Institut für Angewandte und Numerische Mathematik Prof. Dr. Christian Wieners, Dipl.-Math. techn. Daniel Maurer

Größe: px
Ab Seite anzeigen:

Download "Institut für Angewandte und Numerische Mathematik Prof. Dr. Christian Wieners, Dipl.-Math. techn. Daniel Maurer"

Transkript

1 Institut für Angewandte und Numerisce Matematik Prof. Dr. Cristian Wieners, Dipl.-Mat. tecn. Daniel Maurer Numerisce Matematik für die Facrictungen Informatik und Ingenieurwesen Lösungen zur Klausurvorbereitung Sommersemester 0 Kapitel (Grundlagen der Aritmetik) Formen Sie die Ausdrücke (a) + x x + x für x (b) x + x x x so um, dass ire Auswertung gutartig (d.. keine Auslöscung) ist. für x (a) Für x 0 streben beide Summanden gegen und es tritt Informationsverlust durc Auslöscung auf. Besser ist + x ( x)( + x) ( + x)( + x) = x ( + x)( + x) (b) Für x tritt Auslöscung auf. Besser ist Kapitel ( + x ) (x x ) x + x + x x = x ( x + x + x x (Direkte Lösungsverfaren für lineare Gleicungssysteme) (a) Berecnen Sie die Determinante und die LR-Zerlegung der Matrix (b) Nennen Sie zwei Eigenscaften einer Matrix A, damit eine Colesky-Zerlegung existiert. (c) Nennen Sie die Dimension und Eigenscaften der Matrizen Q und R einer QR- Zerlegung einer Matrix A R K N. Nennen Sie zwei Transformationen zur Erstellung einer QR-Zerlegung. ) (a) Die Zerlegung ergibt L = 0 R = Als Determinante ergibt sic somit det(a) = 3 = 6. (b) Für symmetrisc (und) positiv definite Matrizen existiert eine Colesky-Zerlegung. (c) Q R K K ist ortogonal mit Q T Q = I K. R R K N ist eine obere Rectecksmatrix R[k, n] = 0 für k > n. Als Transformationen eignen sic Givens-Rotation und Houseolder-Spiegelung. Kapitel 3 (Lineare Ausgleicsrecnung) Gegeben Sei ein Gleicungssystem Ax = b. Geben Sie die Normalengleicung an und formulieren Sie mindestens zwei Eigenscaften dieser Normalengleicung. Die Normalengleicung lautet A T Ax = A T b. Eigenscaften: Die Normalengleicung ist immer lösbar. Wenn A T A invertierbar ist, ist die Lösung eindeutig. x ist Lösung der Normalengleicung genau dann, wenn: x minimiert Ax b Kapitel 4 (Eigenwertberecnung) (a) Geben Sie die Vektoriteration zur Berecnung eines Eigenvektors zu einem einfacen, betragsmäßig größten Eigenwert an. (b) Wie siet eine Hessenberg-Matrix H R N N aus? Wie siet eine symmetrisce Hessenberg-Matrix aus? (c) Nennen Sie zwei Verfaren aus der Vorlesung, in denen Hessenberg-Matrizen eine Rolle spielen. Was soll jeweils berecnet werden? (a) S0) setze w 0, k = 0 S) berecne v k = Aw k und normiere: w k+ = v k vk S) setze k := k + und gee zu S). (b) Eine Matrix H R N N eißt Hessenberg-Matrix, wenn H[n + : N, n] = 0 (alle Einträge unteralb der ersten Nebendiagonalen sind gleic Null). Eine symmetrisce Hessenberg-Matrix ist tridiagonal.

