 2 τ).86 U ( = 3 τ).95 U ( = 5 τ).99 U τ 2τ 3τ 4τ 5τ ( ) = U ( ) = U e 1 Figr A- 2: Afladen eines Kondensaors: Spannngsverlaf nd markane Were c / τ h, τ = Die Anfangsseigng der Krve (bei = ) kann mi dem Abragen der Zeikonsanen τ konsrier werden (siehe Figr). Markane Pnke sind z.b. 63% vom ndwer nach einer Zeikonsanen nd 99% vom ndwer nach fünf Zeikonsanen (Kondensaor is prakisch geladen). Die Gleichng (2) zsammen mi der Figr A- 2 sind von elemenarer Bedeng nd müssen jederzei abrfberei sein. Version 2. Seie 6 / 9

7 Sdiengang lekroechnik Grndlagenlabor / WK lassic U () Der Srom i() kann berechne werden mi i() = & (), oder i() = (siehe ach Figr A- 1). Für den Srom ergib sich dami (3). Figr A- 3 zeig den ypischen Sromverlaf. U i () e / = τ, mi τ = (3) U / i() i( = ) = i( = +) = U / i( = 1 τ).37 U / i( = 2 τ).14 U / 37% i( = 3 τ).5 U / 14% 1% τ 2τ 3τ 4τ 5τ i( = 5 τ).1 U / i( ) = Figr A- 3: Afladen eines Kondensaors: Sromverlaf nd markane Were Ach hier kann die Anfangsseigng der Krve (bei = +) mi dem Abragen der Zeikonsanen τ konsrier werden (siehe Figr). Markane Pnke sind z.b. 37% vom Anfangswer nach einer Zeikonsanen nd 1% vom Anfangswer nach fünf Zeikonsanen (Kondensaor is prakisch geladen, es fliess kein Srom mehr). Die Gleichng (3) zsammen mi der Figr A- 3 sind wiederm grndlegend nd wichig. Berache man den Spannngs- nd Sromverlaf am Kondensaor (Figr A- 2 nd Figr A- 3), so sind folgende Besonderheien feszhalen: - Die Spannng am Kondensaor spring nich! - Für = wirk der Kondensaor wie ein Krzschlss ( = ) - Für = fäll die ganze Spannng über dem Widersand ab, nd somi is i(=) = U / Version 2. Seie 7 / 9

8 Sdiengang lekroechnik Grndlagenlabor / WK lassic Als zweies Beispiel wird der nladevorgang eines Kondensaors nersch. in anfänglich geladener Kondensaor wird über einen Widersand enladen. Figr A- 4 zeig das -Nezwerk mi der Anfangsspannng U des Kondensaors. Zm Zeipnk = wird der Schaler S geschlossen; d.h. für = gil () = (). S i() () () mi ( < ) = U (anfänglich geladener Kondensaor) Figr A- 4: nladen eines Kondensaors: Schaler S wird zm Zeipnk = geschlossen Mi dem Maschensaz ergib sich (nach dem Schliessen des Schalers): () () = mi () = i() nd i d () () = = & () erhäl man (Zählpfeile beachen!): d () + & () =, () = U (4) Gleichng (4) is die z Figr A- 4 zgehörige Differenialgleichng; die Lösng der DGL beschreib dann den Verlaf der Kondensaorspannng (). Ach hier wird die Lösng von (4) angegeben (ohne Herleing): / τ () = U e, mi τ = (5) Drch insezen von (5) in (4) kann die Güligkei der Lösng verifizier werden. Gleichng (5) is der Spannngsverlaf für die nladng eines Kondensaors ( nladekrve ). Das Prodk τ = is wieder die Zeikonsane der Schalng (siehe ach Figr A- 4). Mi i () = () = () erhäl man für den Srom: U i () e / = τ, mi τ = (6) Version 2. Seie 8 / 9

9 Sdiengang lekroechnik Grndlagenlabor / WK lassic Spannngs- nd Sromverlaf für die Kondensaorenladng sind in folgenden beiden Figren dargesell. () i() U U / τ 2τ 3τ 4τ 5τ τ 2τ 3τ 4τ 5τ S wird geschlossen Figr A- 5: Kondensaorenladng: Spannngsverlaf S wird geschlossen Figr A- 6: Kondensaorenladng: Sromverlaf Vergleich man die Afladng mi der nladng des Kondensaors, so sind folgende Bemerkngen angebrach: - Der Sromverlaf is für beide Fälle idenisch (ichng ha geänder!) - Die Spannng am Kondensaor spring nich - Alle Lösngsfnkionen für Srom nd Spannng enhalen die xponenialfnkion Für ransienes Verhalen (in- nd Asschalvorgänge) in -Nezwerken (nd L-Nezwerken) is die xponenialfnkion von ässerser Wichigkei, da sie den Kern der Lösngsfnkionen für Srom nd Spannng bilde. Version 2. Seie 9 / 9

Abiturprüfung Baden-Württemberg 1986

Abiturprüfung Baden-Württemberg 1986 001 - hp://www.emah.de 1 Abirprüfng Baden-Würemberg 1986 Leisngskrs Mahemaik - Analysis Z jedem > 0 is eine Fnkion f gegeben drch f x x x e x ; x IR Ihr Schabild sei K. a Unersche K af Asympoen, Schnipnke

Mehr

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ...

