|
|
- Hanna Gehrig
- vor 2 Jahren
- Abrufe
Transkript
1
2
3
4
5
6
7
8
9
10 β
11 Ζ φ ε
12 = δ δ
13
14
15
16 = + = =
17 = =
18
19 = ρ ρ
20
21
22
23 γ γ γ
24 γ γ γ γ
25
26
27
28 = = = = = = + + = = = + + = = = = $ σ
29
30
31
32 r ( ) K r = = = O M L r M r r = = O M L r M r r
33 = = = = = = = = ( ) ( ) =
34 ( ) = ± ( ) ( ) = ± ( ) = ± ( ) = = + = < = =
35 = =
36 ( ) = L M M O M L L r r M r = λ ( ) = = + =
37 r
38
39 㮷嚇
40 r r =
41
42
43 = = = ( ) ( ) = =
44 ( ) ( ) = = +
45 = ( ) = + = + + = = λ λ λ λ
46 = + = + = ( )
47 = = M M ( ) = = = + + < + ( ) =
48
49
50
51 = ( )
52
53
54
55 = ( ) ( ) = ( ) = ( ) + β
56 㮷嚇 㮷嚇 㮷嚇
57
58
59
60
61
62
63
64 =
65
66
67
68
69
70
71
72
73
74
75 㮷嚇
76
77 + ( ) ( ) + + ( ) ( )
78 = =
79
80
81
82
83 = ( ) = r r λ λ λ λ = λ
84
85 γ = = γ = = γ = ( γ ) =
86 㥇唧 = 㥇唧 㥇唧 = 㥇唧 λ = γ = ( ) λ = γ
87
88 =
89 = β β = = + β β β β
90 嚇
91 ±
92
93
94
95
96
97
98
99
100 㮷嚇 㮷嚇
101 = ( ) = =
102
103
104
105
106
107 㮷嚇
108
109 M M
110 = = = ) ( ) ) = ) = ) =
111
112
113 㮷嚇 㮷嚇
114
115 㮷嚇
116 㮷嚇 㮷嚇
117 㮷嚇 㮷嚇
118
119
120
121
122
123 =
124
125 = + = ( ) = = =
126
127
128
129
130 = + [ ]
131 = = ( )
132
133
134
135
136
137
138
139
140 嚇
141
142
143
144 嚇
145
146
147
148
149 嚇
150
151
152
153
154
Tabellen erstellen mit Word 7 Computeria Rorschach. Wir erstellen mit Word 7/10 eigene Tabellen
Tabellen erstellen mit Word 7 Computeria Rorschach Wir erstellen mit Word 7/10 eigene Tabellen Roland Liebing 10.02.2012 Tabellen erstellen mit Word7/10 Wir klicken in der Registerkarte Einfügen auf die
Anschlussbelegungder9polSub DX,Y,Z,(N): 230VAnschlussEinbaustecker: Steckdosen: DurchöffnendeskleinenDeckelsaufderVorderseiteerreichenSiedir6,3A DiebeidenSteckdosenwerdenüberPin1und14derSoftwaregeschaltet
Liste des (neu)griechischen Alphabets, sortiert nach Zeichen
Liste des (neu)griechischen Alphabets, sortiert nach Zeichen A &Agr; x0391 iso-grk1 Griechischer Großbuchstabe Alpha Α x0391 xhtml-sym Griechischer Großbuchstabe Alpha a &agr; x03b1 iso-grk1 Griechischer
Alphabetisierung und Grundbildung
1 Master of Arts (Weiterbildung) Alphabetisierung und Grundbildung Aufbau-Studiengang (4 Sem.) und Fortbildungen Leipziger Buchmesse Sa., 20. März 2010, 14 15 Uhr Stefanie Schröder, M.A. PROFESS / BVAG
GRIECHISCH. GRIECHISCH eine Information über das Fach Altgriechisch für Schüler und Eltern. Rabanus-Maurus- Schule Fulda 2003 B.
GRIECHISCH GRIECHISCH eine Information über das Fach Altgriechisch für Schüler und Eltern Rabanus-Maurus- Schule Fulda 2003 B. Mersmann Griechisch oder Französisch? Das eine muss das andere nicht ausschließen.
MatheBasics Teil 1 Grundlagen der Mathematik
Fernstudium Guide Online Vorlesung Wirtschaftswissenschaft MatheBasics Teil 1 Grundlagen der Mathematik Version 2016 Dieses Werk ist urheberrechtlich geschützt. Jegliche unzulässige Form der Entnahme,
Wie lange ist die Seidenstraße?
