Graphenalgorithmen und lineare Algebra Hand in Hand Vorlesung für den Bereich Diplom/Master Informatik

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Graphenalgorithmen und lineare Algebra Hand in Hand Vorlesung für den Bereich Diplom/Master Informatik"

Transkript

1 Vorlesung für den Bereich Diplom/Master Informatik Dozent: Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

2 17. April 2012 VORLESUNG 1 Einführung 2

3 Motivation! Graphen wichtige abstrakte Datenstrukturen! Mächtiges Werkzeug zur Modellierung komplexer Probleme! Allgegenwärtig in täglichen Anwendungen! Routenplanung! Suchmaschine! Matching: Partnersuche! Netzwerkauslastung und -analyse! Energieversorgung! Zunehmende Komplexität è Parallele Verarbeitung! Herausforderung: Implementierung von Graphenalgorithmen mit guter paralleler Performanz! Analyse mit Methoden der Matrixalgebra häufig sehr nützlich 3

4 Lernziele! Verständnis für Zusammenhang zwischen Graphen und Matrizen! Auftretende Fragestellungen aus der Graphentheorie auf ihren algorithmischen Kern reduzieren! Analyse und/oder Lösung mit Techniken der linearen Algebra! Effiziente praktische Lösung der behandelten Probleme ist wichtiger Bestandteil der Übungen! Geht auch auf Aspekte der Parallelverarbeitung ein! Vorgestellte Methoden selbstständig auf verwandte Fragestellungen anwenden 4

5 Vorlesungsübersicht! Dualität von Graphen und Matrizen! Zusammenhangskomponenten, kürzeste Wege! Zentralitäten, Clusteranalyse! Tensoren! Teilgrapherkennung! Optimierung von Matrixstrukturen für Graphenalgorithmen! Spektrale Graphentheorie! Lastbalancierung mit Diffusion! Visualisierung von Graphen 5

6 Organisatorisches! Vorlesung und Übung kombiniert, dienstags ab 14:45 Uhr! Sprechstunde: Nach Vereinbarung ( )! Betreuung von Studien-/Bachelor- sowie Diplom- und Masterarbeiten! Webseite zur Vorlesung: Literatur: 10

7 Abschnitt 1: EINLEITUNG UND MOTIVATION 11

8 Was ist ein Algorithmus?! Definition: Ein Algorithmus ist eine eindeutige Beschreibung eines Verfahrens zur Lösung einer bestimmten Klasse von Problemen. Schlüsselworte: Genauer: Ein Algorithmus ist eine Menge von Regeln für ein! Verfahren, Eindeutige um Beschreibung aus gewissen Eingabegrößen bestimme! Ausgabegrößen eines Verfahrens herzuleiten. Dabei muss! zur 1. Lösung Das Verfahren in einem endlichen Text beschreibbar sein. 2. Jeder Schritt des Verfahrens auch tatsächlich ausführbar sein. 3. Der Ablauf des Verfahrens zu jedem Zeitpunkt eindeutig definiert sein.! einer Klasse von Problemen 12

9 Kriterien für Algorithmen Ø Algorithmen müssen korrekt sein. Benötigen Korrektheitsbeweise. Ø Algorithmen sollen zeit- und speichereffizient sein. Benötigen Analysemethoden für Zeit- und Speicherbedarf. Ø Analyse basiert in der klassischen Algorithmik nicht auf empirischen Untersuchungen, sondern auf mathematischen Analysen. Man nutzt hierfür Pseudocode und Basisoperationen. Ø Algorithmentechnik: Zyklus von Entwurf, Analyse, Implementierung und Experiment 13

10 Definition: Multimenge! Eine Menge E mit einer Vielfachheit # E : E 0 ihrer Elemente heißt Multimenge.! Die Kardinalität von E ist E = # E e E (e).! Kurzschreibweise:! # e für # E (e) e k E e E!, falls und # e = k 14

11 Definition: Graph, Multigraph! Ein mglw. gerichteter Graph (bzw. Multigraph) ist ein Paar G = (V, E) aus einer endlichen Menge V von Knoten und einer Menge (bzw. Multimenge) E V V von Kanten.! Kanten e {(v, v) v V} nennen wir Schleifen.! Kanten e E in einem Multigraphen mit k > 1 (Mehrfachauftreten) heißen Multikanten.! Ein Graph ist schlicht (simple), wenn er weder Schleifen noch Multikanten hat. 15

12 Beispiel! V={1, 2, 3,4}! E={(1,2), (1,4),(2,3), (3,3),(4,1)}mit #(2,3)=2 und #e=1 für e E \ {(2,3)}! (2,3) ist eine Multikante! (3,3) ist eine Schleife! 1 ist Vorgänger von 2! 2 ist Nachfolger von 1! 1 ist adjazent zu 2! (1, 2) ist inzident zu 1 (bzw. 2) 16