2 (c) QR-Iteration (mit Sift): Berecnung (aller) Eigenwerte, GMRES-Verfaren: Lösung eines Gleicungssystems Ax = b. Kapitel 5 (Iterationsverfaren für lineare Gleicungen) (a) Die Matrix A sei zerlegt in A = L + D + R mit L strikte untere Dreiecksmatrix, R strikte obere Dreiecksmatrix und D Diagonalmatrix. Gegeben sei das Fixpunktverfaren x k+ = x k + B(b Ax k ), mit B als Vorkonditionierer. Wie siet B aus für das Gesamtscrittverfaren (Jacobi) bzw. das Einzelscrittverfaren (Gauss-Seidel)? Wann ist die Iteration (linear) konvergent? (b) Geben Sie für das CG- und das GMRES-Verfaren (one Vorkonditionierung) jeweils an: Für welce Matrizen A R N N das Verfaren geeignet ist. Was minimiert wird. In welcem Raum minimiert wird. In welcer Norm minimiert wird. Nennen Sie einen Vorteil des CG-Verfarens (wenn anwendbar) und einen (anderen) Nacteil des GMRES-Verfarens. (a) Jacobi: B = D. Gauss-Seidel: B = (L + D). Das Verfaren ist konvergent, wenn ρ(i BA) <. (b) CG: Nur für symmetrisce Matrizen geeignet, GMRES für allgemeine minimiert wird jeweils das Residuum r k = b Ax k beide Verfaren minimieren im Krylov-Raum definiert durc V k = span{r 0, Ar 0,..., (A) k r 0 } mit Anfangsresiduum r 0 = b Ax 0. CG minimiert in der Energienorm, GMRES minimiert in der eukl. Norm. CG: weniger Speiceraufwand, GMRES: Ortogonalisierung nict rundungsfelerstabil - Restart benötigt (wobei die Konvergenz dann nict gesicert ist). (a) Es soll eine Nullstelle gefunden werden. (b) x k+ = x k DF (x k ) F (x k ), mit Ableitung DF (x) R 3 3. (c) Falls DF (x) glatt genug ist, ist die Konvergenz in der Näe der Lösung quadratisc. Kapitel 7 (Polynom-Interpolation) (a) Geben Sie die Definition der Lagrange-Basis zu Stützstellen t 0,..., t N an. Wie seen die Werte an den Stützstellen aus? (b) Geben Sie die Lagrange-Darstellung des Interpolationspolynoms P (t) an. (c) Geben Sie die Newton-Darstellung des Interpolationspolynoms P (t) an. (d) Welces Verfaren ist sinnvoller, wenn eine neue Stützstelle t N+ inzukommt? (a) L n (t) = N k=0,k n t t k t n t k. Für die Stützstellen gilt somit: L n (t k ) = { k = n 0 k n. (b) P (t) = N f nl n (t), mit Wert f n an der jeweiligen Stützstelle t n. (c) P (t) = N f[t 0,..., t n ]ω n (t) mit f[t 0,..., t n ] dividierte Differenz, ω 0, ω k = (t t k )ω k (t). (d) Für Lagrange müssen alle Polynome neu berecnet werden, es empfielt sic daer die Newton-Darstellung, da dort nur ein zusätzlicer Wert berecnet werden muss. Kapitel 6 (Iterationsverfaren für nictlineare Gleicungen) Kapitel 8 (Splines) (a) Was soll mit Hilfe des Newton-Verfarens gefunden werden? (b) Geben Sie das Newton-Verfaren für eine lineare Funktion F : R 3 R 3 an. (c) In welcer Ordnung konvergiert das Verfaren in der Näe der Lösung (genügend Glatteit vorausgesetzt)? (a) Geben Sie die Definition eines kubiscen Splines zu den Stützstellen t 0,.., t N Werten f 0,..., f N an. (b) Welce Randbedingungen sind sinnvoll? mit

