Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download ""

Transkript

1

2

3

4

5

6

7

8

9

10 β

11 Ζ φ ε

12 = δ δ

13

14

15

16 = + = =

17 = =

18

19 = ρ ρ

20

21

22

23 γ γ γ

24 γ γ γ γ

25

26

27

28 = = = = = = + + = = = + + = = = = $ σ

29

30

31

32 r ( ) K r = = = O M L r M r r = = O M L r M r r

33 = = = = = = = = ( ) ( ) =

34 ( ) = ± ( ) ( ) = ± ( ) = ± ( ) = = + = < = =

35 = =

36 ( ) = L M M O M L L r r M r = λ ( ) = = + =

37 r

38

39 㮷嚇

40 r r =

41

42

43 = = = ( ) ( ) = =

44 ( ) ( ) = = +

45 = ( ) = + = + + = = λ λ λ λ

46 = + = + = ( )

47 = = M M ( ) = = = + + < + ( ) =

48

49

50

51 = ( )

52

53

54

55 = ( ) ( ) = ( ) = ( ) + β

56 㮷嚇 㮷嚇 㮷嚇

57

58

59

60

61

62

63

64 =

65

66

67

68

69

70

71

72

73

74

75 㮷嚇

76

77 + ( ) ( ) + + ( ) ( )

78 = =

79

80

81

82

83 = ( ) = r r λ λ λ λ = λ

84

85 γ = = γ = = γ = ( γ ) =

86 㥇唧 = 㥇唧 㥇唧 = 㥇唧 λ = γ = ( ) λ = γ

87

88 =

89 = β β = = + β β β β

90

91 ±

92

93

94

95

96

97

98

99

100 㮷嚇 㮷嚇

101 = ( ) = =

102

103

104

105

106

107 㮷嚇

108

109 M M

110 = = = ) ( ) ) = ) = ) =

111

112

113 㮷嚇 㮷嚇

114

115 㮷嚇

116 㮷嚇 㮷嚇

117 㮷嚇 㮷嚇

118

119

120

121

122

123 =

124

125 = + = ( ) = = =

126

127

128

129

130 = + [ ]

131 = = ( )

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

Tabellen erstellen mit Word 7 Computeria Rorschach. Wir erstellen mit Word 7/10 eigene Tabellen

Tabellen erstellen mit Word 7 Computeria Rorschach. Wir erstellen mit Word 7/10 eigene Tabellen Tabellen erstellen mit Word 7 Computeria Rorschach Wir erstellen mit Word 7/10 eigene Tabellen Roland Liebing 10.02.2012 Tabellen erstellen mit Word7/10 Wir klicken in der Registerkarte Einfügen auf die

Mehr

Anschlussbelegungder9polSub DX,Y,Z,(N): 230VAnschlussEinbaustecker: Steckdosen: DurchöffnendeskleinenDeckelsaufderVorderseiteerreichenSiedir6,3A DiebeidenSteckdosenwerdenüberPin1und14derSoftwaregeschaltet

Mehr

Liste des (neu)griechischen Alphabets, sortiert nach Zeichen

Liste des (neu)griechischen Alphabets, sortiert nach Zeichen Liste des (neu)griechischen Alphabets, sortiert nach Zeichen A &Agr; x0391 iso-grk1 Griechischer Großbuchstabe Alpha Α x0391 xhtml-sym Griechischer Großbuchstabe Alpha a &agr; x03b1 iso-grk1 Griechischer

Mehr

Alphabetisierung und Grundbildung

Alphabetisierung und Grundbildung 1 Master of Arts (Weiterbildung) Alphabetisierung und Grundbildung Aufbau-Studiengang (4 Sem.) und Fortbildungen Leipziger Buchmesse Sa., 20. März 2010, 14 15 Uhr Stefanie Schröder, M.A. PROFESS / BVAG

Mehr

GRIECHISCH. GRIECHISCH eine Information über das Fach Altgriechisch für Schüler und Eltern. Rabanus-Maurus- Schule Fulda 2003 B.

GRIECHISCH. GRIECHISCH eine Information über das Fach Altgriechisch für Schüler und Eltern. Rabanus-Maurus- Schule Fulda 2003 B. GRIECHISCH GRIECHISCH eine Information über das Fach Altgriechisch für Schüler und Eltern Rabanus-Maurus- Schule Fulda 2003 B. Mersmann Griechisch oder Französisch? Das eine muss das andere nicht ausschließen.

Mehr

MatheBasics Teil 1 Grundlagen der Mathematik

MatheBasics Teil 1 Grundlagen der Mathematik Fernstudium Guide Online Vorlesung Wirtschaftswissenschaft MatheBasics Teil 1 Grundlagen der Mathematik Version 2016 Dieses Werk ist urheberrechtlich geschützt. Jegliche unzulässige Form der Entnahme,

Mehr

Wie lange ist die Seidenstraße?

Wie lange ist die Seidenstraße? KinderUni 2008 Wie lange ist die Seidenstraße? Wie lange ist die Seidenstraße? Eine spannende Reise von Konstantinopel nach Indien und China im Mittelalter Institut für Byzanzforschung 1 KinderUni 2008

Mehr

13.5 Der zentrale Grenzwertsatz

13.5 Der zentrale Grenzwertsatz 13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle

Mehr

Wissenschaftliches Arbeiten Quantitative Methoden

Wissenschaftliches Arbeiten Quantitative Methoden Wissenschaftliches Arbeiten Quantitative Methoden Prof. Dr. Stefan Nickel WS 2008 / 2009 Gliederung I. Motivation II. III. IV. Lesen mathematischer Symbole Wissenschaftliche Argumentation Matrizenrechnung

Mehr

./! % 5 6 7 %1/. 89 8 :! 89 2 89 8 8 8 2 /

./! % 5 6 7 %1/. 89 8 :! 89 2 89 8 8 8 2 / # + #! 0%1!! % & ) % #,./!. 21. 3 # 4 % 5 6, #!!/ 6 7 %1/. 89 8 :! 89 2 89 8 8 8 2 / ; 89 8 :!/ ; 1 & 6 8? 88 / 555/ 88 / 1 #Α, + 1 8 Χ1, Ε # 8 Β #Α 1 > # +,8 +. 8 ; & : 1 8 18 1

