R-C-Kreise. durchgeführt am von Matthias Dräger und Alexander Narweleit

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "R-C-Kreise. durchgeführt am 07.06.2010. von Matthias Dräger und Alexander Narweleit"

Transkript

1 R-C-Kreise durchgeführt am von Matthias Dräger und Alexander Narweleit PHYSIKALISCHE GRUNDLAGEN Physikalische Grundlagen. Kondensator Ein Kondensator ist ein passives elektrisches Bauelement, welches in der Lage ist elektrische Ladung Q zu speichern. Ein Kondensator besteht aus zwei Platten, wobei die Größe der Platten für die Kapazität C des Kondensators ausschlaggebend ist. Die elektrische Ladung ist proportional zur Kapazität und zur Spannung: Q = C U C = Q U ( Die Einheit der Kapazität wird in Farad angegeben: [C] = A s V = F (2 Der Strom I ist die zeitliche Änderung der Ladung. Damit gilt nach (: I C = du C = C du C (3 dt dt U C = C I C dt (4.2 R-C-Kreis; Entladestrom in Abhängigkeit von der Zeit In der folgenden Abbildung wird ein Kondensator mit der Kapazität C mit einem Widerstand R in einer geschlossenen Masche geschaltet: Abbildung : R-C-Kreis Die Spannung am Kondensator (U C ergibt sich aus (4, der Spannungsabfall U R am Widerstand ergibt sich aus der Definition: U R = R I R (5 Nach der Maschenregel muss die Summe aus U C und U R gleich 0 sein: U C + U R = C I C dt + R I = 0 (6

2 .3 Wechselstromwiderstand eines Kondensators PHYSIKALISCHE GRUNDLAGEN Da eine Reihenschaltung vorliegt gilt: I = I R = I C. Leitet man die Formel nach Zeit ab, erhält man eine Differentialgleichung für den Strom als Funktion der Zeit: C I + R di dt = 0 (7 di dt + R C I = 0 (8 Als Lösung der Differentialgleichung erfüllt nur die e-funktion die Bedingung: I(t = I 0 e R C t (9.3 Wechselstromwiderstand eines Kondensators Als Wechselstromwiderstand Z (Impedanz versteht man das Verhälnis der Amplituden von Spannung und Strom: Z = U 0 I 0 = U eff I eff (0 Für eine Wechselspannung U C = U 0 cos ω t am Kondensator kann durch Ableitung nach t gemäß (3 der Strom berechnet werden: I C = C du C = ω C U 0 sin ω t ( dt ( = ω C U 0 cos ω t + π (2 2 Der Wechselstromwiderstand für den Kondensator ergibt sich also aus dem Verhälnis der Amplitude: Z = ω C (3.4 Frequenzabhängiger Spannungsteiler (Hochpass und Tiefpass Da der Welchselstromwiderstand eines Kondensators von der Frenquenz abhängt, ist es möglich sogenannte Hochpass- und Tiefpass-Filter zu bauen. Ein Hochpass-Filter lässt nur Frenquenzen oberhalt ihrer Grenzfrequenz ungeschwächt passieren und filter niedrige Frequenzen heraus. Ein Tiefpass-Filter Abbildung 2: Hochpass-Filter lässt hingegen Frequenzen unterhalb ihrer Grenzfrequenz passieren und filtert hohe Frequenzen heraus. Abbildung 3: Tiefpass-Filter 2

3 3 VERSUCHSAUFBAU 2 Aufgaben. (Vorversuch Bauteil-Daten Messung des Widerstandes R und der Kapazität C der verwendeten Bauteile mit einem Multimeter. 2. (Abklingkurve Beobachtung der Lade- bzw. Entladestromkurve in einem R-C-Kreis. Bestimmung der Zeitkonstanten des Kreises und Berechnung der Kapazität C des Kondensators bei bekanntem Widerstand R. 3. (Wechselstromwiderstand Messung des Wechselstromwiderstandes Z eines Kondensators in Abhängigkeit von der Frequenz f der angelegten Wechselspannung. Grafische Darstellung des Ergebnisses (Z über T = /f. Vergleich mit dem theoretisch erwarteten Verlauf und Berechnung der Kapazität des Kondensators. 4. (Hoch-/Tiefpass Messung und grafische Darstellung der Durchlasskurven (Ausgangsspannung über Frequenz eines Hochpasses und eines Tiefpasses. Bestimmung der Kapazität des Kondensators aus der Schnittstelle der beiden Kurven (Übernahmefrequenz. 3 Versuchsaufbau Abbildung 4: Aufbau von Aufgabe 2 Abbildung 5: Aufbau von Aufgabe 3 Abbildung 6: Aufbau von Aufgabe 4 3

4 5 VERSUCHSDURCHFÜHRUNG 4 Geräte und Materialien Für den Versuch verwendeten wir folgende Geräte: Oszilloskop HAMEG (203-7 Digitalmultimeter Voltcraft VC 230 Funktionsgenerator Verbindungsstecker (Transistor Steckbrett Kondensator ohne Kennzeichnung (Wert siehe Durchführung Widerstand kω Gerät Oszilloskop Digitalmultimeter Fehler X-Achse: 5%, Y-Achse: 3%, Ablesefehler: ±0, 2cm DC: U: 0, 8% + d I:, 2% + 3d AC: U:, 2% + 5d I: 3, 0% + 5d AC/DC: C: 3, 0% + 5d AC/DC: R:, 0% + 2d Tabelle : Messfehler in der Übersicht 5 Versuchsdurchführung 5. Aufgabe Im sogenannten Vorversuch haben wir die genauen Werte von dem Kondensator (Kapazität und dem Widerstand gemessen. Der Fehler des Digitalmultimeters wurde für die Kapazität mit 3, 0% + 5d und dem Widerstand mit, 0% + 2d angegeben. Wir sind dabei auf folgende Werte gekommen: C = (03, 0 ± (3, , 05nF = (03, 0 ± 3, 4nF R = (7, 92 ± (0, , 0002kΩ = (7, 92 ± 0, 8kΩ 5.2 Aufgabe 2 In dem zweiten Versuch haben wir die Abklingkurze des Spannungsabfalls am Widerstand R mithilfe eines Oszilloskopen angeschaut. Dabei haben wir bei dem Funktionsgenerator eine Rechteck-Spannung eine eine Frequenz von f = (60±0, 2Hz eingestellt. Die Skalierung des Oszilloskopen haben wir für die Zeitachse (X-Achse auf cm = 0ms und die Spannungsachse (Y-Achse auf cm = 0, 5V eingestellt. Die komplette Entladedauer lag bei ca. 8cm 80ms. Die Amplitude haben wir mit 3,4V abgelesen. Wir haben nun den Spannungsabfall alle 0ms abgelesen: 4

5 5.3 Aufgabe 3 5 VERSUCHSDURCHFÜHRUNG t in ms U in V 0 3,4 0,9 20, 30 0,6 40 0,3 50 0,5 60 0, 70 0, Tabelle 2: Spannungswerte der Abklingkurve 5.3 Aufgabe 3 In diesem Versuch soll der Wechselstromwiderstand Z bestimmt werden. Dazu haben wir die Effektivspannung U eff am Widerstand gemessen und den Effektivstrom I eff im Stromkreis. Um den Frequenzbereich von Hz abzudecken, mussten wir die Skaleneinteilung vom Funktionsgenrator mehrmals ändern. Beim dritten Messwert haben wir die Einheit von 00Hz auf khz erhöht und beim fünften Messwert von khz auf 0kHz. In der folgenden Tabelle haben wir die Frequenzen bereits in Hz umgewandelt: f in Hz U eff in V I eff in ma 499,2 8,34 2, ,2 8,33 5, ,0 8,3 8, ,0 8,28 0, ,9 8,27 3, ,3 8,23 6, ,6 8,9 8, ,0 8,5 2, ,2 8,0 23, , 8,05 26,56 Tabelle 3: Effektivwerte im Wechselstromkreis 5