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ... FH D FB 3 Fachhochschule Düsseldorf Universiy of Applied Sciences Fachbereich Elekroechnik Deparmen of Elecrical Engineering Prakikum Grundlagen der Elekroechnik Versuch 5 Name Marikelnummer:... Anesa

Mehr

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild:

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild: Ein Nezgerä, auch Nezeil genann, is eine elekronische Schalungen die die Wechselspannung aus dem Sromnez (230V~) in eine Gleichspannung umwandeln kann. Ein Nezgerä sez sich meisens aus folgenden Komponenen

Mehr

Labor Übertragungstechnik

Labor Übertragungstechnik Labor Überragngsechnik Pro. Dr. Ing. Lilia Laji Dipl. Ing. Irina Ikker Qadrar Aplidenodlaion Grppenner: eilneher: Nae Vornae Marikelner 3 Osalia Hochschle ür angewande Wissenschaen Hochschle Branschweig/Wolenbüel

Mehr

Schaltungen mit nichtlinearen Widerständen

Schaltungen mit nichtlinearen Widerständen HOCHSCHLE FÜ TECHNIK ND WITSCHAFT DESDEN (FH) niversity of Applied Sciences Fachbereich Elektrotechnik Praktikm Grndlagen der Elektrotechnik Versch: Schaltngen mit nichtlinearen Widerständen Verschsanleitng

Mehr

Kondensator und Spule im Gleichstromkreis

Kondensator und Spule im Gleichstromkreis E2 Kondensaor und Spule im Gleichsromkreis Es sollen experimenelle nersuchungen zu Ein- und Ausschalvorgängen bei Kapaziäen und ndukiviäen im Gleichsromkreis durchgeführ werden. Als Messgerä wird dabei

Mehr

5. Flipflops. 5.1 Nicht-taktgesteuerte Flipflops. 5.1.1 NOR-Flipflop. Schaltung: zur Erinnerung: E 1 A 1 A 2 E 2.

5. Flipflops. 5.1 Nicht-taktgesteuerte Flipflops. 5.1.1 NOR-Flipflop. Schaltung: zur Erinnerung: E 1 A 1 A 2 E 2. AO TIF 5. Nich-akgeseuere Flipflops 5.. NO-Flipflop chalung: E A zur Erinnerung: A B A B 0 0 0 0 0 0 0 E 2 A 2 Funkionsabelle: Fall E E 2 A A 2 0 0 2 0 3 0 4 Erklärungen: Im peicherfall behalen die Ausgänge

Mehr

1. Theoretische Grundlagen

1. Theoretische Grundlagen Fachbereich Elektrotechnik / Informationstechnik Elektrische Mess- nd Prüftechnik Laborpraktikm Abgabe der Aswertng dieses Verschs ist Vorassetzng für die Zlassng zm folgenden ermin Grndlagen der Leistngsmessng

Mehr

26 31 7 60 64 10. 16 6 12 32 33 9

26 31 7 60 64 10. 16 6 12 32 33 9 Lineare Algebra / Analyische Geomerie Grundkurs Zenrale schrifliche Abiurprüfungen im Fach Mahemaik Aufgabe 4 Fruchsäfe in Berieb der Geränkeindusrie produzier in zwei Werken an verschiedenen Sandoren

Mehr

Versuch 1 Schaltungen der Messtechnik

Versuch 1 Schaltungen der Messtechnik Fachhochschule Merseburg FB Informaik und Angewande Naurwissenschafen Prakikum Messechnik Versuch 1 Schalungen der Messechnik Analog-Digial-Umsezer 1. Aufgaben 1. Sägezahn-Umsezer 1.1. Bauen Sie einen

Mehr

Schriftliche Abiturprüfung Technik/Datenverarbeitungstechnik - Leistungskurs - Hauptprüfung. Pflichtteil

Schriftliche Abiturprüfung Technik/Datenverarbeitungstechnik - Leistungskurs - Hauptprüfung. Pflichtteil Sächsisches Saasminiserium Gelungsbereich: Berufliches Gymnasium für Kulus und Spor Fachrichung: Technikwissenschaf Schuljahr 20/202 Schwerpunk: Daenverarbeiungsechnik Schrifliche Abiurprüfung Technik/Daenverarbeiungsechnik

Mehr

11. Flipflops. 11.1 NOR-Flipflop. Schaltung: zur Erinnerung: E 1 A 1 A 2 E 2. Funktionstabelle: Fall E 1 E 2 A 1 A 2 1 0 0 2 0 1 3 1 0 4 1 1

11. Flipflops. 11.1 NOR-Flipflop. Schaltung: zur Erinnerung: E 1 A 1 A 2 E 2. Funktionstabelle: Fall E 1 E 2 A 1 A 2 1 0 0 2 0 1 3 1 0 4 1 1 TONI T0EL. Flipflops. Flipflops. NO-Flipflop chalung: E A zur Erinnerung: A B A B 0 0 0 0 0 0 0 E 2 A 2 Funkionsabelle: Fall E E 2 A A 2 0 0 2 0 3 0 4 Beobachung: Das NO-Flipflop unerscheide sich von allen

Mehr

Wechselspannung. Zeitlich veränderliche Spannung mit periodischer Wiederholung

Wechselspannung. Zeitlich veränderliche Spannung mit periodischer Wiederholung Elekrische Schwingungen und Wellen. Wechselsröme i. Wechselsromgrößen ii.wechselsromwidersand iii.verhalen von LC Kombinaionen. Elekrischer Schwingkreis 3. Elekromagneische Wellen Wechselspannung Zeilich

