Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen"

Transkript

1 Unersuchung von Gleienladungen und deren Modellierung durch Funkengeseze im Vergleich zu Gasenladungen Dipl.-Ing. Luz Müller, Prof. Dr.-Ing. Kur Feser Insiu für Energieüberragung und Hochspannungsechnik, Universiä Sugar Dr. Wolfgang Hiller, Dipl.-Ing. Edwin Fauser Rober Bosch GmbH, Sugar Einleiung Durch Maerialrennung, srömende Flüssigkeien oder elekrische Felder können isoliere Oberflächen schnell berächlich aufgeladen werden. Eine Folge davon können dielekrisch behindere Enladungen sein. Dies sind lokal begrenze Gasenladungen zwischen Feskörperoberflächen, von denen mindesens eine isolierend is. Diese impulsförmigen Enladungen lassen sich durch Enladungsvorgänge im Gasraum und durch Oberflächenenladungen (Gleienladungen) beschreiben. Um genauere Kennnis über die Gesezmäßigkeien der Enladung zu erlangen, muß unersuch werden, wie sich Ladungen auf dielekrischen Oberflächen uner Einwirkung von elekrischen Feldern verhalen. Hierbei is die sich an die Zündungsphase anschließende Phase der Enladung von besonderer Bedeuung. Der zuvor sehr hohe Oberflächenwidersand wird klein und es enseh für kurze Zei ein leifähiger Kanal. Für die Berachung der Sörenergie bei ESD is besonders das erse Srommaximum sowie der Verlauf der ersen Halbperiode von Ineresse. Dieser Zusammenhang wird für den Gasdurchschlag durch Funkengeseze beschrieben. In diesem Beirag wird unersuch, wie Gleienladungen durch Funkengeseze modellier werden können. Versuchsanordnung Als Teswerksoff wird Leierplaenmaerial Absand (FR) mi einer Dicke von,mm mm,5 mm verwende. Auf einer Seie der Leierplae befinden sich die geäzen Elekroden, die von der Form her einer mm breien Leierbahn ensprechen. Die Leierbahn is in der Mie aufgerenn mi oder ohne Kupfer FR und sell das Enladungsgebie Bild : Prüflingsaufbau dar. Diese Prüflinge wurden für Absände von. mm bis mm realisier (Bild ). Die Rückseien der Prüflinge sind einmal mi Kupfer und einmal ohne Kupfer ausgeführ. Die Ersazschalung des Versuchsaufbaus is im Bild zusehen. Über

2 einen hochohmigen Widersand wird eine Kapaziä aufgeladen, die parallel zur Enladungssecke lieg. Die so an die Elekroden angelege Spannung wird erhöh, bis es zu Gleienladungen (Überschlägen) komm. Im Falle der leifähigen Rückseie wurde diese mi Masse verbunden. Aufladung C über R Gleisrecke R ein =5 MW R() Enladekreis L U L C U C C U R F () U R Masse Anfang U C =U Masse Bild : Ersazschalung Nach der Zündphase enläd sich die Kapaziä über den Funkenwidersand und die Leiungsindukiviä (Bild rechs). Aufgezeichne wurden der Sromverlauf durch den Funkenwidersand mi Hilfe einer Sromzange an der masseseiigen Elekrode sowie die Spannung an der Kapaziä mi einem Hochspannungsaskopf. Berachung der Durchbruchspannung Zur Ermilung des Verlaufes der Durchbruchspannung bei Gleienladungen wurden bei jedem Absand Messungen mi posiiver und negaiver Polariä aufgenommen. Um gleichmäßige Ausgangsbedingungen zu erreichen, wurde vor jeder Messung die durch die Enladung aufgeladene Oberfläche enladen. Mi einem elekrosaischen Volmeer wurde dies konrollier. Weierhin is zwischen leifähiger Rückseie, an Masse geleg, und nichleifähiger Rückseie unerschieden worden. Die Messungen wurden gemiel. Die so ensehenden Kurven sind im Bild a für negaive und im Bild b für posiive Spannungen zu sehen. Die Darsellung der Minimumkurve sowie der Maximumkurve zeig die Sreuung der Meßwere, die bei negaiver Spannung kleiner is. Als Vergleich zum Gasdurchschlag im homogenen Feld is die Durchbruchspannung nach Paschen mi dargesell. Ein Vergleich der Kurven von posiiver und negaiver Spannung zeig keine signifikanen Unerschiede (Bild a). In Bild b sind die Kurven für Prüflinge mi und ohne leifähiger Rückseie gegenübergesell. Dem geringen Unerschied bei posiiver Spannung seh nahezu kein Unerschied bei negaiver Spannung (nich dargesell) engegen. Die gewähle verhälnismäßig große Dicke des Dielekrikums (,5 mm) kann ein Grund sein, weshalb sich beide Fälle kaum unerscheiden. Um eine Aussage machen zu können, sind Messungen bei anderen Dicken nöig.

3 Ud [kv] Paschen Fi des Mielweres Mielwer Max Min 5 Absand [mm] a Ud [kv] Paschen Fi des Mielweres Mielwer Max Min (posiive Spannung) 5 Absand [mm] Bild : Durchbruchspannung für Prüflinge mi leifähiger Rückseie a für negaive b für posiive Spannung b Paschen posiiv Paschen leifähige Rückseie Ud [kv] negaiv Ud [kv] keine leifähige Rückseie 5 Absand [mm] a (posiive Spannung) 5 Absand [mm] b Bild : a Vergleich der Kurven für posiive und negaive Polariä b Vergleich der Kurven für Prüflinge mi und ohne leifähiger Rückseie Modellierung des Sromverlaufes. Normierung Zur übersichlicheren Beureilung der Meßdaen werden alle den Enladungsvorgang beschreibenden Größen normier. Die Zündspannung Uo am Kondensaor is Bezugsgröße für alle Spannungen. Der Srom wird auf den viruellen Sromscheielwer bezogen (vgl. []), sowie die Zei auf die Periodendauer, die durch die am Enladeschwingkreis (Bild ) beeiligen Elemene hervorgerufen wird. i() y = () U C O L τ = () π LC

4 . Modellierung mi PSpice Im einfachsen Fall kann die in Bild dargeselle Ersazschalung mi dem Schalungssimulaionsprogramm PSpice berechne werden. Für den veränderlichen Widersand wird in PSpice das Elemen "swich close" verwende. Dieses Elemen besiz die Eigenschaf, den Widersand Ropen zum Zeipunk close mi einer Übergangszei rans in den Widersand Rclosed zu überführen (Bild 5). Dies ensprich dem zusammenbrechenden Widersand des Funkenkanales. Über die Variaion der Eigenschafen rans und swich close Eigenschafen (z.b.): close = us Rclose kann die Anpassung an den rans = ns gemessenen Sromverlauf erreich werden. Ropen = GΩ Als weiere Kenngrößen müssen L und C Rclosed = Ω sowie die Spannung U O bekann sein. Bild 5: PSpice-Elemen swich close Außerdem sind in diese Berechnung rech einfach zusäzliche, im Idealfall vernachläßige, Eigenschafen der Meßanordnung mi einzubinden, wie z.b. die Ersazschalung des Taskopfes oder die Kapaziä der Prüflingselekroden gegen Masse. Im Bild is an einem Beispiel die Simulaion eines Sromverlaufes im Vergleich zu den gemessenen Weren zu sehen. i [A] 7 5 Rechnung mi PSpice Messung - [ns] Bild : Vergleich PSpice-Berechnung und Messung am Beispiel Absand mm U o =,kv, C= pf, posiive Spannung Mi dem PSpice-Elemen swich close gib es eine einfache Möglichkei, den Verlauf des Enladesromes bei Gleienladungen zu simulieren bzw. in eine äußere Beschalung einzubeziehen.. Modellierung mi Funkengesezen Das Prinzip der Enladungsenwicklung auf einer dielekrischen Oberfläche is ähnlich der Sreamerenwicklung im Gasraum []. Aus diesem Grund wird unersuch,

