Randomisierte Algorithmen

Größe: px
Ab Seite anzeigen:

Download "Randomisierte Algorithmen"

Transkript

1 Randomisierte Algorithmen Randomisierte Algorithmen Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2018/ / 25

2 Überblick Überblick Metropolis-Algorithmus Simulated Annealing 2 / 25

3 Überblick Metropolis-Algorithmus Simulated Annealing 3 / 25

4 Definition Zeitreversibilität ergodische Markov-Kette ist (zeit-)reversibel (in detailed balance), wenn es Wahrscheinlichkeitsverteilung w auf der Zustandsmenge S gibt so, dass für alle i, j S gilt: w i P ij = w j P ji. 4 / 25

5 Lemma wenn M Markov-Kette und q Verteilung mit q i P ij = q j P ji für alle Zustände i und j, dann ist q eine stationäre Verteilung von M. 5 / 25

6 Beweis Für alle i ist (qp) i = q j P ji = q i P ij = q i P ij = q i. j j j 6 / 25

7 Mitteilung: Kriterium von Kolmogorov Satz Eine ergodische Markov-Kette ist genau dann(zeit-)reversibel, wenn für alle Folgen (i 0, i 1,..., i n, i 0 ) von Zuständen gilt: P i0 i 1 P i1 i 2 P in 1 i n P in i 0 = P i0 i n P in i n 1 P i2 i 1 P i1 i 0 ohne Beweis 7 / 25

8 Von ungerichteten Graphen zu reversible Markovketten G = (V, E) ein zusammenhängender ungerichteter Graph ohne Schlingen 0 < β 1 eine reelle Zahl d(i) Grad von Knoten i und d = max i V d(i) definiere Markov-Kette M G,β : β/d falls i j und (i, j) E P ij = 0 falls i j und (i, j) E 1 d(i)β/d falls i = j 8 / 25

9 Von ungerichteten Graphen zu reversible Markovketten Beispiel d = 3 1/3 1/3 1/3 1/3 1/3 β = 1 1/3 1/3 1/3 1/3 1/3 2/3 9 / 25

10 Von ungerichteten Graphen zu reversible Markovketten Beispiel d = 3 6/8 1/8 1/8 1/8 1/8 β = 3/8 6/8 1/8 1/8 5/8 1/8 1/8 7/8 10 / 25

11 Beobachtung/Übung Kette irreduzibel, da Graph zusammenhängend für β < 1 Kette aperiodisch stationäre Verteilung M G,β : Gleichverteilung für β < 1 Kette reversibel 11 / 25

12 Verallgemeinerung: reversible Markovketten mit frei wählbarer Wahrscheinlichkeitsverteilung G = (V, E) ein zusammenhängender ungerichteter Graph 0 < β < 1 eine reelle Zahl d(i) Grad von Knoten i und d = max i V d(i) p eine W.verteilung auf V, nirgends 0, sonst beliebig definiere Markov-Kette M G,β,p : min(1, p j p i ) β/d falls i j und (i, j) E P ij = 0 falls i j und (i, j) E 1 i k P ik falls i = j 12 / 25

13 Verallgemeinerung: reversible Markovketten mit frei wählbarer Wahrscheinlichkeitsverteilung G = (V, E) ein zusammenhängender ungerichteter Graph 0 < β < 1 eine reelle Zahl d(i) Grad von Knoten i und d = max i V d(i) p eine W.verteilung auf V, nirgends 0, sonst beliebig definiere Markov-Kette M G,β,p : min(1, p j p i ) β/d falls i j und (i, j) E P ij = 0 falls i j und (i, j) E 1 i k P ik falls i = j Lemma M G,β,p ist zeitreversibel mit stationärer Verteilung p. 12 / 25

14 Verallgemeinerung Beweis Sei i j und (i, j) E (alles andere trivial): p i P ij = p p i min(1, j p i ) β/d p j P ji p j min(1, p i p j ) β/d = { pi p j / p i p j p i p j pj p i = 1 falls p i p j falls p i > p j 13 / 25

15 Metropolis-Algorithmus Überblick Metropolis-Algorithmus Simulated Annealing 14 / 25

16 Metropolis-Algorithmus MCMC: Markov Chain Monte Carlo eine Methode für Sampling zufällige Auswahl von Elementen aus einer Grundmenge S gemäß einer Wahrscheinlichkeitsverteilung p Idee von MCMC konstruiere Markovkette P mit Zustandsmenge S so, dass p die stationäre Verteilung ist, und mache Random Walk mit Übergangswahrscheinlichkeiten P ij Probleme woher P? was, wenn p nicht explizit gegeben sondern nur Zahlen z i proportional zu den p i und M extrem groß und Normalisierungsfaktor Z = i M z i nicht handhabbar 15 / 25

17 Metropolis-Algorithmus Originalliteratur: Metropolis et al. und Hastings Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H.; Teller, E.: Equations of State Calculations by Fast Computing Machines Journal of Chemical Physics. 21 (6): Hastings, W.K. Monte Carlo Sampling Methods Using Markov Chains and Their Applications Biometrika. 57 (1): , laut https: //en.wikipedia.org/wiki/metropolis-hastings_algorithm#history und dort angegebenen Quellen sind die Ursprünge nicht ganz so klar 16 / 25

18 Metropolis-Algorithmus Metropolis-Hastings: die Markovkette gegeben Zustandsmenge S Zahlen z i für i S und damit (implizit) Wahrscheinlichkeiten p i = z i /Z mit Z = i S z i proposal matrix Q Übergangsmatrix einer irreduziblen Markovkette definiere für alle i, j S: Akzeptanzwahrscheinlichkeiten α ij für i j und { Q ij 0: α ij = min 1, p } j Q ji p i Q i j anderfalls α ij = 0 Übergangswahrscheinlichkeiten: { α ij Q ij, falls i j P ij = 1 k i P ik, sonst 17 / 25

19 Metropolis-Algorithmus Metropolis-Hastings: die Markovkette gegeben Zustandsmenge S Zahlen z i für i S und damit (implizit) Wahrscheinlichkeiten p i = z i /Z mit Z = i S z i proposal matrix Q Übergangsmatrix einer irreduziblen Markovkette definiere für alle i, j S: Akzeptanzwahrscheinlichkeiten α ij für i j und { Q ij 0: α ij = min 1, p } { j Q ji p i Q i j = min 1, z } j Q ji z i Q i j anderfalls α ij = 0 Übergangswahrscheinlichkeiten: { α ij Q ij, falls i j P ij = 1 k i P ik, sonst 17 / 25