13 Jetzt sind Sie dran:! Frage: Welche Matrizen kennen Sie, um einen Graphen zu repräsentieren?! Adjazenzmatrix! Laplacematrix! (Knoten-Kanten-Inzidenzmatrix) 17

14 Historie! Dualität zwischen einem schlichten Graphen (ohne weitere Information) und einer Adjazenzmatrix lange bekannt! Matrixalgebra etabliertes Werkzeug in der Graphentheorie! Allerdings: In algorithmischer Software wurden meist andere Repräsentationen gewählt! Frage: Mögliche Gründe?! Speichereffizienz! Semantische Informationen! Anschaulichkeit 18

15 Vorteile der Nutzung der Dualität! Reduktion der syntaktischen Komplexität:! Manche Graphenalgorithmen sind kompakter und einfacher verständlich, wenn sie Array-basiert aufgeschrieben werden! Personenkreise mit Kenntnissen in linearer Algebra haben leichteren Zugang zur Graphentheorie (Ingenieure, Physiker,...)! Einfache Implementierung:! Nutzung der existierenden Software-Infrastruktur für parallele Berechnungen auf dünn besetzten Matrizen! Weniger Fehler durch Wiederverwendung! Bessere Optimierung durch Spezialisten! Geschwindigkeit:! Array-basierte Algorithmen heben stärker das Muster des Datenzugriffs hervor! Dadurch bessere Optimierung möglich 19

16 Nachteile der Nutzung der Dualität! Frage: Was fällt Ihnen ein?! Mangelnde Anschaulichkeit bei manchen Problemen! Bibliotheken ggf. nicht kostenlos erhältlich 20

17 Beispielalgorithmen und -anwendungen! APSP: Vorverarbeitung bei der Routenplanung! Partitionierung und Lastbalancierung: Effizientes paralleles Rechnen! Netzwerkanalyse: Hauptakteure in einem (sozialen) Netzwerk! Tensorzerlegungen: Dokumente klassifizieren! Visualisierung von Graphen: Technische Zeichnungen, Geschäftsdatenanalyse 21

18 ZUSAMMENHANG 22

19 Zusammenhangskomponenten! Anwendung: Aufteilung eines Web-Graphen in kleinere Teile! Mögliche Aufteilung: Starke Zusammenhangskomponenten! Mögliche Gründe:! Analyse des Graphen mit Algorithmus, der Zusammenhang erfordert! Der gesamte Graph ist zu groß für die Analyse!... [http://ars.sciencedirect.com/ content/image/1-s2.0-s gr4.jpg] 23

20 Zusammenhang Definition (Zusammenhang):! Ein Multigraph G=(V,E) heißt stark zusammenhängend, falls er für jedes Paar u,v V sowohl einen (u,v)-weg als auch einen (v,u)-weg enthält.! G heißt (schwach) zusammenhängend, wenn der symmetrische Multigraph (Kanten doppelt gerichtet) zu G stark zusammenhängend ist. 24

21 Mehrfacher Zusammenhang! Ein ungerichteter Multigraph G heißt k-fach knotenzusammenhängend, falls jeder durch Entfernen von höchstens k-1 beliebigen Knoten (und aller inzidenten Kanten) entstehende Teilgraph von G zusammenhängend ist.! G heißt k-fach kantenzusammenhängend, falls jeder durch Entfernen von höchstens k-1 beliebigen Kanten entstehende Teilgraph von G zusammenhängend ist. 25

22 Komponenten Definition (Komponenten): Zu einem schlichten Multigraphen G heißt ein maximaler! stark! schwach! k-fach knotenzushgd.! k-fach kantenzushgd. zusammenhängender Teilgraph! starke! schwache! k-fache knotenzusammenhängende! k-fach kantenzusammenhängende Zusammenhangskomponente. 26

23 Beispiel Starke ZHK Quelle: 27

24 Algorithmus zum Finden der starken ZHK! Wollen nun starke ZHK in einem gerichteten Graphen finden! Beispiel: s. Tafel! Frage: Gibt es Vorschläge? 28

25 Die wesentliche Idee! Theorem: A k (i, j) ist die Zahl der Wege der Länge k zwischen i und j! Beweis: s. Tafel! Definition ZHK: Es gibt einen Weg...! Frage (MG): Wie könnte ein Ansatz aussehen? 29

26 Auf dem Weg zum Algorithmus! C = I A A 2 A 3 A 4...! Nach Vorüberlegung: C(i,j) > 0 gdw. ein Weg zwischen i und j existiert! Beispiel: s. Tafel! Jetzt sind wir noch nicht ganz am Ziel! Frage: Was fehlt noch?! Wie verhält sich das bei ungerichteten Graphen? 30