KinderUni 2008 Wie lange ist die Seidenstraße? Wie lange ist die Seidenstraße? Eine spannende Reise von Konstantinopel nach Indien und China im Mittelalter Institut für Byzanzforschung 1 KinderUni 2008
13.5 Der zentrale Grenzwertsatz
13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle
Wissenschaftliches Arbeiten Quantitative Methoden
Wissenschaftliches Arbeiten Quantitative Methoden Prof. Dr. Stefan Nickel WS 2008 / 2009 Gliederung I. Motivation II. III. IV. Lesen mathematischer Symbole Wissenschaftliche Argumentation Matrizenrechnung
./! % 5 6 7 %1/. 89 8 :! 89 2 89 8 8 8 2 /
# + #! 0%1!! % & ) % #,./!. 21. 3 # 4 % 5 6, #!!/ 6 7 %1/. 89 8 :! 89 2 89 8 8 8 2 / ; 89 8 :!/ ; 1 & 6 8? 88 / 555/ 88 / 1 #Α, + 1 8 Χ1, Ε # 8 Β #Α 1 > # +,8 +. 8 ; & : 1 8 18 1
Spezielle Eigenfunktionen des Transfer-Operators für Hecke Kongruenz Untergruppen
Spezielle Eigenfunktionen des Transfer-Operators für Hecke Kongruenz Untergruppen Diplomarbeit 2005 Markus Fraczek Institut für Theoretische Physik Technische Universität Clausthal Abteilung Statistische
η du i dx j 0, 01 Pa s < η < 1 Pa s V F = β V 0 p β 10 4 bar 1
ËØÖ ÑÙÒ Ñ Ò ÖÙÒ Ð Ò ¾ Ò ÓÖ ÖÙÒ Ò ÒÀÝ Ö ÙÐ Ø Ò ¾º½ ÒÀÝ Ö ÙÐ Ý Ø Ñ Ò Ò ØÞØ ÐÙ ÓÐÐ Ò Û Ø ÙØ Ð ÙØ Ñ Ö Ò Ñ ØÖ Ö ÒÒ Ò Ö Ò Ò Ò Ö ¹ ØÓ ÙÒ ÙÑÑ ÖÒ Ø Ò Ö Ò Ñ Ø ÐÐ ÙØ Ð ÒÃÓÖÖÓ ÓÒ ØÞ Ò ÙØ Ð Ù ÃÙÒ Ø¹ Ñ Ð Ø Ö Ò Ù Ò Ñ
Einführung Mathematische Ausdrücke Symbole Array Formatierungen Hilfen. Fachschaft Elektro- und Informationstechnik. Formelsatz in L A TEX
Fachschaft Elektro- und Informationstechnik Formelsatz in L A TEX L A TEX Christian Krämer 15. November 2011 Inhalt 1 Einführung Mathe-Umgebungen Einfache Terme 2 Mathematische Ausdrücke Mathematische
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus:
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lernwerkstatt: Antikes Griechenland - Wie lebten und dachten die alten Griechen? Das komplette Material finden Sie hier: School-Scout.de
Lineare Strukturgleichungsmodelle (LISREL) Konfirmatorische Faktorenanalyse (CFA)
Interdisziplinäres Seminar Lineare Strukturgleichungsmodelle (LISREL) Konfirmatorische Faktorenanalyse (CFA) WS 2008/09 19.11.2008 Julia Schiele und Lucie Wink Dozenten: Prof. Dr. Bühner, Prof. Dr. Küchenhoff
Formelsammlung Mathematik
Formelsammlung Mathematik Inhaltsverzeichnis 1 Bezeichnungen und Symbole 1.1 Zahlenmengen.................................. 1. Griechisches Alphabet............................. 1.3 Logische Symbole................................
Wichtige mathematische Symbole
Wichtige mathematische Symbole Die folgende Liste enthält wichtige Zeichen und Symbole, die vor allem in der Mathematik, aber z.t. auch in den angewandten Fachbereichen Verwendung finden. Der Schwerpunkt
Intermezzo: Das griechische Alphabet
Intermezzo: Das griechische Alphabet Buchstaben Name Buchstaben Name Buchstaben Name A, α Alpha I, ι Iota P, ρ Rho B, β Beta K, κ Kappa Σ, σ sigma Γ, γ Gamma Λ, λ Lambda T, τ Tau, δ Delta M, µ My Υ, υ
- - Forelalug EEOEH i achiebau (ad vo:.. ) Größe Forelzeiche Eihei Elekriche paug [ol] Elekriche roärke [pere] rodiche Elekricher Widerad, Wirkwiderad, eiaz Ω [Oh] Elekricher eiwer, G Wirkleiwer, odukaz
Variablen und Parameter in LISREL
Variablen und Parameter in LISREL 1 Konfirmatorische Faktorenanalyse: Pfaddiagramm Dieses Diagramm stellt den denkbar einfachsten Fall einer konfirmatorischen Faktorenanalyse dar. Empirisch sind Modelle
Ein kausaler Zusammenhang entspricht einer speziellen wahren Implikation. Beispiel: Wenn es regnet, dann wird die Erde nass.