6 5.4 Aufgabe 4 6 AUSWERTUNG 5.4 Aufgabe 4 Im vierten Versuch haben wir einen Hoch- und Tiefpassfilter gebaut und die Spannungen am Widerstand (U R und am Kondensator U C bei unterschiedlichen Frequenzen bestimmt. Wir haben den Frequenzbereich auf 50-50Hz festgelegt, da sich die Spannungen bereits bei ca. 87Hz geschnitten haben. f in Hz U R in V U C in V 50,05 4,6 7, ,94 4,7 6, ,04 5,2 6, ,90 5,42 6, ,54 5,64 6,0 6 82,08 5,70 6, ,28 5,78 5, ,93 5,83 5,9 9 86,63 5,86 5, ,0 5,87 5,87 87,98 5,90 5, ,08 5,97 5, ,04 6,2 5,6 4 00,20 6,27 5,44 5 0,03 6,5 5,5 6 29,95 6,90 4, ,7 7,8 4,6 Tabelle 4: Spannungsabfälle am Hoch- und Tiefpass 6 Auswertung 6. Aufgabe Wir erhalten als Ergebnis für die Messung folgendes Ergebnis (gerundet auf eine signifikante Stelle: C = (03, 0 ± 3, 4nF = (03, 0 ± 3, 2nF R = (7, 92 ± 0, 8kΩ = (7, 9 ± 0, 2kΩ 6.2 Aufgabe 2 Wir nehmen den ersten und den drittletzten unserer Messwerte, um die Steigung m zu erhalten. m = y 2 y x 2 x 0, V 3, 4V = 60ms 0ms 0, 055 V ms Fehlerrechnung Wir gehen von einem Ablesefehler von 0,cm aufgrund von Flimmern und generellen Abweichungen bei manuellem Ablesen aus. Das entspricht bei der Zeitablesung einem Fehler von ms und in Bezug auf die Spannung 0,05V. 6

7 6.2 Aufgabe 2 6 AUSWERTUNG m = ( y 2 + y + 2 x y2 y y 2 y x 2 x x 2 x 0, 05V + 0, 05V = ( 0, V 3, 4V + 2 ms 0, V 3, 4V 60ms 0ms 60ms 0ms 0, V ms insgesamt : m = 0, 055 ± 0, 00 V ms Nach dem Skript gilt: RC = m. Daher müsste m die Einheit Wir rechnen als mit m in der Einheit ms weiter. Einsetzen: m = 0, 055 ± 0, 00 ms ms haben, was aber nicht der Fall ist. RC = 0, 055 ms RC = 8, 8ms Fehlerrechnung RC = m m ( m = m 0, 00 ms RC = ( 0, ms RC = 0, 33ms 0, 4ms insgesamt : RC = 8, 2 ± 0, 4ms m 2 Nun können wir die Kapazität C errechnen. C = RC R 8, 2ms = 7, 9kΩ = 0, 67nF Fehlerrechnung C = ( RC RC + R R RC R 0, 4ms 0, 2kΩ = ( + 8, 2ms 7, 9kΩ 8, 2 7, 9kΩ = 3, 37nF insgesamt : C = (02 ± 4nF Wenn man diesen Wert mit unserem gemessenen Wert von (03, 0 ± 3, 4 nf vergleicht, sieht man, dass sich der Unterschied im ersten Fehlerintervall befindet und daher sehr verträglich ist. 7

8 6.3 Aufgabe 3 6 AUSWERTUNG 6.3 Aufgabe 3 Um den Wechselstromwiderstand zu berechnen, benutzen wir (0 aus den physikalischen Grundladen: Z = U eff I eff Für die graphische Darstellung berechnen wir zudem die Kapazität C und die Periodendauer T mit: Z = ω C = 2π f C C = 2π f Z T = f Da die Frequenz immer kleine Schwankungen enthielt, nehmen wir einen Fehler von 0,2Hz an. Bei der Periodendauer T ist der Fehler nach der Rechnung im Mikro- bzw Nano-Sekunden-Bereich, weshalb wir diesen hier vernachlässigen. Durch das Messgerät haben die Effektivwerte folgende Fehler: f : 0, 2Hz U eff :, 2% + 5d I eff : 3, 0% + 5d f in Hz T in ms U eff in V I eff in ma Z in kω C in nf 499, 2 ± 0, 2 2,00 8, 34 ± 0, 0 2, 72 ± 0, 083 3, 07 ± 0, 4 03, 9 ± 4, , 2 ± 0, 2,00 8, 33 ± 0, 0 5, 45 ± 0, 7, 528 ± 0, , 2 ± 4, , 0 ± 0, 2 0,66 8, 3 ± 0, 0 8, 9 ± 0, 25, 05 ± 0, , 3 ± 4, , 0 ± 0, 2 0,50 8, 28 ± 0, 0 0, 87 ± 0, 33 0, 762 ± 0, , 4 ± 4, , 9 ± 0, 2 0,40 8, 27 ± 0, 0 3, 52 ± 0, 4 0, 62 ± 0, , 2 ± 4, , 3 ± 0, 2 0,33 8, 230 ± 0, 099 6, 23 ± 0, 49 0, 507 ± 0, , 5 ± 4, , 6 ± 0, 2 0,28 8, 90 ± 0, 099 8, 9 ± 0, 57 0, 433 ± 0, 09 04, 6 ± 4, , 0 ± 0, 2 0,24 8, 50 ± 0, 098 2, 5 ± 0, 65 0, 379 ± 0, 07 0, 9 ± 4, , 2 ± 0, 2 0,22 8, 00 ± 0, , 94 ± 0, 72 0, 338 ± 0, 05 05, 0 ± 4, , ± 0, 2 0,20 8, 050 ± 0, , 56 ± 0, 80 0, 303 ± 0, 03 05, ± 4, 6 Rechnungen für die Werte der ersten Zeile Tabelle 5: Effektivwerte im Wechselstromkreis Fehlerrechnung T T = f = 499, 2Hz 2ms Z = U eff I eff = C = 8, 34V 3, 07kΩ 2, 72mA 2π f Z = 03, 9nF 2π 499, 2Hz 3, 07kΩ δt = δf T = f f f T = 0, 2Hz 499, 2Hz 0, 8µs 499, 2Hz 8

