V8 - Auf- und Entladung von Kondensatoren

Größe: px
Ab Seite anzeigen:

Download "V8 - Auf- und Entladung von Kondensatoren"

Transkript

1 V8 - Auf- und Entladung von Kondensatoren Michael Baron, Frank Scholz Inhaltsverzeichnis Aufgabenstellung 2 Theoretischer Hintergrund 2 2. Elektrostatische Betrachtung von Kondensatoren Zeitabhängige Betrachtung während der Aufladung während der Entladung einfaches RC-Netzwerk Differential-Gleichung für die Kondensatorspannung Lösungen für die Differential-Gleichung Versuchsdurchführung 6 4 Versuchsergebnisse 6 4. Kondensator C Bestimmung von τ aus dem Entladungs-Vorgang Bestimmung von τ mittels einer Tangente Bestimmung von τ aus dem Aufladungs-Vorgang Kondensator C C parallel C C in Reihe mit C Anlagen 8 Aufgabenstellung Aufgabe dieses Experiments ist die aperiodische Auf- und Entladung zweier Kondensatoren (jeweils einzeln, in Parallel- und Reihenschaltung) über einen

2 Widerstand R, die Aufzeichnung der zeitabhängigen Größen Kondensator- Spannung U C (t) und -Strom I C (t) sowie letztlich die Bestimmung der zugehörigen Zeitkonstanten τ und Kapazitäten C. 2 Theoretischer Hintergrund 2. Elektrostatische Betrachtung von Kondensatoren Betrachtet man zwei gegenüberliegende Metallplatten, zwischen denen keine leitende Verbindung besteht, so handelt es sich um einen Plattenkondensator, also einen Ladungs-Speicher dessen Aufnahmefähigkeit sich proportional zur angelegten Spannung U C verhält. Hierbei ist die Proportionalitätskonstante durch die Kapazität C vorgegeben, was dann zur Formel führt. Folglich ist die Einheit der Kapazität [C] = [Q] = C [U] V Q = C U C () = F (ausgesprochen Farad). Weiterhin ist die Kapazität eine feste Eigenschaft von Kondensator und eingeschlossenem Dielektrikum (Isolator zw. beiden Platten) und beträgt für Plattenkondensatoren : C = ɛ 0 ɛ r A d 2 C2 wobei ɛ 0 = 8, absolute, ɛ Nm 2 r relative Dielelektrizitätszahlen, A die Plattenfläche (einer Platte) sowie d den Plattenabstand bezeichnen. Schaltet man mehrere Kapazitäten parallel, so addieren sie sich aufgrund der Tatsache, dass über allen die gleiche Spannung abfällt, was sich wie folgt ausdrücken lässt: C = Q U = i Q i U = i Q i U = i (2) C i (3) Bei der Reihenschaltung hingegen sind jeweils alle vorkommenden Plattenladungen (bis auf das Vorzeichen) ausgeglichen, da wir uns im elektrostatischen Fall befinden und nun keine Ströme mehr fließen dürfen und die Spannungen addieren sich, wie folgt: C = U Q = i U i Q = i U i Q = i C i (4) 2

3 Verwendet man jedoch nur zwei Kondensatoren in Reihe, so lässt sich die Rechnung vereinfachen, indem man die Formel umstellt: C = C + C 2 C = C C 2 C + C 2 (5) 2.2 Zeitabhängige Betrachtung während der Aufladung Lä man nun einen Kondensator auf, so wächst die Kondensator-Spannung U C (t) exponentiell asymptotisch bis auf die Lade-Spannung U 0 an und der Lade-Strom I C (t) nimmt exponentiell gegen 0A ab, was durch die folgenden Gleichungen beschrieben wird: U C (t) = U 0 ( exp( t )) (6) τ I C (t) = I 0 exp( t τ ) (7) In diesem Fall ist I 0 = U 0 R der Lade-Strom zum Zeitpunkt t 0, R der Lade- Widerstand, sowie τ = R C die Zeitkonstante, welche sich aus der ersten Gleichung wie folgt berechnen lässt: τ = während der Entladung t ln( U 0 U C (t) U 0 ) Während der Entladung fallen nun sowohl U C (t) als auch I C (t) exponentiell gegen 0, jedoch fließt der Entlade-Strom entgegengesetzt zum vorherigen Fall, so dass sich ergibt: U C (t) = U 0 exp( t τ ) (9) I C (t) = I 0 exp( t τ ) (0) Auch hier berechnen wir die Zeitkonstante nur aus der Spannungs-Kennlinie, da die Rechnung für die Strom-Kennlinie relativ ähnlich erfolgt: τ = t ln( U C(t) U 0 ) (8) () Betrachtet man jedoch die erste dieser drei Gleichungen, so stellt man fest, dass die Zeitkonstante τ nichts anderes angibt, als den Zeitpunkt, an dem die 3

4 Kondensator-Spannung auf den e-ten Teil eines beliebigen Ausgangswertes zurückgegangen ist. Dies kann man mittels folgender Überlegung veranschaulichen: sodass eben das Verhältnis: U C (t 0 + τ) = U C (t 0 ) exp( τ τ ) (2) U C (t 0 + τ) U C (t 0 ) = e (3) folgt. Es ist in diesem Fall also erheblich einfacher, sich zwei geeignete Zeitpunkte (bei U 0 = 5V etwa t 0 = UC (2, 72V ) sowie t = t+τ = UC (V )) auszusuchen, und die Zeitkonstante aus der Zeitdifferenz direkt abzulesen. Kennt man nun den Lade-Widerstand R, so folgt die Kapazität direkt aus C = τ. R 2.3 einfaches RC-Netzwerk Im folgenden (theoretischen) Versuchsteil berachten wir ein einfaches RC- Netzwerk, wofür wir zunächst die Maschengleichung der beteiligten Komponenten (Spannungs-Quelle, Widerstand sowie Kapazität) aufstellen: U 0 = U R (t) + U C (t) (4) Nun ist einerseits U R = R I C bekannt und andererseits wissen wir, dass sich die geflossene Ladung in Form eines Zeit-Integrals über die vorherrschende Stromstärke wie folgt berechnen lässt: Dies ist äquivalent mit dem Differential-Quotienten: Q = I(t) (5) t I = dq = Q (6) Von daher wird τ manchmal etwas salopp als Drittelwertszeit bezeichnet 4