Mehr

Spezielle Eigenfunktionen des Transfer-Operators für Hecke Kongruenz Untergruppen

Spezielle Eigenfunktionen des Transfer-Operators für Hecke Kongruenz Untergruppen Spezielle Eigenfunktionen des Transfer-Operators für Hecke Kongruenz Untergruppen Diplomarbeit 2005 Markus Fraczek Institut für Theoretische Physik Technische Universität Clausthal Abteilung Statistische

Mehr

η du i dx j 0, 01 Pa s < η < 1 Pa s V F = β V 0 p β 10 4 bar 1

η du i dx j 0, 01 Pa s < η < 1 Pa s V F = β V 0 p β 10 4 bar 1 ËØÖ ÑÙÒ Ñ Ò ÖÙÒ Ð Ò ¾ Ò ÓÖ ÖÙÒ Ò ÒÀÝ Ö ÙÐ Ø Ò ¾º½ ÒÀÝ Ö ÙÐ Ý Ø Ñ Ò Ò ØÞØ ÐÙ ÓÐÐ Ò Û Ø ÙØ Ð ÙØ Ñ Ö Ò Ñ ØÖ Ö ÒÒ Ò Ö Ò Ò Ò Ö ¹ ØÓ ÙÒ ÙÑÑ ÖÒ Ø Ò Ö Ò Ñ Ø ÐÐ ÙØ Ð ÒÃÓÖÖÓ ÓÒ ØÞ Ò ÙØ Ð Ù ÃÙÒ Ø¹ Ñ Ð Ø Ö Ò Ù Ò Ñ

Mehr

Einführung Mathematische Ausdrücke Symbole Array Formatierungen Hilfen. Fachschaft Elektro- und Informationstechnik. Formelsatz in L A TEX

Einführung Mathematische Ausdrücke Symbole Array Formatierungen Hilfen. Fachschaft Elektro- und Informationstechnik. Formelsatz in L A TEX Fachschaft Elektro- und Informationstechnik Formelsatz in L A TEX L A TEX Christian Krämer 15. November 2011 Inhalt 1 Einführung Mathe-Umgebungen Einfache Terme 2 Mathematische Ausdrücke Mathematische

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lernwerkstatt: Antikes Griechenland - Wie lebten und dachten die alten Griechen? Das komplette Material finden Sie hier: School-Scout.de

Mehr

Lineare Strukturgleichungsmodelle (LISREL) Konfirmatorische Faktorenanalyse (CFA)

Lineare Strukturgleichungsmodelle (LISREL) Konfirmatorische Faktorenanalyse (CFA) Interdisziplinäres Seminar Lineare Strukturgleichungsmodelle (LISREL) Konfirmatorische Faktorenanalyse (CFA) WS 2008/09 19.11.2008 Julia Schiele und Lucie Wink Dozenten: Prof. Dr. Bühner, Prof. Dr. Küchenhoff

Mehr

Formelsammlung Mathematik

Formelsammlung Mathematik Formelsammlung Mathematik Inhaltsverzeichnis 1 Bezeichnungen und Symbole 1.1 Zahlenmengen.................................. 1. Griechisches Alphabet............................. 1.3 Logische Symbole................................

Mehr

Wichtige mathematische Symbole

Wichtige mathematische Symbole Wichtige mathematische Symbole Die folgende Liste enthält wichtige Zeichen und Symbole, die vor allem in der Mathematik, aber z.t. auch in den angewandten Fachbereichen Verwendung finden. Der Schwerpunkt

Mehr

Intermezzo: Das griechische Alphabet

Intermezzo: Das griechische Alphabet Intermezzo: Das griechische Alphabet Buchstaben Name Buchstaben Name Buchstaben Name A, α Alpha I, ι Iota P, ρ Rho B, β Beta K, κ Kappa Σ, σ sigma Γ, γ Gamma Λ, λ Lambda T, τ Tau, δ Delta M, µ My Υ, υ

Mehr

- - Forelalug EEOEH i achiebau (ad vo:.. ) Größe Forelzeiche Eihei Elekriche paug [ol] Elekriche roärke [pere] rodiche Elekricher Widerad, Wirkwiderad, eiaz Ω [Oh] Elekricher eiwer, G Wirkleiwer, odukaz

Mehr

Variablen und Parameter in LISREL

Variablen und Parameter in LISREL Variablen und Parameter in LISREL 1 Konfirmatorische Faktorenanalyse: Pfaddiagramm Dieses Diagramm stellt den denkbar einfachsten Fall einer konfirmatorischen Faktorenanalyse dar. Empirisch sind Modelle

Mehr

Ein kausaler Zusammenhang entspricht einer speziellen wahren Implikation. Beispiel: Wenn es regnet, dann wird die Erde nass.

Ein kausaler Zusammenhang entspricht einer speziellen wahren Implikation. Beispiel: Wenn es regnet, dann wird die Erde nass. Implikation Implikation Warum ist die Tabelle schwer zu schlucken? In der Umgangssprache benutzt man daraus folgt, also, impliziert, wenn dann, nur für kausale Zusammenhänge Eine Implikation der Form:

Mehr

Geometrische Optik. Beschreibung der Propagation durch Richtung der k-vektoren ( Lichtstrahlen )

Geometrische Optik. Beschreibung der Propagation durch Richtung der k-vektoren ( Lichtstrahlen ) Geometrische Optik Beschreibung der Propagation durch Richtung der k-vektoren ( Lichtstrahlen ) k - Vektoren zeigen zu Wellenfronten für Ausdehnung D von Strukturen, die zu geometrischer Eingrenzung führen

Mehr

NAE Nachrichtentechnik und angewandte Elektronik

NAE Nachrichtentechnik und angewandte Elektronik nhaltsvezeichnis: Thema ntepunkt Seite Pegel Definition - Pegelangabe und umechnung - Nomgeneatoen - Dämpfung und Vestäkung - Relative Pegel Definition -3 elative Spannungs-, Stom-, Leistungspegel -3 Dämpfung/Vestäkung