9 6.4 Aufgabe 4 6 AUSWERTUNG Fehlerrechnung Z Fehlerrechnung C 6.4 Aufgabe 4 δz = δu eff + δi eff Z = Z = ( Ueff U eff ( 0, 0V 8, 34V δc = δf + δz ( f C = f + Z Z C = + I eff I eff + 0, 083mA 2, 72mA 2π f Z ( 0, 2Hz 0, 4kΩ + 499, 2Hz 3, 07kΩ Ueff I eff 8, 34V 0, 4kΩ 2, 72mA 4, 8nF 2π 499, 2Hz 3, 07kΩ Wir betrachten nun Tabelle 4 aus der Durchführung und fügen folgende Fehler hinzu: f : 0, 2Hz(Schwankungen U R /U C :, 2% + 5d Bei einer Frequenz von 87, Hz sind die Spannungsabfälle U R und U C gleich groß. Da es sich um f in Hz U R in V U C in V 50, ± 0, 2 4, 6 ± 0, 05 7, 20 ± 0, , 9 ± 0, 2 4, 7 ± 0, 06 6, 85 ± 0, , 0 ± 0, 2 5, 2 ± 0, 07 6, 48 ± 0, , 9 ± 0, 2 5, 42 ± 0, 07 6, 30 ± 0, , 5 ± 0, 2 5, 64 ± 0, 07 6, 0 ± 0, , ± 0, 2 5, 70 ± 0, 07 6, 04 ± 0, , 3 ± 0, 2 5, 78 ± 0, 07 5, 97 ± 0, , 9 ± 0, 2 5, 83 ± 0, 08 5, 9 ± 0, , 6 ± 0, 2 5, 86 ± 0, 08 5, 89 ± 0, , ± 0, 2 5, 87 ± 0, 08 5, 87 ± 0, 08 88, 0 ± 0, 2 5, 90 ± 0, 08 5, 84 ± 0, , ± 0, 2 5, 97 ± 0, 08 5, 77 ± 0, , 0 ± 0, 2 6, 2 ± 0, 08 5, 6 ± 0, , 2 ± 0, 2 6, 27 ± 0, 08 5, 44 ± 0, , 0 ± 0, 2 6, 5 ± 0, 08 5, 5 ± 0, , 0 ± 0, 2 6, 90 ± 0, 08 4, 62 ± 0, , 2 ± 0, 2 7, 8 ± 0, 08 4, 6 ± 0, 05 Tabelle 6: Spannungsabfälle am Hoch- und Tiefpass eine Reihenschaltung handelt gilt außerdem I = I C = I R. Wir berechnen nun die Kapazität des 9

10 7 ZUSAMMENFASSUNG UND DISKUSSION Kondensators wie folgt: R = U R I Z C = ω C R = Z C = ω C R = ω C C = ω R = 2π f R C = 02, nf 2π 87, Hz 7, 9kΩ Fehlerrechnung δc = δf + δr ( f C = f + R R ( 0, 2Hz C = 87, Hz 2π f R + 0, 2kΩ 7, 9kΩ Wir kommen also auf eine Kapazität von (02 ± 2nF., 4nF 2π 87, Hz 7, 9kΩ 7 Zusammenfassung und Diskussion 0

Gleichstrom/Wechselstrom

Gleichstrom/Wechselstrom Gleichstrom/Wechselstrom 1 PHYSIKALISCHE GRUNDLAGEN durchgeführt am 31.05.2010 von Matthias Dräger, Alexander Narweleit und Fabian Pirzer 1 Physikalische Grundlagen 1.1 Definition des Widerstandes Der

Mehr

Filter zur frequenzselektiven Messung

Filter zur frequenzselektiven Messung Messtechnik-Praktikum 29. April 2008 Filter zur frequenzselektiven Messung Silvio Fuchs & Simon Stützer Augabenstellung. a) Bauen Sie die Schaltung eines RC-Hochpass (Abbildung 3.2, Seite 3) und eines

Mehr

Wechselstromkreise. Christopher Bronner, Frank Essenberger Freie Universität Berlin. 29. September 2006. 1 Physikalische Grundlagen 1.

Wechselstromkreise. Christopher Bronner, Frank Essenberger Freie Universität Berlin. 29. September 2006. 1 Physikalische Grundlagen 1. Wechselstromkreise Christopher Bronner, Frank Essenberger Freie Universität Berlin 29. September 2006 Inhaltsverzeichnis 1 Physikalische Grundlagen 1 2 Aufgaben 5 3 Messprotokoll 5 3.1 Geräte.................................

Mehr

PW11 Wechselstrom II. Oszilloskop Einführende Messungen, Wechselstromwiderstände, Tiefpasse (Hochpass) 17. Januar 2007

PW11 Wechselstrom II. Oszilloskop Einführende Messungen, Wechselstromwiderstände, Tiefpasse (Hochpass) 17. Januar 2007 PW11 Wechselstrom II Oszilloskop Einführende Messungen, Wechselstromwiderstände, Tiefpasse (Hochpass) 17. Januar 2007 Andreas Allacher 0501793 Tobias Krieger 0447809 Mittwoch Gruppe 3 13:00 18:15 Uhr Dr.

Mehr

Fachhochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik. Praktikum Elektrotechnik und Antriebstechnik

Fachhochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik. Praktikum Elektrotechnik und Antriebstechnik FH D FB 4 Fachhochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik Elektro- und elektrische Antriebstechnik Prof. Dr.-Ing. Jürgen Kiel Praktikum Elektrotechnik und Antriebstechnik Versuch

Mehr

EO - Oszilloskop Blockpraktikum Frühjahr 2005

EO - Oszilloskop Blockpraktikum Frühjahr 2005 EO - Oszilloskop, Blockpraktikum Frühjahr 25 28. März 25 EO - Oszilloskop Blockpraktikum Frühjahr 25 Alexander Seizinger, Tobias Müller Assistent René Rexer Tübingen, den 28. März 25 Einführung In diesem

Mehr

Übung 3: Oszilloskop

Übung 3: Oszilloskop Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Institut für Grundlagen und Theorie der Elektrotechnik Institut für Elektrische Antriebstechnik und Maschinen Grundlagen der Elektrotechnik,

Mehr

Versuch 14: Wechselstromwiderstände

Versuch 14: Wechselstromwiderstände Versuch 14: Wechselstromwiderstände Inhaltsverzeichnis 1 Einleitung 3 2 Theorie 3 2.1 Grundlagen................................... 3 2.2 Bauteile..................................... 3 2.3 Stromkreise...................................

Mehr

U N I V E R S I T Ä T R E G E N S B U R G

U N I V E R S I T Ä T R E G E N S B U R G U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikpraktikum für Chemiker Versuch ww : Wechselstromwiderstand Dr. Tobias Korn Manuel März Inhaltsverzeichnis

Mehr

Elektrische Messtechnik Protokoll - Bestimmung des Frequenzgangs durch eine Messung im Zeitbereich

Elektrische Messtechnik Protokoll - Bestimmung des Frequenzgangs durch eine Messung im Zeitbereich Elektrische Messtechnik Protokoll - Bestimmung des Frequenzgangs durch eine Messung im Zeitbereich André Grüneberg Janko Lötzsch Mario Apitz Friedemar Blohm Versuch: 19. Dezember 2001 Protokoll: 6. Januar

Mehr

Versuch V03: Passive Netzwerke

Versuch V03: Passive Netzwerke Versuch V3: Passive Netzwerke Henri Menke und Jan Trautwein Gruppe 1 11 Platz k (Betreuer: Torsten endler) (Datum: 4. November 13) Im Versuch soll in erster Linie der Frequenzgang eines Tiefpasses aufgenommen

Mehr

Messung elektrischer Größen Bestimmung von ohmschen Widerständen

Messung elektrischer Größen Bestimmung von ohmschen Widerständen Messtechnik-Praktikum 22.04.08 Messung elektrischer Größen Bestimmung von ohmschen Widerständen Silvio Fuchs & Simon Stützer 1 Augabenstellung 1. Bestimmen Sie die Größen von zwei ohmschen Widerständen