5 2.3. Differential-Gleichung für die Kondensatorspannung Mit diesen Informationen können wir die Differential-Gleichung für die Kondensator- Spannung U C (t) aufstellen: U 0 = U R (t) + U C (t) (7) U R = R I C U 0 = R I C (t) + U C (t) (8) I = dq U 0 = R dq C + U C (t) (9) Q = C U U 0 = R C du C + U C (t) (20) Es ergibt sich folglich: U C (t) = U 0 R C U C (t) (2) Lösungen für die Differential-Gleichung Zuerst überprüfen wir die Lösung für den Aufladungs-Vorgang (U 0 0V ): U C (t) = U 0 R C du C(t) Setzen wir nun die Lösung U C (t) = U 0 ( exp( t )) ein: τ U 0 ( e t R C ) = U0 R C d(u 0 ( e t R C )) Nach Ableitung des Differential-Quotienten ergibt sich: U 0 ( e t R C ) = U0 R C U 0 ( (22) (23) ) ( e t R C ) (24) R C Offensichtlich ist diese Lösung richtig. Wir verifizieren nun die Lösung obiger Gleichung für den Entladungs-Vorgang (U 0 = 0V ). U C (t) = U 0 R C du C(t) Setzen wir nun die Lösung U C (t) = U 0 exp( t) ein: τ (25) U 0 e t R C = U0 R C d(u 0 e t R C ) (26) Nach Ableitung des Differential-Quotienten ergibt sich: U 0 e t R C = U0 R C R C U 0 e t R C (27) Diese Lösung ist offensichtlich ebenfalls richtig. Die Verifikation der Differential-Gleichung, sowie der Lösungen für die korrespondierenden Kondensator-Ströme erfolgt analog. 5

6 Y T U 0 R Y2 S T 2 Abbildung : Versuchsaufbau 3 Versuchsdurchführung In Abbildung sehen wir nun den Versuchsaufbau. Hierbei wurde als Versorgungs- Spannung U 0 = 5V gewählt, sowie ein Lade-Widerstand von R = 00, 6kΩ mit R R 0 = 0, 0 benutzt. Als Kondensatoren standen uns zwei ähnlich dimensionierte relativ große Papier-Kondensatoren zur Verfügung, welche wir zuerst jeweils einzeln, dann in Parallel-Schaltung und zu letzt in Hintereinander- Schaltung durchmessen sollten. Die Schalter T und T2 dienen hierbei der schnellen Aufladung (T, da Lade-Widerstand überbrückt wird), bzw. der schnellen Entladung (T2, da Kondensator kurzgeschlossen wird). Die Kästchen Y bzw. Y2 sollen die Eingänge des Plotters, welcher einen hohen Eingangswiderstand aufweist und von daher nur Spannungen registrieren kann, symbolisieren. Des weiteren dient der Schalter S dazu, möglichst einfach zwischen dem jetzigen Zustand (Kondensator wird entladen) und dem Auflade-Zustand zu wechseln. 4 Versuchsergebnisse Im Folgenden behandeln wir ausschließlich die Berechnung von τ und C aus den Spannungs-Kennlinien. Die Berechnung aus den Stromkennlinien ist prinzipiell ähnlich. 4. Kondensator C 4.. Bestimmung von τ aus dem Entladungs-Vorgang Hierbei messen wir zunächst eine Spannung von U C (t 0 ) = 2, 72V zum Zeitpunkt t 0, tragen diesen Zeitpunkt ein (im Plot siehe t 0 ), verfahren dann 6

7 für U C (t 0 + τ) = V genauso (im Plot siehe t + τ) und bestimmen aus dem Abstand (s = 4, 2cm) durch Multiplikation mit der Plottergeschwindigkeit (v = 24 cm ) eine Relaxationszeit von τ = 0, 5s, was bei einem min Lade-Widerstand von 00, 6kΩ eine Kapazität von 04µF zur Folge hat Bestimmung von τ mittels einer Tangente Wir können die Zeitkonstante aber auch dadurch bestimmen, indem wir eine Tangente zum Zeitpunkt t 0 an die Kurve anlegen und dann die Differenz zwischen t 0 sowie dem Schnittpunkt der Tangente im Punkt t 0 + τ mit U = 0V bestimmen. Dies folgt nun direkt aus folgender Rechnung, wobei wir die Tangente mit g bezeichnen : g(t) = U C (t 0) t + U C (t 0 ) U C (t 0) t 0 = 0 (28) t = t 0 + R C = t 0 + τ (29) Obwohl diese Methode im Allgemeinen zeichnerisch sehr ungenau ist, ist sie jedoch geeignet dazu, die auf anderem Wege ermittelte Zeitkonstante zu überprüfen Bestimmung von τ aus dem Aufladungs-Vorgang Da es in diesem Fall keinen Trick gibt, den man anwenden könnte, muss man die zu Anfang bereits aufgeführte Formel verwenden: τ = t ln( U 0 U C (t) U 0 ) (30) 4.2 Kondensator C2 Für diesen Kondensator ermitteln wir eine Zeitkonstante von τ = 0, 25s während der Entladung, was einer Kapazität von C = 02µF entspricht. 4.3 C parallel C2 Hier berechnen wir zunächst ein τ = 0, 5s + 0, 25s = 20, 75s, also eine Kapazität von C = 206µF während der Entladung, und messen genau die selben Werte aus der Grafik. 7

8 4.4 C in Reihe mit C2 Hierbei ergibt sich zunächst ein rechnerischer Wert von τ = 5, 9s (somit C = 52µF) während der Entladung, der zeichnerisch durch τ = 5, 25s sowie 52µF angenähert werden kann. 5 Anlagen Als Attachment füge ich die aufgezeichneten Papyrus-Rollen (C, C2, C, C2, Parallel, Reihe) bei. Hierbei wurden die Kapazitäten jeweils zweimal durchmessen, da aufgrund ähnlicher Größe Verdacht auf Falschmessung bestand. 8

Kondensatoren ( Verdichter, von lat.: condensus: dichtgedrängt, bezogen auf die elektrischen Ladungen)

Kondensatoren ( Verdichter, von lat.: condensus: dichtgedrängt, bezogen auf die elektrischen Ladungen) Der Kondensator Kondensatoren ( Verdichter, von lat.: condensus: dichtgedrängt, bezogen auf die elektrischen Ladungen) Kondensatoren sind Bauelemente, welche elektrische Ladungen bzw. elektrische Energie

Mehr

Lösungen zu Kapazitäten / Kondensatoren

Lösungen zu Kapazitäten / Kondensatoren Ein- und Ausschaltvorgänge mit Kapazitäten A47: (869, 870) Ein Kondensator von µf wird über einen Widerstand von 3 MΩ auf eine Spannung von 50 V geladen. Welche Werte hat der Ladestrom a) 0,3 s, b), s,