27 Schnelle Berechnung von C! Statt der Oder-Operation verwenden wir die Addition: D = I + A + A 2 + A 3 + A ! Beide Matrizen C und D haben dasselbe Muster von Nichtnulleinträgen! Sei F := (I - A) D, dann gilt: F = D - AD = I + A + A 2 + A 3 + A A - A 2 - A 3 - A = I = (I A) D! Also: D = (I A) -1! Problem: Reihe konvergiert häufig nicht! Frage (MG): Lösungsvorschläge? 31

28 Konvergenz! Idee: Skalar 0 < α < 1 wird mit der Matrix A multipliziert: D = I + αa + (αa) 2 + (αa) 3 + (αa) ! Effekte:! Das Muster der Nichtnulleinträge verändert sich nicht.! Sei nun F := (I - A) D.! F = I + αa + (αa) 2 + (αa) 3 + (αa) αa - (αa) 2 - (αa) 3 - (αa) = I = (I αa) D! Also: D = (I αa) -1! Wenn α klein genug gewählt wird, dann konvergiert unsere unendliche Folge! Übung: Codebeispiel in Matlab! Übung: Welches Kriterium für unsere Zwecke? 32

29 Zusammenfassung! Starke ZHK ist maximaler stark zusammenhängender Teilgraph (jeder Knoten erreicht jeden anderen in der ZHK)! Mit einer potenzierten Adjazenzmatrix lassen sich Wege zählen! Reihe von potenzierten Matrizen liefert uns (fast) die Lösung! Konvergenz wird durch zusätzliches Skalar erzwungen! Unterschied zwischen gerichteten und ungerichteten Graphen 33

Graphenalgorithmen und lineare Algebra Hand in Hand Vorlesung für den Bereich Master Informatik

Graphenalgorithmen und lineare Algebra Hand in Hand Vorlesung für den Bereich Master Informatik Vorlesung für den Bereich Master Informatik Dozent: Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes Baden-Württemberg

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung für den Bereich Master Informatik

Algorithmische Methoden zur Netzwerkanalyse Vorlesung für den Bereich Master Informatik Algorithmische Methoden zur Netzwerkanalyse Vorlesung für den Bereich Master Informatik Dozent: Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung für den Bereich Master Informatik

Algorithmische Methoden zur Netzwerkanalyse Vorlesung für den Bereich Master Informatik Algorithmische Methoden zur Netzwerkanalyse Vorlesung für den Bereich Master Informatik Dozent: Prof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 1 Programm des

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesungen 5 und 6 Programm

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 3. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Algorithmen für Graphen Fragestellungen: Suche

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Algorithmen II Vorlesung am 15.11.2012

Algorithmen II Vorlesung am 15.11.2012 Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 14, 08.02.2012 Henning Meyerhenke

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 14, 08.02.2012 Henning Meyerhenke Algorithmische Methoden zur Netzwerkanalyse Vorlesung 14, 08.02.2012 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum

Mehr

8 Diskrete Optimierung

8 Diskrete Optimierung 8 Diskrete Optimierung Definition 8.1. Ein Graph G ist ein Paar (V (G), E(G)) besteh aus einer lichen Menge V (G) von Knoten (oder Ecken) und einer Menge E(G) ( ) V (G) 2 von Kanten. Die Ordnung n(g) von

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011 Graphen: Einführung Vorlesung Mathematische Strukturen Zum Ende der Vorlesung beschäftigen wir uns mit Graphen. Graphen sind netzartige Strukturen, bestehend aus Knoten und Kanten. Sommersemester 20 Prof.

Mehr

Konzepte der Informatik

Konzepte der Informatik Konzepte der Informatik Vorkurs Informatik zum WS 2011/2012 26.09. - 30.09.2011 17.10. - 21.10.2011 Dr. Werner Struckmann / Christoph Peltz Stark angelehnt an Kapitel 1 aus "Abenteuer Informatik" von Jens

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 7, 30.11.2011 Henning Meyerhenke

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 7, 30.11.2011 Henning Meyerhenke Algorithmische Methoden zur Netzwerkanalyse Vorlesung 7, 30.11.2011 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum

Mehr

Graphentheorie. Organisatorisches. Organisatorisches. Organisatorisches. Rainer Schrader. 23. Oktober 2007

Graphentheorie. Organisatorisches. Organisatorisches. Organisatorisches. Rainer Schrader. 23. Oktober 2007 Graphentheorie Rainer Schrader Organisatorisches Zentrum für Angewandte Informatik Köln 23. Oktober 2007 1 / 79 2 / 79 Organisatorisches Organisatorisches Dozent: Prof. Dr. Rainer Schrader Weyertal 80

Mehr

Gliederung. Definition Wichtige Aussagen und Sätze Algorithmen zum Finden von Starken Zusammenhangskomponenten

Gliederung. Definition Wichtige Aussagen und Sätze Algorithmen zum Finden von Starken Zusammenhangskomponenten Gliederung Zusammenhang von Graphen Stark Zusammenhängend K-fach Zusammenhängend Brücken Definition Algorithmus zum Finden von Brücken Anwendung Zusammenhangskomponente Definition Wichtige Aussagen und