Mehr

Hochpass, Tiefpass und Bandpass

Hochpass, Tiefpass und Bandpass Demonstrationspraktikum für Lehramtskandidaten Versuch E3 Hochpass, Tiefpass und Bandpass Sommersemester 2006 Name: Daniel Scholz Mitarbeiter: Steffen Ravekes EMail: daniel@mehr-davon.de Gruppe: 4 Durchgeführt

Mehr

Kennlinienaufnahme elektronische Bauelemente

Kennlinienaufnahme elektronische Bauelemente Messtechnik-Praktikum 06.05.08 Kennlinienaufnahme elektronische Bauelemente Silvio Fuchs & Simon Stützer 1 Augabenstellung 1. a) Bauen Sie eine Schaltung zur Aufnahme einer Strom-Spannungs-Kennlinie eines

Mehr

2. Graphische Darstellung des Phasenwinkels als Funktion der Frequenz.

2. Graphische Darstellung des Phasenwinkels als Funktion der Frequenz. E a Phasenbeziehungen und RC-Filter Toshiki Ishii (Matrikel 3266690) 7.06.203 Studiengang Chemie (Bachelor of Science) Aufgabenstellung. Ermitteln des Phasenverlaufes zwischen Strom und Spannung mithilfe

Mehr

UNIVERSITÄT BIELEFELD

UNIVERSITÄT BIELEFELD UNIVERSITÄT BIELEFELD Elektrizitätslehre GV: Gleichstrom Durchgeführt am 14.06.06 Dozent: Praktikanten (Gruppe 1): Dr. Udo Werner Marcus Boettiger Philip Baumans Marius Schirmer E3-463 Inhaltsverzeichnis

Mehr

Robert-Bosch-Gymnasium Physik (2-/4-stÉndig), NGO

Robert-Bosch-Gymnasium Physik (2-/4-stÉndig), NGO Seite - 1 - Bestimmung des kapazitiven (Blind-)Widerstandes und (daraus) der KapazitÄt eines Kondensators, / Effektivwerte von WechselstromgrÅÇen 1. Theoretische Grundlagen Bei diesem Experiment soll zunächst

Mehr

Spannungsstabilisierung

Spannungsstabilisierung Spannungsstabilisierung 28. Januar 2007 Oliver Sieber siebero@phys.ethz.ch 1 Inhaltsverzeichnis 1 Zusammenfassung 4 2 Einführung 4 3 Bau der DC-Spannungsquelle 5 3.1 Halbwellengleichrichter........................

Mehr

Versuchsprotokoll zum Versuch Nr.9 Messungen mit dem Elektronenstrahl-Oszilloskop vom 05.05.1997

Versuchsprotokoll zum Versuch Nr.9 Messungen mit dem Elektronenstrahl-Oszilloskop vom 05.05.1997 In diesem Versuch geht es darum, mit einem modernen Elektronenstrahloszilloskop verschiedene Messungen durch zuführen. Dazu kommen folgende Geräte zum Einsatz: Gerät Bezeichnung/Hersteller Inventarnummer

Mehr

Naturwissenschaftliche Fakultät II - Physik. Anleitung zum Anfängerpraktikum A2

Naturwissenschaftliche Fakultät II - Physik. Anleitung zum Anfängerpraktikum A2 U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Anfängerpraktikum A2 Versuch 3 - Gedämpfte freie Schwingung des RLC-Kreises 23. überarbeitete Auflage

Mehr

Das Oszilloskop als Messinstrument Versuch P1-32,33,34

Das Oszilloskop als Messinstrument Versuch P1-32,33,34 Vorbereitung Das Oszilloskop als Messinstrument Versuch P1-32,33,34 Iris Conradi Gruppe Mo-02 23. November 2010 Inhaltsverzeichnis Inhaltsverzeichnis 1 Kennenlernen der Bedienelemente 3 2 Messung im Zweikanalbetrieb

Mehr

Wechselstromwiderstände

Wechselstromwiderstände Ausarbeitung zum Versuch Wechselstromwiderstände Versuch 9 des physikalischen Grundpraktikums Kurs I, Teil II an der Universität Würzburg Sommersemester 005 (Blockkurs) Autor: Moritz Lenz Praktikumspartner:

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerkung Dies ist ein abgegebenes Praktikumsprotokoll aus dem Modul physik313. Dieses Praktikumsprotokoll wurde nicht bewertet. Es handelt sich lediglich um meine Abgabe und keine Musterlösung. Alle

Mehr

Der Bipolar-Transistor und die Emitterschaltung Gruppe B412

Der Bipolar-Transistor und die Emitterschaltung Gruppe B412 TECHNISCHE UNIVERSITÄT MÜNCHEN Der Bipolar-Transistor und die Emitterschaltung Gruppe B412 Patrick Christ und Daniel Biedermann 16.10.2009 1. INHALTSVERZEICHNIS 1. INHALTSVERZEICHNIS... 2 2. AUFGABE 1...

Mehr

Physik III - Anfängerpraktikum- Versuch 302

Physik III - Anfängerpraktikum- Versuch 302 Physik III - Anfängerpraktikum- Versuch 302 Sebastian Rollke (103095) und Daniel Brenner (105292) 15. November 2004 Inhaltsverzeichnis 1 Theorie 2 1.1 Beschreibung spezieller Widerstandsmessbrücken...........

Mehr

4 Kondensatoren und Widerstände

4 Kondensatoren und Widerstände 4 Kondensatoren und Widerstände 4. Ziel des Versuchs In diesem Praktikumsteil sollen die Wirkungsweise und die Frequenzabhängigkeit von Kondensatoren im Wechselstromkreis untersucht und verstanden werden.

Mehr

Elektrizitätslehre. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Spulen und ohmschen Widerständen. LD Handblätter Physik P3.6.3.

Elektrizitätslehre. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Spulen und ohmschen Widerständen. LD Handblätter Physik P3.6.3. Elektrizitätslehre Gleich- und Wechselstromkreise Wechselstromwiderstände LD Handblätter Physik P3.6.3. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Spulen und ohmschen Widerständen Versuchsziele

Mehr

WB Wechselstrombrücke

WB Wechselstrombrücke WB Wechselstrombrücke Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Wechselstromwiderstand................. 2 2.2 Wechselstromwiderstand

Mehr

Gleichstrom/Wechselstrom

Gleichstrom/Wechselstrom Gleichstrom/Wechselstrom durchgeführt am 31.05.010 von Matthias Dräger, Alexander Narweleit und Fabian Pirzer 5 ERSUCHSDURCHFÜHRUNG Dieses Dokument enthält die Überarbeitungen des Protokolls. 5 ersuchsdurchführung

Mehr

Ernst-Moritz-Arndt-Universität Greifswald Institut für Physik. 1. Aufgabenstellung. Versuch E7a - Wechselstromwiderstände

Ernst-Moritz-Arndt-Universität Greifswald Institut für Physik. 1. Aufgabenstellung. Versuch E7a - Wechselstromwiderstände Ernst-Moritz-Arndt-Universität Greifswald Institut für Physik Name: Versuch E7a - Wechselstromwiderstände Mitarbeiter: Gruppennummer: lfd. Nummer: Datum: 1. Aufgabenstellung Bestimmen Sie die Impedanz

Mehr

Freie Gedämpfte Schwingungen

Freie Gedämpfte Schwingungen PHYSIKALISCHE GRUNDLAGEN Freie Gedämpfte Schwingungen durchgeführt am 4.06.200 von Matthias Dräger, Alexander Narweleit und Fabian Pirzer Physikalische Grundlagen. Schwingungen Als Schwingung bezeichnet

Mehr

V8 - Auf- und Entladung von Kondensatoren

V8 - Auf- und Entladung von Kondensatoren V8 - Auf- und Entladung von Kondensatoren Michael Baron, Frank Scholz 07.2.2005 Inhaltsverzeichnis Aufgabenstellung 2 Theoretischer Hintergrund 2 2. Elektrostatische Betrachtung von Kondensatoren.......