Mehr

Start: 12. Oktober 2015 Kontakt: Dr Heinz Haberzettl ( ) Büro : C Schöfferstrasse 3 (Hochhaus)

Start: 12. Oktober 2015 Kontakt: Dr Heinz Haberzettl ( ) Büro : C Schöfferstrasse 3 (Hochhaus) Informationen zur Vorlesung Vorlesungen Montag: 3.Block - 4. Block ab 1:45 Uhr 3 SWS Hörsaal C10 0.03 im Hochhaus der h-da Übungen ( alle 14 Tage ) Montag: 5.Block 1 SWS Hörsaal C10 08.01 und 08.0 (im

Mehr

Übung 6 - Musterlösung

Übung 6 - Musterlösung Experimentaphysik für Lehramtskandidaten und Meteoroogen 6. Mai 00 Übungsgruppeneiter: Heiko Dumih Übung 6 - Musterösung Aufgabe 5: Kupfereiter Cu-Leiter: Länge =.5m, Eektronenadung q =.60 0 9 C, Leitungseektronendihte

Mehr

Vorkurs Mathematik 2014

Vorkurs Mathematik 2014 Vorkurs Mathematik 2014 WWU Münster, Fachbereich Mathematik und Informatik PD Dr. K. Halupczok Skript VK0 vom 2.9.2014 VK0: Einführung Denkanstoÿ: Was ist wissenschaftliches Denken? Theorie (Allgemeines)

Mehr

Formelsammlung zum Starterstudium Mathematik

Formelsammlung zum Starterstudium Mathematik Formelsammlung zum Starterstudium Mathematik Universität des Saarlandes ¼ Version.3 Inhaltsverzeichnis. Potenzgesetze. Vollständige Induktion 3. Betragsgleichungen, Betragsungleichungen 4 4. Folgen und

Mehr

( n) Abkürzungen und Symbole

( n) Abkürzungen und Symbole Abkürzuge ud Symbole A Allgemeie Symbole Negatio Kojuktio (ud) Disjuktio (oder) für alle es gibt ei ( ) Implikatio (hat zur Folge) ( ) Äquivalez vo Aussage (ist gleichbedeuted mit) Allzeiche (für alle)

Mehr

eines Wortes in einer bestimmten Handschrift lässt sich also αυτου 18 και ο εν τω

eines Wortes in einer bestimmten Handschrift lässt sich also αυτου 18 και ο εν τω DAVID TROBISCH, DIE 28.AUFLAGE Die Handschriften DES NESTLE-ALAND Nestle-Aland demgegenüber nicht wiedergegeben. Ebenso wurde die Eine Orthografie Einführung vereinheitlicht und an den wissenschaftlichen

Mehr

Architecture. Engineering. Validierung gemäß DIN EN 1991-1-2/NA:2010-12. Construction

Architecture. Engineering. Validierung gemäß DIN EN 1991-1-2/NA:2010-12. Construction Validierung gemäß DIN EN 1991-1-2/NA:2010-12 U403.de Stahlbeton-Stütze mit Heißbemessung (Krag- und Pendelstütze) Construction Engineering Architecture mb AEC Software GmbH Validierung gemäß DIN EN 1991-1-2/NA:2010-12

Mehr

( ( #! ) ( ( +,( %%&

( ( #! ) ( ( +,( %%& !!! #! %%& ( ( #! ) ( ( +,( %%& ! # # % ! # % &! % ( ) + ) (, + +,. / 0 ) 1 2... 3 & 4 1! 2 5 / 6 + 7 & 0 0 ) 8 9 % :4 9 5 ; / 2 #. 0 & < + + % ), % = )!., ( ; ! # %& ( ) +,!!, +. + # / 0! 0 1 + 2 % (,,!

Mehr

Expander Graphen und Ihre Anwendungen

Expander Graphen und Ihre Anwendungen Expander Graphen und Ihre Anwendungen Alireza Sarveniazi Mathematisches Institut Universität Göttingen 21.04.2006 Alireza Sarveniazi (Universität Göttingen) Expander Graphen und Ihre Anwendungen 21.04.2006

Mehr

Weiterbildung für Ingenieure Numerische Methoden für Differentialgleichungen Prinzipien und Praxis Taubert, Heitmann Universität Hamburg WS03/04

Weiterbildung für Ingenieure Numerische Methoden für Differentialgleichungen Prinzipien und Praxis Taubert, Heitmann Universität Hamburg WS03/04 Weiterbildung für Ingenieure Numerische Methoden für Differentialgleichungen Prinzipien und Praxis Taubert, Heitmann Universität Hamburg WS03/04 Linearisierung 1 K. Taubert LINEARISIERUNG und das VERHALTEN

Mehr

Definition. Fibonacci-Zahlen als Beispiel Für f = (f n ) n 0 = (0, 1, 1, 2, 3, 5, 8, 13, 21, 34,...) gilt Rekursion. Matrix-Formulierung. c 2.

Definition. Fibonacci-Zahlen als Beispiel Für f = (f n ) n 0 = (0, 1, 1, 2, 3, 5, 8, 13, 21, 34,...) gilt Rekursion. Matrix-Formulierung. c 2. Fibonacci-Zahlen als Beispiel Für f = (f n ) = (0,,, 2, 3, 5, 8, 3, 2, 34,...) gilt Rekursion erzeugende Funktion f n2 = f n f n (n 0), f 0 = 0, f = f(z) = f n z n = z z z 2 Partialbruchzerlegung mit φ

Mehr

Übersicht Heizlastberechnung DIN 12831-2003 + 1.deutsches Beiblatt 2008. Epsilon Phi. Eta Lambda Theta Rho Psi - 1 -