5 ob mi den bekannen Funkengesezen für Gase nach Toepler, Rompe und Weizel sowie Braginskii (Gleichung -5) auch Gleienladungen zu beschreiben sind. Toepler Rompe und Weizel Braginskii R F ( ) = k s i( ) d () R F( ) = s a i( ) d () F( ) = s πb κ i( ) R d (5) Aus der Spannungsgleichung des Enladeschalkreises nach Bild ergib sich folgender Funkenwidersand. R F () = U C i() d L di() d i() () Nach [] is der Vergleich von Funkengesezen bei der Lösung der Differenialgleichung des Enladeschalkreises in der Form "Srom als Funkion der Zei" am besen möglich. Für den Funkenwidersand R F in Gl.() wird jeweils das Funkengesez nach Gl. (-5) eingesez. Die so ensehenden Beziehungen werden mi Gl. () und () normier und ergeben folgende Beziehungen. Gesez von Toepler: s dy dτ = π π y dτ α y y dτ mi α = k LC (7) U Gesez von Rompe und Weizel: s dy dτ = π π y dτ β y y dτ mi β = π a LC () U Gesez von Braginskii: dy dτ = π π y dτ γ y y dτ mi s = ( U C L) ( πb κ LC) γ (9) U Hierbei sellen α, β und γ die modifizieren Funkenkonsanen dar (vgl. []), die neben der Funkenkonsanen selbs noch L, C sowie s/u O =/E O enhalen. Die obigen Differenialgleichungen werden numerisch gelös. Die Gleichungen sind nich für den Anfangsbereich der Enladung lösbar, da die Funkengeseze für diesen nich gelen. Deshalb müssen Anfangswere für die DGL's anderweiig besimm werden []. Hier erfolg dies durch einen Polynomfi des gemessenen Anfangsromes. Als Ergebnis erhäl man den normieren zeilichen Sromverlauf in Abhängigkei von den

6 Kreisparameern C und L, der mileren Zündfeldsärke sowie der normieren Funkenkonsane. max y... alpha bea gamma..... α, β, γ Bild 7:Normierer maximaler Srom y max in Abhängigkei von den Funkenkonsanen In Abhängigkei von den normieren Funkenkonsanen wird der Sromverlauf berechne, und das Maximum des Sromes über den normieren Funkenkonsanen aufgeragen. Mi dieser Funkion kann für jede gemessene Sromkurve eine normiere Funkenkonsane ermiel werden, die das Maximum des Sromes nachbilde. Um den Sromverlauf zu erhalen, muß die DGL mi den ermielen Funkenkonsanen berechne werden. Durch Variaion des Übergangszeipunkes von Anfangssromfi zu funkengesezbeschreibender DGL wird die berechnee Kurve solange zeilich verschoben, bis der Zeipunk des gemessenen und berechneen Srommaximums übereinsimm. Dami is auch der Güligkeisbeginn des jeweiligen Funkengesezes gegeben. 5 Auswerung und Ergebnisse Die Messungen zur Ermilung der Sromverlaufes wurden für drei Kapaziäen (5pF, pf und 5pF) durchgeführ. Dabei ergaben sich Eigenfrequenzen von 5 bis MHz. Die Änderung des Absandes führe zu mileren Zündfeldsärken von, kv bis 7,5 kv. Der maximale Enladesrom beweg sich zwischen wenigen A und 5 A. In Anlehnung an [] werden die sich ergebenden Funkenkonsanen über der mileren Zündfeldsärke aufgeragen (Bild ). Bei allen drei Funkengesezen is eine Abhängigkei von der Kapaziä zu erkennen. Die Sreuung der Meßwere is bei C=5pF am kleinsen. Dabei muß bemerk werden, daß die größeren Kapaziäen niedrigere Resonanzfrequenzen aufweisen, und somi keine idealen Kapaziäen darsellen. Im Vergleich zu [] (Darsellung der Funkenkonsanen beim Gasdurchschlag) is die Tendenz der Funkenkonsanen über der mileren Zündfeldsärke ähnlich. Beim Toeplerschen Gesez sind die absoluen Were ewa gleich (beim Gasdurchschlag ca.,5 bis,7 - Vs/cm bei, bis, kv/mm). Die Were der Funkenkonsanen sind beim Gesez von Rompe und Weizel größer und beim Gesez von Braginskii kleiner.

7 k [ Vs/cm] C=5pF C=pF C=5pF a) Toepler Eo [kv/mm] a [cm /(V s)] C=5pF C=5pF C=pF b) Rompe und Weizel Eo [kv/mm] b κ [ 5 / A cm/vs].... C=5pF C=5pF C=pF c) Braginskii Eo [kv/mm] Bild : Abhängigkei der Funkenkonsanen von der mileren Zündfeldsärke gemiele Meßwere : C=5pF, o C=pF, C=5pF Trendlinien : durchgezogene Kurven

8 Wie auch beim Gasdurchschlag wird der zeiliche Verlauf des Sromes bei Gleienladung neben der Zündfeldsärke durch die Eigenfrequenz des Enladekreises besimm. Hierbei is die Kapaziä mi ihren nich idealen Eigenschafen von wesenlicher Bedeuung. Wie uner.. beschrieben, kann der Sromverlauf durch die Funkengeseze durch Variaion des Güligkeisbeginns angenäher werden. Bild 9 zeig dies an einem Beispiel für verschiedene Güligkeisgrenzen y g. a) Toepler b) Rompe Weizel c) Braginskii y τ.. y τ.. y τ.. Bild 9: Vergleich von einem gemessenen und berechneen Sromverlauf einiger Güligkeisgrenzen Messung; y g =.5; y g =.5; y g =. Zusammenfassung Die Durchbruchspannung bei Gleienladungen wurde unersuch. Dabei ergaben sich bei der gewählen Anordnung keine signifikanen Unerschiede zwischen posiiver und negaiver Spannung, sowie mi und ohne leifähiger Rückseie der Leierplae. Ein einfacher Weg zur Modellierung der Enladungssröme is mi PSpice gegeben. Such man eine Gesezmäßigkei, so is die Beschreibung mi Funkengesezen möglich. Die ersen Messungen zeigen eine ähnliche Tendenz der Feldsärkeabhängigkei der Funkenkonsanen wie beim Gasdurchschlag. Die Were der Funkenkonsanen sind bei Toepler ewa gleich groß, bei Rompe und Weizel größer und bei Braginskii kleiner. Der Sromverlauf kann mi allen drei Gesezen gu nachgebilde werden. 7 Lieraurverzeichnis [] K.Möller: Ein Beirag zur experimenellen Überprüfung der Funkengeseze von Toepler,Rompe-Weizel und Braginskii. ETZ-A Band 9 (97) Hef. [] Roland Richer: Zum Verhalen von Oberflächenenladungen bei der Ozonerzeugung. Disseraion TH Aachen 99

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ...