Mehr

Übertragungsglieder mit Sprung- oder Impulserregung

Übertragungsglieder mit Sprung- oder Impulserregung Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum Protokoll-Nr.: 4 Übertragungsglieder mit Sprung- oder Impulserregung Protokollant: Jens Bernheiden Gruppe: Aufgabe durchgeführt:

Mehr

Praktikum Physik. Protokoll zum Versuch: Wechselstromkreise. Durchgeführt am 08.12.2011. Gruppe X

Praktikum Physik. Protokoll zum Versuch: Wechselstromkreise. Durchgeführt am 08.12.2011. Gruppe X Praktikum Physik Protokoll zum Versuch: Wechselstromkreise Durchgeführt am 08.12.2011 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuer: Wir bestätigen hiermit, dass wir das

Mehr

Elektronenstrahloszilloskop

Elektronenstrahloszilloskop - - Axel Günther 0..00 laudius Knaak Gruppe 7 (Dienstag) Elektronenstrahloszilloskop Einleitung: In diesem Versuch werden die Ein- und Ausgangssignale verschiedener Testobjekte gemessen, auf dem Oszilloskop

Mehr

Klasse : Name : Datum :

Klasse : Name : Datum : von Messgeräten; Messungen mit Strom- und Spannungsmessgerät Klasse : Name : Datum : Will man mit einem analogen bzw. digitalen Messgeräte Ströme oder Spannungen (evtl. sogar Widerstände) messen, so muss

Mehr

Strom - Spannungscharakteristiken

Strom - Spannungscharakteristiken Strom - Spannungscharakteristiken 1. Einführung Legt man an ein elektrisches Bauelement eine Spannung an, so fließt ein Strom. Den Zusammenhang zwischen beiden Größen beschreibt die Strom Spannungscharakteristik.

Mehr

Versuch 15. Wechselstromwiderstände

Versuch 15. Wechselstromwiderstände Physikalisches Praktikum Versuch 5 Wechselstromwiderstände Name: Christian Köhler Datum der Durchführung: 26.09.2006 Gruppe Mitarbeiter: Henning Hansen Assistent: Thomas Rademacher testiert: 3 Einleitung

Mehr

Halbleiterbauelemente

Halbleiterbauelemente Mathias Arbeiter 20. April 2006 Betreuer: Herr Bojarski Halbleiterbauelemente Statische und dynamische Eigenschaften von Dioden Untersuchung von Gleichrichterschaltungen Inhaltsverzeichnis 1 Schaltverhalten

Mehr

Arbeitspunkt einer Diode

Arbeitspunkt einer Diode Arbeitspunkt einer Diode Liegt eine Diode mit einem Widerstand R in Reihe an einer Spannung U 0, so müssen sich die beiden diese Spannung teilen. Vom Widerstand wissen wir, dass er bei einer Spannung von

Mehr

Versuchsauswertung P1-34: Oszilloskop

Versuchsauswertung P1-34: Oszilloskop Versuchsauswertung P1-34: Oszilloskop Kathrin Ender, Michael Walz Gruppe 10 19. Januar 2008 Inhaltsverzeichnis 1 Kennenlernen des Oszilloskops 2 2 Messungen im Zweikanalbetrieb 2 2.1 Si-Dioden-Einweggleichrichter...........................

Mehr

UET-Labor Analogoszilloskop 24.10.2002

UET-Labor Analogoszilloskop 24.10.2002 Inhaltsverzeichnis 1. Einleitung 2. Inventarverzeichnis 3. Messdurchführung 3.1 Messung der Laborspannung 24V 3.2 Messung der Periodendauer 3.3 Messung von Frequenzen mittels Lissajousche Figuren 4. Auswertung

Mehr

3. Bestimmung der Frequenz einer Sinusspannung anhand von mindestens fünf Lissajous-Figuren.

3. Bestimmung der Frequenz einer Sinusspannung anhand von mindestens fünf Lissajous-Figuren. E 3a Messungen mit dem Oszilloskop Toshiki Ishii (Matrikel 3266690) 29.04.203 Studiengang Chemie (Bachelor of Science) Aufgabenstellung. Bestimmung der Ablenkempfindlichkeiten s des Oszilloskops durch

Mehr

Physikalisches Grundpraktikum II Grundversuch 2.2 Wechselstrom. von Sören Senkovic und Nils Romaker

Physikalisches Grundpraktikum II Grundversuch 2.2 Wechselstrom. von Sören Senkovic und Nils Romaker Physikalisches Grundpraktikum II Grundversuch 2.2 Wechselstrom von Sören Senkovic und Nils Romaker 1 Inhaltsverzeichnis Theoretischer Teil............................................... 3 Versuchsdurchführung...........................................

Mehr

Praktikum Elektronische Messtechnik WS 2007/2008. Versuch OSZI. Tobias Doerffel Andreas Friedrich Heiner Reinhardt

Praktikum Elektronische Messtechnik WS 2007/2008. Versuch OSZI. Tobias Doerffel Andreas Friedrich Heiner Reinhardt Praktikum Elektronische Messtechnik WS 27/28 Versuch OSZI Tobias Doerffel Andreas Friedrich Heiner Reinhardt Chemnitz, 9. November 27 Versuchsvorbereitung.. harmonisches Signal: Abbildung 4, f(x) { = a

Mehr

Spannungsstabilisierung. Lukas Wissmann lukaswi@student.ethz.ch

Spannungsstabilisierung. Lukas Wissmann lukaswi@student.ethz.ch Spannungsstabilisierung Lukas Wissmann lukaswi@student.ethz.ch 23. Januar 2007 1 Inhaltsverzeichnis 1 Zusammenfassung 2 2 Übersicht 2 3 Aufbau und Messungen 3 3.1 Der Halbwellengleichrichter...........................