Übersicht Heizlastberechnung DIN 12831-2003 + 1.deutsches Beiblatt 2008. Epsilon Phi. Eta Lambda Theta Rho Psi - 1 - Übersicht Heizlastberechnung DIN 12831-2003 + 1.deutsches Beiblatt 2008 Epsilon Phi Eta Lambda Theta Rho Psi - 1 - Übersicht U-Wertberechnung gemäß DIN ISO 6946:2008-04 +/-30-2- Rsi Rse innen [m²k/w] außen

Mehr

Wissenstransfer mit Wikis und Weblogs

Wissenstransfer mit Wikis und Weblogs Alexander Stocker / Klaus Tochtermann Wissenstransfer mit Wikis und Weblogs Fallstudien zum erfolgreichen Einsatz von Web 2.0 in Unternehmen GABLER RESEARCH Vorwort V Management Summary VII IX Abbildungsverzeichnis

Mehr

Finanzierung und Investition

Finanzierung und Investition Kruschwitz/Husmann (2012) Finanzierung und Investition 1/46 Finanzierung und Investition Kruschwitz/Husmann (2012) Oldenbourg Verlag München 7. Auflage, Kapitel 7 Kruschwitz/Husmann (2012) Finanzierung

Mehr

Prof. Dipl.-Ing. E. Hemmerling. 7., neubearbeitete und erweiterte Auflage Mit 346 Bildern und 8 Tafeln mit weiteren 101 Bildern

Prof. Dipl.-Ing. E. Hemmerling. 7., neubearbeitete und erweiterte Auflage Mit 346 Bildern und 8 Tafeln mit weiteren 101 Bildern Köhler/Rögnitz Maschinenteile Teill Herausgegeben von Prof. Dr.-Ing. J. Pokorny Bearbeitet von Prof. Dipl.-Ing. H.-D. Haage Prof. Dipl.-Ing. L. Hagele Prof. Dipl.-Ing. E. Hemmerling Prof. Dr.-Ing. J. Pokorny

Mehr

1. Grundlegendes in der Geometrie

1. Grundlegendes in der Geometrie 1. Grundlegendes Geometrie 1. Grundlegendes in der Geometrie 1. 1 Übliche ezeichnungen Punkte bezeichnen wir mit Grossbuchstaben:,,,D,... P 1,P 2,P 3,...,,,... Strecken und deren Masszahl, sowie Geraden

Mehr

Mathematische Formeln für das Studium an Fachhochschulen

Mathematische Formeln für das Studium an Fachhochschulen Richard Mohr Mathematische Formeln für das Studium an Fachhochschulen Richard Mohr Mathematische Formeln für das Studium an Fachhochschulen Richard Mohr Mathematische Formeln für das Studium an Fachhochschulen

Mehr

imc FAMOS Update Info Inhaltsverzeichnis

imc FAMOS Update Info Inhaltsverzeichnis Inhaltsverzeichnis... 2 1.1 imc FAMOS Update-Info (Version 7.1)... 2 1.1.1 Lokale Variablen... 3 1.1.2 Handhabung physikalischer Einheiten... 4 1.1.3 Neue Funktionen 4 1.1.3.1 ConvertUnit () 4 1.1.3.2

Mehr

Das Orakel von Delphi Dave und Marvin Schülerprojekt 6a 2003/2004

Das Orakel von Delphi Dave und Marvin Schülerprojekt 6a 2003/2004 Das Orakel von Delphi Dave und Marvin Schülerprojekt 6a 2003/2004 Der Apollon, Krösus und die Seherin Pythia Delphi ist eine Stadt in Griechenland. Die Sage erzählt, dass dort in einer Schlucht ein Drache

Mehr

Grundzüge der Konzernrechnungslegung

Grundzüge der Konzernrechnungslegung Überblick über Studieninhalte der Konzernrechungslegung (Stand: 11.04.2004) Seite 1 von 6 Grundzüge der Konzernrechnungslegung INHALTSVERZEICHNIS 1. Währungsumrechnung ( 298 Abs. 1 ivm 244 HGB; Methodenfreiheit

Mehr

[ 1 1 + [n 2 n 1 ] d. n 2

[ 1 1 + [n 2 n 1 ] d. n 2 Grudkozepte der Optik Pro Kowarschik 3 Abbildugsgleichug (ür düe Lise): = b +, Abbildugsmaßstab: A = B g G = b g Liseschleierormel ( - umgebedes Medium, - Lise, R,R - Krümmugsradie, d - Dicke au optischer

Mehr

Seminar zur Theorie der Teilchen und Felder. Van der Waals Theorie

Seminar zur Theorie der Teilchen und Felder. Van der Waals Theorie Seminar zur Theorie der Teilchen und Felder Van der Waals Theorie Tobias Berheide 18.11.2009 1 Inhaltsverzeichnis 1 Einleitung 3 2 Das Van der Waals Gas 3 2.1 Das ideale Gas..............................

Mehr

Klassische Feldtheorie 2 Mitschrift von Martin Bendschneider

Klassische Feldtheorie 2 Mitschrift von Martin Bendschneider Klassische Feldtheorie 2 Mitschrift von Martin Bendschneider 1 Inhaltsverzeichnis 1 Hamilton Mechanik 3 1.1 Newton Mechanik.......................... 3 1.2 Lagrange............................... 3 1.3

Mehr

Auszug aus den Tabellen und Formeln der DIN EN ISO 6946

Auszug aus den Tabellen und Formeln der DIN EN ISO 6946 Institut ür Bupysik und Mterilwissensct Univ.-Pro. Dr. Mx J. Seite von 9 nc Kosler, W.: Mnuskript zur E DIN 408-3:998-0, NA Buwesen (NABu) im DIN - Deutsces Institut ür Normung vom 28.0.998 Hinweise: DIN

Mehr

Lösungen zu Kapitel 7

Lösungen zu Kapitel 7 Lösungen zu Kapitel 7 Lösung zu Aufgabe 1: Nach Definition 7.1 ist eine Verknüpfung auf der Menge H durch eine Abbildung : H H H definiert. Gilt H = {a 1,..., a m }, so wird eine Verknüpfung auch vollständig