Mehr

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Vorüberlegung In einem seriellen Stromkreis addieren sich die Teilspannungen zur Gesamtspannung Bei einer Gesamtspannung U ges, der

Mehr

Naturwissenschaftliche Fakultät II - Physik. Anleitung zum Anfängerpraktikum A2

Naturwissenschaftliche Fakultät II - Physik. Anleitung zum Anfängerpraktikum A2 U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Anfängerpraktikum A2 Versuch 3 - Gedämpfte freie Schwingung des RLC-Kreises 23. überarbeitete Auflage

Mehr

1. Theorie: Kondensator:

1. Theorie: Kondensator: 1. Theorie: Aufgabe des heutigen Versuchstages war es, die charakteristische Größe eines Kondensators (Kapazität C) und einer Spule (Induktivität L) zu bestimmen, indem man per Oszilloskop Spannung und

Mehr

Nerreter, Grundlagen der Elektrotechnik Carl Hanser Verlag München. 8 Schaltvorgänge

Nerreter, Grundlagen der Elektrotechnik Carl Hanser Verlag München. 8 Schaltvorgänge Carl Hanser Verlag München 8 Schaltvorgänge Aufgabe 8.6 Wie lauten für R = 1 kω bei der Aufgabe 8.1 die Differenzialgleichungen und ihre Lösungen für die Spannungen u 1 und u 2 sowie für den Strom i? Aufgabe

Mehr

Filter zur frequenzselektiven Messung

Filter zur frequenzselektiven Messung Messtechnik-Praktikum 29. April 2008 Filter zur frequenzselektiven Messung Silvio Fuchs & Simon Stützer Augabenstellung. a) Bauen Sie die Schaltung eines RC-Hochpass (Abbildung 3.2, Seite 3) und eines

Mehr

Elektrischen Phänomene an Zellmembranen

Elektrischen Phänomene an Zellmembranen Konzeptvorlesung 17/18 1. Jahr Block 1 Woche 4 Physikalische Grundlagen der Bioelektrizität Physik PD Dr. Hans Peter Beck Laboratorium für Hochenergiephysik der niversität Bern HPB11 1 Elektrischen Phänomene

Mehr

2 Das elektrostatische Feld

2 Das elektrostatische Feld Das elektrostatische Feld Das elektrostatische Feld wird durch ruhende elektrische Ladungen verursacht, d.h. es fließt kein Strom. Auf die ruhenden Ladungen wirken Coulomb-Kräfte, die über das Coulombsche

Mehr

R-C-Kreise. durchgeführt am 07.06.2010. von Matthias Dräger und Alexander Narweleit

R-C-Kreise. durchgeführt am 07.06.2010. von Matthias Dräger und Alexander Narweleit R-C-Kreise durchgeführt am 07.06.200 von Matthias Dräger und Alexander Narweleit PHYSIKALISCHE GRUNDLAGEN Physikalische Grundlagen. Kondensator Ein Kondensator ist ein passives elektrisches Bauelement,

Mehr

Kraft zwischen zwei Ladungen Q 1 und Q 2 / Coulomb'sches Gesetz

Kraft zwischen zwei Ladungen Q 1 und Q 2 / Coulomb'sches Gesetz KRG NW, Physik Klasse 10, Kräfte auf Ladungen, Kondensator, Fachlehrer Stahl Seite 1 Kraft zwischen zwei Ladungen Q 1 und Q 2 / Coulomb'sches Gesetz Kraft auf eine Probeladung q im elektrischen Feld (homogen,

Mehr

1. Ablesen eines Universalmessgerätes und Fehlerberechnung

1. Ablesen eines Universalmessgerätes und Fehlerberechnung Laborübung 1 1-1 1. Ablesen eines Universalmessgerätes und Fehlerberechnung Wie groß ist die angezeigte elektrische Größe in den Bildern 1 bis 6? Mit welchem relativen Messfehler muss in den sechs Ableseübungen

Mehr

WB Wechselstrombrücke

WB Wechselstrombrücke WB Wechselstrombrücke Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Wechselstromwiderstand................. 2 2.2 Wechselstromwiderstand

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #17 19/11/2010 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Elektrizitätslehre Teil 2 Kondensator Kondensator Im einfachsten Fall besteht ein Kondensator aus

Mehr

4 Kondensatoren und Widerstände

4 Kondensatoren und Widerstände 4 Kondensatoren und Widerstände 4. Ziel des Versuchs In diesem Praktikumsteil sollen die Wirkungsweise und die Frequenzabhängigkeit von Kondensatoren im Wechselstromkreis untersucht und verstanden werden.

Mehr

R C 1s =0, C T 1

R C 1s =0, C T 1 Aufgaben zum Themengebiet Aufladen und Entladen eines Kondensators Theorie und nummerierte Formeln auf den Seiten 5 bis 8 Ein Kondensator mit der Kapazität = 00μF wurde mit der Spannung U = 60V aufgeladen

Mehr

Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern.

Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern. 16. Kapazität Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern. 16.1 Plattenkondensator Das einfachste Beispiel für einen Kondensator ist der

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Ruolf Feile Dipl. Phys. Markus Domschke Sommersemester 00 4. 8. Juni 00 Physik für Bauingenieure Übungsblatt 9 Gruppenübungen. Konensator Zwei quaratische Metallplatten mit

Mehr

Aufg. P max 1 10 Klausur "Elektrotechnik" 2 14 3 8 4 10 am 14.03.1997

Aufg. P max 1 10 Klausur Elektrotechnik 2 14 3 8 4 10 am 14.03.1997 Name, Vorname: Matr.Nr.: Hinweise zur Klausur: Aufg. P max 1 10 Klausur "Elektrotechnik" 2 14 3 8 6141 4 10 am 14.03.1997 5 18 6 11 Σ 71 N P Die zur Verfügung stehende Zeit beträgt 1,5 h. Zugelassene Hilfsmittel

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #17 14/11/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Laden eines Kondensators Aufladen erfolgt durch eine Spannungsquelle, z.b. Batterie, die dabei

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerkung Dies ist ein abgegebener Übungszettel aus dem Modul physik2. Dieser Übungszettel wurde nicht korrigiert. Es handelt sich lediglich um meine Abgabe und keine Musterlösung. Alle Übungszettel