Mehr

Fachrichtung Mess- und Regelungstechniker

Fachrichtung Mess- und Regelungstechniker Fachrichung Mess- und egelungsechniker 4.3.2.7-2 chüler Daum:. Tiel der L.E. : Digiale euerungsechnik 3 2. Fach / Klasse : Arbeiskunde, 3. Ausbildungsjahr 3. Themen der Unerrichsabschnie :. -Kippglied

Mehr

Signal- und Systemtheorie for Dummies

Signal- und Systemtheorie for Dummies FB Eleroechni Ewas Signal- und Sysemheorie or Dummies Version - Juli Oh No!!!! Pro. Dr.-Ing. ajana Lange Fachhochschule Merseburg FB Eleroechni Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies

Mehr

Thema : Rendite und Renditemessung

Thema : Rendite und Renditemessung Thema : Rendie und Rendiemessung Lernziele Es is wichig, die Zeigewichung der Rendie als ennzahl zu versehen, den Unerschied zwischen einer koninuierlichen und einer diskreen erzinsung zu begreifen und

Mehr

Analog-Elektronik Protokoll - Transitorgrundschaltungen. Janko Lötzsch Versuch: 07. Januar 2002 Protokoll: 25. Januar 2002

Analog-Elektronik Protokoll - Transitorgrundschaltungen. Janko Lötzsch Versuch: 07. Januar 2002 Protokoll: 25. Januar 2002 Analog-Elekronik Prookoll - Transiorgrundschalungen André Grüneberg Janko Lözsch Versuch: 07. Januar 2002 Prookoll: 25. Januar 2002 1 Vorberachungen Bei Verwendung verschiedene Transisor-Grundschalungen

Mehr

Thema 6: Kapitalwert bei nicht-flacher Zinsstruktur:

Thema 6: Kapitalwert bei nicht-flacher Zinsstruktur: Thema 6: Kapialwer bei nich-flacher Zinssrukur: Markzinsmehode Bislang unersell: i i kons. (, K, T) (flache Zinskurve) Verallgemeinerung der KW-Formel auf den Fall beliebiger Zinskurven jedoch ohne weieres

Mehr

Dokumentation von Bildungsaktivitäten

Dokumentation von Bildungsaktivitäten Dokumenaion von Bildungsakiviäen und -prozessen A Übersich über die in den lezen Monaen durchgeführen Bildungsakiviäen, die die Lernund Enwicklungsprozesse der Kinder vorrangig im Bildungsbereich Mahemaik

Mehr

Motivation. Finanzmathematik in diskreter Zeit

Motivation. Finanzmathematik in diskreter Zeit Moivaion Finanzmahemaik in diskreer Zei Eine Hinführung zu akuellen Forschungsergebnissen Alber-Ludwigs-Universiä Freiburg Prof. Dr. Thorsen Schmid Abeilung für Mahemaische Sochasik Freiburg, 22. April

Mehr

E-Technik 2C Das ohmsche Gesetz Seite 1 von 11

E-Technik 2C Das ohmsche Gesetz Seite 1 von 11 E-Technik 2C Das ohmsche Gesetz Seite 1 von 11 i = u R Strom (i) = Spannung (u) Widerstand (R) Das oben stehende ohmsche Gesetz beschreibt den Zusammenhang zwischen dem elektrischen Strom i, der elektrischen

Mehr

Grundschaltung, Diagramm

Grundschaltung, Diagramm Grundschalung, Diagramm An die gegebene Schalung wird eine Dreieckspannung von Vs (10Vs) angeleg. Gesuch: Spannung an R3, Srom durch R, I1 Der Spannungsverlauf von soll im oberen Diagramm eingezeichne

Mehr

Berücksichtigung naturwissenschaftlicher und technischer Gesetzmäßigkeiten. Industriemeister Metall / Neu

Berücksichtigung naturwissenschaftlicher und technischer Gesetzmäßigkeiten. Industriemeister Metall / Neu Fragen / Themen zur Vorbereiung auf die mündliche Prüfung in dem Fach Berücksichigung naurwissenschaflicher und echnischer Gesezmäßigkeien Indusriemeiser Meall / Neu Die hier zusammengesellen Fragen sollen

Mehr

Strom - Spannungscharakteristiken

Strom - Spannungscharakteristiken Strom - Spannungscharakteristiken 1. Einführung Legt man an ein elektrisches Bauelement eine Spannung an, so fließt ein Strom. Den Zusammenhang zwischen beiden Größen beschreibt die Strom Spannungscharakteristik.

Mehr

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt

Mehr

7 Drehstromgleichrichter

7 Drehstromgleichrichter Drehsromgleichricher 7 Drehsromgleichricher 7.1 Mielpnk-Schalng (Halbbrücke) (3-plsiger Gleichricher) In bbildng 7-1 sind die drei Sekndärwicklngen eines Drehsrom-Transformaors in Sernschalng dargesell.