Mehr

Projekt 2HEA 2005/06 Formelzettel Elektrotechnik

Projekt 2HEA 2005/06 Formelzettel Elektrotechnik Projekt 2HEA 2005/06 Formelzettel Elektrotechnik Teilübung: Kondensator im Wechselspannunskreis Gruppenteilnehmer: Jakic, Topka Abgabedatum: 24.02.2006 Jakic, Topka Inhaltsverzeichnis 2HEA INHALTSVERZEICHNIS

Mehr

Technische Informatik Basispraktikum Sommersemester 2001

Technische Informatik Basispraktikum Sommersemester 2001 Technische Informatik Basispraktikum Sommersemester 2001 Protokoll zum Versuchstag 1 Datum: 17.5.2001 Gruppe: David Eißler/ Autor: Verwendete Messgeräte: - Oszilloskop HM604 (OS8) - Platine (SB2) - Funktionsgenerator

Mehr

Gruppe: 2/19 Versuch: 5 PRAKTIKUM MESSTECHNIK VERSUCH 5. Operationsverstärker. Versuchsdatum: 22.11.2005. Teilnehmer:

Gruppe: 2/19 Versuch: 5 PRAKTIKUM MESSTECHNIK VERSUCH 5. Operationsverstärker. Versuchsdatum: 22.11.2005. Teilnehmer: Gruppe: 2/9 Versuch: 5 PAKTIKM MESSTECHNIK VESCH 5 Operationsverstärker Versuchsdatum: 22..2005 Teilnehmer: . Versuchsvorbereitung Invertierender Verstärker Nichtinvertierender Verstärker Nichtinvertierender

Mehr

auf, so erhält man folgendes Schaubild: Temperaturabhängigkeit eines Halbleiterwiderstands

auf, so erhält man folgendes Schaubild: Temperaturabhängigkeit eines Halbleiterwiderstands Auswertung zum Versuch Widerstandskennlinien und ihre Temperaturabhängigkeit Kirstin Hübner (1348630) Armin Burgmeier (1347488) Gruppe 15 2. Juni 2008 1 Temperaturabhängigkeit eines Halbleiterwiderstands

Mehr

Elektrische Messtechnik, Labor

Elektrische Messtechnik, Labor Institut für Elektrische Messtechnik und Messsignalverarbeitung Elektrische Messtechnik, Labor Messverstärker Studienassistentin/Studienassistent Gruppe Datum Note Nachname, Vorname Matrikelnummer Email

Mehr

Wechselstromwiderstände

Wechselstromwiderstände Physikalisches Praktikum für das Hauptfach Physik Versuch 15 Wechselstromwiderstände Wintersemester 2005 / 2006 Name: Mitarbeiter: EMail: Gruppe: Daniel Scholz Hauke Rohmeyer physik@mehr-davon.de B9 Assistent:

Mehr

1. Theorie: Kondensator:

1. Theorie: Kondensator: 1. Theorie: Aufgabe des heutigen Versuchstages war es, die charakteristische Größe eines Kondensators (Kapazität C) und einer Spule (Induktivität L) zu bestimmen, indem man per Oszilloskop Spannung und

Mehr

Nerreter, Grundlagen der Elektrotechnik Carl Hanser Verlag München. 8 Schaltvorgänge

Nerreter, Grundlagen der Elektrotechnik Carl Hanser Verlag München. 8 Schaltvorgänge Carl Hanser Verlag München 8 Schaltvorgänge Aufgabe 8.6 Wie lauten für R = 1 kω bei der Aufgabe 8.1 die Differenzialgleichungen und ihre Lösungen für die Spannungen u 1 und u 2 sowie für den Strom i? Aufgabe

Mehr

Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum. Praktikum Nr. 2. Thema: Widerstände und Dioden

Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum. Praktikum Nr. 2. Thema: Widerstände und Dioden Fachhochschule Bielefeld Fachbereich Elektrotechnik Versuchsbericht für das elektronische Praktikum Praktikum Nr. 2 Name: Pascal Hahulla Matrikelnr.: 207XXX Thema: Widerstände und Dioden Versuch durchgeführt

Mehr

A. Ein Kondensator differenziert Spannung

A. Ein Kondensator differenziert Spannung A. Ein Kondensator differenziert Spannung Wir legen eine Wechselspannung an einen Kondensator wie sieht die sich ergebende Stromstärke aus? U ~ ~ Abb 1: Prinzipschaltung Kondensator: Physiklehrbuch S.

Mehr

Oszilloskope. Fachhochschule Dortmund Informations- und Elektrotechnik. Versuch 3: Oszilloskope - Einführung

Oszilloskope. Fachhochschule Dortmund Informations- und Elektrotechnik. Versuch 3: Oszilloskope - Einführung Oszilloskope Oszilloskope sind für den Elektroniker die wichtigsten und am vielseitigsten einsetzbaren Meßgeräte. Ihr besonderer Vorteil gegenüber anderen üblichen Meßgeräten liegt darin, daß der zeitliche

Mehr

6 Wechselstrom-Schaltungen

6 Wechselstrom-Schaltungen für Maschinenbau und Mechatronik Carl Hanser Verlag München 6 Wechselstrom-Schaltungen Aufgabe 6.1 Durch ein Grundeintor C = 0,47 µf an der Sinusspannung U = 42 V fließt ein Sinusstrom mit dem Effektivwert

Mehr

Aufgabenstellung für den 1. Laborbeleg im Fach Messtechnik: Oszilloskopmesstechnik

Aufgabenstellung für den 1. Laborbeleg im Fach Messtechnik: Oszilloskopmesstechnik Aufgabenstellung für den 1. Laborbeleg im Fach Messtechnik: Oszilloskopmesstechnik Untersuchen Sie das Übertragungsverhalten eines RC-Tiefpasses mit Hilfe der Oszilloskopmesstechnik 1.Es ist das Wechselstromverhalten

Mehr

Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 2

Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 2 Werner-v.-Siemens-Labor für elektrische Antriebssysteme Prof. Dr.-Ing. Dr. h.c. H. Biechl Prof. Dr.-Ing. E.-P. Meyer Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 2 Messungen mit dem Oszilloskop

Mehr

Versuch E2 Kennlinien von Widerständen

Versuch E2 Kennlinien von Widerständen Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum Versuch E2 Kennlinien von Widerständen Aufgaben 1. -s-kennlinien a. Messen Sie die -s-kennlinien eines metallischen Widerstands (Glühlampe),

Mehr

Inhaltsverzeichnis. 1. Einleitung

Inhaltsverzeichnis. 1. Einleitung Inhaltsverzeichnis 1. Einleitung 1.1 Das Analogoszilloskop - Allgemeines 2. Messungen 2.1 Messung der Laborspannung 24V 2.1.1 Schaltungsaufbau und Inventarliste 2.2.2 Messergebnisse und Interpretation

Mehr

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Vorüberlegung In einem seriellen Stromkreis addieren sich die Teilspannungen zur Gesamtspannung Bei einer Gesamtspannung U ges, der

Mehr

E6 WECHSELSPANNUNGSMESSUNGEN

E6 WECHSELSPANNUNGSMESSUNGEN E6 WECHSELSPANNNGSMESSNGEN PHYSIKALISCHE GRNDLAGEN Wichtige physikalische Grundbegriffe: elektrische Spannung, Gleichspannung, Wechselspannung, Frequenz, Amplitude, Phase, Effektivwert, Spitzenwert, Oszilloskop,

Mehr

E 1 - Grundversuche Elektrizitätslehre

E 1 - Grundversuche Elektrizitätslehre Universität - GH Essen Fachbereich 7 - Physik PHYSIKALISCHES PRAKIKUM FÜR ANFÄNGER Versuch: E 1 - Grundversuche Elektrizitätslehre Mit diesem Versuch sollen Sie in die Messung elektrischer Grundgrößen

Mehr

Wechselstromwiderstände

Wechselstromwiderstände Physikalisches Grundpraktikum Versuch 14 Wechselstromwiderstände Praktikant: Tobias Wegener Alexander Osterkorn E-Mail: tobias.wegener@stud.uni-goettingen.de a.osterkorn@stud.uni-goettingen.de Tutor: Gruppe:

Mehr

Praktikum Nr. 3. Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum

Praktikum Nr. 3. Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum Fachhochschule Bielefeld Fachbereich Elektrotechnik Versuchsbericht für das elektronische Praktikum Praktikum Nr. 3 Manuel Schwarz Matrikelnr.: 207XXX Pascal Hahulla Matrikelnr.: 207XXX Thema: Transistorschaltungen

Mehr

Praktikumsbericht. Gruppe 6: Daniela Poppinga, Jan Christoph Bernack, Isaac Paha. Betreuerin: Natalia Podlaszewski 28.