Mehr

ASTRONOMIE IN AUGSBURG

ASTRONOMIE IN AUGSBURG ASTRONOMIE IN AUGSBURG TYCHO BRAHE MUSEUM IM RÖMERTURM ZU AUGSBURG Worldwide Network Tycho Brahe Der große Quadrant von Augsburg (1570) Dieser sehr große Quadrant wurde von Tycho Brahe konstruiert und

Mehr

L A T E X-Einführung 09.12.2011. Lehrstuhl sozialwissenschaftliche Methodenlehre und Sozialstatistik Sebastian Jeworutzki

L A T E X-Einführung 09.12.2011. Lehrstuhl sozialwissenschaftliche Methodenlehre und Sozialstatistik Sebastian Jeworutzki L A T E X-Einführung 09.12.2011 Lehrstuhl sozialwissenschaftliche Methodenlehre und Sozialstatistik Sebastian Jeworutzki Ablauf 1 Formelsatz 2 Projekte verwalten 3 Präsentationen mit LaTeX erstellen. 4

Mehr

Grundbegriffe der Mengenlehre

Grundbegriffe der Mengenlehre Technische Universität Dortmund Fakultät für Mathematik Institut für Analysis Rolf Walter Grundbegriffe der Mengenlehre Inhalt: Logisches Schließen................................................ 1 Mengen............................................................

Mehr

Merkblatt für das Anfertigen von wissenschaftlichen Arbeiten

Merkblatt für das Anfertigen von wissenschaftlichen Arbeiten Merkblatt für das Anfertigen von wissenschaftlichen Arbeiten 1. Ziel dieses Merkblatts In diesem Merkblatt möchten wir kurz die formalen Anforderungen an eine Seminar- oder Abschlussarbeit darstellen.

Mehr

Lösungsskizze Aufgabe 8. Gesucht sind alle Konsumpläne, die es gestatten, das gesamte Einkommen in t = 0 und t = 1 auszugeben: = 16,67; 10

Lösungsskizze Aufgabe 8. Gesucht sind alle Konsumpläne, die es gestatten, das gesamte Einkommen in t = 0 und t = 1 auszugeben: = 16,67; 10 Lösungsskizze Aufgabe 3 Gesucht sind alle Konsumpläne, die es gestatten, das gesamte Einkommen in t = 0 und t = 1 auszugeben: [ c 0 = 10 h 0, h 0 20 ] = 16,67; 10 1,2 c 1 = 20 + 1,2 h 0. Stellt man die

Mehr

Characterisation of random pyramid surfaces using laser scanning microscopy

Characterisation of random pyramid surfaces using laser scanning microscopy Characterisation of random pyramid surfaces using laser scanning microscopy Dr. Eckard Wefringhaus International Solar Energy Research Center Konstanz e.v. Overview Motivation Methods Applying different

Mehr

Nerreter, Grundlagen der Elektrotechnik Carl Hanser Verlag München. 8 Schaltvorgänge

Nerreter, Grundlagen der Elektrotechnik Carl Hanser Verlag München. 8 Schaltvorgänge Carl Hanser Verlag München 8 Schaltvorgänge Aufgabe 8.6 Wie lauten für R = 1 kω bei der Aufgabe 8.1 die Differenzialgleichungen und ihre Lösungen für die Spannungen u 1 und u 2 sowie für den Strom i? Aufgabe

Mehr

Fakultät Maschinenbau, Verfahrens- und Energietechnik Institut für Mechanik und Fluiddynamik Praktikum Messmethoden der Mechanik

Fakultät Maschinenbau, Verfahrens- und Energietechnik Institut für Mechanik und Fluiddynamik Praktikum Messmethoden der Mechanik Fakultät Maschinenbau, Verfahrens- und Energietechnik Institut für Mechanik und Fluiddynamik Praktikum Messmethoden der Mechanik Versuch: Spannungsoptik 1. Spannungsoptik eine Einleitung Spannungsoptik

Mehr

Sinnvolle Fördermöglichkeiten der Kindertagespflege in anderen geeigneten Räumen am Beispiel Rems-Murr-Kreis

Sinnvolle Fördermöglichkeiten der Kindertagespflege in anderen geeigneten Räumen am Beispiel Rems-Murr-Kreis HOCHSCHULE FÜR ÖFFENTLICHE VERWALTUNG UND FINANZEN LUDWIGSBURG Sinnvolle Fördermöglichkeiten der Kindertagespflege in anderen geeigneten Räumen am Beispiel Rems-Murr-Kreis Bachelorarbeit zur Erlangung

Mehr

Anhang A Verzeichnis der Abkürzungen

Anhang A Verzeichnis der Abkürzungen 260 ANHANG A VERZEICHNIS DER ABKÜRZUNGEN Anhang A Verzeichnis der Abkürzungen A a a Copo A i AIBN B BA β KWW c c I 0,S c i,a c R,I c R 0 c R C tr,x c X D D 12 DMA DMPA E E * ESR ε e i e f E λ E p f f F

Mehr

Lineare Algebra für Dummies

Lineare Algebra für Dummies Lineare Algebra für Dummies M. Wohlgemuth L A TEX-Fassung J.Voss 8. Juli 2003 Vorwort Schon mehrmals wurde hier oder anderswo nach einem Buch mit dem Titel Lineare Algebra für Dummies gefragt. In der

Mehr

Eine kurze Methode, Summen unendlicher Reihen durch Differentialformeln zu untersuchen

Eine kurze Methode, Summen unendlicher Reihen durch Differentialformeln zu untersuchen Eine kurze Methode, Summen unendlicher Reihen durch Differentialformeln zu untersuchen Leonhard Euler Auch wenn ich diesen Gegenstand schon des Öfteren betrachtet habe, sind die meisten Dinge, die sich

Mehr

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist. Matrizennorm Es seien r,s N Mit M r,s (R bezeichnen wir die Menge der reellen r s- Matrizen (also der linearen Abbildungen R s R r, und setze M s (R := M s,s (R (also die Menge der linearen Abbildungen