20 Metropolis-Algorithmus Metropolis-Hastings: als Algorithmus starte in beliebigem i 0 S Schritt von Zustand i t S zu i t+1 in zwei Phasen: wähle gemäß Verteilung q j = Q(i t, j) zufällig j S berechne α ij = { min { 1, p j Q ji p i Q i j } 0, sonst, falls i j und Q ij 0 wähle i t+1 = { j i t mit Wahrscheinlichkeit α ij Q ij sonst 18 / 25

21 Metropolis-Algorithmus Ising Modell Modell für Ferromagnetismus gegeben (vereinfacht) Gitter L an jedem Knoten i ein Spin σ i { 1, 1} Konfiguration σ : L { 1, 1} Energie H(σ) = ij J ij σ i σ j { 1, falls i und j direkte Nachbarn typisch J ij = 0, sonst (Konfigurations-)Wahrscheinlichkeit von σ ist proportional zu e βh (σ ) für ein β 0 «inverse Temperatur» gewünscht: Sampling von σ mit Wahrscheinlichkeiten P β (σ) = e βh (σ ) /Z(β) wobei Z(β) = σ e βh (σ ) 19 / 25

22 Metropolis-Algorithmus Ising Modell: Metropolis-Hastings starte mit zufälligem σ 0 zu gegebenem σ t nutze Q: flippe einen zufällig gewählten Spin σ Metropolis-Hastings falls H(σ ) H(σ), wähle σ t+1 = σ. falls H(σ ) > H(σ), wähle { σ t+1 σ mit Wahrscheinlichkeit e β(h (σ t ) H (σ )) = σ sonst 20 / 25

23 Simulated Annealing Überblick Metropolis-Algorithmus Simulated Annealing 21 / 25

24 Simulated Annealing Optimierungsproblem gegeben: f : S R f = max{f (x) x S} gesucht: ein x mit f (x) = f möge existieren (z. B. S endlich) 22 / 25

25 Simulated Annealing Markovketten M λ sei 1 λ R + («inverse Temperatur») definiere stationäre Verteilungen w λ durch w λx = λf (x) Z(λ) mit Z(λ) = x S λ f (x) Markovkette M λ Metropolis-Algorithmus mit stationärer Verteilung w λ falls f (x) > f (y), Übergang von Zustand x nach y mit Wahrscheinlichkeit (f (x) f (y)) λ 23 / 25

26 Simulated Annealing Simulated Annealing Random Walk auf sich ändernder Markovkette beginne mit λ = 1, d. h. «zielloses Umherirren» erhöhe λ langsam d. h. vermeide zunehmend neue Zustände y, für die f (y) kleiner als der aktuelle Wert für λ ergibt sich stationäre Verteilung, in nur noch Zustände x mit maximalem f (x) = f vorkommen. 24 / 25

27 Simulated Annealing Simulated Annealing (2) Es sei S = {x f (x) = f } w λx = λf (x) Z(λ) = = = λ f (x) x S λ f (x) λ f (x) /λ f x S λ f (x) /λ f λ f (x) /λ f S + x S S λf (x) /λ f Also lim w λx = λ { 1/ S 0 sonst falls x S 25 / 25

9 Schnell mischende Markov-Ketten

9 Schnell mischende Markov-Ketten 9 Schnell mischende Markov-Ketten Allgemeines zu schnell mischenden Markov-Ketten findet man zum Beispiel in dem Buch Introduction to Markov Chains von Behrends (2000). Außerdem haben wir von einem Teil

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Randomisierte Algorithmen Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2018/2019 1 / 40 Überblick Überblick Grundlegendes zu Markov-Ketten

Mehr

Der Metropolis-Hastings Algorithmus

Der Metropolis-Hastings Algorithmus Der Algorithmus Michael Höhle Department of Statistics University of Munich Numerical Methods for Bayesian Inference WiSe2006/07 Course 30 October 2006 Markov-Chain Monte-Carlo Verfahren Übersicht 1 Einführung

Mehr

Übersicht. 1 Einführung in Markov-Chain Monte-Carlo Verfahren. 2 Kurze Wiederholung von Markov-Ketten

Übersicht. 1 Einführung in Markov-Chain Monte-Carlo Verfahren. 2 Kurze Wiederholung von Markov-Ketten Markov-Chain Monte-Carlo Verfahren Der Algorithmus Michael Höhle Department of Statistics University of Munich Numerical Methods for Bayesian Inference WiSe2006/07 Course 30 October 2006 Übersicht 1 Einführung

Mehr

Metropolis-Algorithmus

Metropolis-Algorithmus Schriftliche Ausarbeitung des Themas Metropolis-Algorithmus zum Seminar Moderne Anwendungen der Theorie der Markovketten Sommersemester 2016 Sabine Weingarten Bachelor Mathematik Prof. Dr. Wolfgang König

Mehr

Endliche Markov-Ketten - eine Übersicht

Endliche Markov-Ketten - eine Übersicht Endliche Markov-Ketten - eine Übersicht Diese Übersicht über endliche Markov-Ketten basiert auf dem Buch Monte Carlo- Algorithmen von Müller-Gronbach et. al. und dient als Sammlung von Definitionen und

Mehr

DisMod-Repetitorium Tag 3

DisMod-Repetitorium Tag 3 DisMod-Repetitorium Tag 3 Markov-Ketten 21. März 2018 1 Markov-Ketten Was ist eine Markov-Kette? Was gehört alles dazu? Darstellung als Graph und als Matrix Stationäre Verteilung und Grenzverteilung Ergodizität

Mehr

10 Schnell mischende Markov-Ketten

10 Schnell mischende Markov-Ketten 10 Schnell mischende Markov-Ketten Allgemeines zu schnell mischenden Markov-Ketten findet man zum Beispiel in dem Buch Introduction to Markov Chains von Behrends (2000). Außerdem haben wir von einem Teil

Mehr

Stochastik Praktikum Markov Chain Monte Carlo Methoden

Stochastik Praktikum Markov Chain Monte Carlo Methoden Stochastik Praktikum Markov Chain Monte Carlo Methoden Humboldt-Universität zu Berlin 14.10.2010 Problemstellung Wie kann eine Zufallsstichprobe am Computer simuliert werden, deren Verteilung aus einem

Mehr

für die Wahrscheinlichkeit, dass die Markov-Kette in t Schritten von Zustand i in Zustand j übergeht. Es ist also P (t) = (P t ) ij.

für die Wahrscheinlichkeit, dass die Markov-Kette in t Schritten von Zustand i in Zustand j übergeht. Es ist also P (t) = (P t ) ij. 8 Markov-Ketten 8.1 Grundlegendes zu Markov-Ketten Eine Markov-Kette ist ein stochastischer Prozess, der in diskreten Zeitschritten abläuft. Dabei wird jeweils von einem Zustand in einen nächsten übergegangen.