Mehr

Kombinatorische Optimierung Vorlesung für den Bereich Diplom/Master Informatik

Kombinatorische Optimierung Vorlesung für den Bereich Diplom/Master Informatik Kombinatorische Optimierung Vorlesung für den Bereich Diplom/Master Informatik Dozent: Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2007 4. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Traversierung Durchlaufen eines Graphen, bei

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen Der Tragödie IV. Theyl Peter F. Stadler & Konstantin Klemm Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics, University

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V

Mehr

Algorithmische Methoden für schwere Optimierungsprobleme

Algorithmische Methoden für schwere Optimierungsprobleme Algorithmische Methoden für schwere Optimierungsprobleme Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund

Mehr

Praktikum Planare Graphen

Praktikum Planare Graphen 1 Praktikum Planare Graphen Michael Baur, Martin Holzer, Steffen Mecke 10. November 2006 Einleitung Gliederung 2 Grundlagenwissen zu planaren Graphen Themenvorstellung Gruppeneinteilung Planare Graphen

Mehr

2. Repräsentationen von Graphen in Computern

2. Repräsentationen von Graphen in Computern 2. Repräsentationen von Graphen in Computern Kapitelinhalt 2. Repräsentationen von Graphen in Computern Matrizen- und Listendarstellung von Graphen Berechnung der Anzahl der verschiedenen Kantenzüge zwischen

Mehr

Wie Google Webseiten bewertet. François Bry

Wie Google Webseiten bewertet. François Bry Wie Google Webseiten bewertet François Bry Heu6ge Vorlesung 1. Einleitung 2. Graphen und Matrizen 3. Erste Idee: Ranking als Eigenvektor 4. Fragen: Exisi6ert der Eigenvektor? Usw. 5. Zweite Idee: Die Google

Mehr

Vorlesung 3 MINIMALE SPANNBÄUME

Vorlesung 3 MINIMALE SPANNBÄUME Vorlesung 3 MINIMALE SPANNBÄUME 72 Aufgabe! Szenario: Sie arbeiten für eine Firma, die ein Neubaugebiet ans Netz (Wasser, Strom oder Kabel oder...) anschließt! Ziel: Alle Haushalte ans Netz bringen, dabei

Mehr

Kürzeste Wege in Graphen. Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik

Kürzeste Wege in Graphen. Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik Kürzeste Wege in Graphen Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik Gliederung Einleitung Definitionen Algorithmus von Dijkstra Bellmann-Ford Algorithmus Floyd-Warshall Algorithmus

Mehr

15. Elementare Graphalgorithmen

15. Elementare Graphalgorithmen Graphen sind eine der wichtigste Modellierungskonzepte der Informatik Graphalgorithmen bilden die Grundlage vieler Algorithmen in der Praxis Zunächst kurze Wiederholung von Graphen. Dann Darstellungen

Mehr

1. Einführung. Was ist ein Algorithmus (eine Datenstruktur)? Welche Probleme kann man damit lösen? Warum betrachten wir (effiziente) Algorithmen?

1. Einführung. Was ist ein Algorithmus (eine Datenstruktur)? Welche Probleme kann man damit lösen? Warum betrachten wir (effiziente) Algorithmen? 1. Einführung Was ist ein Algorithmus (eine Datenstruktur)? Welche Probleme kann man damit lösen? Warum betrachten wir (effiziente) Algorithmen? Wie beschreiben wir Algorithmen? Nach welchen Kriterien

Mehr

SPEKTRALE GRAPHENTHEORIE

SPEKTRALE GRAPHENTHEORIE SPEKTRALE GRAPHENTHEORIE 179 Graphen, Matrizen, Spektren! Graph als Matrix:! Adjazenzmatrix! Inzidenzmatrix! Laplacematrix!...! Spektrum: Menge der Eigenwerte! Motivation: Sagt das Spektrum etwas über

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

16. All Pairs Shortest Path (ASPS)

16. All Pairs Shortest Path (ASPS) . All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e

Mehr

Algorithmische Methoden der Netzwerkanalyse

Algorithmische Methoden der Netzwerkanalyse Algorithmische Methoden der Netzwerkanalyse Marco Gaertler 9. Dezember, 2008 1/ 15 Abstandszentralitäten 2/ 15 Distanzsummen auf Bäumen Lemma Sei T = (V, E) ein ungerichteter Baum und T s = (V S, E s )

Mehr

Algorithmen und Datenstrukturen (WS 2007/08) 63

Algorithmen und Datenstrukturen (WS 2007/08) 63 Kapitel 6 Graphen Beziehungen zwischen Objekten werden sehr oft durch binäre Relationen modelliert. Wir beschäftigen uns in diesem Kapitel mit speziellen binären Relationen, die nicht nur nur besonders