Mehr

3. Vorlesung Netzwerke

3. Vorlesung Netzwerke Dr. Christian Baun 3. Vorlesung Netzwerke Hochschule Darmstadt SS2012 1/26 3. Vorlesung Netzwerke Dr. Christian Baun Hochschule Darmstadt Fachbereich Informatik christian.baun@h-da.de Dr. Christian Baun

Mehr

Free Riding in Joint Audits A Game-Theoretic Analysis

Free Riding in Joint Audits A Game-Theoretic Analysis . wp Wssenschatsorum, Wen,8. Aprl 04 Free Rdng n Jont Audts A Game-Theoretc Analyss Erch Pummerer (erch.pummerer@ubk.ac.at) Marcel Steller (marcel.steller@ubk.ac.at) Insttut ür Rechnungswesen, Steuerlehre

Mehr

Die eindeutige Duplizierung und Replizierung mit speziellen Supplementsystemen. Rudolf Pleier

Die eindeutige Duplizierung und Replizierung mit speziellen Supplementsystemen. Rudolf Pleier Die eideutige Duplizierug ud Replizierug mit spezielle Supplemetsysteme Rudolf Pleier D-92694 tzerict, Mai 2015 Ialtsverzeicis 1 1 Die xistez ud izigeit der Duplizierug ud der Replizierug mit Termigescäfte...

Mehr

Bewegen und Spielen an und mit Geräten / Theo Landrichinger - 41/44 -

Bewegen und Spielen an und mit Geräten / Theo Landrichinger - 41/44 - BEISPIELE FÜR GERÄTEANORDNUNGEN Bewegen und Spielen an und mit Geräten / Theo Landrichinger - 40/44 - Bewegen und Spielen an und mit Geräten / Theo Landrichinger - 41/44 - Knoten Alle Geräte speziell Langbänke

Mehr

Andreas Allacher 0501793 Tobias Krieger 0447809 Betreuer: Dr. Schafler

Andreas Allacher 0501793 Tobias Krieger 0447809 Betreuer: Dr. Schafler PW7 Brechung Andreas Allacher 0501793 Tobias Krieger 0447809 Betreuer: Dr. Schafler 9.Nov.006 Seite 1 von 11 Inhaltsverzeichnis 1 Lichtbrechung in Prismen...3 1.1 Messung des brechenden Winkels ε eines

Mehr

Die Rolle von Entrepreneurship und Innovation für die regionale Entwicklung

Die Rolle von Entrepreneurship und Innovation für die regionale Entwicklung Die Rolle von Entrepreneurship und Innovation für die regionale Entwicklung Michael Fritsch Technische Universität Bergakademie Freiberg, DIW-Berlin und MPIEW-Jena, Germany Gründungsgeschehen und Marktprozess

Mehr

10. Äquivalenzen zur Riemannschen Vermutung

10. Äquivalenzen zur Riemannschen Vermutung 0. Äquivalenzen zur Riemannchen Vermutung 0. Äquivalenzen zur Riemannchen Vermutung Satz. Sei θ 0, (ii θ( = + O( θ+ε für alle ε > 0,

Mehr

Übersicht Die Sonne als Energiequelle

Übersicht Die Sonne als Energiequelle Übersicht 1.1 1. Einleitung 2. Die Sonne als Energiequelle 2.1 Sonnenstrahlung 2.2 Einfluß der Atmosphäre 2.3 Einstrahlung auf geneigte Flächen 2.4 Direkt- und Diffusstrahlung 2.5 Strahlungsdaten Globalstrahlung

Mehr

Monolithischer Wärmedämmstein. eine Wissenschaft für sich. Prof. Dr.-Ing Danièle Waldmann

Monolithischer Wärmedämmstein. eine Wissenschaft für sich. Prof. Dr.-Ing Danièle Waldmann Monolithischer Wärmedämmstein eine Wissenschaft für sich Prof. Dr.-Ing Danièle Waldmann Monolithischer Wärmedämmstein Definition: Abgrenzung vom Innenbereich zum Außenbereich (Gebäudehülle) ohne zusätzliche

Mehr

Kapital wird als Produktionsfaktor verwendet und es bezeichnet z t den entsprechenden Faktorpreis des Kapitals.

Kapital wird als Produktionsfaktor verwendet und es bezeichnet z t den entsprechenden Faktorpreis des Kapitals. 2 Das Ramsey-Modell Literatur: - Maussner & Klump [1996, C.I.1] - Blanchard & Fischer [1989, Ch. 2] 25 2.1 Der optimale Konsumplan des Haushalts Annahmen: N homogene Haushalte mit unendlichem Zeithorizont.

Mehr

Aerodynamik von Hochleistungsfahrzeugen. Gliederung.

Aerodynamik von Hochleistungsfahrzeugen. Gliederung. WS10/11, Folie 2.1 Hochleistungsfahrzeugen. Gliederung. 1. Einführung (Typen, Rennserien) 2. Aerodynamische Grundlagen 3. Aerodynamik und Fahrleistung 4. Entwicklung im Windkanal 5. Entwicklung mit CFD

Mehr

Substitutionselastizität

Substitutionselastizität Substitutionselastizität Grenzrate der Substitution Produktionsfunktion Q = Q(x,..., x n Isoquante: Menge aller Inputkombinationen, die zu einem festen Output Q führen. Die zum Outputniveau Q gehörige

Mehr

1 Anregung von Oberflächenwellen (30 Punkte)

1 Anregung von Oberflächenwellen (30 Punkte) 1 Anregung von Oberflächenwellen (30 Punkte) Eine ebene p-polarisierte Welle mit Frequenz ω und Amplitude E 0 trifft aus einem dielektrischen Medium 1 mit Permittivität ε 1 auf eine Grenzfläche, die mit

Mehr

Aufgabe 1: Planarspule (20 Punkte)

Aufgabe 1: Planarspule (20 Punkte) 1 Aufgabe 1: Planarspule (20 Punkte) Gegeben ist die Planarspule gemäß Abb. 1.1. Die Leiterbahnen sind aus Kupfer, das Trägermaterial ist Teflon. Die Spule soll als Filterelement (Drossel) für ein 1 GHz-Signal