Mehr

Methoden der Statistik Markov Chain Monte Carlo Methoden

Methoden der Statistik Markov Chain Monte Carlo Methoden Methoden der Statistik Markov Chain Monte Carlo Methoden Humboldt-Universität zu Berlin 08.02.2013 Problemstellung Wie kann eine Zufallsstichprobe am Computer simuliert werden, deren Verteilung aus einem

Mehr

Markov-Ketten-Monte-Carlo-Verfahren

Markov-Ketten-Monte-Carlo-Verfahren Markov-Ketten-Monte-Carlo-Verfahren Anton Klimovsky 21. Juli 2014 Strichprobenerzeugung aus einer Verteilung (das Samplen). Markov- Ketten-Monte-Carlo-Verfahren. Metropolis-Hastings-Algorithmus. Gibbs-Sampler.

Mehr

Der Ergodensatz. Hendrik Hülsbusch

Der Ergodensatz. Hendrik Hülsbusch Der Ergodensatz Hendrik Hülsbusch 1..212 Inhaltsverzeichnis Einleitung 3 5 Stationäre Verteilungen 5 6 Reversible Markovketten 11 2 Einleitung In meinem Vortrag beschäftigen wir uns mit dem asymptotischen

Mehr

BZQ II: Stochastikpraktikum

BZQ II: Stochastikpraktikum BZQ II: Stochastikpraktikum Block 5: Markov-Chain-Monte-Carlo-Verfahren Randolf Altmeyer February 1, 2017 Überblick 1 Monte-Carlo-Methoden, Zufallszahlen, statistische Tests 2 Nichtparametrische Methoden

Mehr

Ein Zustand i mit f i = 1 heißt rekurrent. DWT 2.5 Stationäre Verteilung 420/476 c Ernst W. Mayr

Ein Zustand i mit f i = 1 heißt rekurrent. DWT 2.5 Stationäre Verteilung 420/476 c Ernst W. Mayr Definition 140 Wir bezeichnen einen Zustand i als absorbierend, wenn aus ihm keine Übergänge herausführen, d.h. p ij = 0 für alle j i und folglich p ii = 1. Ein Zustand i heißt transient, wenn f i < 1,

Mehr

Wissenswertes über den Metropolis-Algorithmus

Wissenswertes über den Metropolis-Algorithmus Wissenswertes über den Metropolis-Algorithmus Seminavortrag von Stefanie Schmutte Westfälische Wilhelms-Universität Münster Fachbereich Mathematik und Informatik Institut für mathematische Statistik Inhaltsverzeichnis

Mehr

16.3 Rekurrente und transiente Zustände

16.3 Rekurrente und transiente Zustände 16.3 Rekurrente und transiente Zustände Für alle n N bezeichnen wir mit f i (n) = P(X n = i,x n 1 i,...,x 1 i,x 0 = i) die Wahrscheinlichkeit, daß nach n Schritten erstmalig wieder der Zustand i erreicht

Mehr

Einführung in die Theorie der Markov-Ketten. Jens Schomaker

Einführung in die Theorie der Markov-Ketten. Jens Schomaker Einführung in die Theorie der Markov-Ketten Jens Schomaker Markov-Ketten Zur Motivation der Einführung von Markov-Ketten betrachte folgendes Beispiel: 1.1 Beispiel Wir wollen die folgende Situation mathematisch

Mehr

MCMC. Ausarbeitung zum Seminar: The Top 10 Algorithms. Claudia Spellecchia Dübendorf, Schweiz Matrikelnummer

MCMC. Ausarbeitung zum Seminar: The Top 10 Algorithms. Claudia Spellecchia Dübendorf, Schweiz Matrikelnummer MCMC Ausarbeitung zum Seminar: The Top 10 Algorithms Claudia Spellecchia Dübendorf, Schweiz claudisp@student.ethz.ch Matrikelnummer 04-722-583 Abgabe der Arbeit: 13.03.2008 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis

Mehr

Prozesse dieser Art sind in der Informatik z.b. bei der Untersuchung der Auslastung von Servern wichtig (Warteschlangenmodelle).

Prozesse dieser Art sind in der Informatik z.b. bei der Untersuchung der Auslastung von Servern wichtig (Warteschlangenmodelle). 77 Markowketten 77 Motivation Der Zustand eines Systems zur Zeit n N werde durch eine Zufallsvariable X n beschrieben und soll nur von X n abhängen (nicht jedoch von früheren Zuständen X n, X n 3, ) Wir

Mehr

ALMA II - ÜBERBLICK STOCHASTIK. Jochen Garcke

ALMA II - ÜBERBLICK STOCHASTIK. Jochen Garcke ALMA II - ÜBERBLICK STOCHASTIK Jochen Garcke GRUNDBEGRIFFE Wahrscheinlichkeitsraum (Ω, A, P) beschreibt Zufallssituation Realisierung, Stichprobe, Elementarereignis ω Ω Ergebnisraum zufälliges Ereignis

Mehr

80 7 MARKOV-KETTEN. 7.1 Definition und Eigenschaften von Markov-Ketten

80 7 MARKOV-KETTEN. 7.1 Definition und Eigenschaften von Markov-Ketten 80 7 MARKOV-KETTEN 7 Markov-Ketten 7. Definition und Eigenschaften von Markov-Ketten Sei X = (X 0, X, X 2,...) eine Folge von diskreten Zufallsvariablen, die alle Ausprägungen in einer endlichen bzw. abzählbaren

Mehr

Einführung in Markoff-Ketten

Einführung in Markoff-Ketten Einführung in Markoff-Ketten von Peter Pfaffelhuber Version: 6. Juli 200 Inhaltsverzeichnis 0 Vorbemerkung Grundlegendes 2 Stationäre Verteilungen 6 3 Markoff-Ketten-Konvergenzsatz 8 0 Vorbemerkung Die