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ... FH D FB 3 Fachhochschule Düsseldorf Universiy of Applied Sciences Fachbereich Elekroechnik Deparmen of Elecrical Engineering Prakikum Grundlagen der Elekroechnik Versuch 5 Name Marikelnummer:... Anesa

Mehr

Kondensator und Spule im Gleichstromkreis

Kondensator und Spule im Gleichstromkreis E2 Kondensaor und Spule im Gleichsromkreis Es sollen experimenelle nersuchungen zu Ein- und Ausschalvorgängen bei Kapaziäen und ndukiviäen im Gleichsromkreis durchgeführ werden. Als Messgerä wird dabei

Mehr

3.2 Festlegung der relevanten Brandszenarien

3.2 Festlegung der relevanten Brandszenarien B Anwendungsbeispiel Berechnungen Seie 70.2 Feslegung der relevanen Brandszenarien Eine der wichigsen Aufgaben beim Nachweis miels der Ingenieurmehoden im Brandschuz is die Auswahl und Definiion der relevanen

Mehr

4. Kippschaltungen mit Komparatoren

4. Kippschaltungen mit Komparatoren 4. Kippschalungen mi Komparaoren 4. Komparaoren Wird der Operaionsversärker ohne Gegenkopplung berieben, so erhäl man einen Komparaor ohne Hserese. Seine Ausgangsspannung beräg: a max für > = a min für

Mehr

Latente Wärme und Wärmeleitfähigkeit

Latente Wärme und Wärmeleitfähigkeit Versuch 5 Laene Wärme und Wärmeleifähigkei Aufgabe: Nehmen Sie für die Subsanz,6-Hexandiol Ersarrungskurven auf und ermieln Sie daraus die laene Wärme beim Phasenübergang flüssig-fes sowie den Wärmedurchgangskoeffizienen

Mehr

V 321 Kondensator, Spule und Widerstand Zeit- u. Frequenzverhalten

V 321 Kondensator, Spule und Widerstand Zeit- u. Frequenzverhalten V 32 Kondensaor, Spule und Widersand Zei- u. Frequenzverhalen.Aufgaben:. Besimmen Sie das Zei- und Frequenzverhalen der Kombinaionen von Kondensaor und Widersand bzw. Spule und Widersand..2 Ermieln Sie

Mehr

Analog-Elektronik Protokoll - Transitorgrundschaltungen. Janko Lötzsch Versuch: 07. Januar 2002 Protokoll: 25. Januar 2002

Analog-Elektronik Protokoll - Transitorgrundschaltungen. Janko Lötzsch Versuch: 07. Januar 2002 Protokoll: 25. Januar 2002 Analog-Elekronik Prookoll - Transiorgrundschalungen André Grüneberg Janko Lözsch Versuch: 07. Januar 2002 Prookoll: 25. Januar 2002 1 Vorberachungen Bei Verwendung verschiedene Transisor-Grundschalungen

Mehr

Energietechnisches Praktikum I Versuch 11

Energietechnisches Praktikum I Versuch 11 INSI FÜR HOCHSPANNNGSECHNIK Rheinisch-Wesfälische echnische Hochschule Aachen niv.-prof. Dr.-Ing. Armin Schneler INSI FÜR HOCHSPANNNGS ECHNIK RHEINISCH- WESFÄLISCHE ECHNISCHE HOCHSCHLE AACHEN Energieechnisches

Mehr

Die Halbleiterdiode. Demonstration der Halbleiterdiode als Ventil.

Die Halbleiterdiode. Demonstration der Halbleiterdiode als Ventil. R. Brinkmann hp://brinkmanndu.de Seie 1 26.11.2013 Diffusion und Drif Die Halbleierdiode Versuch: Demonsraion der Halbleierdiode als Venil. Bewegliche Ladungsräger im Halbleier: im n Leier sind es Elekronen,

Mehr

Versuch 1 Schaltungen der Messtechnik

Versuch 1 Schaltungen der Messtechnik Fachhochschule Merseburg FB Informaik und Angewande Naurwissenschafen Prakikum Messechnik Versuch 1 Schalungen der Messechnik Analog-Digial-Umsezer 1. Aufgaben 1. Sägezahn-Umsezer 1.1. Bauen Sie einen

Mehr

Thema 6: Kapitalwert bei nicht-flacher Zinsstruktur:

Thema 6: Kapitalwert bei nicht-flacher Zinsstruktur: Thema 6: Kapialwer bei nich-flacher Zinssrukur: Markzinsmehode Bislang unersell: i i kons. (, K, T) (flache Zinskurve) Verallgemeinerung der KW-Formel auf den Fall beliebiger Zinskurven jedoch ohne weieres

Mehr

Grundgebiete der Elektrotechnik II Feedbackaufgabe: Transiente Vorgänge

Grundgebiete der Elektrotechnik II Feedbackaufgabe: Transiente Vorgänge heinisch-wesfälische Technische Hochschule Aachen Insiu für Sromricherechni und Elerische Anriebe Universiäsprofessor Dr. ir. i W. De Doncer Grundgebiee der Eleroechni II Feedbacaufgabe: Transiene Vorgänge

Mehr

Diskrete Integratoren und Ihre Eigenschaften

Diskrete Integratoren und Ihre Eigenschaften Diskree Inegraoren und Ihre Eigenschafen Whie Paper von Dipl.-Ing. Ingo Völlmecke Indusrielle eglersrukuren werden im Allgemeinen mi Hilfe von Inegraoren aufgebau. Aufgrund des analogen Schalungsaufbaus

Mehr

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff Die Bioverfügbarkei is eine Messgröße dafür, wie schnell und in welchem Umfang ein Arzneimiel resorbier wird und am Wirkor zur Verfügung seh. Zur Messung der Bioverfügbarkei wird die Wirksoffkonzenraion

Mehr

Berücksichtigung naturwissenschaftlicher und technischer Gesetzmäßigkeiten. Industriemeister Metall / Neu

Berücksichtigung naturwissenschaftlicher und technischer Gesetzmäßigkeiten. Industriemeister Metall / Neu Fragen / Themen zur Vorbereiung auf die mündliche Prüfung in dem Fach Berücksichigung naurwissenschaflicher und echnischer Gesezmäßigkeien Indusriemeiser Meall / Neu Die hier zusammengesellen Fragen sollen

Mehr

GRUNDLAGENLABOR CLASSIC RC-GLIED

GRUNDLAGENLABOR CLASSIC RC-GLIED GUNDLAGNLABO LASSI -GLID Inhal: 1. inleing nd Zielsezng...2 2. Theoreische Afgaben - Vorbereing...2 3. Prakische Messafgaben...4 Anhang: in- nd Asschalvorgänge...5 Filename: Version: Ahor: _Glied_2_.doc