Mehr

Schalter. 2.3 Spannungsquellen. 2.3.1 Kondensatoren 112 KAPITEL 2. STROMFLUSS DURCH LEITER; EL. WIDERSTAND

Schalter. 2.3 Spannungsquellen. 2.3.1 Kondensatoren 112 KAPITEL 2. STROMFLUSS DURCH LEITER; EL. WIDERSTAND 112 KAPTEL 2. STROMFLSS DRCH LETER; EL. WDERSTAND 2.3 Spannungsquellen n diesem Abschnitt wollen wir näher besprechen, welche Arten von Spannungsquellen real verwendet werden können. 2.3.1 Kondensatoren

Mehr

Copyright by EPV. 6. Messen von Mischspannungen. 6.1. Kondensatoren. 6.2. Brummspannungen

Copyright by EPV. 6. Messen von Mischspannungen. 6.1. Kondensatoren. 6.2. Brummspannungen Elektronische Schaltungen benötigen als Versorgungsspannung meistens eine Gleichspannung. Diese wird häufig über eine Gleichrichterschaltungen aus dem 50Hz-Wechselstromnetz gewonnen. Wie bereits in Kapitel

Mehr

Grundlagen der Elektrotechnik 2: Lösungen zur Klausur am 17. Juli 2012

Grundlagen der Elektrotechnik 2: Lösungen zur Klausur am 17. Juli 2012 Fachhochschule Südwestfalen - Meschede Prof. Dr. Henrik Schulze Grundlagen der Elektrotechnik 2: Lösungen zur Klausur am 17. Juli 2012 Aufgabe 1 Die folgende Schaltung wird gespeist durch die beiden Quellen

Mehr

Frank Nussbächer U1 = U2 = U3 = U. Mit dem 1. Kirchhoffschen Satz, sowie dem Ohmschen Gesetz für alle Komponeten gilt für den obigen Knotenpunkt:

Frank Nussbächer U1 = U2 = U3 = U. Mit dem 1. Kirchhoffschen Satz, sowie dem Ohmschen Gesetz für alle Komponeten gilt für den obigen Knotenpunkt: Parallelschaltung Mit Hilfe des 1. Kirchhoffschen Satzes kann die Parallelschaltung von Widerständen abgeleitet werden. Werden einer idealen Spannungsquelle zwei Widerstände R1 und R2 parallel geschaltet,

Mehr

Übungsaufgaben z. Th. Plattenkondensator

Übungsaufgaben z. Th. Plattenkondensator Übungsaufgaben z. Th. Plattenkondensator Aufgabe 1 Die Platten eines Kondensators haben den Radius r 18 cm. Der Abstand zwischen den Platten beträgt d 1,5 cm. An den Kondensator wird die Spannung U 8,

Mehr

Der Bipolar-Transistor und die Emitterschaltung Gruppe B412

Der Bipolar-Transistor und die Emitterschaltung Gruppe B412 TECHNISCHE UNIVERSITÄT MÜNCHEN Der Bipolar-Transistor und die Emitterschaltung Gruppe B412 Patrick Christ und Daniel Biedermann 16.10.2009 1. INHALTSVERZEICHNIS 1. INHALTSVERZEICHNIS... 2 2. AUFGABE 1...

Mehr

EO Oszilloskop. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April 2007. 1 Einführung 2

EO Oszilloskop. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April 2007. 1 Einführung 2 EO Oszilloskop Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Oszilloskop........................ 2 2.2 Auf- und Entladevorgang

Mehr

Praktikum Nr. 3. Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum

Praktikum Nr. 3. Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum Fachhochschule Bielefeld Fachbereich Elektrotechnik Versuchsbericht für das elektronische Praktikum Praktikum Nr. 3 Manuel Schwarz Matrikelnr.: 207XXX Pascal Hahulla Matrikelnr.: 207XXX Thema: Transistorschaltungen

Mehr

Fachhochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik. Praktikum Elektrotechnik und Antriebstechnik

Fachhochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik. Praktikum Elektrotechnik und Antriebstechnik FH D FB 4 Fachhochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik Elektro- und elektrische Antriebstechnik Prof. Dr.-Ing. Jürgen Kiel Praktikum Elektrotechnik und Antriebstechnik Versuch

Mehr

DOWNLOAD. Physik kompetenzorientiert: Elektrizitätslehre 3. 7. / 8. Klasse

DOWNLOAD. Physik kompetenzorientiert: Elektrizitätslehre 3. 7. / 8. Klasse DOWNLOAD Anke Ganzer Physik kompetenzorientiert: Elektrizitätslehre 3 7. / 8. Klasse Anke Ganzer Bergedorfer Unterrichtsideen Downloadauszug aus dem Originaltitel: Physik II kompetenzorientierte Aufgaben

Mehr

PROTOKOLL ZUM ANFÄNGERPRAKTIKUM PHYSIK. Messung von Kapazitäten Auf- und Entladung von Kondensatoren. Sebastian Finkel Sebastian Wilken

PROTOKOLL ZUM ANFÄNGERPRAKTIKUM PHYSIK. Messung von Kapazitäten Auf- und Entladung von Kondensatoren. Sebastian Finkel Sebastian Wilken PROTOKOLL ZUM ANFÄNGERPRAKTIKUM PHYSIK Messung von Kapazitäten Auf- und Entladung von Kondensatoren Sebastian Finkel Sebastian Wilken Versuchsdurchführung: 23. November 2005 0. Inhalt 1. Einleitung 2.

Mehr

Halbleiterbauelemente

Halbleiterbauelemente Mathias Arbeiter 20. April 2006 Betreuer: Herr Bojarski Halbleiterbauelemente Statische und dynamische Eigenschaften von Dioden Untersuchung von Gleichrichterschaltungen Inhaltsverzeichnis 1 Schaltverhalten

Mehr

4.2 Gleichstromkreise

4.2 Gleichstromkreise 4.2 Gleichstromkreise Werden Ladungen transportiert, so fließt ein elektrischer Strom I dq C It () [] I A s dt Einfachster Fall: Gleichstrom; Strom fließt in gleicher ichtung mit konstanter Stärke. I()

Mehr

= Dimension: = (Farad)

= Dimension: = (Farad) Kapazität / Kondensator Ein Kondensator dient zur Speicherung elektrischer Ladung Die Speicherkapazität eines Kondensators wird mit der Größe 'Kapazität' bezeichnet Die Kapazität C ist definiert als: Dimension:

Mehr

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Institut für Experimentelle Kernphysik Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Prof. Dr. T. Müller Dr. F. Hartmann Blatt 4 - letzte Übung in

Mehr

Versuch 14: Wechselstromwiderstände

Versuch 14: Wechselstromwiderstände Versuch 14: Wechselstromwiderstände Inhaltsverzeichnis 1 Einleitung 3 2 Theorie 3 2.1 Grundlagen................................... 3 2.2 Bauteile..................................... 3 2.3 Stromkreise...................................