Mehr

Die Abbildung zeigt die Kette aus dem "

Die Abbildung zeigt die Kette aus dem ½ Ô ½ 0 1 2 Õ Eine Markov-Kette mit absorbierenden Zustanden Die Abbildung zeigt die Kette aus dem " gamblers ruin problem\ fur m = 2. Man sieht sofort, dass hier sowohl 1 = (1; 0; 0) als auch 2 = (0;

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Boltzmann Maschine David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2014 Übersicht Boltzmann Maschine Neuronale Netzwerke Die Boltzmann Maschine Gibbs

Mehr

Stochastik-Praktikum

Stochastik-Praktikum Stochastik-Praktikum Markov Chain Monte Carlo Peter Frentrup Humboldt-Universität zu Berlin 16. Januar 2018 (Humboldt-Universität zu Berlin) Markov Chain Monte Carlo 16. Januar 2018 1 / 17 Übersicht 1

Mehr

Exact Sampling: Der Propp-Wilson-Algorithmus

Exact Sampling: Der Propp-Wilson-Algorithmus Exact Sampling: Der Propp-Wilson-Algorithmus Markus Gerstel Proseminar: Markovketten in der Algorithmik Technische Universität München gerstel@in.tum.de Zusammenfassung Der Propp-Wilson-Algorithmus liefert

Mehr

Arbeit: Page, Brin, Motwani, Winograd (1998). Ziel: Maß für absolute

Arbeit: Page, Brin, Motwani, Winograd (1998). Ziel: Maß für absolute 3.4 PageRank Arbeit: Page, Brin, Motwani, Winograd (1998). Ziel: Maß für absolute Wichtigkeit von Webseiten; nicht Relevanz bezüglich Benutzeranfrage. Anfrageunabhängiges Ranking. Ausgangspunkt: Eingangsgrad.

Mehr

2.1 Importance sampling: Metropolis-Algorithmus

2.1 Importance sampling: Metropolis-Algorithmus Kapitel 2 Simulationstechniken 2.1 Importance sampling: Metropolis-Algorithmus Eine zentrale Fragestellung in der statistischen Physik ist die Bestimmung von Erwartungswerten einer Observablen O in einem

Mehr

Bedingt unabhängige Zufallsvariablen

Bedingt unabhängige Zufallsvariablen 7. Markov-Ketten 7. Definition und Eigenschaften von Markov-Ketten Benannt nach Andrei A. Markov [856-9] Einige Stichworte: Markov-Ketten Definition Eigenschaften Konvergenz Hidden Markov Modelle Sei X

Mehr

Kapitel 12: Markov-Ketten

Kapitel 12: Markov-Ketten Folie zur Vorlesung Wahrscheinlichkeitsrechnung und Stoch. Prozesse 21.01.2016 Kapitel 12: Markov-Ketten Ab jetzt betrachten wir stochastische Prozesse (X n ) n N0 mit 1. diskreter Zeit N 0 = {0,1,2,...},

Mehr

Übungsaufgaben Lösungen

Übungsaufgaben Lösungen Übungsaufgaben Lösungen Stochastische Matrizen, Markov-Prozesse MV5.1 Eine N N-Matrix P heißt stochastisch, wenn ihre Matrixelemente nicht-negativ sind und alle Zeilensummen 1 ergeben. In Formeln: P ij

Mehr

Folie zur Vorlesung Wahrscheinlichkeitsrechnung und Stoch. Prozesse

Folie zur Vorlesung Wahrscheinlichkeitsrechnung und Stoch. Prozesse Folie zur Vorlesung Wahrscheinlichkeitsrechnung und Stoch. Prozesse Zu Markov-Prozessen: Bemerkungen: 17.01.2013 Wir betrachten im Folgenden eine Markovkette (X n ) n N0, wobei jedes X n Werte in Z = {0,1,2,...,s}

Mehr

Seminararbeit. MCMC-Methoden - Der Swapping Algorithmus

Seminararbeit. MCMC-Methoden - Der Swapping Algorithmus Seminararbeit MCMC-Methoden - Der Swapping Algorithmus Westfälische-Wilhelms-Universität Münster Mathematisches Institut Dozent: Prof. Dr. Löwe Betreuung: Andrea Winkler Verfasst von: Maximilian Mümken

Mehr

Lösungen zu Übungsblatt 10 Höhere Mathematik Master KI Diskrete Zufallsgrößen/Markov-Ketten

Lösungen zu Übungsblatt 10 Höhere Mathematik Master KI Diskrete Zufallsgrößen/Markov-Ketten Lösungen zu Übungsblatt 0 Höhere Mathematik Master KI Hinweise: Die Aufgaben - beziehen sich auf das Thema Diskrete Zufallsgrößen, Ihre Verteilungen und Erwartungswerte. Siehe dazu auch das auf der Homepage

Mehr

Seminar: Data Mining. Referat: Andere Möglichkeiten des Data Mining in verteilten Systemen. Ein Vortrag von Mathias Rohde. 11.

Seminar: Data Mining. Referat: Andere Möglichkeiten des Data Mining in verteilten Systemen. Ein Vortrag von Mathias Rohde. 11. Referat: Andere Möglichkeiten des Data Mining in verteilten Systemen 11. Juni 2009 Gliederung 1 Problemstellung 2 Vektorprodukt Approximationen Samplesammlung 3 Schritte Lokalität und Nachrichtenkomplexität

Mehr

Kapitel 4: Irreduzible und aperiodische Markov Ketten 1

Kapitel 4: Irreduzible und aperiodische Markov Ketten 1 Matrielnummer: 1152750 Projetseminar zur Stochasti Kapitel 4: Irreduzible und aperiodische Marov Ketten 1 Für einige besonders interessante Ergebnisse der Marov Theorie, werden zunächst bestimmte Annnahme

Mehr

Pr[X t+1 = k] = Pr[X t+1 = k X t = i] Pr[X t = i], also. (q t+1 ) k = p ik (q t ) i, bzw. in Matrixschreibweise. q t+1 = q t P.