Mehr

Grundschaltung, Diagramm

Grundschaltung, Diagramm Grundschalung, Diagramm An die gegebene Schalung wird eine Dreieckspannung von Vs (10Vs) angeleg. Gesuch: Spannung an R3, Srom durch R, I1 Der Spannungsverlauf von soll im oberen Diagramm eingezeichne

Mehr

Wechselspannung. Zeitlich veränderliche Spannung mit periodischer Wiederholung

Wechselspannung. Zeitlich veränderliche Spannung mit periodischer Wiederholung Elekrische Schwingungen und Wellen. Wechselsröme i. Wechselsromgrößen ii.wechselsromwidersand iii.verhalen von LC Kombinaionen. Elekrischer Schwingkreis 3. Elekromagneische Wellen Wechselspannung Zeilich

Mehr

Mathematik III DGL der Technik

Mathematik III DGL der Technik Mahemaik III DGL der Technik Grundbegriffe: Differenialgleichung: Bedingung in der Form einer Gleichung in der Ableiungen der zu suchenden Funkion bis zu einer endlichen Ordnung aufreen. Funkions- und

Mehr

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild:

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild: Ein Nezgerä, auch Nezeil genann, is eine elekronische Schalungen die die Wechselspannung aus dem Sromnez (230V~) in eine Gleichspannung umwandeln kann. Ein Nezgerä sez sich meisens aus folgenden Komponenen

Mehr

f ( x) = x + x + 1 (quadratische Funktion) f '( x) = x + (Ableitungsfunktion)

f ( x) = x + x + 1 (quadratische Funktion) f '( x) = x + (Ableitungsfunktion) R. Brinkmann hp://brinkmann-du.de Seie.. Tangene und Normale Tangenenseigung Die Seigung eines Funkionsgraphen in einem Punk P ( f ( ) ) is gleichbedeuend mi der Seigung der Tangene in diesem Punk. Nachfolgend

Mehr

Protokoll zum Anfängerpraktikum

Protokoll zum Anfängerpraktikum Prookoll zu nfängerprakiku Besiung der FRDY Konsanen durch Elekrolyse Gruppe 2, Tea 5 Sebasian Korff 3.7.6 nhalsverzeichnis 1. Einleiung -3-1.1 Die Faraday Konsane -3-1.2 Grundlagen der Elekrolyse -4-2.

Mehr

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2 Fachrichung Physik Physikalisches Grundprakikum Ersell: Bearbeie: Versuch: L. Jahn SR M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher Akualisier: am 29. 03. 2010 Srömung im Rohr Inhalsverzeichnis

Mehr

HAW Hamburg Fakultät Life Sciences - Physiklabor Physikalisches Praktikum

HAW Hamburg Fakultät Life Sciences - Physiklabor Physikalisches Praktikum HAW Hamburg Fakulä Life Sciences - Physiklabor Physikalisches Prakikum Auf- und Enladungen von Kondensaoren in -Gliedern Messung von Kapaziäen Elekrische Schalungen mi -Gliedern finde man z. B. in Funkionsgeneraoren

Mehr

Schriftliche Abiturprüfung Technik/Datenverarbeitungstechnik - Leistungskurs - Hauptprüfung. Pflichtteil

Schriftliche Abiturprüfung Technik/Datenverarbeitungstechnik - Leistungskurs - Hauptprüfung. Pflichtteil Sächsisches Saasminiserium Gelungsbereich: Berufliches Gymnasium für Kulus und Spor Fachrichung: Technikwissenschaf Schuljahr 20/202 Schwerpunk: Daenverarbeiungsechnik Schrifliche Abiurprüfung Technik/Daenverarbeiungsechnik

Mehr

Signal- und Systemtheorie for Dummies

Signal- und Systemtheorie for Dummies FB Eleroechni Ewas Signal- und Sysemheorie or Dummies Version - Juli Oh No!!!! Pro. Dr.-Ing. ajana Lange Fachhochschule Merseburg FB Eleroechni Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies

Mehr

Zeit (in h) Ausflussrate (in l/h)

Zeit (in h) Ausflussrate (in l/h) Aufgabe 6 (Enwicklung einer Populaion): (Anforderungen: Inerpreaion von Schaubildern; Inegralfunkion in der Praxis) Von einer Populaion wird - jeweils in Abhängigkei von der Zei - die Geburenrae (in Individuen

Mehr

Fachrichtung Mess- und Regelungstechniker

Fachrichtung Mess- und Regelungstechniker Fachrichung Mess- und egelungsechniker 4.3.2.7-2 chüler Daum:. Tiel der L.E. : Digiale euerungsechnik 3 2. Fach / Klasse : Arbeiskunde, 3. Ausbildungsjahr 3. Themen der Unerrichsabschnie :. -Kippglied

Mehr

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit SS 2008

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit SS 2008 Phillips Kurve (Blanchard Ch.8) 151 Einleiung Inflaion und Arbeislosigkei in den Vereinigen Saaen, 1900-1960 In der beracheen Periode war in den USA eine niedrige Arbeislosigkei ypischerweise von hoher

Mehr

4.7. Prüfungsaufgaben zum beschränkten Wachstum

4.7. Prüfungsaufgaben zum beschränkten Wachstum .7. Prüfungsaufgaben zum beschränken Wachsum Aufgabe : Exponenielle Abnahme und beschränkes Wachsum In einem Raum befinden sich eine Million Radonaome. Duch radioakiven Zerfall verminder sich die Zahl

Mehr

Kosten der Verzögerung einer Reform der Sozialen Pflegeversicherung. Forschungszentrum Generationenverträge Albert-Ludwigs-Universität Freiburg

Kosten der Verzögerung einer Reform der Sozialen Pflegeversicherung. Forschungszentrum Generationenverträge Albert-Ludwigs-Universität Freiburg Kosen der Verzögerung einer Reform der Sozialen Pflegeversicherung Forschungszenrum Generaionenverräge Alber-Ludwigs-Universiä Freiburg 1. Berechnungsmehode Die Berechnung der Kosen, die durch das Verschieben

Mehr

8. Betriebsbedingungen elektrischer Maschinen

8. Betriebsbedingungen elektrischer Maschinen 8. Beriebsbedingungen elekrischer Maschinen Neben den Forderungen, die die Wirkungsweise an den Aufbau der elekrischen Maschinen sell, müssen bei der Konsrukion noch die Bedingungen des Aufsellungsores

Mehr

Thema : Rendite und Renditemessung

Thema : Rendite und Renditemessung Thema : Rendie und Rendiemessung Lernziele Es is wichig, die Zeigewichung der Rendie als ennzahl zu versehen, den Unerschied zwischen einer koninuierlichen und einer diskreen erzinsung zu begreifen und

Mehr

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2 Hmburg Kernfch Mhemik Zenrlbiur 2013 Erhöhes Anforderungsniveu Anlysis 2 Smrphones Die Mrkeinführung eines neuen Smrphones vom Elekronikherseller PEAR wird ses ufgereg erwre. Zur Modellierung der Enwicklung

Mehr

Abb.4.1: Aufbau der Versuchsapparatur

Abb.4.1: Aufbau der Versuchsapparatur 4. xperimenelle Unersuchungen 4. Aufbau der Versuchsanlage Für die Unersuchungen zum Schwingungs- und Resonanzverhalen sowie Soffausauschprozess wurde eine Versuchsanlage aufgebau. In der Abbildung 4.