Mehr

Johann Wolfgang Goethe-Universität

Johann Wolfgang Goethe-Universität 4. Asynchrone sequenielle chalungen 4. Asynchrone sequenielle chalungen 4.2 egiser 22 Technische Informaik 2 Asynchrone sequenielle chalungen 4. Asynchrone sequenielle chalungen Bei chalnezen exisier kein

Mehr

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit SS 2008

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit SS 2008 Phillips Kurve (Blanchard Ch.8) 151 Einleiung Inflaion und Arbeislosigkei in den Vereinigen Saaen, 1900-1960 In der beracheen Periode war in den USA eine niedrige Arbeislosigkei ypischerweise von hoher

Mehr

Labor Messtechnik Versuch 4 Dehnungsmesstechnik

Labor Messtechnik Versuch 4 Dehnungsmesstechnik F Ingenierwesen FR Maschinenba Versch 4 Dehnngsmesstechnik Seite 1 von 8 Versch 4: Dehnngsmesstechnik 1. Verschsafba 1.1. Umfang des Versches Im Versch werden folgende Themenkreise behandelt: - Verschsstand

Mehr

Aufgabensammlung. a) Berechnen Sie den Basis- und Kollektorstrom des Transistors T 4. b) Welche Transistoren leiten, welche sperren?

Aufgabensammlung. a) Berechnen Sie den Basis- und Kollektorstrom des Transistors T 4. b) Welche Transistoren leiten, welche sperren? Aufgabensammlung Digitale Grundschaltungen 1. Aufgabe DG Gegeben sei folgende Schaltung. Am Eingang sei eine Spannung von 1,5V als High Pegel und eine Spannung von 2V als Low Pegel definiert. R C = 300Ω;

Mehr

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!. 040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl

Mehr

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben

Mehr

Versuch 3. Frequenzgang eines Verstärkers

Versuch 3. Frequenzgang eines Verstärkers Versuch 3 Frequenzgang eines Verstärkers 1. Grundlagen Ein Verstärker ist eine aktive Schaltung, mit der die Amplitude eines Signals vergößert werden kann. Man spricht hier von Verstärkung v und definiert

Mehr

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital apiel 11 Produkion, Sparen und der Aufbau von apial Vorbereie durch: Florian Barholomae / Sebasian Jauch / Angelika Sachs Die Wechselwirkung zwischen Produkion und apial Gesamwirschafliche Produkionsfunkion:

Mehr

V 321 Kondensator, Spule und Widerstand Zeit- u. Frequenzverhalten

V 321 Kondensator, Spule und Widerstand Zeit- u. Frequenzverhalten V 32 Kondensaor, Spule und Widersand Zei- u. Frequenzverhalen.Aufgaben:. Besimmen Sie das Zei- und Frequenzverhalen der Kombinaionen von Kondensaor und Widersand bzw. Spule und Widersand..2 Ermieln Sie

Mehr

Die Halbleiterdiode. Demonstration der Halbleiterdiode als Ventil.

Die Halbleiterdiode. Demonstration der Halbleiterdiode als Ventil. R. Brinkmann hp://brinkmanndu.de Seie 1 26.11.2013 Diffusion und Drif Die Halbleierdiode Versuch: Demonsraion der Halbleierdiode als Venil. Bewegliche Ladungsräger im Halbleier: im n Leier sind es Elekronen,

Mehr

Naturwissenschaftliche Fakultät II - Physik. Anleitung zum Anfängerpraktikum A2

Naturwissenschaftliche Fakultät II - Physik. Anleitung zum Anfängerpraktikum A2 U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Anfängerpraktikum A2 Versuch 3 - Gedämpfte freie Schwingung des RLC-Kreises 23. überarbeitete Auflage

Mehr

Die Größe von Flächen vergleichen

Die Größe von Flächen vergleichen Vertiefen 1 Die Größe von Flächen vergleichen zu Aufgabe 1 Schulbuch, Seite 182 1 Wer hat am meisten Platz? Ordne die Figuren nach ihrem Flächeninhalt. Begründe deine Reihenfolge. 1 2 3 4 zu Aufgabe 2

Mehr

1. Mathematische Grundlagen und Grundkenntnisse

1. Mathematische Grundlagen und Grundkenntnisse 8 1. Mahemaische Grundlagen und Grundkennnisse Aufgabe 7: Gegeben sind: K = 1; = 18; p = 1 (p.a.). Berechnen Sie die Zinsen z. 18 1 Lösung: z = 1 = 5 36 Man beache, dass die kaufmännische Zinsformel als

Mehr

Praktikum Elektronik für FB Informatik

Praktikum Elektronik für FB Informatik Fakulä Elekroechnik Hochschule für Technik und Wirschaf resden Universiy of Applied Sciences Friedrich-Lis-Plaz, 0069 resden ~ PF 2070 ~ 0008 resden ~ Tel.(035) 462 2437 ~ Fax (035) 462 293 Prakikum Elekronik

Mehr

Nutzung von GiS BasePac 8 im Netzwerk

Nutzung von GiS BasePac 8 im Netzwerk Allgemeines Grundsätzlich kann das GiS BasePac Programm in allen Netzwerken eingesetzt werden, die Verbindungen als Laufwerk zu lassen (alle WINDOWS Versionen). Die GiS Software unterstützt nur den Zugriff

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

Anleitung über den Umgang mit Schildern

Anleitung über den Umgang mit Schildern Anleitung über den Umgang mit Schildern -Vorwort -Wo bekommt man Schilder? -Wo und wie speichert man die Schilder? -Wie füge ich die Schilder in meinen Track ein? -Welche Bauteile kann man noch für Schilder

Mehr

Erfahrungen mit Hartz IV- Empfängern

Erfahrungen mit Hartz IV- Empfängern Erfahrungen mit Hartz IV- Empfängern Ausgewählte Ergebnisse einer Befragung von Unternehmen aus den Branchen Gastronomie, Pflege und Handwerk Pressegespräch der Bundesagentur für Arbeit am 12. November

Mehr

Handbuch. NAFI Online-Spezial. Kunden- / Datenverwaltung. 1. Auflage. (Stand: 24.09.2014)

Handbuch. NAFI Online-Spezial. Kunden- / Datenverwaltung. 1. Auflage. (Stand: 24.09.2014) Handbuch NAFI Online-Spezial 1. Auflage (Stand: 24.09.2014) Copyright 2016 by NAFI GmbH Unerlaubte Vervielfältigungen sind untersagt! Inhaltsangabe Einleitung... 3 Kundenauswahl... 3 Kunde hinzufügen...