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 4 Programm des

Mehr

Maximaler Fluß und minimaler Schnitt. Von Sebastian Thurm sebastian.thurm@student.uni-magedburg.de

Maximaler Fluß und minimaler Schnitt. Von Sebastian Thurm sebastian.thurm@student.uni-magedburg.de Maximaler Fluß und minimaler Schnitt Von Sebastian Thurm sebastian.thurm@student.uni-magedburg.de Maximaler Fluß und minimaler Schnitt Wasist das? Maximaler Fluss Minimaler Schnitt Warumtut man das? Logistische

Mehr

Graphen und Bäume. A.1 Graphen

Graphen und Bäume. A.1 Graphen Algorithmen und Datenstrukturen 96 A Graphen und Bäume A.1 Graphen Ein gerichteter Graph (auch Digraph) G ist ein Paar (V, E), wobei V eine endliche Menge und E eine Relation auf V ist, d.h. E V V. V heißt

Mehr

Routing Algorithmen. Begriffe, Definitionen

Routing Algorithmen. Begriffe, Definitionen Begriffe, Definitionen Routing (aus der Informatik) Wegewahl oder Verkehrslenkung bezeichnet in der Telekommunikation das Festlegen von Wegen für Nachrichtenströme bei der Nachrichtenübermittlung über

Mehr

Vollständiger Graph. Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete).

Vollständiger Graph. Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete). Vollständiger Graph Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete). Mit K n wird der vollständige Graph mit n Knoten bezeichnet. Bemerkung

Mehr

Algorithmen und Berechnungskomplexität I

Algorithmen und Berechnungskomplexität I Institut für Informatik I Wintersemester 2010/11 Organisatorisches Vorlesung Montags 11:15-12:45 Uhr (AVZ III / HS 1) Mittwochs 11:15-12:45 Uhr (AVZ III / HS 1) Dozent Professor für theoretische Informatik

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

Programmieren ++ Begleitende Übungen zu Veranstaltungen + Umsetzen des Algorithmus in ein lauffähiges Programm

Programmieren ++ Begleitende Übungen zu Veranstaltungen + Umsetzen des Algorithmus in ein lauffähiges Programm Studienanforderungen Studiengang Maschinenbau Programmieren Begleitende Übungen zu Veranstaltungen Umsetzen des Algorithmus in ein lauffähiges Programm Studiengang Bauingenieurwesen Programmieren Begleitende

Mehr

Synergien aus Graph-Theorie und Data-Mining für die Analyse von Netzwerkdaten

Synergien aus Graph-Theorie und Data-Mining für die Analyse von Netzwerkdaten für die Analyse von Netzwerkdaten Tanja Hartmann, Patricia Iglesias Sánchez, Andrea Kappes, Emmanuel Müller und Christopher Oßner IPD Institut für Programmstrukturen und Datenorganisation ITI Institut

Mehr

Übung Theoretische Grundlagen

Übung Theoretische Grundlagen Übung Theoretische Grundlagen Berechenbarkeit/Entscheidbarkeit Nico Döttling November 26, 2009 INSTITUT FÜR KRYPTOGRAPHIE UND SICHERHEIT KIT University of the State of Baden-Wuerttemberg and National Laboratory

Mehr

Grundlagen der Informatik II. Teil I: Formale Modelle der Informatik

Grundlagen der Informatik II. Teil I: Formale Modelle der Informatik Grundlagen der Informatik II Teil I: Formale Modelle der Informatik 1 Einführung GdInfoII 1-2 Ziele/Fragestellungen der Theoretischen Informatik 1. Einführung abstrakter Modelle für informationsverarbeitende

Mehr

Datenstrukturen und Algorithmen. Christian Sohler FG Algorithmen & Komplexität

Datenstrukturen und Algorithmen. Christian Sohler FG Algorithmen & Komplexität Datenstrukturen und Algorithmen Christian Sohler FG Algorithmen & Komplexität 1 Clustering: Partitioniere Objektmenge in Gruppen(Cluster), so dass sich Objekte in einer Gruppe ähnlich sind und Objekte

Mehr

Vorlesung 2 KÜRZESTE WEGE

Vorlesung 2 KÜRZESTE WEGE Vorlesung 2 KÜRZESTE WEGE 34 Kürzeste Wege im Graphen Motivation! Heute:! Kürzeste Wege von einem Knoten (SSSP)! Kürzeste Wege zwischen allen Knotenpaaren (APSP)! Viele Anwendungen:! Navigationssysteme!