3 (a) Sei [a, b] ein Intervall und : a = t 0 < t <... < t N = b eine Zerlegung. Dann ist S( ) = {S C [a, b] : S n := S [tn,t n] P 3 (n =,.., N)} der Raum der kubiscen Splines zu δ. Der Spline S ist nun interpolierender Spline, wenn S(t n ) = f(t n ) (n = 0,..., N). Zur eindeutigen Bestimmung müssen Randbedingungen angegeben werden. In anderen Worten: sei S n (t) = S [tn,t n], n =,..., N mit S n (t) = a n + b n t + c n t + d n t 3 P 3, sowie folgenden Bedingungen: Interpolationsbedingungen: S (t 0 ) = f(t 0 ) S n (t n ) = f(t n ), Stetigkeitsbedingungen: n =,..., N S n (t n ) = S n+ (t n ), n =,..., N S n(t n ) = S n+(t n ), n =,..., N S n(t n ) = S n+(t n ), n =,..., N eine der folgenden Randbedingungen: Natürlice Randbedingungen S (t 0 ) = 0 S N (t N ) = 0 Hermitesce Randbedingungen (mit gegeben Werten f 0 und f N ): S (t 0 ) = f 0 Perodisce Randbedingungen S (t 0 ) = S N(t N ) S N (t N ) = f N Für 4N Unbekannte fallen somit N + Gleicungen auf die Interpolation, 3N 3 Gleicungen auf die Stetigkeit und Gleicungen auf die Randbedingungen. (b) Siee a) Kapitel 9 (Trigonometrisce Interpolation und FFT) Gegeben sei eine π periodisce Funktion f : R C, N = p und t n = n π N. Setze f n := f(t n ) und ω = exp(i π N ). Gesuct sind Koeffizienten c n (n = 0,..., N ) eines trigonometriscen Interpolationspolynoms T N (t) = N c n exp(int), so dass T N (t n ) = f n. Setze weiterin f = (f 0, f,..., f N ) T und c = (c 0, c,..., c N ) T. Geben Sie zur Berecnung der c n eine Matrix W an, so dass gilt: N W f = c. Was können Sie über die Spalten von W aussagen? Nac Vorlesung gilt Mit gilt c j = N N f n ω nj.... ω ω... ω (N ) W = ω ω 4... ω (N ) ω (N ) ω (N )... ω (N ) N W F = C. Die Spalten von W sind ortogonal zueinander (und bilden somit eine Ortogonalbasis), denn es gilt: { N N w k, w j = (w k ) n (w j ) n = ω nk nj ( ) N k = j ω = 0 sonst mit W = (w 0,..., w N ) ( ( ) siee Vorlesung!). Kapitel 0 (Numerisce Quadratur) (a) Bestimmen Sie zur Berecnung eines Integrals f(t) dt zu einer gegebenen Funktion f die Gewicte ω k (k =,, 3) einer Quadratur Q H mit Stützstellen ξ =, ξ = 0, ξ 3 =, so dass Q H = Q H (P ) = P (t) dt. 3 i= ω i f(t i ) exakt ist für Polynome vom Grad

4 (b) Mact es Sinn, nac einer Quadraturformel zu sucen mit (i Stützstellen und Exakteitsgrad 5 (ii) 4 Stützstellen und Exakteitsgrad 8 (ierbei bezeicnet ein Exakteitsgrad K, dass die Quadraturformel für Polynome P P K exakt ist). (a) Konstruktion nac Vorlesung: Setze a = ξ =, b = ξ 3 =, H = {ξ, ξ, ξ 3 }. ω k = b a L k (t) mit L k (t) = Als Gewicte ergeben sic somit: ω = ω = ω 3 = t 0 t 0 dt = = [ 3 t3 4 t ] t + t = 4 [ 3 t3 4 t t + + = 3 dt = ] t 0 0 dt = = [ 3 t3 + 4 t ] 3 j=,j k ( = 4 3 = 3 t ξ j ξ i ξ j dt. t t dt ( ) = 6, t 4 4 ( dt + t + t dt ( Insgesamt ergibt sic (vgl. Simpson-Regel): Q H = [f( ] 6 ) + 4f(0) + f( ). = 6. Alternativ: Direkte Berecnung über die Monome, t, t : ( ) = 3, / / / / / / dt = t dt = 0! = ω + ω + ω 3! = ω + ω 3 ω = ω 3 t dt = 3 ( )3! = 4 ω + 4 ω 3 = ω ω = 6 ω = 6 = 3. (b) (i) Ja, da es genau eine Quadratur mit N Stützstellen und Exakteitsgrad N gibt (Gauß-Quadratur). Beacte, dass ierbei die Stützstellen nict fest gewält werden dürfen! Kapitel (ii) Nein, eine Quadratur kann für N Stützstellen nict exakt sein für Polynome vom Grad N. (Numerisce Integration gewönlicer Differentialgleicungen) (a) Was soll mit Hilfe eines Runge-Kutta-Verfarens berecnet werden? (b) Geben Sie die Verfarensfunktion zum folgenden 4-stufigen Runge-Kutta-Verfaren mit Scrittweite τ zur Berecnung von u n zum Zeitpunkt t n an: 0 /3 /3 /3 /3 /8 3/8 3/8 /8 Verwenden Sie die Notation mit k,..., k 4. (c) Geben Sie das explizite Euler-Verfaren an. (a) Berecnet werden soll eine Annäerung der Lösung u (zu bestimmten Zeitpunkten t [t 0, t 0 + T ]) einer Anfangswertaufgabe u(t) = f(t, u(t)) u(t 0 ) = u 0 mit gegebenen f C([t 0, t 0 + T ] R M, R M ), t 0 R, T > 0, u 0 R M.