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

Übungsbeispiele: 1) Auf eine Ladung von 20nClb wirkt eine Kraft von 8mN. Berechnen Sie die Feldstärke.

Übungsbeispiele: 1) Auf eine Ladung von 20nClb wirkt eine Kraft von 8mN. Berechnen Sie die Feldstärke. Übungsbeispiele: 1) Auf eine Ladung von 20nClb wirkt eine Kraft von 8mN. Berechnen Sie die Feldstärke. 2) Zwischen zwei Aluminum-Folien eines Wickelkondensators,der an einer Gleichspannung vo 60 V liegt,

Mehr

EO - Oszilloskop Blockpraktikum Frühjahr 2005

EO - Oszilloskop Blockpraktikum Frühjahr 2005 EO - Oszilloskop, Blockpraktikum Frühjahr 25 28. März 25 EO - Oszilloskop Blockpraktikum Frühjahr 25 Alexander Seizinger, Tobias Müller Assistent René Rexer Tübingen, den 28. März 25 Einführung In diesem

Mehr

Physik III - Anfängerpraktikum- Versuch 302

Physik III - Anfängerpraktikum- Versuch 302 Physik III - Anfängerpraktikum- Versuch 302 Sebastian Rollke (103095) und Daniel Brenner (105292) 15. November 2004 Inhaltsverzeichnis 1 Theorie 2 1.1 Beschreibung spezieller Widerstandsmessbrücken...........

Mehr

Hochschule Bremerhaven

Hochschule Bremerhaven Hochschule Bremerhaven NSTTUT FÜ AUTOMATSEUNGS- UND EEKTOTEHNK Name: Matr Nr: ProfDr-ngKaiMüller Übungsklausur ETT2 / PT/VAT/SBT SS04 Bearbeitungszeit 20 Minuten --- Unterlagen gestattet --- Note: 2 3

Mehr

A. Ein Kondensator differenziert Spannung

A. Ein Kondensator differenziert Spannung A. Ein Kondensator differenziert Spannung Wir legen eine Wechselspannung an einen Kondensator wie sieht die sich ergebende Stromstärke aus? U ~ ~ Abb 1: Prinzipschaltung Kondensator: Physiklehrbuch S.

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

1.1.2 Aufladen und Entladen eines Kondensators; elektrische Ladung; Definition der Kapazität

1.1.2 Aufladen und Entladen eines Kondensators; elektrische Ladung; Definition der Kapazität 1.1.2 Aufladen und Entladen eines Kondensators; elektrische Ladung; Definition der Kapazität Ladung und Stromstärke Die Einheit der Stromstärke wurde früher durch einen chemischen Prozess definiert; heute

Mehr

Wechselspannung. Zeigerdiagramme

Wechselspannung. Zeigerdiagramme niversity of Applied Sciences ologne ampus Gummersbach Dipl.-ng. (FH Dipl.-Wirt. ng. (FH D-0 Stand: 9.03.006; 0 Wie bereits im Kapitel an,, beschrieben, ist die Darstellung von Wechselgrößen in reellen

Mehr

Wechselstromkreis mit verschiedenen Bauteilen

Wechselstromkreis mit verschiedenen Bauteilen Wechselstromkreis mit verschiedenen Bauteilen Im Folgenden werden nun die Auswirkungen eines ohmschen Widerstands, eines induktiven Widerstands (Spule) und eines kapazitiven Widerstands (Kondensator) auf

Mehr

K l a u s u r N r. 2 Gk Ph 12

K l a u s u r N r. 2 Gk Ph 12 0.2.2009 K l a u s u r N r. 2 Gk Ph 2 ) Leiten Sie die Formel für die Gesamtkapazität von drei in Serie geschalteten Kondensatoren her. (Zeichnung, Formeln, begründender Text) 2) Berechnen Sie die Gesamtkapazität

Mehr

2. Graphische Darstellung des Phasenwinkels als Funktion der Frequenz.

2. Graphische Darstellung des Phasenwinkels als Funktion der Frequenz. E a Phasenbeziehungen und RC-Filter Toshiki Ishii (Matrikel 3266690) 7.06.203 Studiengang Chemie (Bachelor of Science) Aufgabenstellung. Ermitteln des Phasenverlaufes zwischen Strom und Spannung mithilfe

Mehr

Staatlich geprüfte Techniker

Staatlich geprüfte Techniker Auszug aus dem Lernmaterial ortbildungslehrgang Staatlich geprüfte Techniker Auszug aus dem Lernmaterial Maschinenbautechnische Grundlagen DAA-Technikum Essen / www.daa-technikum.de, Infoline: 001 83 16

Mehr

Misst man die Ladung in Abhängigkeit von der angelegten Spannung, so ergibt sich ein proportionaler Zusammenhang zwischen Ladung und Spannung:

Misst man die Ladung in Abhängigkeit von der angelegten Spannung, so ergibt sich ein proportionaler Zusammenhang zwischen Ladung und Spannung: 3.11 Der Kondensator In den vorangegangenen Kapiteln wurden die physikalischen Eigenschaften von elektrischen Ladungen und Feldern näher untersucht. In vielen Experimenten kamen dabei bereits Kondensatoren

Mehr

Kapitel 4. Elektrizitätslehre. Vorversuche:

Kapitel 4. Elektrizitätslehre. Vorversuche: Kapitel 4 Elektrizitätslehre Vorversuche: 4.1 Charakterisierung der Ohmschen Widerstände 4.2 Auf- und Entladung eines Kondensators 4.3 Auf- und Entladung einer Spule Hauptversuche: 4.4 LC-Schwingkreise

Mehr

Messung von Spannung und Strömen

Messung von Spannung und Strömen Basismodul-Versuch 2 BM-2-1 Messung von Spannung und Strömen 1 Vorbereitung llgemeine Vorbereitung für die Versuche zur Elektrizitätslehre, insbesondere Punkt 7 ufbau eines Drehspulmesswerks Lit.: WLCHER

Mehr

Aufgaben zur Elektrizitätslehre

Aufgaben zur Elektrizitätslehre Aufgaben zur Elektrizitätslehre Elektrischer Strom, elektrische Ladung 1. In einem Metalldraht bei Zimmertemperatur übernehmen folgende Ladungsträger den Stromtransport (A) nur negative Ionen (B) negative