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

Wie kann ich mein Profil pflegen und/oder ihm ein PDF hinzufügen? Sie vermissen die Antwort auf IHRE Frage? Bitte lassen Sie uns Ihnen weiterhelfen:

Wie kann ich mein Profil pflegen und/oder ihm ein PDF hinzufügen? Sie vermissen die Antwort auf IHRE Frage? Bitte lassen Sie uns Ihnen weiterhelfen: Inhalt Ich habe noch kein Profil, möchte mich aber anmelden! Ich habe mein Passwort vergessen. Wie kann ich mein Passwort ändern? Wie kann ich meinen Benutzernamen ändern? Wie bestimme ich, welche Daten

Mehr

Übung zum Thema. Abmaße ablesen und Toleranzen berechnen

Übung zum Thema. Abmaße ablesen und Toleranzen berechnen Übung zum Thema Abmaße ablesen und Toleranzen berechnen Grundlage der Übung sind die Tabellen TB2-1 bis TB2-3 im Roloff/Matek Tabellenbuch Vorgehensweise: 1. Bestimmung der Grundtoleranz In TB2-1 stehen

Mehr

AUFGABENSAMMLUNG ZUM LEHRGEBIET. AUTOMATISIERUNGSTECHNIK bzw. KONTINUIERLICHE SYSTEME

AUFGABENSAMMLUNG ZUM LEHRGEBIET. AUTOMATISIERUNGSTECHNIK bzw. KONTINUIERLICHE SYSTEME Dr.-Ing. Tatjana Lange Fachhochschle für Technik nd Wirtschaft Fachbereich Elektrotechnik AUFGABENSAMMLUNG ZUM LEHRGEBIET AUTOMATISIERUNGSTECHNIK bzw. KONTINUIERLICHE SYSTEME. Differentialgleichngen Afgabe.:

Mehr

Aufbau von faserbasierten Interferometern für die Quantenkryptografie

Aufbau von faserbasierten Interferometern für die Quantenkryptografie Aufbau von faserbasieren nerferomeern für die uanenkrypografie - Gehäuse, Phasensabilisierung, Fasereinbau - Maserarbei im Sudiengang Elekroechnik und nformaionsechnik Veriefungsrichung Phoonik an der

Mehr

Kapitalerhöhung - Verbuchung

Kapitalerhöhung - Verbuchung Kapitalerhöhung - Verbuchung Beschreibung Eine Kapitalerhöhung ist eine Erhöhung des Aktienkapitals einer Aktiengesellschaft durch Emission von en Aktien. Es gibt unterschiedliche Formen von Kapitalerhöhung.

Mehr

AGROPLUS Buchhaltung. Daten-Server und Sicherheitskopie. Version vom 21.10.2013b

AGROPLUS Buchhaltung. Daten-Server und Sicherheitskopie. Version vom 21.10.2013b AGROPLUS Buchhaltung Daten-Server und Sicherheitskopie Version vom 21.10.2013b 3a) Der Daten-Server Modus und der Tresor Der Daten-Server ist eine Betriebsart welche dem Nutzer eine grosse Flexibilität

Mehr

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1 B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,

Mehr

TP 6: Windenergie. 1 Versuchsaufbau. TP 6: Windenergie -TP 6.1- Zweck der Versuche:...

TP 6: Windenergie. 1 Versuchsaufbau. TP 6: Windenergie -TP 6.1- Zweck der Versuche:... TP 6: Windenergie -TP 6.1- TP 6: Windenergie Zweck der ersuche: 1 ersuchsaufbau Der Aufbau des Windgenerators und des Windkanals (Abb.1) erfolgt mit Hilfe der Klemmreiter auf der Profilschiene. Dabei sind

Mehr

INPUT-EVALUATION DER ZHW: PHYSIK SEITE 1. Serie 1

INPUT-EVALUATION DER ZHW: PHYSIK SEITE 1. Serie 1 INPUT-EVALUATIN DER ZHW: PHYSIK SEITE 1 Serie 1 1. Zwei Personen ziehen mi je 500 N an den Enden eines Seils. Das Seil ha eine Reissfesigkei von 600 N. Welche der vier folgenden Aussagen is physikalisch

Mehr

Daten sammeln, darstellen, auswerten

Daten sammeln, darstellen, auswerten Vertiefen 1 Daten sammeln, darstellen, auswerten zu Aufgabe 1 Schulbuch, Seite 22 1 Haustiere zählen In der Tabelle rechts stehen die Haustiere der Kinder aus der Klasse 5b. a) Wie oft wurden die Haustiere

Mehr

Grundlagen der Theoretischen Informatik, SoSe 2008

Grundlagen der Theoretischen Informatik, SoSe 2008 1. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 2 Zustandsdiagramme (6 Punkte, wird korrigiert)