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume Effiziente Algorithmen und Datenstrukturen I Kapitel 9: Minimale Spannbäume Christian Scheideler WS 008 19.0.009 Kapitel 9 1 Minimaler Spannbaum Zentrale Frage: Welche Kanten muss ich nehmen, um mit minimalen

Mehr

23. November Betweenness Centrality Closeness Centrality. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 108

23. November Betweenness Centrality Closeness Centrality. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 108 23. November 2011 Betweenness Centrality Closeness Centrality H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 108 Betweenness Centrality Grundlegende Idee: Ein Knoten ist wichtig, wenn er auf

Mehr

Ein Algorithmus für die

Ein Algorithmus für die VGG 1 Ein Algorithmus für die Visualisierung gerichteter Graphen in der Ebene (2D) Seminar Graph Drawing SS 2004 bei Prof. Bischof (Lehrstuhl für Hochleistungsrechnen) Gliederung VGG 2 Einleitung Motivation

Mehr

Algorithmische Mathematik

Algorithmische Mathematik Algorithmische Mathematik Wintersemester 2013 Prof. Dr. Marc Alexander Schweitzer und Dr. Einar Smith Patrick Diehl und Daniel Wissel Übungsblatt 6. Abgabe am 02.12.2013. Aufgabe 1. (Netzwerke und Definitionen)

Mehr

Kapitel 15. Lösung linearer Gleichungssysteme

Kapitel 15. Lösung linearer Gleichungssysteme Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren

Mehr

Alles zu seiner Zeit Projektplanung heute

Alles zu seiner Zeit Projektplanung heute Alles zu seiner Zeit Projektplanung heute Nicole Megow Matheon Überblick Projektplanung Planen mit Graphentheorie Maschinenscheduling Ein 1 Mio. $ Problem Schwere & leichte Probleme? Zeitplanungsprobleme?

Mehr

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie Gliederung 1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. äume / Graphen 5. Hashing 6. Algorithmische Geometrie 4/5, olie 1 2014 Prof. Steffen Lange - HDa/bI

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Einführung in Petri-Netze

Einführung in Petri-Netze Einführung in Petri-Netze Modellierung und Analysen von Workflows Vertretung: Stephan Mennicke, Reaktive Systeme SS 2012 Organisatorisches In der 24. KW (11.06. 17.06.): Vorlesung am Dienstag, 15:00 Uhr

Mehr

Die Komplexitätsklassen P und NP

Die Komplexitätsklassen P und NP Die Komplexitätsklassen P und NP Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 3. Dezember 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und

Mehr

4 Greedy-Algorithmen (gierige Algorithmen)

4 Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine

Mehr

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/48

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/48 Am Dienstag, den 16. Dezember, ist Eulenfest. 1/48 Grundbegriffe der Informatik Einheit 12: Erste Algorithmen in Graphen Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V.

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V. Kapitel 4 Graphenalgorithmen 4.1 Definitionen Definition 4.1.1. Der Graph G = (V, E) ist über die beiden Mengen V und E definiert, wobei V die Menge der Knoten und E die Menge der Kanten in dem Graph ist.

Mehr

Statistische Untersuchungen zu endlichen Funktionsgraphen

Statistische Untersuchungen zu endlichen Funktionsgraphen C# Projekt 1 Name: Statistische Untersuchungen zu endlichen Funktionsgraphen Aufgabe: Basierend auf dem Abschnitt 2.1.6. Random mappings, Kap.2, S 54-55, in [1] sollen zunächst für eine beliebige Funktion

Mehr

Kapitel 6: Graphalgorithmen Gliederung

Kapitel 6: Graphalgorithmen Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

Graphentheorie Mathe-Club Klasse 5/6

Graphentheorie Mathe-Club Klasse 5/6 Graphentheorie Mathe-Club Klasse 5/6 Thomas Krakow Rostock, den 26. April 2006 Inhaltsverzeichnis 1 Einleitung 3 2 Grundbegriffe und einfache Sätze über Graphen 5 2.1 Der Knotengrad.................................

Mehr

Algorithmen für schwierige Optimierungsprobleme Vorlesung für den Bereich Bachelor Informatik

Algorithmen für schwierige Optimierungsprobleme Vorlesung für den Bereich Bachelor Informatik Algorithmen für schwierige Optimierungsprobleme Vorlesung für den Bereich Bachelor Informatik Dozent: Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 12.01.2012 INSTITUT FÜR THEORETISCHE 0 KIT 12.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik

Mehr

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung Gliederung der Vorlesung. Fallstudie Bipartite Graphen. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen. Minimal spannende Bäume. Kürzeste Pfade. Traveling Salesman Problem. Flüsse in Netzwerken

Mehr

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume

Mehr

Mathematisch-algorithmische Grundlagen für Big Data

Mathematisch-algorithmische Grundlagen für Big Data Mathematisch-algorithmische Grundlagen für Big Data Numerische Algorithmen für Datenanalyse und Optimierung Prof. Dr. Peter Becker Fachbereich Informatik Hochschule Bonn-Rhein-Sieg Sommersemester 2016

Mehr

5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c)

5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) 5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) mit V = {1,...,n} und E {(v, w) 1 apple v, w apple n, v 6= w}. c : E!