Pr[X t+1 = k] = Pr[X t+1 = k X t = i] Pr[X t = i], also. (q t+1 ) k = p ik (q t ) i, bzw. in Matrixschreibweise. q t+1 = q t P. 2.2 Berechnung von Übergangswahrscheinlichkeiten Wir beschreiben die Situation zum Zeitpunkt t durch einen Zustandsvektor q t (den wir als Zeilenvektor schreiben). Die i-te Komponente (q t ) i bezeichnet

Mehr

Strukturelle SVM zum Graph-labelling

Strukturelle SVM zum Graph-labelling 23. Juni 2009 1 Was wir gerne hätten...... und der Weg dorthin Erinnerung: strukturelle SVM 2 Junction Tree Algorithmus Loopy Belief Propagation Gibbs Sampling 3 Umfang Qualität der Algorithmen Schlussfolgerungen

Mehr

Algorithmen in Zellularautomaten

Algorithmen in Zellularautomaten Algorithmen in Zellularautomaten 13. ZA-Modelle mit wenigen Zuständen Thomas Worsch Fakultät für Informatik Institut für Theoretische Informatik Sommersemester 2018 Ziele einige (sehr) einfache ZA als

Mehr

verschiedenen Recheneinheiten, die miteinander kommunizieren können

verschiedenen Recheneinheiten, die miteinander kommunizieren können Vorlesung 9 BALANCIERUNG DYNAMISCHER UNABHÄNGIGER LASTEN 293 Lastbalancierung Motivation Ein paralleles System besteht aus verschiedenen Recheneinheiten, die miteinander kommunizieren können Warum parallel

Mehr

Allgemeine Hinweise. (a) Bereiten Sie sich durch aktives Lernen auf die Klausur vor.

Allgemeine Hinweise. (a) Bereiten Sie sich durch aktives Lernen auf die Klausur vor. Allgemeine Hinweise (a) Bereiten Sie sich durch aktives Lernen auf die Klausur vor. Bearbeiten Sie Übungsaufgaben, für die Sie wenige Punkte erhalten haben, andere Aufgaben aus dem Skript oder aus Textbüchern.

Mehr

Stochastische Prozesse Stoffzusammenfassung

Stochastische Prozesse Stoffzusammenfassung Stochastische Prozesse Stoffzusammenfassung Joachim Breitner 7. August 2018 Diese Zusammefassung ist natürlich alles andere als vollständig und zu knapp, um immer alle Aussagen mit Voraussetzungen korrekt

Mehr

Markov Chain Monte Carlo Verfahren. Helga Wagner Bayes Statistik WS 2010/11 407

Markov Chain Monte Carlo Verfahren. Helga Wagner Bayes Statistik WS 2010/11 407 Markov Chain Monte Carlo Verfahren Helga Wagner Bayes Statistik WS 2010/11 407 Einführung Simulationsbasierte Bayes-Inferenz erfordert Ziehungen aus der Posteriori- Verteilung MCMC-Verfahren ermöglichen

Mehr

Gibbs sampling. Sebastian Pado. October 30, Seien X die Trainingdaten, y ein Testdatenpunkt, π die Parameter des Modells

Gibbs sampling. Sebastian Pado. October 30, Seien X die Trainingdaten, y ein Testdatenpunkt, π die Parameter des Modells Gibbs sampling Sebastian Pado October 30, 2012 1 Bayessche Vorhersage Seien X die Trainingdaten, y ein Testdatenpunkt, π die Parameter des Modells Uns interessiert P (y X), wobei wir über das Modell marginalisieren

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Randomisierte Algorithmen 7. Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2018/2019 1 / 43 Überblick Überblick Ein randomisierter Algorithmus

Mehr

Eigenwerte und Netzwerkanalyse. Page Rank

Eigenwerte und Netzwerkanalyse. Page Rank A Google versucht die Bedeutung von Webseiten mithilfe des sogenannten zu ermitteln. Der einer Seite basiert ausschließlich auf der Verweisstruktur des Webs. Der Inhalt einer Seite hat dagegen keinen direkten

Mehr

Studiengang Diplom-Mathematik DIPLOMARBEIT. Die Markov Ketten Monte Carlo Methode zum Testen stochastischer Unabhängigkeit.

Studiengang Diplom-Mathematik DIPLOMARBEIT. Die Markov Ketten Monte Carlo Methode zum Testen stochastischer Unabhängigkeit. Studiengang Diplom-Mathematik DIPLOMARBEIT Die Markov Ketten Monte Carlo Methode zum Testen stochastischer Unabhängigkeit eingereicht von Christina Gunkel am 3. Juni 2008 Erste Gutachterin: Zweiter Gutachter:

Mehr

Diskrete Wahrscheinlichkeitstheorie

Diskrete Wahrscheinlichkeitstheorie SS 2013 Diskrete Wahrscheinlichkeitstheorie Javier Esparza Fakultät für Informatik TU München http://www7.in.tum.de/um/courses/dwt/ss13 Sommersemester 2013 Teil VI Markov-Ketten Markov-Ketten Markov-Ketten

Mehr

Angewandte Stochastik

Angewandte Stochastik Angewandte Stochastik Dr. C.J. Luchsinger 19 Miscellanea Entsprechend dem Titel folgen ein paar lose Resultate aus diversen Gebieten. Die ersten drei Sektionen haben übrigens Anwendungen in der modernen

Mehr

Vorlesung HM2 - Master KI Melanie Kaspar, Prof. Dr. B. Grabowski 1

Vorlesung HM2 - Master KI Melanie Kaspar, Prof. Dr. B. Grabowski 1 Melanie Kaspar, Prof. Dr. B. Grabowski 1 Melanie Kaspar, Prof. Dr. B. Grabowski 2 Melanie Kaspar, Prof. Dr. B. Grabowski 3 Markovketten Markovketten sind ein häufig verwendetes Modell zur Beschreibung

Mehr

Perfekte Simulation unter Laufzeitbeschränkung

Perfekte Simulation unter Laufzeitbeschränkung unter Laufzeitbeschränkung 1 Inhaltsverzeichnis 1 Markov-Ketten 3 2 Markov-Chain-Monte-Carlo-Simulation (MCMC) 11 3 Propp-Wilson, Coupling-From-The-Past (CFTP) 16 3.1 Wiederholung und Spezialfälle...............