Mehr

i(t) t 0 t 1 2t 1 3t 1

i(t) t 0 t 1 2t 1 3t 1 Aufgabe 1: i 0 0 1 2 1 3 1 1. Eine Kapaziä werde mi einem recheckförmigen Srom gespeis (s.o.). Berechnen Sie den Verlauf der Spannung für den Anfangswer u( 0 )=0V mi 0 = 0s. 2. Skizzieren Sie den eisungsverlauf

Mehr

1 Abtastung, Quantisierung und Codierung analoger Signale

1 Abtastung, Quantisierung und Codierung analoger Signale Abasung, Quanisierung und Codierung analoger Signale Analoge Signale werden in den meisen nachrichenechnischen Geräen heuzuage digial verarbeie. Um diese digiale Verarbeiung zu ermöglichen, wird das analoge

Mehr

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 www.mahe-aufgaben.com Abiurprüfung Mahemaik 009 (Baden-Würemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (7 Punke) Das Schaubild P einer Polynomfunkion drien Grades ha den Wendepunk W(-/-) und

Mehr

Abiturprüfung Baden-Württemberg 1986

Abiturprüfung Baden-Württemberg 1986 001 - hp://www.emah.de 1 Abirprüfng Baden-Würemberg 1986 Leisngskrs Mahemaik - Analysis Z jedem > 0 is eine Fnkion f gegeben drch f x x x e x ; x IR Ihr Schabild sei K. a Unersche K af Asympoen, Schnipnke

Mehr

Für die sekundäre Scheinleistung S und die primäre Netzleistung S Netz gelten bei reiner Widerstandslast:

Für die sekundäre Scheinleistung S und die primäre Netzleistung S Netz gelten bei reiner Widerstandslast: 4. Fremdgeführe Sromricher Fremdgeführe Sromricher benöigen eine fremde, nich zum Sromricher gehörende Wechselspannungsquelle, die ihnen während der Dauer der Kommuierung die Kommuierungsspannung zur Verfügung

Mehr

26 31 7 60 64 10. 16 6 12 32 33 9

26 31 7 60 64 10. 16 6 12 32 33 9 Lineare Algebra / Analyische Geomerie Grundkurs Zenrale schrifliche Abiurprüfungen im Fach Mahemaik Aufgabe 4 Fruchsäfe in Berieb der Geränkeindusrie produzier in zwei Werken an verschiedenen Sandoren

Mehr

INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11

INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11 INSIU FÜR NGENDE HYSI hysikalisches rakikum für Suierene er Ingenieurswissenschafen Universiä Hamburg, Jungiussraße 11 elier-ärmepumpe 1 Ziel äleleisung, ärmeleisung un ie Leisungsziffer einer elier-ärmepumpe

Mehr

Praktikum Elektronik für FB Informatik

Praktikum Elektronik für FB Informatik Fakulä Elekroechnik Hochschule für Technik und Wirschaf resden Universiy of Applied Sciences Friedrich-Lis-Plaz, 0069 resden ~ PF 2070 ~ 0008 resden ~ Tel.(035) 462 2437 ~ Fax (035) 462 293 Prakikum Elekronik

Mehr

Versuch: Phosphoreszenz

Versuch: Phosphoreszenz Versuch O8 PHOSPHORESZENZ Seie 1 von 6 Versuch: Phosphoreszenz Anleiung für folgende Sudiengänge: Biowissenschafen, Pharmazie Raum: Physik.24 Goehe-Universiä Frankfur am Main Fachbereich Physik Physikalisches

Mehr

INPUT-EVALUATION DER ZHW: PHYSIK SEITE 1. Serie 1

INPUT-EVALUATION DER ZHW: PHYSIK SEITE 1. Serie 1 INPUT-EVALUATIN DER ZHW: PHYSIK SEITE 1 Serie 1 1. Zwei Personen ziehen mi je 500 N an den Enden eines Seils. Das Seil ha eine Reissfesigkei von 600 N. Welche der vier folgenden Aussagen is physikalisch

Mehr

GETE ELEKTRISCHES FELD: DER KONDENSATOR: Elektrische Feldstärke: E r. Hr. Houska Testtermine: und

GETE ELEKTRISCHES FELD: DER KONDENSATOR: Elektrische Feldstärke: E r. Hr. Houska Testtermine: und Schuljahr 22/23 GETE 3. ABN / 4. ABN GETE Tesermine: 22.1.22 und 17.12.2 Hr. Houska houska@aon.a EEKTRISCHES FED: Elekrisch geladene Körper üben aufeinander Kräfe aus. Gleichnamige geladene Körper sießen

Mehr

7 Drehstromgleichrichter

7 Drehstromgleichrichter Drehsromgleichricher 7 Drehsromgleichricher 7.1 Mielpnk-Schalng (Halbbrücke) (3-plsiger Gleichricher) In bbildng 7-1 sind die drei Sekndärwicklngen eines Drehsrom-Transformaors in Sernschalng dargesell.

Mehr

5. Flipflops. 5.1 Nicht-taktgesteuerte Flipflops. 5.1.1 NOR-Flipflop. Schaltung: zur Erinnerung: E 1 A 1 A 2 E 2.

5. Flipflops. 5.1 Nicht-taktgesteuerte Flipflops. 5.1.1 NOR-Flipflop. Schaltung: zur Erinnerung: E 1 A 1 A 2 E 2. AO TIF 5. Nich-akgeseuere Flipflops 5.. NO-Flipflop chalung: E A zur Erinnerung: A B A B 0 0 0 0 0 0 0 E 2 A 2 Funkionsabelle: Fall E E 2 A A 2 0 0 2 0 3 0 4 Erklärungen: Im peicherfall behalen die Ausgänge

Mehr

12 Schweißnahtberechnung

12 Schweißnahtberechnung 225 12 Schweißnherechnung 12 Schweißnherechnung Die Berechnung der ufreenden Spnnungen in Schweißnähen erfolg im Regelfll mi Hilfe der elemenren Gleichungen der esigkeislehre. Auf weierführende Berechnungsverfhren,

Mehr

Flip - Flops 7-1. 7 Multivibratoren

Flip - Flops 7-1. 7 Multivibratoren Flip - Flops 7-7 Mulivibraoren Mulivibraoren sind migekoppele Digialschalungen. Ihre Ausgangsspannung spring nur zwischen zwei fesen Weren hin und her. Mulivibraoren (Kippschalungen) werden in bisabile,

Mehr

Leistungselektronik Grundlagen und Standardanwendungen. Übung 3: Kommutierung

Leistungselektronik Grundlagen und Standardanwendungen. Übung 3: Kommutierung Lehrsuhl für Elekrische Anriebssyseme und Leisungselekronik Technische Universiä München Arcissraße 1 D 8333 München Email: eal@ei.um.de Inerne: hp://www.eal.ei.um.de Prof. Dr.-Ing. Ralph Kennel Tel.:

Mehr

Stammgruppe trifft sich zum Museumsrundgang Experte erklärt jeweils sein Plakat

Stammgruppe trifft sich zum Museumsrundgang Experte erklärt jeweils sein Plakat Fachag Mahemaik: Kurvenscharen Ablauf: 1. Sunde Gemeinsame Einsiegsaufgabe. Sunde Sammgruppenaufgaben Sammgruppen (a bis 6 Schüler) Jedes Gruppenmiglied erhäl eine unerschiedliche Aufgabe A, B, C, D in

Mehr

3. Physikschulaufgabe. - Lösungen -

3. Physikschulaufgabe. - Lösungen - Realschule. Physikschulaufgabe Klasse I - Lösungen - hema: Aom- u. Kernphysik, Radioakiviä. Elekrisches Feld: Alphasrahlung: Sind (zweifach) posiiv geladene Heliumkerne. Sie werden im elekrischen Feld

Mehr

Masse, Kraft und Beschleunigung Masse:

Masse, Kraft und Beschleunigung Masse: Masse, Kraf und Beschleunigung Masse: Sei 1889 is die Einhei der Masse wie folg fesgeleg: Das Kilogramm is die Einhei der Masse; es is gleich der Masse des Inernaionalen Kilogrammprooyps. Einzige Einhei

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Sysemheorie eil A - Zeikoninuierliche Signale und Syseme - Muserlösungen Manfred Srohrmann Urban Brunner Inhal 3 Muserlösungen - Zeikoninuierliche Syseme im Zeibereich 3 3. Nachweis der ineariä... 3 3.

Mehr

Elementare RC- und RL-Glieder

Elementare RC- und RL-Glieder ANGEWANDTE ELEKTRONIK EINFÜHRNG WS 09/0 Elemenare RC- und RL-Glieder. Der Sromluß durch einen Kondensaor Abb.. veranschaulich einen Kondensaor, der durch Anschalen an eine Spannungsquelle geladen und anschließend

Mehr

9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION

9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION Eponenialfunkion, Logarihmusfunkion 9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION 9.. Eponenialfunkion (a) Definiion Im Abschni Zinseszinsrechnung konne die Berechnung eines Kapials K n nach n Perioden der

Mehr

Name: Punkte: Note: Ø:

Name: Punkte: Note: Ø: Name: Punke: Noe: Ø: Kernfach Physik Abzüge für Darsellung: Rundung: 4. Klausur in K am 5. 5. 0 Ache auf die Darsellung und vergiss nich Geg., Ges., Formeln, Einheien, Rundung...! Angaben: e =,60 0-9 C

Mehr

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital apiel 11 Produkion, Sparen und der Aufbau von apial Vorbereie durch: Florian Barholomae / Sebasian Jauch / Angelika Sachs Die Wechselwirkung zwischen Produkion und apial Gesamwirschafliche Produkionsfunkion:

Mehr

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 Abiurprüfung Mahemaik 0 (Baden-Würemberg) Berufliche Gymnasien Analysis, Aufgabe. (8 Punke) Die Abbildung zeig das Schaubild einer Funkion h mi der Definiionsmenge [-7 ; 4]. Die Funkion H is eine Sammfunkion

Mehr

10. Wechselspannung Einleitung

10. Wechselspannung Einleitung 10.1 Einleiung In Sromnezen benuz man sa Gleichspannung eine sinusförmige Wechselspannung, uner anderem weil diese wesenlich leicher zu erzeugen is. Wie der Name es sag wechsel bei einer Wechselspannung

Mehr

P. v. d. Lippe Häufige Fehler bei Klausuren in "Einführung in die ökonometrische Datenanalyse" Duisburg

P. v. d. Lippe Häufige Fehler bei Klausuren in Einführung in die ökonometrische Datenanalyse Duisburg P. v. d. Lippe Häufige Fehler bei Klausuren in "Einführung in die ökonomerische Daenanalyse" Duisburg a) Klausur SS 0 Klausuren SS 0 bis SS 03 akualisier 9. Augus 03. Sehr viele Teilnehmer rechnen einfach

Mehr

III.2 Radioaktive Zerfallsreihen

III.2 Radioaktive Zerfallsreihen N.BORGHINI Version vom 5. November 14, 13:57 Kernphysik III. Radioakive Zerfallsreihen Das Produk eines radioakiven Zerfalls kann selbs insabil sein und späer zerfallen, und so weier, sodass ganze Zerfallsreihen

Mehr

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R.

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R. Abiuraufgaben Grundkurs 9 Bayern Analysis I I.). Die Abbildung zeig den Graphen G f einer ganzraionalen Funkion f drien Grades mi dem Definiionsbereich D f R. Die in der Abbildung angegebenen Punke P(

Mehr

Gewöhnliche Differentialgleichungen (DGL)

Gewöhnliche Differentialgleichungen (DGL) Gewöhnliche Differenialgleichungen (DGL) Einführende Beispiele und Definiion einer DGL Beispiel 1: 1. Die lineare Pendelbewegung eines Federschwingers führ uner Zuhilfenahme des Newonschen Krafgesezes

Mehr

sammeln speichern C [F = As/V] Proportionalitätskonstante Q = CU I = dq/dt sammeln i - speichern u i (t)dt d t u c = 1 C i(t) dt

sammeln speichern C [F = As/V] Proportionalitätskonstante Q = CU I = dq/dt sammeln i - speichern u i (t)dt d t u c = 1 C i(t) dt Elekronische Sseme - 3. Kapaziä und Indukiviä 1 -------------------------------------------------------------------------------------------------------------- G. Schaer 26. Mai 24 3. Kapaziä und Indukiviä

Mehr

Universität Ulm Samstag,

Universität Ulm Samstag, Universiä Ulm Samsag, 5.6. Prof. Dr. W. Arend Robin Nika Sommersemeser Punkzahl: Lösungen Gewöhnliche Differenialgleichungen: Klausur. Besimmen Sie die Lösung (in möglichs einfacher Darsellung) folgender

Mehr

Freie ungedämpfte Schwingung eines Massenpunktes (Federschwinger) = 2a. Die allgemeine Lösung der DGL ist dann eine Linearkombination beider Lösungen:

Freie ungedämpfte Schwingung eines Massenpunktes (Federschwinger) = 2a. Die allgemeine Lösung der DGL ist dann eine Linearkombination beider Lösungen: Die Schwingungs-Differenilgleichung Freie ungedämpfe Schwingung eines Mssenpunes Federschwinger Bei Auslenung des Mssenpunes: Hooesches Gesez F - Federonsne Die Bewegungsgleichung lue dher: d m oder m

Mehr

Value Based Management

Value Based Management Value Based Managemen Vorlesung 5 Werorieniere Kennzahlen und Konzepe PD. Dr. Louis Velhuis 25.11.25 Wirschafswissenschafen PD. Dr. Louis Velhuis Seie 1 4 CVA Einführung CVA: Cash Value Added Spezifischer