Mehr

Pratts Primzahlzertifikate

Pratts Primzahlzertifikate Pratts Primzahlzertifikate Markus Englert 16.04.2009 Technische Universität München Fakultät für Informatik Proseminar: Perlen der Informatik 2 SoSe 2009 Leiter: Prof. Dr. Nipkow 1 Primzahltest Ein Primzahltest

Mehr

Lehrpläne NRW Sek.stufe 2. Lernen im Kontext

Lehrpläne NRW Sek.stufe 2. Lernen im Kontext Lehrpläne NRW Sek.stufe 2 Lernen im Kontext Fachliche Inhalte Lernziele Informatik NRW Fähigkeit, komplexe Zusammenhänge mit gedanklicher Schärfe zu durchdringen (Problemanalyse) Überblick über unterschiedliche

Mehr

Einführung in Scheduling

Einführung in Scheduling Einführung in Scheduling Dr. Julien Bidot Sommersemester 28 Institut für Künstliche Intelligenz Inhalt I. Definition und Formulierung des Scheduling- Problems II. Projektplanung III. Produktionsplanung

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 0..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

Graphenalgorithmen und lineare Algebra Hand in Hand

Graphenalgorithmen und lineare Algebra Hand in Hand Graphenalgorithmen und lineare Algebra Hand in Hand Henning Meyerhenke 1. September 2014 iii Inhaltsverzeichnis 1. Grundlegende Graphenalgorithmen 1 1.1. Dualität zwischen Graphen und Matrizen......................

Mehr

Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É.

Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Tardos Janick Martinez Esturo jmartine@techfak.uni-bielefeld.de xx.08.2007 Sommerakademie Görlitz Arbeitsgruppe 5 Gliederung

Mehr

Lernmodul 2 Graphen. Lernmodul 2: Geoobjekte und ihre Modellierung - Graphen

Lernmodul 2 Graphen. Lernmodul 2: Geoobjekte und ihre Modellierung - Graphen Folie 1 von 20 Lernmodul 2 Graphen Folie 2 von 20 Graphen Übersicht Motivation Ungerichteter Graph Gerichteter Graph Inzidenz, Adjazenz, Grad Pfad, Zyklus Zusammenhang, Trennende Kante, Trennender Knoten

Mehr

Graphen: Datenstrukturen und Algorithmen

Graphen: Datenstrukturen und Algorithmen Graphen: Datenstrukturen und Algorithmen Ein Graph G = (V, E) wird durch die Knotenmenge V und die Kantenmenge E repräsentiert. G ist ungerichtet, wenn wir keinen Start- und Zielpunkt der Kanten auszeichnen.

Mehr

Institut für Informatik. Rheinische Friedrich-Wilhelms-Universität Bonn

Institut für Informatik. Rheinische Friedrich-Wilhelms-Universität Bonn Institut für Informatik Rheinische Friedrich-Wilhelms-Universität Bonn Hauptseminar: Schnelle Parallele Algorithmen Leitung: Prof. Dr. M. Karpinksi, P. Wegner, M. Hauptmann Sommersemester 2000 Ausarbeitung

Mehr

Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14.

Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14. Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination Vorlesung Computergestützte Mathematik zur Linearen Algebra Lehrstuhl für Angewandte Mathematik Wintersemester 2009/0 4. Januar 200 Instabilitäten

Mehr

Stefan Schmid TU Berlin & T-Labs, Berlin, Germany. Reduktionen in der Berechenbarkeitstheorie

Stefan Schmid TU Berlin & T-Labs, Berlin, Germany. Reduktionen in der Berechenbarkeitstheorie Stefan Schmid TU Berlin & T-Labs, Berlin, Germany Reduktionen in der Berechenbarkeitstheorie Problem: Wie komme ich von hier zum Hamburger Hbf? 2 Beispiel P1 Wie komme ich von hier zum Hamburger Hbf? kann

Mehr

Angewandte Informatik

Angewandte Informatik Angewandte Informatik Analyse des Graphs G zur Bestimmung von Parallel- undreihenschaltung Prof. Dr. Nikolaus Wulff Gewichteter Multigraph Die Adjazenzmatrix eines Graphen eignet sich auch zur Analyse

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (20 Graphen) T. Lauer

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (20 Graphen) T. Lauer Vorlesung Informatik 2 Algorithmen und Datenstrukturen (20 Graphen) T. Lauer 1 Motivation Wie komme ich am besten von Freiburg nach Ulm? Was ist die kürzeste Rundreise durch eine gegebene Menge von Städten?