Mehr

Am Dienstag, den 15. Dezember, ist Eulenfest. 1/60

Am Dienstag, den 15. Dezember, ist Eulenfest. 1/60 Am Dienstag, den 15. Dezember, ist Eulenfest. 1/60 Grundbegriffe der Informatik Einheit 12: Erste Algorithmen in Graphen Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester

Mehr

Lösungsskizzen zu den Klausuraufgaben zum Kurs 1142 Algorithmische Mathematik. a 0 = 0 =

Lösungsskizzen zu den Klausuraufgaben zum Kurs 1142 Algorithmische Mathematik. a 0 = 0 = Lösungsskizzen zu den Klausuraufgaben zum Kurs 4 Algorithmische Mathematik 4KSL3 6 Punkte Aufgabe. Die Folge (a n ) n N natürlicher Zahlen a n sei rekursiv definiert durch a 0 = 0, a n = a n + n falls

Mehr

Vertiefung NWI: 13. Vorlesung zur Wahrscheinlichkeitstheorie

Vertiefung NWI: 13. Vorlesung zur Wahrscheinlichkeitstheorie Fakultät für Mathematik Prof. Dr. Barbara Gentz SS 2013 Vertiefung NWI: 13. Vorlesung zur Wahrscheinlichkeitstheorie Mittwoch, 10.7.2013 13. Markoffketten 13.1 Beispiele 1. Irrfahrt auf dem zweidimensionalen

Mehr

Markov-Ketten und Google s Page-Rank 1 / 70

Markov-Ketten und Google s Page-Rank 1 / 70 Markov-Ketten und Google s Page-Rank 1 / 70 Zielstellung 1 Wir geben einen kurzen Überblick über die Arbeitsweise von Suchmaschinen für das Internet. Eine Suchmaschine erwartet als Eingabe ein Stichwort

Mehr

Markov-Ketten und Google s Page-Rank 1 / 70

Markov-Ketten und Google s Page-Rank 1 / 70 Markov-Ketten und Google s Page-Rank 1 / 70 Zielstellung 1 Wir geben einen kurzen Überblick über die Arbeitsweise von Suchmaschinen für das Internet. Eine Suchmaschine erwartet als Eingabe ein Stichwort

Mehr

DWT 2.3 Ankunftswahrscheinlichkeiten und Übergangszeiten 400/467 Ernst W. Mayr

DWT 2.3 Ankunftswahrscheinlichkeiten und Übergangszeiten 400/467 Ernst W. Mayr 2. Ankunftswahrscheinlichkeiten und Übergangszeiten Bei der Analyse von Markov-Ketten treten oftmals Fragestellungen auf, die sich auf zwei bestimmte Zustände i und j beziehen: Wie wahrscheinlich ist es,

Mehr

Vorstellung der Kopplung bei Markovketten

Vorstellung der Kopplung bei Markovketten Vorstellung der Kopplung bei Markovketten Leonie Weinhold 13. Mai 2011 1 Einleitung In der Wahrscheinlichkeitstheorie und ihren Anwendungen ist die Coupling- Methode ein wichtiges Instrument, um z.b. Aussagen

Mehr

Zentralübung Diskrete Wahrscheinlichkeitstheorie (zur Vorlesung Prof. Esparza)

Zentralübung Diskrete Wahrscheinlichkeitstheorie (zur Vorlesung Prof. Esparza) SS 2013 Zentralübung Diskrete Wahrscheinlichkeitstheorie (zur Vorlesung Prof. Esparza) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2013ss/dwt/uebung/ 10. Mai 2013

Mehr

Vorlesung Maschinelles Lernen

Vorlesung Maschinelles Lernen Vorlesung Maschinelles Lernen Strukturelle Modelle Conditional Random Fields Katharina Morik LS 8 Informatik Technische Universität Dortmund 17.12. 2013 1 von 27 Gliederung 1 Einführung 2 HMM 3 CRF Strukturen

Mehr

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/45

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/45 Am Dienstag, den 16. Dezember, ist Eulenfest. 1/45 Grundbegriffe der Informatik Einheit 12: Erste Algorithmen in Graphen Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009

Mehr

Randomisierte Algorithmen 2. Erste Beispiele

Randomisierte Algorithmen 2. Erste Beispiele Randomisierte Algorithmen Randomisierte Algorithmen 2. Erste Beispiele Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2016/2017 1 / 35 Randomisierter Identitätstest

Mehr

7 Markov-Ketten. 7.1 Grundlegendes zu Markov-Ketten

7 Markov-Ketten. 7.1 Grundlegendes zu Markov-Ketten 58 7 Markov-Ketten 7. Grundlegendes zu Markov-Ketten Eine Markov-Kette ist ein stochastischer Prozess, der in diskreten Zeitschritten abläuft. Dabei wird jeweils von einem Zustand in einen nächsten übergegangen.

Mehr

Schriftliche Ausarbeitung zum Seminarvortrag: Einführung in die Perfekte Simulation. Propp-Wilson-Algorithmus

Schriftliche Ausarbeitung zum Seminarvortrag: Einführung in die Perfekte Simulation. Propp-Wilson-Algorithmus Technische Universität Berlin Schriftliche Ausarbeitung zum Seminarvortrag: Einführung in die Perfekte Simulation Propp-Wilson-Algorithmus Lisa Brust Matrikelnummer: 330793 Master Mathematik 30. Juni 2016

Mehr

Theoretische Überlegungen zur Ausbreitung von Infektionserregern auf Kontaktnetzen. Hartmut Lentz, Maria Kasper, Ansgar Aschfalk und Thomas Selhorst

Theoretische Überlegungen zur Ausbreitung von Infektionserregern auf Kontaktnetzen. Hartmut Lentz, Maria Kasper, Ansgar Aschfalk und Thomas Selhorst Theoretische Überlegungen zur Ausbreitung von Infektionserregern auf Kontaktnetzen Hartmut Lentz, Maria Kasper, Ansgar Aschfalk und Thomas Selhorst Netzwerke / Graphen verschiedene Typen von Graphen: einfache

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Randomisierte Algorithmen 7. Random Walks Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2016/2017 1 / 43 Überblick Überblick Ein randomisierter

Mehr

Seien u, v V, u v. Da G zusammenhängend ist, muss mindestens ein Pfad zwischen u und v existieren.