Mehr

Die Sensitivität ist eine spezielle Form der Zinselastizität: Aufgabe 1

Die Sensitivität ist eine spezielle Form der Zinselastizität: Aufgabe 1 Neben anderen Risiken unerlieg die Invesiion in ein fesverzinsliches Werpapier dem Zinsänderungsrisiko. Dieses Risiko läss sich am einfachsen verdeulichen, indem man die Veränderung des Markweres der Anleihe

Mehr

1. Oszilloskop. Das Oszilloskop besitzt zwei Betriebsarten: Schaltsymbol Oszilloskop

1. Oszilloskop. Das Oszilloskop besitzt zwei Betriebsarten: Schaltsymbol Oszilloskop . Oszilloskop Grndlagen Ein Oszilloskop ist ein elektronisches Messmittel zr grafischen Darstellng von schnell veränderlichen elektrischen Signalen in einem kartesischen Koordinaten-System (X- Y- Darstellng

Mehr

Repetitionsaufgaben Wurzelgleichungen

Repetitionsaufgaben Wurzelgleichungen Repetitionsaufgaben Wurzelgleichungen Inhaltsverzeichnis A) Vorbemerkungen B) Lernziele C) Theorie mit Aufgaben D) Aufgaben mit Musterlösungen 4 A) Vorbemerkungen Bitte beachten Sie: Bei Wurzelgleichungen

Mehr

FH-SY Chapter 2.4 - Version 3 - FH-SY.NET - FAQ -

FH-SY Chapter 2.4 - Version 3 - FH-SY.NET - FAQ - FH-SY Chapter 2.4 - Version 3 - FH-SY.NET - FAQ - Version vom 02.02.2010 Inhaltsverzeichnis 1. KANN ICH BEI EINER EIGENEN LEKTION NACHTRÄGLICH NOCH NEUE LERNINHALTE ( WAS WURDE BEHANDELT? ) EINFÜGEN?...

Mehr

P = U eff I eff. I eff = = 1 kw 120 V = 1000 W

P = U eff I eff. I eff = = 1 kw 120 V = 1000 W Sie haben für diesen 50 Minuten Zeit. Die zu vergebenen Punkte sind an den Aufgaben angemerkt. Die Gesamtzahl beträgt 20 P + 1 Formpunkt. Bei einer Rechnung wird auf die korrekte Verwendung der Einheiten

Mehr

A Lösungen zu Einführungsaufgaben zu QueueTraffic

A Lösungen zu Einführungsaufgaben zu QueueTraffic A Lösungen zu Einführungsaufgaben zu QueueTraffic 1. Selber Phasen einstellen a) Wo im Alltag: Baustelle, vor einem Zebrastreifen, Unfall... 2. Ankunftsrate und Verteilungen a) poissonverteilt: b) konstant:

Mehr

Physik & Musik. Stimmgabeln. 1 Auftrag

Physik & Musik. Stimmgabeln. 1 Auftrag Physik & Musik 5 Stimmgabeln 1 Auftrag Physik & Musik Stimmgabeln Seite 1 Stimmgabeln Bearbeitungszeit: 30 Minuten Sozialform: Einzel- oder Partnerarbeit Voraussetzung: Posten 1: "Wie funktioniert ein

Mehr

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen Unersuchung von Gleienladungen und deren Modellierung durch Funkengeseze im Vergleich zu Gasenladungen Dipl.-Ing. Luz Müller, Prof. Dr.-Ing. Kur Feser Insiu für Energieüberragung und Hochspannungsechnik,

Mehr

Checkliste 36 Formulierung exportbezogener Zahlungsbedingungen

Checkliste 36 Formulierung exportbezogener Zahlungsbedingungen Checkliste 36 Formlierng exportbezogener Zahlngsbedingngen Definition Mit der im Kafvertrag vereinbarten Zahlngsbedingng sollen.a. folgende Pnkte geregelt werden: wer zahlt an wen wann wo welchen Betrag

Mehr

Grundlagen der Informatik III Wintersemester 2010/2011

Grundlagen der Informatik III Wintersemester 2010/2011 Grundlagen der Informaik III Winersemeser 21/211 Wolfgang Heenes, Parik Schmia 11. Aufgabenbla 31.1.211 Hinweis: Der Schnelles und die Aufgaben sollen in den Übungsgruppen bearbeie werden. Die Hausaufgaben

Mehr

Fachhochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik. Praktikum Elektrotechnik und Antriebstechnik

Fachhochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik. Praktikum Elektrotechnik und Antriebstechnik FH D FB 4 Fachhochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik Elektro- und elektrische Antriebstechnik Prof. Dr.-Ing. Jürgen Kiel Praktikum Elektrotechnik und Antriebstechnik Versuch

Mehr

Sichere E-Mail Anleitung Zertifikate / Schlüssel für Kunden der Sparkasse Germersheim-Kandel. Sichere E-Mail. der

Sichere E-Mail Anleitung Zertifikate / Schlüssel für Kunden der Sparkasse Germersheim-Kandel. Sichere E-Mail. der Sichere E-Mail der Nutzung von Zertifikaten / Schlüsseln zur sicheren Kommunikation per E-Mail mit der Sparkasse Germersheim-Kandel Inhalt: 1. Voraussetzungen... 2 2. Registrierungsprozess... 2 3. Empfang

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

Erstellen von x-y-diagrammen in OpenOffice.calc

Erstellen von x-y-diagrammen in OpenOffice.calc Erstellen von x-y-diagrammen in OpenOffice.calc In dieser kleinen Anleitung geht es nur darum, aus einer bestehenden Tabelle ein x-y-diagramm zu erzeugen. D.h. es müssen in der Tabelle mindestens zwei