Implikation Implikation Warum ist die Tabelle schwer zu schlucken? In der Umgangssprache benutzt man daraus folgt, also, impliziert, wenn dann, nur für kausale Zusammenhänge Eine Implikation der Form:
Zugversuch an Stahlblechen und -bändern mit einer Dicke von 0,5 bis 3 mm ausschließlich
DK 620.172.669.14-415 Oktober 1955 Φ Q o Dl
Geometrische Optik. Beschreibung der Propagation durch Richtung der k-vektoren ( Lichtstrahlen )
Geometrische Optik Beschreibung der Propagation durch Richtung der k-vektoren ( Lichtstrahlen ) k - Vektoren zeigen zu Wellenfronten für Ausdehnung D von Strukturen, die zu geometrischer Eingrenzung führen
NAE Nachrichtentechnik und angewandte Elektronik
nhaltsvezeichnis: Thema ntepunkt Seite Pegel Definition - Pegelangabe und umechnung - Nomgeneatoen - Dämpfung und Vestäkung - Relative Pegel Definition -3 elative Spannungs-, Stom-, Leistungspegel -3 Dämpfung/Vestäkung
Start: 12. Oktober 2015 Kontakt: Dr Heinz Haberzettl ( ) Büro : C Schöfferstrasse 3 (Hochhaus)
Informationen zur Vorlesung Vorlesungen Montag: 3.Block - 4. Block ab 1:45 Uhr 3 SWS Hörsaal C10 0.03 im Hochhaus der h-da Übungen ( alle 14 Tage ) Montag: 5.Block 1 SWS Hörsaal C10 08.01 und 08.0 (im
Übung 6 - Musterlösung
Experimentaphysik für Lehramtskandidaten und Meteoroogen 6. Mai 00 Übungsgruppeneiter: Heiko Dumih Übung 6 - Musterösung Aufgabe 5: Kupfereiter Cu-Leiter: Länge =.5m, Eektronenadung q =.60 0 9 C, Leitungseektronendihte
Vorkurs Mathematik 2014
Vorkurs Mathematik 2014 WWU Münster, Fachbereich Mathematik und Informatik PD Dr. K. Halupczok Skript VK0 vom 2.9.2014 VK0: Einführung Denkanstoÿ: Was ist wissenschaftliches Denken? Theorie (Allgemeines)
Formelsammlung zum Starterstudium Mathematik
Formelsammlung zum Starterstudium Mathematik Universität des Saarlandes ¼ Version.3 Inhaltsverzeichnis. Potenzgesetze. Vollständige Induktion 3. Betragsgleichungen, Betragsungleichungen 4 4. Folgen und
( n) Abkürzungen und Symbole
Abkürzuge ud Symbole A Allgemeie Symbole Negatio Kojuktio (ud) Disjuktio (oder) für alle es gibt ei ( ) Implikatio (hat zur Folge) ( ) Äquivalez vo Aussage (ist gleichbedeuted mit) Allzeiche (für alle)
eines Wortes in einer bestimmten Handschrift lässt sich also αυτου 18 και ο εν τω
DAVID TROBISCH, DIE 28.AUFLAGE Die Handschriften DES NESTLE-ALAND Nestle-Aland demgegenüber nicht wiedergegeben. Ebenso wurde die Eine Orthografie Einführung vereinheitlicht und an den wissenschaftlichen
Architecture. Engineering. Validierung gemäß DIN EN 1991-1-2/NA:2010-12. Construction
Validierung gemäß DIN EN 1991-1-2/NA:2010-12 U403.de Stahlbeton-Stütze mit Heißbemessung (Krag- und Pendelstütze) Construction Engineering Architecture mb AEC Software GmbH Validierung gemäß DIN EN 1991-1-2/NA:2010-12
( ( #! ) ( ( +,( %%&
!!! #! %%& ( ( #! ) ( ( +,( %%& ! # # % ! # % &! % ( ) + ) (, + +,. / 0 ) 1 2... 3 & 4 1! 2 5 / 6 + 7 & 0 0 ) 8 9 % :4 9 5 ; / 2 #. 0 & < + + % ), % = )!., ( ; ! # %& ( ) +,!!, +. + # / 0! 0 1 + 2 % (,,!
Expander Graphen und Ihre Anwendungen
Expander Graphen und Ihre Anwendungen Alireza Sarveniazi Mathematisches Institut Universität Göttingen 21.04.2006 Alireza Sarveniazi (Universität Göttingen) Expander Graphen und Ihre Anwendungen 21.04.2006
Weiterbildung für Ingenieure Numerische Methoden für Differentialgleichungen Prinzipien und Praxis Taubert, Heitmann Universität Hamburg WS03/04
Weiterbildung für Ingenieure Numerische Methoden für Differentialgleichungen Prinzipien und Praxis Taubert, Heitmann Universität Hamburg WS03/04 Linearisierung 1 K. Taubert LINEARISIERUNG und das VERHALTEN
Definition. Fibonacci-Zahlen als Beispiel Für f = (f n ) n 0 = (0, 1, 1, 2, 3, 5, 8, 13, 21, 34,...) gilt Rekursion. Matrix-Formulierung. c 2.