Seien u, v V, u v. Da G zusammenhängend ist, muss mindestens ein Pfad zwischen u und v existieren. Beweis: 1. 2. Seien u, v V, u v. Da G zusammenhängend ist, muss mindestens ein Pfad zwischen u und v existieren. Widerspruchsannahme: Es gibt zwei verschiedene Pfade zwischen u und v. Dann gibt es einen

Mehr

Algorithmische Bioinformatik

Algorithmische Bioinformatik FREIE UNIVERSITÄT BERLIN Fachbereich Mathematik und Informatik Institut für Informatik (WE 3) FU BERLIN Freie Universität Berlin FB Mathematik und Informatik, Institut für Informatik, Takustr. 9, D-14195

Mehr

Suchmaschinen und Markov-Ketten 1 / 42

Suchmaschinen und Markov-Ketten 1 / 42 Suchmaschinen und Markov-Ketten 1 / 42 Zielstellung 1 Wir geben einen kurzen Überblick über die Arbeitsweise von Suchmaschinen für das Internet. Eine Suchmaschine erwartet als Eingabe ein Stichwort oder

Mehr

UNABHÄNGIGER LASTEN. Vorlesung 9 BALANCIERUNG DYNAMISCHER. Graphenalgorithmen und lineare Algebra Hand in Hand

UNABHÄNGIGER LASTEN. Vorlesung 9 BALANCIERUNG DYNAMISCHER. Graphenalgorithmen und lineare Algebra Hand in Hand Vorlesung 9 BALANCIERUNG DYNAMISCHER UNABHÄNGIGER LASTEN 266 Lastbalancierung Motivation! Ein paralleles System besteht aus! verschiedenen Recheneinheiten,! die miteinander kommunizieren können! Warum

Mehr

Anwendungen mit SAS: Direkt aus der Praxis! Block 1

Anwendungen mit SAS: Direkt aus der Praxis! Block 1 Anwendungen mit SAS: Direkt aus der Praxis! Block 1 Deskriptive Statistik und Simulation von Zufallsvariablen Fachhochschule Koblenz Fachbereich Mathematik und Technik Dr. Denise Rey 28. November 2008

Mehr

Graphische Spiele. M i (p) M i (p[i : p i]) M i (p) + ε M i (p[i : p i])

Graphische Spiele. M i (p) M i (p[i : p i]) M i (p) + ε M i (p[i : p i]) Seminar über Algorithmen 19. November 2013 Michael Brückner Graphische Spiele Wolfgang Mulzer, Yannik Stein 1 Einführung Da in Mehrspielerspielen mit einer hohen Anzahl n N an Spielern die Auszahlungsdarstellungen

Mehr

Modellierung WS 2014/15. Wahrscheinlichkeits-Modelle und stochastische Prozesse. (mit Folien von Prof. H. Schütze)

Modellierung WS 2014/15. Wahrscheinlichkeits-Modelle und stochastische Prozesse. (mit Folien von Prof. H. Schütze) Modellierung WS 2014/15 Wahrscheinlichkeits-Modelle und stochastische Prozesse (mit Folien von Prof. H. Schütze) Prof. Norbert Fuhr 1 / 63 Wahrscheinlichkeits-Modelle Wahrscheinlichkeits-Modelle Zufalls-Experiment

Mehr

Verbesserungsheuristiken

Verbesserungsheuristiken Verbesserungsheuristiken Bestandteile der Lokalen Suche Für schwierige Optimierungsaufgaben haben Verbesserungsheuristiken eine große praktische Bedeutung. Sie starten mit Ausgangslösungen, die von z.b.

Mehr

Kapitel 5 Erneuerungs- und Semi-Markov-Prozesse

Kapitel 5 Erneuerungs- und Semi-Markov-Prozesse Kapitel 5 Erneuerungs- und Semi-Markov-Prozesse Definition: Erneuerungsprozess Sei {T n, n N} eine Folge unabhängiger, nichtnegativer Zufallsvariablen mit Verteilungsfunktion F, mit F () < 1. Dann heißt

Mehr

LANGZEITVERHALTEN VON MARKOW-KETTEN

LANGZEITVERHALTEN VON MARKOW-KETTEN LANGZEITVERHALTEN VON MARKOW-KETTEN NORA LOOSE. Buchstabensalat und Definition Andrei Andreewitsch Markow berechnete Anfang des 20. Jahrhunderts die Buchstabensequenzen in russischer Literatur. 93 untersuchte

Mehr

Statistics, Data Analysis, and Simulation SS 2015

Statistics, Data Analysis, and Simulation SS 2015 Mainz, May 12, 2015 Statistics, Data Analysis, and Simulation SS 2015 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler

Mehr

Simulation von Zufallszahlen. Grundlage: zufällige Quelle von Zufallszahlen, durch einfachen rekursiven Algorithmus am Computer erzeugt

Simulation von Zufallszahlen. Grundlage: zufällige Quelle von Zufallszahlen, durch einfachen rekursiven Algorithmus am Computer erzeugt Simulation von Zufallszahlen Grundlage: zufällige Quelle von Zufallszahlen, durch einfachen rekursiven Algorithmus am Computer erzeugt Definition: Eine Folge von Pseudo-Zufallszahlen U i ist eine deterministische

Mehr

Algorithmische Methoden für schwere Optimierungsprobleme

Algorithmische Methoden für schwere Optimierungsprobleme Algorithmische Methoden für schwere Optimierungsprobleme Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund

Mehr

Gambler s Ruin. B ist die Bank ) 4/40

Gambler s Ruin. B ist die Bank ) 4/40 Gambler s Ruin Zwei Spieler A und B spielen ein Spiel um m Franken. Spieler A hat a Franken, Spieler B hat b = m a Franken. In jeder Runde wird um 1 Franken gespielt. A gewinnt eine Runde mit W keit p,

Mehr

Aufgabensammlung zur Vorlesung Markovketten SS 2008

Aufgabensammlung zur Vorlesung Markovketten SS 2008 Institut für Mathematische Statistik Universität Münster Aufgabensammlung zur Vorlesung Markovketten SS 8 Aufgabe 4 Punkte Gegeben sei die zeitlich homogene Markovkette X,X, aus Beispiel Irrfahrt in kleiner

Mehr

Graphenalgorithmen und lineare Algebra Hand in Hand Prof. Dr. Henning Meyerhenke

Graphenalgorithmen und lineare Algebra Hand in Hand Prof. Dr. Henning Meyerhenke Graphenalgorithmen und lineare Algebra Hand in Hand Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

3. Prozesse mit kontinuierlicher Zeit

3. Prozesse mit kontinuierlicher Zeit 3. Prozesse mit kontinuierlicher Zeit 3.1 Einführung Wir betrachten nun Markov-Ketten (X(t)) t R +. 0 Wie beim Übergang von der geometrischen zur Exponentialverteilung können wir uns auch hier einen Grenzprozess