Praktikumsbericht. Gruppe 6: Daniela Poppinga, Jan Christoph Bernack, Isaac Paha. Betreuerin: Natalia Podlaszewski 28. Praktikumsbericht Gruppe 6: Daniela Poppinga, Jan Christoph Bernack, Isaac Paha Betreuerin: Natalia Podlaszewski 28. Oktober 2008 1 Inhaltsverzeichnis 1 Versuche mit dem Digital-Speicher-Oszilloskop 3

Mehr

Kirstin Hübner Armin Burgmeier Gruppe 15 10. Dezember 2007

Kirstin Hübner Armin Burgmeier Gruppe 15 10. Dezember 2007 Protokoll zum Versuch Transistorschaltungen Kirstin Hübner Armin Burgmeier Gruppe 15 10. Dezember 2007 1 Transistor-Kennlinien 1.1 Eingangskennlinie Nachdem wir die Schaltung wie in Bild 13 aufgebaut hatten,

Mehr

Protokoll zum Versuch E7: Elektrische Schwingkreise. Abgabedatum: 24. April 2007

Protokoll zum Versuch E7: Elektrische Schwingkreise. Abgabedatum: 24. April 2007 Protokoll zum Versuch E7: Elektrische Schwingkreise Sven E Tobias F Abgabedatum: 24. April 2007 Inhaltsverzeichnis 1 Einleitung 3 2 Physikalischer Zusammenhang 3 2.1 Wechselstromwiderstände (Impedanz)...............

Mehr

Zusammenstellung der in TARGET 3001! simulierten Grundschaltungen

Zusammenstellung der in TARGET 3001! simulierten Grundschaltungen Simulieren mit TARGET 31! Seite 1 von 24 Zusammenstellung der in TARGET 31! simulierten Grundschaltungen Alle simulierten Schaltungen sind als TARGET 31!Schaltungen vorhanden und beginnen mit SIM LED Kennlinie...2

Mehr

Experiment 4.1: Übertragungsfunktion eines Bandpasses

Experiment 4.1: Übertragungsfunktion eines Bandpasses Experiment 4.1: Übertragungsfunktion eines Bandpasses Schaltung: Bandpass auf Steckbrett realisieren Signalgenerator an den Eingang des Filters anschließen (50 Ω-Ausgang verwenden!) Eingangs- und Ausgangssignal

Mehr

Messung von Zeitverläufen und Kennlinien mit Hilfe des Oszilloskop

Messung von Zeitverläufen und Kennlinien mit Hilfe des Oszilloskop TFH Berlin Messtechnik Labor Seite 1 von 7 Messung von Zeitverläufen und Kennlinien mit Hilfe des Oszilloskop Ort: TFH Berlin Datum: 07.04.2004 Uhrzeit: von 8.00 bis 11.30 Dozent: Kommilitonen: Prof. Dr.-Ing.

Mehr

Peter Lawall. Thomas Blenk. Praktikum Messtechnik 1. Hochschule Augsburg. Versuch 4: Oszilloskop. Fachbereich: Elektrotechnik.

Peter Lawall. Thomas Blenk. Praktikum Messtechnik 1. Hochschule Augsburg. Versuch 4: Oszilloskop. Fachbereich: Elektrotechnik. Hochschule Augsburg Fachbereich: Elektrotechnik Arbeitsgruppe: 8 Praktikum Messtechnik 1 Versuch 4: Oszilloskop Arbeitstag :26.11.2009 Einliefertag: 03.12.2009 Peter Lawall Thomas Blenk (Unterschrift)

Mehr

Lösungen zu Kapazitäten / Kondensatoren

Lösungen zu Kapazitäten / Kondensatoren Ein- und Ausschaltvorgänge mit Kapazitäten A47: (869, 870) Ein Kondensator von µf wird über einen Widerstand von 3 MΩ auf eine Spannung von 50 V geladen. Welche Werte hat der Ladestrom a) 0,3 s, b), s,

Mehr

Labor Grundlagen Elektrotechnik

Labor Grundlagen Elektrotechnik Fakultät für Technik Bereich Informationstechnik ersuch 5 Elektrische Filter und Schwgkreise SS 2008 Name: Gruppe: Datum: ersion: 1 2 3 Alte ersionen sd mit abzugeben! Bei ersion 2 ist ersion 1 mit abzugeben.

Mehr

Praktikum Elektronik 1. 1. Versuch: Oszilloskop, Einführung in die Meßpraxis

Praktikum Elektronik 1. 1. Versuch: Oszilloskop, Einführung in die Meßpraxis Praktikum Elektronik 1 1. Versuch: Oszilloskop, Einführung in die Meßpraxis Versuchsdatum: 0. 04. 00 Allgemeines: Empfindlichkeit: gibt an, welche Spannungsänderung am Y- bzw. X-Eingang notwendig ist,

Mehr

Labor Einführung in die Elektrotechnik

Labor Einführung in die Elektrotechnik Laborleiter: Ostfalia Hochschule für angewandte Wissenschaften Fakultät Elektrotechnik Labor Einführung in die Elektrotechnik Prof. Dr. M. Prochaska Laborbetreuer: Versuch 2: Erstellen technischer Berichte,

Mehr

V03: Passive Netzwerke

V03: Passive Netzwerke Elektronikpraktikum im WS 2010/11 Universität Stuttgart Protokoll zum Versuch V03: Passive Netzwerke Stephan Ludwig, Nicolai Lang 14. November 2010 Zusammenfassung Dieser Versuch behandelt das Verhalten

Mehr

Das Oszilloskop. TFH Berlin Messtechnik Labor Seite 1 von 5. Datum: 05.01.04. von 8.00h bis 11.30 Uhr. Prof. Dr.-Ing.

Das Oszilloskop. TFH Berlin Messtechnik Labor Seite 1 von 5. Datum: 05.01.04. von 8.00h bis 11.30 Uhr. Prof. Dr.-Ing. TFH Berlin Messtechnik Labor Seite 1 von 5 Das Oszilloskop Ort: TFH Berlin Datum: 05.01.04 Uhrzeit: Dozent: Arbeitsgruppe: von 8.00h bis 11.30 Uhr Prof. Dr.-Ing. Klaus Metzger Mirko Grimberg, Udo Frethke,

Mehr

P1-53,54,55: Vierpole und Leitungen

P1-53,54,55: Vierpole und Leitungen Physikalisches Anfängerpraktikum (P1) - Auswertung P1-53,54,55: Vierpole und Leitungen Benedikt Zimmermann, Matthias Ernst (Gruppe Mo-24) 1 Durchführung 1.1 Messungen des Übertragungsverhaltens des einfachen

Mehr

Das Oszilloskop als Messinstrument

Das Oszilloskop als Messinstrument Verbesserung der Auswertung Das Oszilloskop als Messinstrument Carsten Röttele Stefan Schierle Versuchsdatum: 29. 11. 2011 Inhaltsverzeichnis 1 Kennenlernen der Bedienelemente 2 2 Messungen im Zweikanalbetrieb

Mehr

Aktiver Bandpass. Inhalt: Einleitung

Aktiver Bandpass. Inhalt: Einleitung Aktiver Bandpass Inhalt: Einleitung Aufgabenstellung Aufbau der Schaltung Aktiver Bandpass Aufnahme des Frequenzgangs von 00 Hz bis 00 KHz Aufnahme deer max. Verstärkung Darstellung der gemessenen Werte