Fibonacci-Zahlen als Beispiel Für f = (f n ) = (0,,, 2, 3, 5, 8, 3, 2, 34,...) gilt Rekursion erzeugende Funktion f n2 = f n f n (n 0), f 0 = 0, f = f(z) = f n z n = z z z 2 Partialbruchzerlegung mit φ
Übersicht Heizlastberechnung DIN 12831-2003 + 1.deutsches Beiblatt 2008. Epsilon Phi. Eta Lambda Theta Rho Psi - 1 -
Übersicht Heizlastberechnung DIN 12831-2003 + 1.deutsches Beiblatt 2008 Epsilon Phi Eta Lambda Theta Rho Psi - 1 - Übersicht U-Wertberechnung gemäß DIN ISO 6946:2008-04 +/-30-2- Rsi Rse innen [m²k/w] außen
Wissenstransfer mit Wikis und Weblogs
Alexander Stocker / Klaus Tochtermann Wissenstransfer mit Wikis und Weblogs Fallstudien zum erfolgreichen Einsatz von Web 2.0 in Unternehmen GABLER RESEARCH Vorwort V Management Summary VII IX Abbildungsverzeichnis
Finanzierung und Investition
Kruschwitz/Husmann (2012) Finanzierung und Investition 1/46 Finanzierung und Investition Kruschwitz/Husmann (2012) Oldenbourg Verlag München 7. Auflage, Kapitel 7 Kruschwitz/Husmann (2012) Finanzierung
Prof. Dipl.-Ing. E. Hemmerling. 7., neubearbeitete und erweiterte Auflage Mit 346 Bildern und 8 Tafeln mit weiteren 101 Bildern
Köhler/Rögnitz Maschinenteile Teill Herausgegeben von Prof. Dr.-Ing. J. Pokorny Bearbeitet von Prof. Dipl.-Ing. H.-D. Haage Prof. Dipl.-Ing. L. Hagele Prof. Dipl.-Ing. E. Hemmerling Prof. Dr.-Ing. J. Pokorny
1. Grundlegendes in der Geometrie
1. Grundlegendes Geometrie 1. Grundlegendes in der Geometrie 1. 1 Übliche ezeichnungen Punkte bezeichnen wir mit Grossbuchstaben:,,,D,... P 1,P 2,P 3,...,,,... Strecken und deren Masszahl, sowie Geraden
Mathematische Formeln für das Studium an Fachhochschulen
Richard Mohr Mathematische Formeln für das Studium an Fachhochschulen Richard Mohr Mathematische Formeln für das Studium an Fachhochschulen Richard Mohr Mathematische Formeln für das Studium an Fachhochschulen
imc FAMOS Update Info Inhaltsverzeichnis
Inhaltsverzeichnis... 2 1.1 imc FAMOS Update-Info (Version 7.1)... 2 1.1.1 Lokale Variablen... 3 1.1.2 Handhabung physikalischer Einheiten... 4 1.1.3 Neue Funktionen 4 1.1.3.1 ConvertUnit () 4 1.1.3.2
Das Orakel von Delphi Dave und Marvin Schülerprojekt 6a 2003/2004
Das Orakel von Delphi Dave und Marvin Schülerprojekt 6a 2003/2004 Der Apollon, Krösus und die Seherin Pythia Delphi ist eine Stadt in Griechenland. Die Sage erzählt, dass dort in einer Schlucht ein Drache
Grundzüge der Konzernrechnungslegung
Überblick über Studieninhalte der Konzernrechungslegung (Stand: 11.04.2004) Seite 1 von 6 Grundzüge der Konzernrechnungslegung INHALTSVERZEICHNIS 1. Währungsumrechnung ( 298 Abs. 1 ivm 244 HGB; Methodenfreiheit
[ 1 1 + [n 2 n 1 ] d. n 2
Grudkozepte der Optik Pro Kowarschik 3 Abbildugsgleichug (ür düe Lise): = b +, Abbildugsmaßstab: A = B g G = b g Liseschleierormel ( - umgebedes Medium, - Lise, R,R - Krümmugsradie, d - Dicke au optischer
Seminar zur Theorie der Teilchen und Felder. Van der Waals Theorie
Seminar zur Theorie der Teilchen und Felder Van der Waals Theorie Tobias Berheide 18.11.2009 1 Inhaltsverzeichnis 1 Einleitung 3 2 Das Van der Waals Gas 3 2.1 Das ideale Gas..............................