Mehr

MORE Profile. Pass- und Lizenzverwaltungssystem. Stand: 19.02.2014 MORE Projects GmbH

MORE Profile. Pass- und Lizenzverwaltungssystem. Stand: 19.02.2014 MORE Projects GmbH MORE Profile Pass- und Lizenzverwaltungssystem erstellt von: Thorsten Schumann erreichbar unter: thorsten.schumann@more-projects.de Stand: MORE Projects GmbH Einführung Die in More Profile integrierte

Mehr

Outlook. sysplus.ch outlook - mail-grundlagen Seite 1/8. Mail-Grundlagen. Posteingang

Outlook. sysplus.ch outlook - mail-grundlagen Seite 1/8. Mail-Grundlagen. Posteingang sysplus.ch outlook - mail-grundlagen Seite 1/8 Outlook Mail-Grundlagen Posteingang Es gibt verschiedene Möglichkeiten, um zum Posteingang zu gelangen. Man kann links im Outlook-Fenster auf die Schaltfläche

Mehr

Professionelle Seminare im Bereich MS-Office

Professionelle Seminare im Bereich MS-Office Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion

Mehr

Messtechnik-Praktikum. Spektrumanalyse. Silvio Fuchs & Simon Stützer. c) Berechnen Sie mit FFT (z.b. ORIGIN) das entsprechende Frequenzspektrum.

Messtechnik-Praktikum. Spektrumanalyse. Silvio Fuchs & Simon Stützer. c) Berechnen Sie mit FFT (z.b. ORIGIN) das entsprechende Frequenzspektrum. Messtechnik-Praktikum 10.06.08 Spektrumanalyse Silvio Fuchs & Simon Stützer 1 Augabenstellung 1. a) Bauen Sie die Schaltung für eine Einweggleichrichtung entsprechend Abbildung 1 auf. Benutzen Sie dazu

Mehr

Statuten in leichter Sprache

Statuten in leichter Sprache Statuten in leichter Sprache Zweck vom Verein Artikel 1: Zivil-Gesetz-Buch Es gibt einen Verein der selbstbestimmung.ch heisst. Der Verein ist so aufgebaut, wie es im Zivil-Gesetz-Buch steht. Im Zivil-Gesetz-Buch

Mehr

T6 THERMOELEMENT UND ABKÜHLUNGSGESETZ

T6 THERMOELEMENT UND ABKÜHLUNGSGESETZ PHYSIKALISCHE GRUNDLAGEN Wichtige Grndbegriffe: ermspannng, ermelement, ermkraft, Astrittsarbeit, Newtnsches Abkühlngsgesetz Beschreibng eines ermelementes: Ein ermelement besteht as zwei Drähten verschiedenen

Mehr

A2.3: Sinusförmige Kennlinie

A2.3: Sinusförmige Kennlinie A2.3: Sinusförmige Kennlinie Wie betrachten ein System mit Eingang x(t) und Ausgang y(t). Zur einfacheren Darstellung werden die Signale als dimensionslos betrachtet. Der Zusammenhang zwischen dem Eingangssignal

Mehr

Simulation LIF5000. Abbildung 1

Simulation LIF5000. Abbildung 1 Simulation LIF5000 Abbildung 1 Zur Simulation von analogen Schaltungen verwende ich Ltspice/SwitcherCAD III. Dieses Programm ist sehr leistungsfähig und wenn man weis wie, dann kann man damit fast alles

Mehr

1 topologisches Sortieren

1 topologisches Sortieren Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung

Mehr

Kompetitive Analysen von Online-Algorithmen

Kompetitive Analysen von Online-Algorithmen Kompetitive Analysen von Online-Algorithmen jonas echterhoff 16. Juli 004 1 Einführung 1.1 Terminologie Online-Algorithmen sind Algorithmen, die Probleme lösen sollen, bei denen Entscheidungen getroffen

Mehr

Wie ist das Wissen von Jugendlichen über Verhütungsmethoden?

Wie ist das Wissen von Jugendlichen über Verhütungsmethoden? Forschungsfragen zu Verhütung 1 Forschungsfragen zu Verhütung Wie ist das Wissen von Jugendlichen über Verhütungsmethoden? Wie viel Information über Verhütung ist enthalten? Wie wird das Thema erklärt?

Mehr

BERECHNUNG DER FRIST ZUR STELLUNGNAHME DES BETRIEBSRATES BEI KÜNDIGUNG

BERECHNUNG DER FRIST ZUR STELLUNGNAHME DES BETRIEBSRATES BEI KÜNDIGUNG Frist berechnen BERECHNUNG DER FRIST ZUR STELLUNGNAHME DES BETRIEBSRATES BEI KÜNDIGUNG Sie erwägen die Kündigung eines Mitarbeiters und Ihr Unternehmen hat einen Betriebsrat? Dann müssen Sie die Kündigung

Mehr

Grundlagen der Elektrotechnik 1 Übungsaufgaben zur Wechselstromtechnik mit Lösung

Grundlagen der Elektrotechnik 1 Übungsaufgaben zur Wechselstromtechnik mit Lösung Grundlagen der Elektrotechnik Aufgabe Die gezeichnete Schaltung enthält folgende Schaltelemente:.0kΩ, ω.0kω, ω 0.75kΩ, /ωc.0k Ω, /ωc.3kω. Die gesamte Schaltung nimmt eine Wirkleistung P mw auf. C 3 C 3