Mehr

VORBEREITUNG: TRANSISTOR- UND OPERATIONSVERSTÄRKER

VORBEREITUNG: TRANSISTOR- UND OPERATIONSVERSTÄRKER VORBEREITUNG: TRANSISTOR- UND OPERATIONSVERSTÄRKER FREYA GNAM, TOBIAS FREY 1. EMITTERSCHALTUNG DES TRANSISTORS 1.1. Aufbau des einstufigen Transistorverstärkers. Wie im Bild 1 der Vorbereitungshilfe wird

Mehr

5.5 Elektrisches Zentralfeld, Coulombsches Gesetz

5.5 Elektrisches Zentralfeld, Coulombsches Gesetz 5 Elektrizität und Magnetismus 5.5 Elektrisches Zentralfeld, Coulombsches Gesetz Elektrisches Zentralfeld Kugel mit Radius r um eine Punktladung = ǫ 0 Ed A = ǫ 0 E E d A Kugel da = ǫ 0 E(4πr 2 ) (5.26)

Mehr

Es gilt also W ~ U, W ~ I, W ~ t. Eine Gleichung, die diese Bedingung erfüllt, lautet: W = U I t [Ws, kwh] 1Nm = 1Ws = 1VAs = 1J

Es gilt also W ~ U, W ~ I, W ~ t. Eine Gleichung, die diese Bedingung erfüllt, lautet: W = U I t [Ws, kwh] 1Nm = 1Ws = 1VAs = 1J Elektrizität 0. Elektrische Arbeit und elektrische Leistung Die in einem elektrischen Leiter verrichtete elektrische Arbeit ist umso größer, je größer die angelegte Spannung ist je größer die Stromstärke

Mehr

Physikalisches Grundpraktikum II Versuch 1.1 Geometrische Optik. von Sören Senkovic & Nils Romaker

Physikalisches Grundpraktikum II Versuch 1.1 Geometrische Optik. von Sören Senkovic & Nils Romaker Physikalisches Grundpraktikum II Versuch 1.1 Geometrische Optik von Sören Senkovic & Nils Romaker 1 Inhaltsverzeichnis Theoretischer Teil............................................... 3 Grundlagen..................................................

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

1. Laboreinheit - Hardwarepraktikum SS 2005

1. Laboreinheit - Hardwarepraktikum SS 2005 1. Versuch: Gleichstromnetzwerk Ohmsches Gesetz Kirchhoffsche Regeln Gleichspannungsnetzwerke Widerstand Spannungsquelle Maschen A B 82 Ohm Abbildung 1 A1 Berechnen Sie für die angegebene Schaltung alle

Mehr

PHYSIK. 2. Klausur - Lösung

PHYSIK. 2. Klausur - Lösung EI PH3 2010-11 PHYSIK 2. Klausur - Lösung 1. Aufgabe (2 Punkte) Unten befindet sich ein Proton im elektrischen Feld zwischen einer ortsfesten positiven sowie einer ortsfesten negativen Ladung. a) Beschreibe,

Mehr

P2-61: Operationsverstärker

P2-61: Operationsverstärker Physikalisches Anfängerpraktikum (P2) P2-61: Operationsverstärker Vorbereitung Matthias Ernst Matthias Faulhaber Durchführung: 09.12.2009 1 Transistor in Emitterschaltung 1.1 Transistorverstärker (gleichstromgegengekoppelt)

Mehr

Aufgabe 1: Entladevorgang eines Kondensators

Aufgabe 1: Entladevorgang eines Kondensators Fachgebiet eistungselektronik und Elektrische Antriebstechnik Aufgabe : Entladevorgang eines Kondensators t = 0 i(t) u (t) u (t) Zum Zeitpunkt t = 0 werde der chalter geschlossen. Vor diesem Zeitpunkt

Mehr

6 Wechselstrom-Schaltungen

6 Wechselstrom-Schaltungen für Maschinenbau und Mechatronik Carl Hanser Verlag München 6 Wechselstrom-Schaltungen Aufgabe 6.1 Durch ein Grundeintor C = 0,47 µf an der Sinusspannung U = 42 V fließt ein Sinusstrom mit dem Effektivwert

Mehr

Fit für die Prüfung Elektrotechnik Effektives Lernen mit Beispielen und ausführlichen Lösungen

Fit für die Prüfung Elektrotechnik Effektives Lernen mit Beispielen und ausführlichen Lösungen Jan Luiken ter Haseborg Christian Schuster Manfred Kasper Fit für die Prüfung Elektrotechnik Effektives Lernen mit Beispielen und ausführlichen Lösungen 18 1 Elektrische Gleichstromnetzwerke det(a 2 )

Mehr

Versuch P1-63 Schaltlogik Vorbereitung

Versuch P1-63 Schaltlogik Vorbereitung Versuch P1-63 Schaltlogik Vorbereitung Gruppe Mo-19 Yannick Augenstein Versuchsdurchführung: 16. Januar 2012 1 Inhaltsverzeichnis Einführung 3 1 Grundschaltungen 3 1.1 AND.......................................

Mehr

U N I V E R S I T Ä T R E G E N S B U R G

U N I V E R S I T Ä T R E G E N S B U R G U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikpraktikum für Chemiker Versuch ww : Wechselstromwiderstand Dr. Tobias Korn Manuel März Inhaltsverzeichnis

Mehr

1 Wiederholung einiger Grundlagen

1 Wiederholung einiger Grundlagen TUTORIAL MODELLEIGENSCHAFTEN Im vorliegenden Tutorial werden einige der bisher eingeführten Begriffe mit dem in der Elektrotechnik üblichen Modell für elektrische Netzwerke formalisiert. Außerdem soll

Mehr

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR.