Klassische Feldtheorie 2 Mitschrift von Martin Bendschneider
Klassische Feldtheorie 2 Mitschrift von Martin Bendschneider 1 Inhaltsverzeichnis 1 Hamilton Mechanik 3 1.1 Newton Mechanik.......................... 3 1.2 Lagrange............................... 3 1.3
Auszug aus den Tabellen und Formeln der DIN EN ISO 6946
Institut ür Bupysik und Mterilwissensct Univ.-Pro. Dr. Mx J. Seite von 9 nc Kosler, W.: Mnuskript zur E DIN 408-3:998-0, NA Buwesen (NABu) im DIN - Deutsces Institut ür Normung vom 28.0.998 Hinweise: DIN
Lösungen zu Kapitel 7
Lösungen zu Kapitel 7 Lösung zu Aufgabe 1: Nach Definition 7.1 ist eine Verknüpfung auf der Menge H durch eine Abbildung : H H H definiert. Gilt H = {a 1,..., a m }, so wird eine Verknüpfung auch vollständig
ASTRONOMIE IN AUGSBURG
ASTRONOMIE IN AUGSBURG TYCHO BRAHE MUSEUM IM RÖMERTURM ZU AUGSBURG Worldwide Network Tycho Brahe Der große Quadrant von Augsburg (1570) Dieser sehr große Quadrant wurde von Tycho Brahe konstruiert und
L A T E X-Einführung 09.12.2011. Lehrstuhl sozialwissenschaftliche Methodenlehre und Sozialstatistik Sebastian Jeworutzki
L A T E X-Einführung 09.12.2011 Lehrstuhl sozialwissenschaftliche Methodenlehre und Sozialstatistik Sebastian Jeworutzki Ablauf 1 Formelsatz 2 Projekte verwalten 3 Präsentationen mit LaTeX erstellen. 4
Grundbegriffe der Mengenlehre
Technische Universität Dortmund Fakultät für Mathematik Institut für Analysis Rolf Walter Grundbegriffe der Mengenlehre Inhalt: Logisches Schließen................................................ 1 Mengen............................................................
Merkblatt für das Anfertigen von wissenschaftlichen Arbeiten
Merkblatt für das Anfertigen von wissenschaftlichen Arbeiten 1. Ziel dieses Merkblatts In diesem Merkblatt möchten wir kurz die formalen Anforderungen an eine Seminar- oder Abschlussarbeit darstellen.
Lösungsskizze Aufgabe 8. Gesucht sind alle Konsumpläne, die es gestatten, das gesamte Einkommen in t = 0 und t = 1 auszugeben: = 16,67; 10
Lösungsskizze Aufgabe 3 Gesucht sind alle Konsumpläne, die es gestatten, das gesamte Einkommen in t = 0 und t = 1 auszugeben: [ c 0 = 10 h 0, h 0 20 ] = 16,67; 10 1,2 c 1 = 20 + 1,2 h 0. Stellt man die
Characterisation of random pyramid surfaces using laser scanning microscopy
Characterisation of random pyramid surfaces using laser scanning microscopy Dr. Eckard Wefringhaus International Solar Energy Research Center Konstanz e.v. Overview Motivation Methods Applying different
Nerreter, Grundlagen der Elektrotechnik Carl Hanser Verlag München. 8 Schaltvorgänge
Carl Hanser Verlag München 8 Schaltvorgänge Aufgabe 8.6 Wie lauten für R = 1 kω bei der Aufgabe 8.1 die Differenzialgleichungen und ihre Lösungen für die Spannungen u 1 und u 2 sowie für den Strom i? Aufgabe
Fakultät Maschinenbau, Verfahrens- und Energietechnik Institut für Mechanik und Fluiddynamik Praktikum Messmethoden der Mechanik
Fakultät Maschinenbau, Verfahrens- und Energietechnik Institut für Mechanik und Fluiddynamik Praktikum Messmethoden der Mechanik Versuch: Spannungsoptik 1. Spannungsoptik eine Einleitung Spannungsoptik
Sinnvolle Fördermöglichkeiten der Kindertagespflege in anderen geeigneten Räumen am Beispiel Rems-Murr-Kreis
HOCHSCHULE FÜR ÖFFENTLICHE VERWALTUNG UND FINANZEN LUDWIGSBURG Sinnvolle Fördermöglichkeiten der Kindertagespflege in anderen geeigneten Räumen am Beispiel Rems-Murr-Kreis Bachelorarbeit zur Erlangung
Anhang A Verzeichnis der Abkürzungen
260 ANHANG A VERZEICHNIS DER ABKÜRZUNGEN Anhang A Verzeichnis der Abkürzungen A a a Copo A i AIBN B BA β KWW c c I 0,S c i,a c R,I c R 0 c R C tr,x c X D D 12 DMA DMPA E E * ESR ε e i e f E λ E p f f F
Lineare Algebra für Dummies
Lineare Algebra für Dummies M. Wohlgemuth L A TEX-Fassung J.Voss 8. Juli 2003 Vorwort Schon mehrmals wurde hier oder anderswo nach einem Buch mit dem Titel Lineare Algebra für Dummies gefragt. In der
Eine kurze Methode, Summen unendlicher Reihen durch Differentialformeln zu untersuchen
Eine kurze Methode, Summen unendlicher Reihen durch Differentialformeln zu untersuchen Leonhard Euler Auch wenn ich diesen Gegenstand schon des Öfteren betrachtet habe, sind die meisten Dinge, die sich
Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.