Mehr

= {} +{} = {} Widerstand Kondensator Induktivität

= {} +{} = {} Widerstand Kondensator Induktivität Bode-Diagramme Selten misst man ein vorhandenes Zweipolnetzwerk aus, um mit den Daten Amplituden- und Phasengang zu zeichnen. Das kommt meistens nur vor wenn Filter abgeglichen werden müssen oder man die

Mehr

Kon o d n e d ns n ator Klasse A Klasse A (Ergänzung) Norbert - DK6NF

Kon o d n e d ns n ator Klasse A Klasse A (Ergänzung) Norbert - DK6NF Kondensator Klasse (Ergänzung) Norbert - K6NF usgewählte Prüfungsfragen T202 Welchen zeitlichen Verlauf hat die Spannung an einem entladenen Kondensator, wenn dieser über einen Widerstand an eine Gleichspannungsquelle

Mehr

1. Laboreinheit - Hardwarepraktikum SS 2005

1. Laboreinheit - Hardwarepraktikum SS 2005 1. Versuch: Gleichstromnetzwerk Ohmsches Gesetz Kirchhoffsche Regeln Gleichspannungsnetzwerke Widerstand Spannungsquelle Maschen A B 82 Ohm Abbildung 1 A1 Berechnen Sie für die angegebene Schaltung alle

Mehr

INSTITUT FÜR MIKROELEKTRONIK JOHANNES KEPLER UNIVERSITÄT LINZ. Praktikum Elektrotechnik SS 2006. Protokoll. Übung 1 : Oszilloskop

INSTITUT FÜR MIKROELEKTRONIK JOHANNES KEPLER UNIVERSITÄT LINZ. Praktikum Elektrotechnik SS 2006. Protokoll. Übung 1 : Oszilloskop INSTITUT FÜR MIKROELEKTRONIK JOHANNES KEPLER UNIVERSITÄT LINZ Praktikum Elektrotechnik SS 2006 Protokoll Übung 1 : Oszilloskop Gruppe: Protokollführer / Protokollführerin: Unterschrift: Mitarbeiter / Mitarbeiterin:

Mehr

GT- Labor. Inhaltsverzeichnis

GT- Labor. Inhaltsverzeichnis Inhaltsverzeichnis Seite 1. Versuchsvorbereitung 2 1.1 Qualitatives Spektrum der Ausgangsspannung des Eintaktmodulators 2 1.2 Spektrum eines Eintaktmodulators mit nichtlinearem Element 2 1.3 Bandbreite

Mehr

Induktionsgesetz (E13)

Induktionsgesetz (E13) Induktionsgesetz (E13) Ziel des Versuches Es soll verifiziert werden, dass die zeitliche Änderung eines magnetischen Flusses, hervorgerufen durch die Änderung der Flussdichte, eine Spannung induziert.

Mehr

C04 Operationsverstärker Rückkopplung C04

C04 Operationsverstärker Rückkopplung C04 Operationsverstärker ückkopplung 1. LITEATU Horowitz, Hill The Art of Electronics Cambridge University Press Tietze/Schenk Halbleiterschaltungstechnik Springer Dorn/Bader Physik, Oberstufe Schroedel 2.

Mehr

Grundlagenpraktikum Elektrotechnik Teil 1 Versuch 4: Reihenschwingkreis

Grundlagenpraktikum Elektrotechnik Teil 1 Versuch 4: Reihenschwingkreis ehrstuhl ür Elektromagnetische Felder Friedrich-Alexander-Universität Erlangen-Nürnberg Vorstand: Pro. Dr.-Ing. Manred Albach Grundlagenpraktikum Elektrotechnik Teil Versuch 4: eihenschwingkreis Datum:

Mehr

Protokoll zum Grundversuch Wechselstrom

Protokoll zum Grundversuch Wechselstrom Protokoll zum Grundversuch Wechselstrom Fabian Schmid-Michels Nils Brüdigam Universität Bielefeld Sommersemester 2007 Grundpraktikum II 15.05.2007 Inhaltsverzeichnis 1 Ziel 2 2 Grundlagen 2 2.1 Wechselstrom................................

Mehr

Das Frequenzverhalten von RC-Gliedern (E17)

Das Frequenzverhalten von RC-Gliedern (E17) Das Frequenzverhalten von RC-Gliedern (E17) Ziel des Versuches Die Hintereinanderschaltung von ohmschem Widerstand und Kondensator wirkt als Filter für Signale unterschiedlicher Frequenz. In diesem Versuch

Mehr

Hochschule Bremerhaven

Hochschule Bremerhaven Hochschule Bremerhaven NSTTUT FÜ AUTOMATSEUNGS- UND EEKTOTEHNK Name: Matr Nr: ProfDr-ngKaiMüller Übungsklausur ETT2 / PT/VAT/SBT SS04 Bearbeitungszeit 20 Minuten --- Unterlagen gestattet --- Note: 2 3

Mehr

Wechselstrom- und Impulsverhalten von RCL-Schaltungen

Wechselstrom- und Impulsverhalten von RCL-Schaltungen Fakultät für Technik Bereich Informationstechnik Wechselstrom- und Impulsverhalten von RCL-Schaltungen Name 1: Name 2: Name 3: Gruppe: Datum: 2 1 Allgemees Mittels passiven Komponenten (R, C, L) werden

Mehr

HS D FB Hochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik

HS D FB Hochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik HS D FB 4 Hochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik Elektrotechnik und elektrische Antriebstechnik Prof. Dr.-Ing. Jürgen Kiel Praktikum Elektrotechnik und Antriebstechnik Versuch

Mehr

PC Praktikumsversuch Elektronik. Elektronik

PC Praktikumsversuch Elektronik. Elektronik Elektronik Im Versuch Elektronik ging es um den ersten Kontakt mit elektronischen Instrumenten und Schaltungen. Zu diesem Zweck haben wir aus Widerständen, Kondensatoren und Spulen verschiedene Schaltungen

Mehr

Praktikum Physik. Protokoll zum Versuch: Kennlinien. Durchgeführt am 15.12.2011. Gruppe X. Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.

Praktikum Physik. Protokoll zum Versuch: Kennlinien. Durchgeführt am 15.12.2011. Gruppe X. Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm. Praktikum Physik Protokoll zum Versuch: Kennlinien Durchgeführt am 15.12.2011 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuer: Wir bestätigen hiermit, dass wir das Protokoll

Mehr

Praktikum Elektronik für Wirtschaftsingenieure. Messungen mit Multimeter und Oszilloskop

Praktikum Elektronik für Wirtschaftsingenieure. Messungen mit Multimeter und Oszilloskop Praktikum Elektronik für Wirtschaftsingenieure Versuch Messungen mit Multimeter und Oszilloskop 1 Allgemeine Hinweise Die Aufgaben zur Versuchsvorbereitung sind vor dem Versuchstermin von jedem Praktikumsteilnehmer

Mehr

LW7. Wechselstrom Version vom 16. November 2015

LW7. Wechselstrom Version vom 16. November 2015 Wechselstrom Version vom 16. November 2015 Inhaltsverzeichnis 2 1.1 Grundlagen................................... 2 1.1.1 Begriffe................................. 2 1.1.2 Wechselspannung und Wechselstrom.................

Mehr