Mehr

Grundlagen der Elektrotechnik I (GET I)

Grundlagen der Elektrotechnik I (GET I) Grundlagen der lektrotechnik (GT ) Vorlesung am 09.0.007 Fr. 08:30-0:00 Uhr; R. 603 (Hörsaal) Dr.-ng. René Marklein -Mail: marklein@uni-kassel.de kassel.de Tel.: 056 804 646; Fax: 056 804 6489 URL: http://www.tet.e-technik.uni

Mehr

ITWM Workshopserie 2012: Mehrfaktor-Zinsmodelle und ihre Implementation

ITWM Workshopserie 2012: Mehrfaktor-Zinsmodelle und ihre Implementation ITWM Workshopserie 2012: Mehrfaktor-Zinsmodelle und ihre Implementation Aspekte des 2-Faktor-Hull-White-Modells 8. November 2012 Inhalt Weshalb ein Mehrfaktor Modell? 2-Faktor-Modelle Das ursprüngliche

Mehr

FORMEL EDITOR VON WORD 2007 / EQUATION EDITOR 3.0- EINE EINFÜHRUNG

FORMEL EDITOR VON WORD 2007 / EQUATION EDITOR 3.0- EINE EINFÜHRUNG FORMEL EDITOR VON WORD 2007 / EQUATION EDITOR 3.0- EINE EINFÜHRUNG 1 FORMELN EINGEBEN FORMELFELD ÖFFNEN UND SCHLIEßEN Um eine Formel eingeben zu können öffnen Sie den Formeleditor mit EINFÜGEN / FORMEL

Mehr

Textübertragung in LATEX. Förderzentrum für die integrative Beschulung blinder und sehbehinderter Schülerinnen und Schüler (FIBS)

Textübertragung in LATEX. Förderzentrum für die integrative Beschulung blinder und sehbehinderter Schülerinnen und Schüler (FIBS) Textübertragung in LATEX Förderzentrum für die integrative Beschulung blinder und sehbehinderter Schülerinnen und Schüler (FIBS) Stand: 21. November 2012 1 Inhaltsverzeichnis 1 Allgemeines 4 1.1 Verwendung

Mehr

Lineare Antwort, Green-Kubo, Fluktuations-Dissipations Theorem

Lineare Antwort, Green-Kubo, Fluktuations-Dissipations Theorem Lineare Antwort, Green-Kubo, Fluktuations-Dissipations Theorem Franziska Böhme, Sophie Seidenbecher 05.07.2012 1 Lineare Antwort 2 3 4 Theorie der Linearen Antwort Einführung der Linearen Antworttheorie

Mehr

10.3.1 Druckverlust in Rohrleitungen bei laminarer Strömung (Re < 2320)

10.3.1 Druckverlust in Rohrleitungen bei laminarer Strömung (Re < 2320) 0.3-0.3 Rohrströmung 0.3. Druckverlust in Rohrleitungen bei laminarer Strömung (Re < 30) Bei laminarer Rohrströmung läßt sich der Reibungsverlust theoretisch berechnen, as bei der turbulenten Strömung

Mehr

α i +α j Σ j 1 (α i Σ i + α j Σ j) α j α i + α j

α i +α j Σ j 1 (α i Σ i + α j Σ j) α j α i + α j ØÞ Ø Ö ÒÒÙÒ ÚÓÒ Ö Ö Ò Ö Ò Ò ÙÖ Ò ËÞÖ Ò Ã Ö Ö Ö Ø ÒÞ Ä ÒÞ Ö Ø Ò Ä Ô Ì ÑÓ ËØ Å ÖÙ Å ÒÓÖ ÁÒ Ø ØÙØ Ö ÓÑÔÙØ Ö Ö Å Ð ÒÔ ÓÖ Ø ØÖ ¾ ½¼ Ö ÙÒ Û { Ö Ö Ð Ô Ð ÒÞ Ø Ñ ÒÓÖ } ºØÙ¹ º Ù ÑÑ ÙÒ º ÍÒ Ö ÖØ Ð Ö Ø Ò ØÞ ØÚ Ö Ö

Mehr

Newton: Joule: Watt: Pascal: Coulomb: Volt: Ohm: Farad: Tesla: Henry: Hertz: Dioptrie:

Newton: Joule: Watt: Pascal: Coulomb: Volt: Ohm: Farad: Tesla: Henry: Hertz: Dioptrie: Formelsammlung zur Klausur Physik für Studierende der Biologie, Biochemie, Chemie, Geologischen Wissenschaften, Informatik, Mathematik und Pharmazie, Wintersemester 2009/0 bgeleitete Einheiten mit eigenem

Mehr

Kapitel VIII: Der Raum R n ; allgemeine Vektorräume

Kapitel VIII: Der Raum R n ; allgemeine Vektorräume Kapitel VIII: Der Raum R n ; allgemeine Vektorräume a) Vektoren: Definition und Grundlagen Größen, die sich durch Angabe eines Zahlenwertes und einer Einheit vollständig beschreiben lassen, nennt man Skalare

Mehr

So entstand die Bibel so wurde sie weitergegeben

So entstand die Bibel so wurde sie weitergegeben So entstand die Bibel so wurde sie weitergegeben Als die Israeliten noch als Nomaden herumzogen, erzählten sie in den Zelten und an den Lagerfeuern von den Erfahrungen, die ihre Väter mit Gott gemacht

Mehr

Formelsammlung zur Vorlesung Lebensdaueranalyse

Formelsammlung zur Vorlesung Lebensdaueranalyse Lebensdauer- und Ereignisanalyse WiSe 9/ Michael Höhle Formelsammlung zur Vorlesung Lebensdaueranalyse erstellt von Susanne Konrath Einführung. Hazardrate und Survivalfunktion T stetig mit Verteilungsfunktion

Mehr

Lösungen zu Übung(11) Erster Teil A E=

Lösungen zu Übung(11) Erster Teil A E= Lösungen zu Übung Erster Teil a Betrachten Sie die Matrix A = Die Eigenwerte sind λ = mit algebraischer Vielfachheitundλ =mitalgebraischervielfachheit,unddiematrix A E= hatrang, alsokerndimensionnur, somitistdereigenraumzuλ