Matrizennorm Es seien r,s N Mit M r,s (R bezeichnen wir die Menge der reellen r s- Matrizen (also der linearen Abbildungen R s R r, und setze M s (R := M s,s (R (also die Menge der linearen Abbildungen
3. Vorlesung Netzwerke
Dr. Christian Baun 3. Vorlesung Netzwerke Hochschule Darmstadt SS2012 1/26 3. Vorlesung Netzwerke Dr. Christian Baun Hochschule Darmstadt Fachbereich Informatik christian.baun@h-da.de Dr. Christian Baun
Free Riding in Joint Audits A Game-Theoretic Analysis
. wp Wssenschatsorum, Wen,8. Aprl 04 Free Rdng n Jont Audts A Game-Theoretc Analyss Erch Pummerer (erch.pummerer@ubk.ac.at) Marcel Steller (marcel.steller@ubk.ac.at) Insttut ür Rechnungswesen, Steuerlehre
Die eindeutige Duplizierung und Replizierung mit speziellen Supplementsystemen. Rudolf Pleier
Die eideutige Duplizierug ud Replizierug mit spezielle Supplemetsysteme Rudolf Pleier D-92694 tzerict, Mai 2015 Ialtsverzeicis 1 1 Die xistez ud izigeit der Duplizierug ud der Replizierug mit Termigescäfte...
Bewegen und Spielen an und mit Geräten / Theo Landrichinger - 41/44 -
BEISPIELE FÜR GERÄTEANORDNUNGEN Bewegen und Spielen an und mit Geräten / Theo Landrichinger - 40/44 - Bewegen und Spielen an und mit Geräten / Theo Landrichinger - 41/44 - Knoten Alle Geräte speziell Langbänke
Andreas Allacher 0501793 Tobias Krieger 0447809 Betreuer: Dr. Schafler
PW7 Brechung Andreas Allacher 0501793 Tobias Krieger 0447809 Betreuer: Dr. Schafler 9.Nov.006 Seite 1 von 11 Inhaltsverzeichnis 1 Lichtbrechung in Prismen...3 1.1 Messung des brechenden Winkels ε eines
Die Rolle von Entrepreneurship und Innovation für die regionale Entwicklung
Die Rolle von Entrepreneurship und Innovation für die regionale Entwicklung Michael Fritsch Technische Universität Bergakademie Freiberg, DIW-Berlin und MPIEW-Jena, Germany Gründungsgeschehen und Marktprozess
10. Äquivalenzen zur Riemannschen Vermutung
0. Äquivalenzen zur Riemannchen Vermutung 0. Äquivalenzen zur Riemannchen Vermutung Satz. Sei θ 0, (ii θ( = + O( θ+ε für alle ε > 0,
Übersicht Die Sonne als Energiequelle
Übersicht 1.1 1. Einleitung 2. Die Sonne als Energiequelle 2.1 Sonnenstrahlung 2.2 Einfluß der Atmosphäre 2.3 Einstrahlung auf geneigte Flächen 2.4 Direkt- und Diffusstrahlung 2.5 Strahlungsdaten Globalstrahlung
Monolithischer Wärmedämmstein. eine Wissenschaft für sich. Prof. Dr.-Ing Danièle Waldmann
Monolithischer Wärmedämmstein eine Wissenschaft für sich Prof. Dr.-Ing Danièle Waldmann Monolithischer Wärmedämmstein Definition: Abgrenzung vom Innenbereich zum Außenbereich (Gebäudehülle) ohne zusätzliche
Kapital wird als Produktionsfaktor verwendet und es bezeichnet z t den entsprechenden Faktorpreis des Kapitals.
2 Das Ramsey-Modell Literatur: - Maussner & Klump [1996, C.I.1] - Blanchard & Fischer [1989, Ch. 2] 25 2.1 Der optimale Konsumplan des Haushalts Annahmen: N homogene Haushalte mit unendlichem Zeithorizont.
Aerodynamik von Hochleistungsfahrzeugen. Gliederung.