Mehr

Stochastischer Prozess S(t) z.b. Rauschspannung

Stochastischer Prozess S(t) z.b. Rauschspannung s () () s (2) () s (i) () Sochasischer Prozess S() z.b. Rauschspannung 0 Bild : Analoges zufälliges Signal 2 P(S ) 0, P(S s ) P(S s 2 ) s s 2, P(S ). s() P S (s) b a /2 M b s a Bild 2: Sochasisches Signal

Mehr

Versuch 13: Elektronenstrahloszilloskop

Versuch 13: Elektronenstrahloszilloskop Versuch 13: Elekronensrahloszilloskop Der Versuch vermiel eine Einführung in die Funkionsweise des Elekronensrahloszilloskops anhand der wichigsen Anwendungsmöglichkeien dieses in der Messechnik sehr vielseiig

Mehr

1 Theorie. Versuch 3: Halbleiterbauelemente im Schaltbetrieb. 1.1 Bipolarer Transistor als Schalter in Emitterschaltung

1 Theorie. Versuch 3: Halbleiterbauelemente im Schaltbetrieb. 1.1 Bipolarer Transistor als Schalter in Emitterschaltung Labor Elekronische Prof. Dr. P. Suwe Dipl.-ng. B. Ahrend Versuch 3: Halbleierbauelemene im Schalberieb 1 Theorie Bipolare Transisoren und Feldeffekransisoren lassen sich sowohl zum Versärken von Klein-

Mehr

Grundlagen der Informatik III Wintersemester 2010/2011

Grundlagen der Informatik III Wintersemester 2010/2011 Grundlagen der Informaik III Winersemeser 21/211 Wolfgang Heenes, Parik Schmia 11. Aufgabenbla 31.1.211 Hinweis: Der Schnelles und die Aufgaben sollen in den Übungsgruppen bearbeie werden. Die Hausaufgaben

Mehr

Prüfungsaufgaben Wiederholungsklausur

Prüfungsaufgaben Wiederholungsklausur NIVESITÄT LEIPZIG Insiu für Informaik Prüfungsaufgaben Wiederholungsklausur Ab. Technische Informaik Prof. Dr. do Kebschull Dr. Hans-Joachim Lieske 5. März / 9 - / H7 Winersemeser 999/ Aufgaben zur Wiederholungsklausur

Mehr

1. Mathematische Grundlagen und Grundkenntnisse

1. Mathematische Grundlagen und Grundkenntnisse 8 1. Mahemaische Grundlagen und Grundkennnisse Aufgabe 7: Gegeben sind: K = 1; = 18; p = 1 (p.a.). Berechnen Sie die Zinsen z. 18 1 Lösung: z = 1 = 5 36 Man beache, dass die kaufmännische Zinsformel als

Mehr

4 Bauteile kennenlernen

4 Bauteile kennenlernen 4 Baueile kennenlernen 4.1 Widersand Widersände sind Baueile mi einem gewünschen Widersandsverhalen. Sie sezen der Elekronensrömung Widersand engegen. Man unerscheide zwischen linearen und nichlinearen

Mehr

Aufgabensammlung Teil 2a. Auch mit Verwendung von Methoden aus der Analysis: Wachstumsraten Differentialgleichungen. Auch mit CAS-Einsatz

Aufgabensammlung Teil 2a. Auch mit Verwendung von Methoden aus der Analysis: Wachstumsraten Differentialgleichungen. Auch mit CAS-Einsatz Wachsum Exponenielles Wachsum Aufgabensammlung Teil 2a Auch mi Verwendung von Mehoden aus der Analysis: Wachsumsraen Differenialgleichungen Auch mi CAS-Einsaz Sand: 23. Februar 2012 Daei Nr. 45811 INTERNETBIBLIOTHEK

Mehr

Seminar Bewertungsmethoden in der Personenversicherungsmathematik

Seminar Bewertungsmethoden in der Personenversicherungsmathematik Seminar Bewerungsmehoden in der Personenversicherungsmahemaik Technische Reserven und Markwere I Sefanie Schüz Mahemaisches Insiu der Universiä zu Köln Sommersemeser 2010 Bereuung: Prof. Hanspeer Schmidli,

Mehr

So prüfen Sie die Verjährung von Ansprüchen nach altem Recht

So prüfen Sie die Verjährung von Ansprüchen nach altem Recht Akademische Arbeisgemeinschaf Verlag So prüfen Sie die von Ansprüchen nach alem Rech Was passier mi Ansprüchen, deren vor dem bzw. 15. 12. 2004 begonnen ha? Zum (Sichag) wurde das srech grundlegend reformier.

Mehr

DSS1. Digitaler Sprachspeicher Einschub mit RAM- und Flash- Speicherbänken. Abb. DSS1 (L- Nr. 2.600) 16 Speicheradressen für Sprachaufzeichnung:

DSS1. Digitaler Sprachspeicher Einschub mit RAM- und Flash- Speicherbänken. Abb. DSS1 (L- Nr. 2.600) 16 Speicheradressen für Sprachaufzeichnung: mi RAM- und Flash- peicherbänken Abb. (L- Nr. 2.600) Auf einen Blick: 16 peicheradressen für prachaufzeichnung: - bis zu 8 Bänke im RAM- peicher (flüchig) - bis zu 8 Bänke im Flash- peicher (permanen)

Mehr

WORKING PAPERS Arbeitspapiere der Betrieblichen Finanzwirtschaft

WORKING PAPERS Arbeitspapiere der Betrieblichen Finanzwirtschaft WORKING PAPERS Arbeispapiere der Berieblichen Finanzwirschaf Lehrsuhl für Beriebswirschafslehre, insbes. Beriebliche Finanzwirschaf Bfw29V/03 Zusandsabhängige Bewerung mi dem sochasischen Diskonierungsfakor

Mehr

Faktor 4x Long Zertifikate (SVSP-Produktcode: 1300)

Faktor 4x Long Zertifikate (SVSP-Produktcode: 1300) Fakor 4x Long Zerifikae (SVSP-Produkcode: 1300) Index Valor / Symbol / ISIN / WKN Bezugswer Fakor 4x Long Copper Index CBLKU4 / 12306935 / CZ33RK / DE000CZ33RK2 üblicherweise der an der Maßgeblichen erminbörse

Mehr

4. Quadratische Funktionen.

4. Quadratische Funktionen. 4-1 Funkionen 4 Quadraische Funkionen 41 Skalierung, Nullsellen Eine quadraische Funkion is von der Form f() = c 2 + b + a mi reellen Zahlen a, b, c; is c 0, so sprechen wir von einer echen quadraischen

Mehr

Faktor 4x Short Zertifikate (SVSP-Produktcode: 1300)

Faktor 4x Short Zertifikate (SVSP-Produktcode: 1300) Fakor 4x Shor Zerifikae (SVSP-Produkcode: 1300) Index Valor / Symbol / ISIN / WKN / Common Code Fakor 4x Shor DAXF Index 11617870 / CBSDX DE000CZ33BA7 / CZ33BA Bezugswer üblicherweise der an der Maßgeblichen

Mehr

Bericht zur Prüfung im Oktober 2007 über Finanzmathematik und Investmentmanagement