Mehr

Elektrischer Widerstand

Elektrischer Widerstand In diesem Versuch sollen Sie die Grundbegriffe und Grundlagen der Elektrizitätslehre wiederholen und anwenden. Sie werden unterschiedlichen Verfahren zur Messung ohmscher Widerstände kennen lernen, ihren

Mehr

Zulassung nach MID (Measurement Instruments Directive)

Zulassung nach MID (Measurement Instruments Directive) Anwender - I n f o MID-Zulassung H 00.01 / 12.08 Zulassung nach MID (Measurement Instruments Directive) Inhaltsverzeichnis 1. Hinweis 2. Gesetzesgrundlage 3. Inhalte 4. Zählerkennzeichnung/Zulassungszeichen

Mehr

Übungsaufgaben Tilgungsrechnung

Übungsaufgaben Tilgungsrechnung 1 Zusatzmaterialien zu Finanz- und Wirtschaftsmathematik im Unterricht, Band 1 Übungsaufgaben Tilgungsrechnung Überarbeitungsstand: 1.März 2016 Die grundlegenden Ideen der folgenden Aufgaben beruhen auf

Mehr

Ihr Ideen- & Projektmanagement-Tool

Ihr Ideen- & Projektmanagement-Tool Planungsbox 2.9 Ihr Ideen- & Projektmanagement-Tool Planungsbox verknüpft Notizen, Termine, Dateien, email- & Internetadressen, ToDo-Listen und Auswertungen Planungsbox verwaltet ToDo-Listen, Termine und

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

2.8 Grenzflächeneffekte

2.8 Grenzflächeneffekte - 86-2.8 Grenzflächeneffekte 2.8.1 Oberflächenspannung An Grenzflächen treten besondere Effekte auf, welche im Volumen nicht beobachtbar sind. Die molekulare Grundlage dafür sind Kohäsionskräfte, d.h.

Mehr

Masterplan Mobilität Osnabrück Ergebnisse der Verkehrsmodellrechnung

Masterplan Mobilität Osnabrück Ergebnisse der Verkehrsmodellrechnung Maserplan Mobiliä Osnabrück Ergebnisse der Verkehrsmodellrechnung Grundlagen Im Zuge des bisherigen Planungsprozesses wurden eszenarien in Abhängigkei von der Einwohnerenwicklung und der kommunalen verkehrlichen

Mehr

Bei Aufgaben, die mit einem * gekennzeichnet sind, können Sie neu ansetzen.

Bei Aufgaben, die mit einem * gekennzeichnet sind, können Sie neu ansetzen. Name: Elektrotechnik Mechatronik Abschlussprüfung E/ME-BAC/DIPL Elektronische Bauelemente SS2012 Prüfungstermin: Prüfer: Hilfsmittel: 18.7.2012 (90 Minuten) Prof. Dr.-Ing. Großmann, Prof. Dr. Frey Taschenrechner

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

Definition und Begriffe

Definition und Begriffe Merkblatt: Das Dreieck Definition und Begriffe Das Dreieck ist ein Vieleck. In der Ebene ist es die einfachste Figur, die von geraden Linien begrenzt wird. Ecken: Jedes Dreieck hat drei Ecken, die meist

Mehr

Grundlagen der Videotechnik. Redundanz

Grundlagen der Videotechnik. Redundanz Grundlagen der Videotechnik Redundanz Redundanz beruht auf: - statistischen Abhängigkeiten im Signal, - Information, die vorher schon gesendet wurde - generell eine Art Gedächtnis im Signal Beispiel: Ein

Mehr

sammeln speichern C [F = As/V] Proportionalitätskonstante Q = CU I = dq/dt sammeln i - speichern u i (t)dt d t u c = 1 C i(t) dt

sammeln speichern C [F = As/V] Proportionalitätskonstante Q = CU I = dq/dt sammeln i - speichern u i (t)dt d t u c = 1 C i(t) dt Elekronische Sseme - 3. Kapaziä und Indukiviä 1 -------------------------------------------------------------------------------------------------------------- G. Schaer 26. Mai 24 3. Kapaziä und Indukiviä

Mehr

16 Übungen gemischte Schaltungen

16 Übungen gemischte Schaltungen 6 Übungen gemischte Schaltungen 6. Aufgabe Gemischt (Labor) a) Berechne alle Ströme und Spannungen und messe diese nach! 3 = Rges = + 3 = 4,39kΩ 3 =,939kΩ Iges= Rges =2,46mA=I U = * I = 5,32V = U3 = U

Mehr

TECHNISCHE DOKUMENTATION ZUM TURBO-FREEZER XL 3 & XE 1

TECHNISCHE DOKUMENTATION ZUM TURBO-FREEZER XL 3 & XE 1 TECHNISCHE DOKUMENTATION ZUM TURBO-FREEZER XL 3 & XE 1 Turbo-Freezer XL 3 & XE 1 / Version 2.4 1988 - Bernhard Engl ABBUC 2004 / Mit freundlicher Genehmigung von Bernhard Engl Aus den original Unterlagen

Mehr

6 Wechselstrom-Schaltungen

6 Wechselstrom-Schaltungen für Maschinenbau und Mechatronik Carl Hanser Verlag München 6 Wechselstrom-Schaltungen Aufgabe 6.1 Durch ein Grundeintor C = 0,47 µf an der Sinusspannung U = 42 V fließt ein Sinusstrom mit dem Effektivwert

Mehr