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Weitere Files findest du auf www.semestra.ch/files DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Energie E= 1 Q r 4 r 2 r F = E q W 12 =Q E ds

Mehr

Messung des Kopplungsfaktors Induktiv Gekoppelter Spulen

Messung des Kopplungsfaktors Induktiv Gekoppelter Spulen Messung des Kopplungsfaktors Induktiv Gekoppelter Spulen Dipl.-Phys. Jochen Bauer 11.8.2013 Zusammenfassung Induktiv gekoppelte Spulen finden in der Elektrotechnik und insbesondere in der Funktechnik vielfältige

Mehr

P2-61: Operationsverstärker

P2-61: Operationsverstärker Physikalisches Anfängerpraktikum (P2) P2-61: Operationsverstärker Auswertung Matthias Ernst Matthias Faulhaber Karlsruhe, den 16.12.2009 Durchführung: 09.12.2009 1 Transistor in Emitterschaltung 1.1 Transistorverstärker

Mehr

Laborpraktikum 5 Dynamische Schaltvorgänge bei Kondensatoren und Spulen

Laborpraktikum 5 Dynamische Schaltvorgänge bei Kondensatoren und Spulen 30 April 2014 Elektrizitätslehre II Martin Loeser Laborpraktikum 5 Dynamische Schaltvorgänge bei Kondensatoren und Spulen 1 Lernziele Bei diesem Versuch werden Einschaltvorgänge von Kondensatoren und Spulen

Mehr

Klausur "Elektrotechnik" am 11.02.2000

Klausur Elektrotechnik am 11.02.2000 Name, Vorname: Matr.Nr.: Hinweise zur Klausur: Die zur Verfügung stehende Zeit beträgt 1,5 h. Klausur "Elektrotechnik" 6141 am 11.02.2000 Aufg. P max 0 2 1 10 2 9 3 10 4 9 5 16 6 10 Σ 66 N P Zugelassene

Mehr

Aufgaben. 2.1. Leiten Sie die Formeln (9) und (10) her! Vorbetrachtungen. Der High-Fall

Aufgaben. 2.1. Leiten Sie die Formeln (9) und (10) her! Vorbetrachtungen. Der High-Fall Aufgaben 2.1. Leiten Sie die Formeln (9) und (10) her! Vorbetrachtungen I. Die open-collector-gatter auf der "in"-seite dürfen erst einen High erkennen, wenn alle open-collector-gatter der "out"-seite

Mehr

Grundlagen der Elektrotechnik 1 Übungsaufgaben zur Wechselstromtechnik mit Lösung

Grundlagen der Elektrotechnik 1 Übungsaufgaben zur Wechselstromtechnik mit Lösung Grundlagen der Elektrotechnik Aufgabe Die gezeichnete Schaltung enthält folgende Schaltelemente:.0kΩ, ω.0kω, ω 0.75kΩ, /ωc.0k Ω, /ωc.3kω. Die gesamte Schaltung nimmt eine Wirkleistung P mw auf. C 3 C 3

Mehr

Übung 4.1: Dynamische Systeme

Übung 4.1: Dynamische Systeme Übung 4.1: Dynamische Systeme c M. Schlup, 18. Mai 16 Aufgabe 1 RC-Schaltung Zur Zeitpunkt t = wird der Schalter in der Schaltung nach Abb. 1 geschlossen. Vor dem Schliessen des Schalters, betrage die

Mehr

Geneboost Best.- Nr. 2004011. 1. Aufbau Der Stromverstärker ist in ein Isoliergehäuse eingebaut. Er wird vom Netz (230 V/50 Hz, ohne Erdung) gespeist.

Geneboost Best.- Nr. 2004011. 1. Aufbau Der Stromverstärker ist in ein Isoliergehäuse eingebaut. Er wird vom Netz (230 V/50 Hz, ohne Erdung) gespeist. Geneboost Best.- Nr. 2004011 1. Aufbau Der Stromverstärker ist in ein Isoliergehäuse eingebaut. Er wird vom Netz (230 V/50 Hz, ohne Erdung) gespeist. An den BNC-Ausgangsbuchsen lässt sich mit einem störungsfreien

Mehr

Komplexe Zahlen und Wechselstromwiderstände

Komplexe Zahlen und Wechselstromwiderstände Komplexe Zahlen und Wechselstromwiderstände Axel Tobias 22.2.2000 Ein besonderer Dank geht an Ingo Treunowski, der die Übertragung meines Manuskriptes in L A TEX durchgeführt hat tob skript komplex.tex.

Mehr

E-Technik 2C Das ohmsche Gesetz Seite 1 von 11

E-Technik 2C Das ohmsche Gesetz Seite 1 von 11 E-Technik 2C Das ohmsche Gesetz Seite 1 von 11 i = u R Strom (i) = Spannung (u) Widerstand (R) Das oben stehende ohmsche Gesetz beschreibt den Zusammenhang zwischen dem elektrischen Strom i, der elektrischen

Mehr

6 Verfahren zur Messung von Widerständen/ Impedanzen in elektrischen Anlagen und an Geräten

6 Verfahren zur Messung von Widerständen/ Impedanzen in elektrischen Anlagen und an Geräten Mehr Informationen zum Titel 6 Verfahren zur Messung von Widerständen/ Impedanzen in elektrischen Anlagen und an Geräten Bearbeitet von Manfred Grapentin 6.1 Arten und Eigenschaften von elektrischen Widerständen

Mehr

Elektrische Messverfahren Versuchsvorbereitung

Elektrische Messverfahren Versuchsvorbereitung Versuche P-70,7,8 Elektrische Messverfahren Versuchsvorbereitung Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 6.2.200 Spannung, Strom und Widerstand Die Basiseinheit

Mehr

Entladung eines Kondensators

Entladung eines Kondensators 3.11.5 Entladung eines Kondensators Im Gegensatz zu einer Batterie kann mit einem Kondensator innerhalb von kurzer Zeit eine hohe Stromstärke erzeugt werden. Dies wird zum Beispiel beim Blitz eines Fotoapparates

Mehr

Ziel dieses Kapitels ist es zu verstehen warum ein Blitz meistens in spitze Gegenstände einschlägt und wie ein Kondensator Ladungen speichert.

Ziel dieses Kapitels ist es zu verstehen warum ein Blitz meistens in spitze Gegenstände einschlägt und wie ein Kondensator Ladungen speichert. Ziel dieses Kapitels ist es zu verstehen warum ein Blitz meistens in spitze Gegenstände einschlägt und wie ein Kondensator Ladungen speichert. 11.1 Grundlagen Versuch 1: "Der geladene Schüler" Beobachtungen:

Mehr

Aufgabensammlung zu Kapitel 2

Aufgabensammlung zu Kapitel 2 Aufgabensammlung zu Kapitel 2 Aufgabe 2.1: Ein Plattenkondensator (quadratische Platten der Kantenlänge a=15cm, Plattenabstand d=5mm) wird an eine Gleichspannungsquelle mit U=375V angeschlossen. Berechnen

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 1. Semester ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 1. Semester ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN Wir wollen nun die Rechengesetze der natürlichen Zahlen auf die Zahlenmenge der ganzen Zahlen erweitern und zwar so, dass sie zu keinem Widerspruch mit bisher geltenden

Mehr

Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am 24.11.2011

Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am 24.11.2011 Praktikum Physik Protokoll zum Versuch: Geometrische Optik Durchgeführt am 24.11.2011 Gruppe X Name1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das

Mehr

Arbeitsbereich Technische Aspekte Multimodaler Systeme (TAMS) Praktikum der Technischen Informatik T2 2. Kapazität. Wechselspannung. Name:...