WS10/11, Folie 2.1 Hochleistungsfahrzeugen. Gliederung. 1. Einführung (Typen, Rennserien) 2. Aerodynamische Grundlagen 3. Aerodynamik und Fahrleistung 4. Entwicklung im Windkanal 5. Entwicklung mit CFD
Substitutionselastizität
Substitutionselastizität Grenzrate der Substitution Produktionsfunktion Q = Q(x,..., x n Isoquante: Menge aller Inputkombinationen, die zu einem festen Output Q führen. Die zum Outputniveau Q gehörige
1 Anregung von Oberflächenwellen (30 Punkte)
1 Anregung von Oberflächenwellen (30 Punkte) Eine ebene p-polarisierte Welle mit Frequenz ω und Amplitude E 0 trifft aus einem dielektrischen Medium 1 mit Permittivität ε 1 auf eine Grenzfläche, die mit
Aufgabe 1: Planarspule (20 Punkte)
1 Aufgabe 1: Planarspule (20 Punkte) Gegeben ist die Planarspule gemäß Abb. 1.1. Die Leiterbahnen sind aus Kupfer, das Trägermaterial ist Teflon. Die Spule soll als Filterelement (Drossel) für ein 1 GHz-Signal
Grundlagen der Elektrotechnik I (GET I)
Grundlagen der lektrotechnik (GT ) Vorlesung am 09.0.007 Fr. 08:30-0:00 Uhr; R. 603 (Hörsaal) Dr.-ng. René Marklein -Mail: marklein@uni-kassel.de kassel.de Tel.: 056 804 646; Fax: 056 804 6489 URL: http://www.tet.e-technik.uni
ITWM Workshopserie 2012: Mehrfaktor-Zinsmodelle und ihre Implementation
ITWM Workshopserie 2012: Mehrfaktor-Zinsmodelle und ihre Implementation Aspekte des 2-Faktor-Hull-White-Modells 8. November 2012 Inhalt Weshalb ein Mehrfaktor Modell? 2-Faktor-Modelle Das ursprüngliche
FORMEL EDITOR VON WORD 2007 / EQUATION EDITOR 3.0- EINE EINFÜHRUNG
FORMEL EDITOR VON WORD 2007 / EQUATION EDITOR 3.0- EINE EINFÜHRUNG 1 FORMELN EINGEBEN FORMELFELD ÖFFNEN UND SCHLIEßEN Um eine Formel eingeben zu können öffnen Sie den Formeleditor mit EINFÜGEN / FORMEL
Textübertragung in LATEX. Förderzentrum für die integrative Beschulung blinder und sehbehinderter Schülerinnen und Schüler (FIBS)
Textübertragung in LATEX Förderzentrum für die integrative Beschulung blinder und sehbehinderter Schülerinnen und Schüler (FIBS) Stand: 21. November 2012 1 Inhaltsverzeichnis 1 Allgemeines 4 1.1 Verwendung
Lineare Antwort, Green-Kubo, Fluktuations-Dissipations Theorem
Lineare Antwort, Green-Kubo, Fluktuations-Dissipations Theorem Franziska Böhme, Sophie Seidenbecher 05.07.2012 1 Lineare Antwort 2 3 4 Theorie der Linearen Antwort Einführung der Linearen Antworttheorie
10.3.1 Druckverlust in Rohrleitungen bei laminarer Strömung (Re < 2320)
0.3-0.3 Rohrströmung 0.3. Druckverlust in Rohrleitungen bei laminarer Strömung (Re < 30) Bei laminarer Rohrströmung läßt sich der Reibungsverlust theoretisch berechnen, as bei der turbulenten Strömung
α i +α j Σ j 1 (α i Σ i + α j Σ j) α j α i + α j
ØÞ Ø Ö ÒÒÙÒ ÚÓÒ Ö Ö Ò Ö Ò Ò ÙÖ Ò ËÞÖ Ò Ã Ö Ö Ö Ø ÒÞ Ä ÒÞ Ö Ø Ò Ä Ô Ì ÑÓ ËØ Å ÖÙ Å ÒÓÖ ÁÒ Ø ØÙØ Ö ÓÑÔÙØ Ö Ö Å Ð ÒÔ ÓÖ Ø ØÖ ¾ ½¼ Ö ÙÒ Û { Ö Ö Ð Ô Ð ÒÞ Ø Ñ ÒÓÖ } ºØÙ¹ º Ù ÑÑ ÙÒ º ÍÒ Ö ÖØ Ð Ö Ø Ò ØÞ ØÚ Ö Ö
Newton: Joule: Watt: Pascal: Coulomb: Volt: Ohm: Farad: Tesla: Henry: Hertz: Dioptrie:
Formelsammlung zur Klausur Physik für Studierende der Biologie, Biochemie, Chemie, Geologischen Wissenschaften, Informatik, Mathematik und Pharmazie, Wintersemester 2009/0 bgeleitete Einheiten mit eigenem
Kapitel VIII: Der Raum R n ; allgemeine Vektorräume
Kapitel VIII: Der Raum R n ; allgemeine Vektorräume a) Vektoren: Definition und Grundlagen Größen, die sich durch Angabe eines Zahlenwertes und einer Einheit vollständig beschreiben lassen, nennt man Skalare
So entstand die Bibel so wurde sie weitergegeben
So entstand die Bibel so wurde sie weitergegeben Als die Israeliten noch als Nomaden herumzogen, erzählten sie in den Zelten und an den Lagerfeuern von den Erfahrungen, die ihre Väter mit Gott gemacht
Formelsammlung zur Vorlesung Lebensdaueranalyse
Lebensdauer- und Ereignisanalyse WiSe 9/ Michael Höhle Formelsammlung zur Vorlesung Lebensdaueranalyse erstellt von Susanne Konrath Einführung. Hazardrate und Survivalfunktion T stetig mit Verteilungsfunktion
Lösungen zu Übung(11) Erster Teil A E=
Lösungen zu Übung Erster Teil a Betrachten Sie die Matrix A = Die Eigenwerte sind λ = mit algebraischer Vielfachheitundλ =mitalgebraischervielfachheit,unddiematrix A E= hatrang, alsokerndimensionnur, somitistdereigenraumzuλ
Lineare Algebra und analytische Geometrie II (Unterrichtsfach)
MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Prof. Dr. D. Rost SS 0 Blatt.06.0 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie II (Unterrichtsfach) Abgabe: Dienstag, 0. Juli 0, bis 4:00
Elektrotechnik Formelsammlung. Andreas Zimmer SS 98
Elektrotechnik Formelammlung Andrea Zimmer SS 98 nhaltverzeichni. Gleichtrom. Stromtärke und elektr. adung... 5. Sannung... 5. Ohmche Geetz... 5.4 Energie, Arbeit und eitung... 5.5 Wirkunggrad... 5.6 Stromdichte...