Mehr

7. Vorlesung. Bipartite Kerne Das kopierende Modell Bow-tie Struktur des Web Random Sampling von Web Seiten

7. Vorlesung. Bipartite Kerne Das kopierende Modell Bow-tie Struktur des Web Random Sampling von Web Seiten 7. Vorlesung Bipartite Kerne Das kopierende Modell Bow-tie Struktur des Web Random Sampling von Web Seiten Seite 179 Web als ein Soziales Netzwerk Small-world Netzwerk: Niedriger (Durchschnitts) Durchmesser

Mehr

E 7. Ergänzungen zu Kapitel 7

E 7. Ergänzungen zu Kapitel 7 E 7. Ergänzungen zu Kapitel 7 1 E 7.1 Ising Spin-1/2 System (D = 1) 2 E 7.2 Ising Spin-1/2 System (D = 2) G. Kahl & F. Libisch (E136) Statistische Physik I Erg. zu Kapitel 7 7. Juni 2016 1 / 12 E 7.1 Ising

Mehr

LANGZEITVERHALTEN VON MARKOW-KETTEN

LANGZEITVERHALTEN VON MARKOW-KETTEN LANGZEITVERHALTEN VON MARKOW-KETTEN NORA LOOSE. Buchstabensalat und Definition Andrei Andreewitsch Markow berechnete Anfang des 20. Jahrhunderts die Buchstabensequenzen in russischer Literatur. 93 untersuchte

Mehr

Angewandte Stochastik

Angewandte Stochastik Angewandte Stochastik Dr. C.J. Luchsinger 13 Allgemeine Theorie zu Markov-Prozessen (stetige Zeit, diskreter Zustandsraum) Literatur Kapitel 13 * Grimmett & Stirzaker: Kapitel 6.9 Wie am Schluss von Kapitel

Mehr

Ein Beispiel: Random Walk

Ein Beispiel: Random Walk Ein Beispiel: Random Walk Ein einfaches Modell für einen zufälligen Prozess ist der Random Walk oder auch Irrfahrt genannt. Sei q die Koordinationszahl eines Gitters Λ. N (fest) sei die Anzahl der Schritte.

Mehr

Angewandte Stochastik

Angewandte Stochastik Angewandte Stochastik Dr. C.J. Luchsinger 6 Langzeitverhalten, stationäre Masse Multiplikation von Rechts! Literatur Kapitel 6 * Grimmett & Stirzaker: Kapitel 6.4 * Krengel: 6. 6. Motivation Um die nachfolgenden

Mehr

Wahrscheinlichkeits-Modelle. Modellierung WS 2014/15. Wahrscheinlichkeits-Modelle. und stochastische Prozesse. (mit Folien von Prof. H.

Wahrscheinlichkeits-Modelle. Modellierung WS 2014/15. Wahrscheinlichkeits-Modelle. und stochastische Prozesse. (mit Folien von Prof. H. Wahrscheinlichkeits-Modelle Modellierung WS 2014/15 Wahrscheinlichkeits-Modelle und stochastische Prozesse (mit Folien von Prof. H. Schütze) Prof. Norbert Fuhr Zufalls-Experiment Ein Zufalls-Experiment

Mehr

Lösung von Optimierungsproblemen mit Monte Carlo Methoden

Lösung von Optimierungsproblemen mit Monte Carlo Methoden Lösung von Optimierungsproblemen mit Monte Carlo Methoden Am Beispiel des Problem des Handlungsreisenden Vortragende: Alexandra Vosseler Inhaltsverzeichnis I. Einleitung II. Optimierung mit MCM II.i Vom

Mehr

Endliche Markov-Ketten

Endliche Markov-Ketten Endliche Markov-Ketten Michael Krühler 24. Oktober 2013 Inhaltsverzeichnis 1 Einführung 2 1.1 Mathematische Einführung......................... 2 1.2 Interpretation................................. 3 2

Mehr

Simulationsmethoden in der Bayes-Statistik

Simulationsmethoden in der Bayes-Statistik Simulationsmethoden in der Bayes-Statistik Hansruedi Künsch Seminar für Statistik, ETH Zürich 6. Juni 2012 Inhalt Warum Simulation? Modellspezifikation Markovketten Monte Carlo Simulation im Raum der Sprungfunktionen

Mehr

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/48

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/48 Am Dienstag, den 16. Dezember, ist Eulenfest. 1/48 Grundbegriffe der Informatik Einheit 12: Erste Algorithmen in Graphen Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009

Mehr

Graphentheorie. Kürzeste Wege. Kürzeste Wege. Kürzeste Wege. Rainer Schrader. 25. Oktober 2007

Graphentheorie. Kürzeste Wege. Kürzeste Wege. Kürzeste Wege. Rainer Schrader. 25. Oktober 2007 Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 25. Oktober 2007 1 / 20 2 / 20 Wir werden Optimierungsprobleme vom folgenden Typ betrachten: gegeben eine Menge X und eine Funktion

Mehr

Markov Chain Monte Carlo, an introduction

Markov Chain Monte Carlo, an introduction Markov Chain Monte Carlo, an introduction Erich Novak 9. Oktober 2010 Zusammenfassung This lecture was given with the blackboard. Here I only collect a few key words and present some pictures. More details

Mehr

Q5. Markov-Prozesse in kontinuierlicher Zeit

Q5. Markov-Prozesse in kontinuierlicher Zeit Q5. Markov- in kontinuierlicher Zeit Gliederung 1.Zeitkontinuierliche Markov- 2.Vom Modell zum Markov-Prozess 3.Stationäre Analyse 4.Transiente Analyse 5.Stationäre Analyse von Modellen mit unendlichem

Mehr

Markov-Ketten Proseminar: Das virtuelle Labor Ariane Wietschke

Markov-Ketten Proseminar: Das virtuelle Labor Ariane Wietschke Markov-Ketten Proseminar: Das virtuelle Labor Ariane Wietschke 28.01.2004 28.01.04 Ariane Wietschke - Markov-Ketten 1 Übersicht 1. Herleitung der Definition 2. Komponenten von Markov-Ketten 3. Arten von

Mehr

Stochastik I. Vorlesungsmitschrift

Stochastik I. Vorlesungsmitschrift Stochastik I Vorlesungsmitschrift Ulrich Horst Institut für Mathematik Humboldt-Universität zu Berlin Inhaltsverzeichnis 1 Grundbegriffe 1 1.1 Wahrscheinlichkeitsräume..................................

Mehr