Arbeitsbereich Technische Aspekte Multimodaler Systeme (TAMS) Praktikum der Technischen Informatik T2 2. Kapazität. Wechselspannung. Name:... Universität Hamburg, Fachbereich Informatik Arbeitsbereich Technische Aspekte Multimodaler Systeme (TAMS) Praktikum der Technischen Informatik T2 2 Kapazität Wechselspannung Name:... Bogen erfolgreich

Mehr

Wie funktioniert ein Relais?

Wie funktioniert ein Relais? 1 Wie funktioniert ein Relais? Ein Relais besteht im einfachsten Fall aus einer Spule, einem beweglichen Anker und einem Schaltkontakt (Bildquelle Wikipedia): Eine einfache Schaltung demonstriert die Funktion:

Mehr

TEP 5.4.18-01. Dosimetrie

TEP 5.4.18-01. Dosimetrie Dosimetrie TEP Verwandte Themen Röntgenstrahlung, Ionisierungsenergie, Energiedosis, Äquivalentdosis, Ionendosis, Ortsdosis, Dosisraten, Qualitätsfaktor, quadratisches Abstandsgesetz, Dosimeter. Prinzip

Mehr

Schülerversuche Elektronik Widerstände

Schülerversuche Elektronik Widerstände Schülerversuche Elektronik Widerstände Praktikum am: 22.11.2000 & 6.12.2000 Von: Ursula Feischl Mtr.: 9855029 Inhaltsverzeichnis: Einleitung Inhaltsangabe 1 Allgemeines 2 Behandelte Anwendungsmöglichkeiten

Mehr

Versuch EL1 Die Diode

Versuch EL1 Die Diode BERGISCHE UNIVERSITÄT WUPPERTAL Versuch EL1 Die Diode I. Zielsetzung des Versuchs 10.04/(1.07) In diesem Versuch lernen Sie die grundlegenden Eigenschaften eines pn-halbleiterübergangs kennen. Dazu werden

Mehr

Messung elektrischer Größen Bestimmung von ohmschen Widerständen

Messung elektrischer Größen Bestimmung von ohmschen Widerständen Messtechnik-Praktikum 22.04.08 Messung elektrischer Größen Bestimmung von ohmschen Widerständen Silvio Fuchs & Simon Stützer 1 Augabenstellung 1. Bestimmen Sie die Größen von zwei ohmschen Widerständen

Mehr

LÖSUNG ZUR VORLESUNG MAKROÖKONOMIK I (SoSe 14) Aufgabenblatt 3

LÖSUNG ZUR VORLESUNG MAKROÖKONOMIK I (SoSe 14) Aufgabenblatt 3 Fakultät Wirtschafts- und Sozialwissenschaften Jun.-Prof. Dr. Philipp Engler, Michael Paetz LÖSUNG ZUR VORLESUNG MAKROÖKONOMIK I (SoSe 14) Aufgabenblatt 3 Aufgabe 1: Geldnachfrage I Die gesamtwirtschaftliche

Mehr

Fachbereich Physik Dr. Wolfgang Bodenberger

Fachbereich Physik Dr. Wolfgang Bodenberger UniversitätÉOsnabrück Fachbereich Physik Dr. Wolfgang Bodenberger Der Transistor als Schalter. In vielen Anwendungen der Impuls- und Digital- lektronik wird ein Transistor als einfacher in- und Aus-Schalter

Mehr

Hochpass, Tiefpass und Bandpass

Hochpass, Tiefpass und Bandpass Demonstrationspraktikum für Lehramtskandidaten Versuch E3 Hochpass, Tiefpass und Bandpass Sommersemester 2006 Name: Daniel Scholz Mitarbeiter: Steffen Ravekes EMail: daniel@mehr-davon.de Gruppe: 4 Durchgeführt

Mehr

PS II - Verständnistest 24.02.2010

PS II - Verständnistest 24.02.2010 Grundlagen der Elektrotechnik PS II - Verständnistest 24.02.2010 Name, Vorname Matr. Nr. Aufgabe 1 2 3 4 5 6 7 Punkte 3 4 2 2 1 5 2 erreicht Aufgabe 8 9 10 11 12 Summe Punkte 4 2 3 3 4 35 erreicht Hinweise:

Mehr

Übungsaufgaben zur Vorlesung Elektrotechnik 1

Übungsaufgaben zur Vorlesung Elektrotechnik 1 Fachhochschule Esslingen - Hochschule für Technik Fachbereich Informationstechnik Übungsaufgaben zur Vorlesung Elektrotechnik 1 Fachhochschule Esslingen - Hochschule für Technik Fachbereich Informationstechnik

Mehr

Protokollbuch. Friedrich-Schiller-Universität Jena. Physikalisch-Astronomische Fakultät SS 2008. Messtechnikpraktikum

Protokollbuch. Friedrich-Schiller-Universität Jena. Physikalisch-Astronomische Fakultät SS 2008. Messtechnikpraktikum Friedrich-Schiller-Universität Jena Physikalisch-Astronomische Fakultät SS 2008 Protokollbuch Messtechnikpraktikum Erstellt von: Christian Vetter (89114) Helena Kämmer (92376) Christian.Vetter@Uni-Jena.de

Mehr

Aufgaben zur Vorbereitung der Klausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS2013/

Aufgaben zur Vorbereitung der Klausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS2013/ Aufgaben zur Vorbereitung der Klausur zur Vorlesung inführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS213/14 5.2.213 Aufgabe 1 Zwei Widerstände R 1 =1 Ω und R 2 =2 Ω sind in

Mehr

Widerstandsdrähte auf Rahmen Best.-Nr. MD03803

Widerstandsdrähte auf Rahmen Best.-Nr. MD03803 Widerstandsdrähte auf Rahmen Best.-Nr. MD03803 Beschreibung des Gerätes Auf einem rechteckigen Rahmen (1030 x 200 mm) sind 7 Widerstandsdrähte gespannt: Draht 1: Neusilber Ø 0,5 mm, Länge 50 cm, Imax.

Mehr