Umstellung auf das neue deutsche Bilanzrecht: Übergangsregelungen des BilMoG nach IDW RS HFA 28
Beilage April 2010 Karl Petersen / Dr. Christian Zwirner / Kai Peter Künkele Umstellung auf das neue deutsche Bilanzrecht: Übergangsregelungen des BilMoG nach IDW RS HFA 28 Darstellung, Beispiele und Tipps
Beispiel: Zweidimensionale Normalverteilung I
10 Mehrdimensionale Zufallsvariablen Bedingte Verteilungen 10.6 Beispiel: Zweidimensionale Normalverteilung I Wichtige mehrdimensionale stetige Verteilung: mehrdimensionale (multivariate) Normalverteilung
Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS. 11. Mai 2015. Mathematik. Teil-2-Aufgaben. Korrekturheft. öffentliches Dokument
Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS 11. Mai 2015 Mathematik Teil-2-Aufgaben Korrekturheft Aufgabe 1 200-m-Lauf a) Lösungserwartung: s (t) = 7 75 t + 1,4 s (t) = 7 75 s (t)
Solare Randbedingungen. Quelle: http://www.waa.at/hotspots/finsternisse/pse20150320/
Solare Randbedingungen Quelle: http://www.waa.at/hotspots/finsternisse/pse20150320/ Ein Desaster für die Photovoltaik? Übersicht Energiebedarf und Die Sonne als Primärenergiequelle Die Sonneneinstrahlung
Zur Existenz viskoser Profile für Schockwellen in der isothermen Magnetohydrodynamik. Diplomarbeit. Andreas Klaiber Studiengang Diplom-Mathematik
FAKULTÄT FÜR MATHEMATIK UND INFORMATIK MATHEMATISCHES INSTITUT Zur Existenz viskoser Profile für Schockwellen in der isothermen Magnetohydrodynamik Diplomarbeit vorgelegt von Andreas Klaiber Studiengang
Unterlagen Fernstudium - 3. Konsultation 15.12.2007
Untelagen Fenstudium - 3. Konsultation 5.2.2007 Inhaltsveeichnis Infomationen u Püfung 2 2 Aufgabe 7. Umstömte Keisylinde mit Auftieb 3 3 Aufgabe 8. Komplexes Potential und Konfome Abbildung 0 Infomationen
Modul 10: Konzentrationsmesssung. Prof. Dr. W. Laufner Beschreibende Statistik. Konzentrationskurve. Visualisierung. statistische Kennzahlen
Modul 0: Kozetratosmesssug Modul 0: Kozetratosmessug Kozetrato absolute Kozetrato (Kozetrato. e. S.) Kozetratoskurve - Kozetratosrate - Herfdahl sches Kozetratosmaß Vsualserug statstsche Kezahle relatve
Optimierung Design und Test einer hoch verformbaren adaptiven Flügelvorderkante
Optimierung Design und Test einer hoch verformbaren adaptiven Flügelvorderkante Anton Rudenko DLR Wissenschaftstag 2015 07. Oktober 2015 Braunschweig, Deutschland DLR.de Chart 2 Gliederung Motivation und
4 Geld und Inflation im Ramsey-Modell
4 Geld und Inflation im Ramsey-Modell Literatur: - Maussner & Klump 996, C.II.3] - Blanchard & Fischer 989, Ch. 4] - Obstfeld & Rogoff 996, Ch. 8.3] 84 4. Monetärer Sektor im Ramsey Modell Berücksichtigung
Bestimmung der Hafteigenschaften einer Partikelpackung am Beispiel von oberflächenmodifizierten Glaspartikeln
Bestimmung der Hafteigenschaften einer Partikelpackung am Beispiel von oberflächenmodifizierten Glaspartikeln PiKo Workshop Dialog Experiment-Modell 3.4.4 Z. Kutelova, W. Hintz, J. Tomas Gliederung Einleitung,