Mehr

I. Einführung. 1. Ziel und Motivation. Ingenieur, Programmieren?? Ingenieur, Programmieren?? Technische Informatik für Ingenieure (TIfI) WS 2005/2006

I. Einführung. 1. Ziel und Motivation. Ingenieur, Programmieren?? Ingenieur, Programmieren?? Technische Informatik für Ingenieure (TIfI) WS 2005/2006 Technische Informatik für Ingenieure (TIfI) WS 2005/2006 I. Einführung Ekkart Kindler Ziel und Motivation Grundbegriffe Praxis Zwischendurch: Organisatorische Hinweise und Ablauf der Veranstaltung 1. Ziel

Mehr

Google s PageRank. Eine Anwendung von Matrizen und Markovketten. Vortrag im Rahmen der Lehrerfortbildung an der TU Clausthal 23.

Google s PageRank. Eine Anwendung von Matrizen und Markovketten. Vortrag im Rahmen der Lehrerfortbildung an der TU Clausthal 23. Google s PageRank Eine Anwendung von Matrizen und Markovketten Vortrag im Rahmen der Lehrerfortbildung an der TU Clausthal 23. September 2009 Dr. Werner Sandmann Institut für Mathematik Technische Universität

Mehr

Was ist ein Computer?

Was ist ein Computer? Grundlagen 1 Lernziel der Vorlesung: Einblicke und Überblicke zu den Mitteln der Informatik Hardware und Software den Methoden der Informatik Analysieren, Entwerfen, Algorithmieren, Programmieren, Testen,

Mehr

Wiederholung zu Flüssen

Wiederholung zu Flüssen Universität Konstanz Methoden der Netzwerkanalyse Fachbereich Informatik & Informationswissenschaft SS 2008 Prof. Dr. Ulrik Brandes / Melanie Badent Wiederholung zu Flüssen Wir untersuchen Flüsse in Netzwerken:

Mehr

Public-Key-Algorithmen WS2015/2016

Public-Key-Algorithmen WS2015/2016 Public-Key-Algorithmen WS2015/2016 Lernkontrollfragen Michael Braun Was bedeuten die kryptographischen Schutzziele Vertraulichkeit, Integrität, Nachrichtenauthentizität, Teilnehmerauthentizität, Verbindlichkeit?

Mehr

Graphentheorie 1. Diskrete Strukturen. Sommersemester Uta Priss ZeLL, Ostfalia. Hausaufgaben Graph-Äquivalenz SetlX

Graphentheorie 1. Diskrete Strukturen. Sommersemester Uta Priss ZeLL, Ostfalia. Hausaufgaben Graph-Äquivalenz SetlX Graphentheorie 1 Diskrete Strukturen Uta Priss ZeLL, Ostfalia Sommersemester 2016 Diskrete Strukturen Graphentheorie 1 Slide 1/19 Agenda Hausaufgaben Graph-Äquivalenz SetlX Diskrete Strukturen Graphentheorie

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

Information Systems Engineering Seminar

Information Systems Engineering Seminar Information Systems Engineering Seminar Algorithmische Prüfung der Planarität eines Graphen Marcel Stüttgen, 22.10.2012 FH AACHEN UNIVERSITY OF APPLIED SCIENCES 1 Planarität - Definition Ein Graph heißt

Mehr

Kodieren Von Graphen

Kodieren Von Graphen Kodieren Von Graphen Allgemeine Anwendungen: Routenplaner Netzpläne Elektrische Schaltungen Gebäudeerkennung aus Luftaufnahmen Definitionen:? Graph Ein Graph G besteht aus einem geordneten Paar G = (V,E)

Mehr

Logik und diskrete Strukturen

Logik und diskrete Strukturen Prof. Dr. Institut für Informatik Abteilung I Wintersemester 2012/13 Organisatorisches Vorlesung Dienstag und Donnerstag 10:15 11:45 Uhr (HS 1) und 12:30 14:00 Uhr (HS 2) Vorlesung am Vormittag = Vorlesung

Mehr

Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist.

Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist. Graphen Definition: Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist. Begriffe: Gerichteter Graph: Alle Kanten haben eine Richtung vom Anfangsknoten

Mehr

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005 Paradigmen im Algorithmenentwurf Problemlösen Problem definieren Algorithmus entwerfen

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

Expander Graphen und Ihre Anwendungen

Expander Graphen und Ihre Anwendungen Expander Graphen und Ihre Anwendungen Alireza Sarveniazi Mathematisches Institut Universität Göttingen 21.04.2006 Alireza Sarveniazi (Universität Göttingen) Expander Graphen und Ihre Anwendungen 21.04.2006

Mehr

Algorithmentheorie. 13 - Maximale Flüsse

Algorithmentheorie. 13 - Maximale Flüsse Algorithmentheorie 3 - Maximale Flüsse Prof. Dr. S. Albers Prof. Dr. Th. Ottmann . Maximale Flüsse in Netzwerken 5 3 4 7 s 0 5 9 5 9 4 3 4 5 0 3 5 5 t 8 8 Netzwerke und Flüsse N = (V,E,c) gerichtetes Netzwerk

Mehr