Bericht zur Prüfung im Oktober 2007 über Finanzmathematik und Investmentmanagement Berich zur Prüfung im Okober 7 über Finanzmahemaik und Invesmenmanagemen (Grundwissen) Peer Albrech (Mannheim) Am 5 Okober 7 wurde zum zweien Mal eine Prüfung im Fach Finanzmahemaik und Invesmenmanagemen

Mehr

Kommunikationstechnik I

Kommunikationstechnik I Kommunikaionsechnik I Prof. Dr. Sefan Weinzierl Muserlösung 5. Aufgabenbla 1. Moden 1.1 Erläuern Sie, was in der Raumakusik uner Raummoden versanden wird. Der Begriff einer sehenden Welle läss sich am

Mehr

Motivation der Dierenzial- und Integralrechnung

Motivation der Dierenzial- und Integralrechnung Moivaion der Dierenzial- und Inegralrechnung Fakulä Grundlagen Hochschule Esslingen SS 2010 4 3 2 1 0 5 10 15 20 25 30 Fakulä Grundlagen (Hochschule Esslingen) SS 2010 1 / 9 Übersich 1 Vorberachungen Ableiungsbegri

Mehr

1 Kinematik der geradlinigen Bewegung eines Punktes 1.1 Freier Fall; Geschwindigkeit, Fallzeit, kinematische Diagramme

1 Kinematik der geradlinigen Bewegung eines Punktes 1.1 Freier Fall; Geschwindigkeit, Fallzeit, kinematische Diagramme Inhal / Übersich der Aufgaben mi Lösungen XI Aufgabe Erläuerung "Info"-Bild Seie 1 1 Kinemaik der geradlinigen Bewegung eines Punkes 1.1 Freier Fall; Geschwindigkei, Fallzei, kinemaische Diagramme 5 1.2

Mehr

Vorlesung - Prozessleittechnik 2 (PLT 2)

Vorlesung - Prozessleittechnik 2 (PLT 2) Fakulä Elekro- & Informaionsechnik, Insiu für Auomaisierungsechnik, rofessur für rozessleiechnik Vorlesung - rozessleiechnik LT Sicherhei und Zuverlässigkei von rozessanlagen - Sicherheislebenszyklus Teil

Mehr

Aufbau von faserbasierten Interferometern für die Quantenkryptografie

Aufbau von faserbasierten Interferometern für die Quantenkryptografie Aufbau von faserbasieren nerferomeern für die uanenkrypografie - Gehäuse, Phasensabilisierung, Fasereinbau - Maserarbei im Sudiengang Elekroechnik und nformaionsechnik Veriefungsrichung Phoonik an der

Mehr

Faktor 4x Long Zertifikate (SVSP-Produktcode: 1300)

Faktor 4x Long Zertifikate (SVSP-Produktcode: 1300) Fakor 4x Long Zerifikae (SVSP-Produkcode: 1300) Index Valor / Symbol / ISIN / WKN Bezugswer Fakor 4x Long Naural Gas Index 18377042 CBLNG4 DE000CZ33US9 CZ33US üblicherweise der an der Massgeblichen erminbörse

Mehr

gegeben durch x 4 in dasselbe Koordinatensystem (Längeneinheit auf beiden Achsen: 1 cm). Zur Kontrolle: ft

gegeben durch x 4 in dasselbe Koordinatensystem (Längeneinheit auf beiden Achsen: 1 cm). Zur Kontrolle: ft KA LK M2 13 18. 11. 05 I. ANALYSIS Leisungsfachanforderungen Für jedes > 0 is eine Funkion f gegeben durch f (x) = x + 1 e x ; x IR. Der Graph von f sei G. a) Unersuche G auf Asympoen, Nullsellen, Exrem-

Mehr

Die Untersuchungen beschränken sich auf harmonische Wechselspannungen und -ströme

Die Untersuchungen beschränken sich auf harmonische Wechselspannungen und -ströme WS 8. Wechselsröme 8.1 Einleiung n Wechselsromkreisen spielen neben Ohmschen Widersänden auch Kondensaoren (Kapaziäen) und Spulen (ndukiviäen) wichige Rolle. n diesem Versuch soll am Beispiel einfacher

Mehr

Der Zeitwert des Geldes - Vom Umgang mit Zinsstrukturkurven -

Der Zeitwert des Geldes - Vom Umgang mit Zinsstrukturkurven - - /8 - Der Zeiwer des Geldes - Vom Umgang mi Zinssrukurkurven - Dr. rer. pol. Helmu Sieger PROBLEMSELLUNG Zinsänderungen beeinflussen den Wer der Zahlungssröme, die Krediinsiue, Versicherungen und sonsige

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Zenrale schrifliche Abiurprüfungen im Fach Mahemaik Aufgabe 9: Radioakiver Zerfall Beim radioakiven Zerfall einer Subsanz S 1 beschreib m 1 () die Masse der noch nich zerfallenen Subsanz zum Zeipunk mi

Mehr

Faktor 4x Short Natural Gas II Zertifikat (SVSP-Produktcode: 2300)

Faktor 4x Short Natural Gas II Zertifikat (SVSP-Produktcode: 2300) Fakor 4x Shor Naural Gas II Zerifika (SVSP-Produkcode: 2300) KAG Hinweis Emienin: Raing: Zerifikaear: SVSP-Code Verbriefung: Die Werpapiere sind keine Kollekivanlage im Sinne des schweizerischen Bundesgesezes

Mehr

Universität Stuttgart. Institut für Technische Chemie

Universität Stuttgart. Institut für Technische Chemie Universiä Sugar Insiu für Technische Chemie Technisch-Chemisches Prakikum Versuch 5: Verweilzei-Vereilungscharakerisiken von Reakoren 8/1 Verweilzei-Vereilungscharakerisiken von Reakoren 1. Einleiung Die

Mehr

Aufgaben zur Zeitreihenanalyse (Kap. 5)

Aufgaben zur Zeitreihenanalyse (Kap. 5) Prof. Dr. Reinhold Kosfeld Fachbereich Wirschafswissenschafen Aufgaben zur Zeireihenanalyse (Kap. 5) Aufgabe 5.1 Welches Phänomen läss sich mi ARCH-Prozessen modellieren und welche prognosische Relevanz

Mehr

Motivation. Finanzmathematik in diskreter Zeit

Motivation. Finanzmathematik in diskreter Zeit Moivaion Finanzmahemaik in diskreer Zei Eine Hinführung zu akuellen Forschungsergebnissen Alber-Ludwigs-Universiä Freiburg Prof. Dr. Thorsen Schmid Abeilung für Mahemaische Sochasik Freiburg, 22. April

Mehr

DIGITALTECHNIK 07 FLIP-FLOP S

DIGITALTECHNIK 07 FLIP-FLOP S Seie 1 von 32 DIGITALTECHNIK 07 FLIP-FLOP S Inhal Seie 2 von 32 1 FLIP FLOP / KIPPSCHALTUNGEN... 3 1.1 ZUSAMMENFASSUNG: FLIPFLOP-KLASSIFIZIERUNG... 4 1.2 VEREINBARUNGEN... 4 1.3 STATISCHE / DYNAMISCHE

Mehr