Mehr

Lineare Algebra und analytische Geometrie II (Unterrichtsfach)

Lineare Algebra und analytische Geometrie II (Unterrichtsfach) MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Prof. Dr. D. Rost SS 0 Blatt.06.0 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie II (Unterrichtsfach) Abgabe: Dienstag, 0. Juli 0, bis 4:00

Mehr

Elektrotechnik Formelsammlung. Andreas Zimmer SS 98

Elektrotechnik Formelsammlung. Andreas Zimmer SS 98 Elektrotechnik Formelammlung Andrea Zimmer SS 98 nhaltverzeichni. Gleichtrom. Stromtärke und elektr. adung... 5. Sannung... 5. Ohmche Geetz... 5.4 Energie, Arbeit und eitung... 5.5 Wirkunggrad... 5.6 Stromdichte...

Mehr

Umstellung auf das neue deutsche Bilanzrecht: Übergangsregelungen des BilMoG nach IDW RS HFA 28

Umstellung auf das neue deutsche Bilanzrecht: Übergangsregelungen des BilMoG nach IDW RS HFA 28 Beilage April 2010 Karl Petersen / Dr. Christian Zwirner / Kai Peter Künkele Umstellung auf das neue deutsche Bilanzrecht: Übergangsregelungen des BilMoG nach IDW RS HFA 28 Darstellung, Beispiele und Tipps

Mehr

Beispiel: Zweidimensionale Normalverteilung I

Beispiel: Zweidimensionale Normalverteilung I 10 Mehrdimensionale Zufallsvariablen Bedingte Verteilungen 10.6 Beispiel: Zweidimensionale Normalverteilung I Wichtige mehrdimensionale stetige Verteilung: mehrdimensionale (multivariate) Normalverteilung

Mehr

Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS. 11. Mai 2015. Mathematik. Teil-2-Aufgaben. Korrekturheft. öffentliches Dokument

Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS. 11. Mai 2015. Mathematik. Teil-2-Aufgaben. Korrekturheft. öffentliches Dokument Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS 11. Mai 2015 Mathematik Teil-2-Aufgaben Korrekturheft Aufgabe 1 200-m-Lauf a) Lösungserwartung: s (t) = 7 75 t + 1,4 s (t) = 7 75 s (t)

Mehr

Solare Randbedingungen. Quelle: http://www.waa.at/hotspots/finsternisse/pse20150320/

Solare Randbedingungen. Quelle: http://www.waa.at/hotspots/finsternisse/pse20150320/ Solare Randbedingungen Quelle: http://www.waa.at/hotspots/finsternisse/pse20150320/ Ein Desaster für die Photovoltaik? Übersicht Energiebedarf und Die Sonne als Primärenergiequelle Die Sonneneinstrahlung

Mehr

Zur Existenz viskoser Profile für Schockwellen in der isothermen Magnetohydrodynamik. Diplomarbeit. Andreas Klaiber Studiengang Diplom-Mathematik

Zur Existenz viskoser Profile für Schockwellen in der isothermen Magnetohydrodynamik. Diplomarbeit. Andreas Klaiber Studiengang Diplom-Mathematik FAKULTÄT FÜR MATHEMATIK UND INFORMATIK MATHEMATISCHES INSTITUT Zur Existenz viskoser Profile für Schockwellen in der isothermen Magnetohydrodynamik Diplomarbeit vorgelegt von Andreas Klaiber Studiengang

Mehr

Unterlagen Fernstudium - 3. Konsultation 15.12.2007

Unterlagen Fernstudium - 3. Konsultation 15.12.2007 Untelagen Fenstudium - 3. Konsultation 5.2.2007 Inhaltsveeichnis Infomationen u Püfung 2 2 Aufgabe 7. Umstömte Keisylinde mit Auftieb 3 3 Aufgabe 8. Komplexes Potential und Konfome Abbildung 0 Infomationen

Mehr

Modul 10: Konzentrationsmesssung. Prof. Dr. W. Laufner Beschreibende Statistik. Konzentrationskurve. Visualisierung. statistische Kennzahlen

Modul 10: Konzentrationsmesssung. Prof. Dr. W. Laufner Beschreibende Statistik. Konzentrationskurve. Visualisierung. statistische Kennzahlen Modul 0: Kozetratosmesssug Modul 0: Kozetratosmessug Kozetrato absolute Kozetrato (Kozetrato. e. S.) Kozetratoskurve - Kozetratosrate - Herfdahl sches Kozetratosmaß Vsualserug statstsche Kezahle relatve

Mehr

Optimierung Design und Test einer hoch verformbaren adaptiven Flügelvorderkante

Optimierung Design und Test einer hoch verformbaren adaptiven Flügelvorderkante Optimierung Design und Test einer hoch verformbaren adaptiven Flügelvorderkante Anton Rudenko DLR Wissenschaftstag 2015 07. Oktober 2015 Braunschweig, Deutschland DLR.de Chart 2 Gliederung Motivation und

Mehr

4 Geld und Inflation im Ramsey-Modell

4 Geld und Inflation im Ramsey-Modell 4 Geld und Inflation im Ramsey-Modell Literatur: - Maussner & Klump 996, C.II.3] - Blanchard & Fischer 989, Ch. 4] - Obstfeld & Rogoff 996, Ch. 8.3] 84 4. Monetärer Sektor im Ramsey Modell Berücksichtigung

Mehr

Bestimmung der Hafteigenschaften einer Partikelpackung am Beispiel von oberflächenmodifizierten Glaspartikeln

Bestimmung der Hafteigenschaften einer Partikelpackung am Beispiel von oberflächenmodifizierten Glaspartikeln Bestimmung der Hafteigenschaften einer Partikelpackung am Beispiel von oberflächenmodifizierten Glaspartikeln PiKo Workshop Dialog Experiment-Modell 3.4.4 Z. Kutelova, W. Hintz, J. Tomas Gliederung Einleitung,

Mehr