5 (b) k = f(t n, u n ) k = f(t n + τ 3, un + τ 3 k ) k 3 = f(t n + τ 3, un τ 3 k + k ) k 4 = f(t n + τ, u n + τk τk + τk 3 ) u n = u n + τ 8 (k + 3k + 3k 3 + k 4 ) (c) Das explizite Euler-Verfaren lautet u n = u n + τf(t n, u n ).

r 11 r 12 r 13 0 r 22 r r 33 l ik r kj die Gleichungen: k= (II) 2 (I) = 3 2 1

r 11 r 12 r 13 0 r 22 r r 33 l ik r kj die Gleichungen: k= (II) 2 (I) = 3 2 1 Tecnisce Universität Berlin Wintersemester 004/005 Fakultät II; Institut für Matematik Prof. Dr. G. Bärwolff/C. Mense.0.005 Probeklausur zur LV Numerik für Informatiker en Aufgabe a Berecnen Sie die LU-Zerlegung

Mehr

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf.

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf. IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H11 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei

Mehr

Numerik I. Gewöhnliche Differentialgleichungen. Prof.Dr.G.Wittum. Teil I:

Numerik I. Gewöhnliche Differentialgleichungen. Prof.Dr.G.Wittum. Teil I: Numerik I Prof.Dr.G.Wittum Teil I: Gewönlice Differentialgleicungen Sommersemester 2005 INHALTSVERZEICHNIS 1 Inaltsverzeicnis 1 Numerik gewönlicer Differentialgleicungen 2 1.1 Einleitung....................................

Mehr

Diplom VP Numerik 27. August 2007

Diplom VP Numerik 27. August 2007 Diplom VP Numerik 27. August 2007 Multiple-Choice-Test 30 Punkte Bei jeder MC-Aufgabe ist mindestens eine Aussage korrekt. Wird dennoch bei einer MC-Aufgabe keine einzige Aussage angekreuzt, gilt diese

Mehr

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b.

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b. NumaMB F14 Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Bewertung: Vier Fragen richtig beantwortet

Mehr

eps für alle x D. 4. Die Zahl 256 ist in M(2, 4, 6, 6) exakt darstellbar.

eps für alle x D. 4. Die Zahl 256 ist in M(2, 4, 6, 6) exakt darstellbar. IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H13 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei

Mehr

Numerische Differenziation

Numerische Differenziation In vielen Anwendungen ist es notwendig, Funktionen näerungsweise mit Hilfe eines numeriscen Verfarens zu differenzieren: Die analytisce Berecnung der Ableitung ist zum Beispiel unmöglic, wenn die zu differenzierende

Mehr

D-MAVT NUMERISCHE MATHEMATIK FS 14 K. Nipp, A. Hiltebrand Lösung vom Test 2

D-MAVT NUMERISCHE MATHEMATIK FS 14 K. Nipp, A. Hiltebrand Lösung vom Test 2 D-MAVT NUMERISCHE MATHEMATIK FS 4 K Nipp, A Hiltebrand Lösung vom Test Sei A ( 3 3 ) a) Bestimmen Sie κ(a), die Kondition von A (in der -Norm): κ(a) b) Berechnen Sie den Spektralradius von A: ρ(a) 4 c)

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen IGPM RWTH Aachen Institut für Geometrie und Praktische Mathematik Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen

Mehr

Klassische Polynom Interpolation.

Klassische Polynom Interpolation. Klassische Polynom Interpolation. Bestimme ein Polynom (höchstens) n ten Grades p n (x) = a 0 + a 1 x + a 2 x 2 +... + a n x n, das die gegebenen Daten interpoliert, d.h. p n (x i ) = f i, 0 i n. Erster

Mehr

19. Januar Universität Erlangen-Nürnberg Department Mathematik PD Dr. Markus Bause. . Danach liefert die Gauss-Elinination. .

19. Januar Universität Erlangen-Nürnberg Department Mathematik PD Dr. Markus Bause. . Danach liefert die Gauss-Elinination. . Universität Erlangen-Nürnberg Department Mathematik PD Dr Markus Bause Numerik I 9 Januar A Gegeben sei die Matrix A = a Führen Sie eine Zeilenskalierung der Matrix durch Klausur b Bestimmen Sie mit Hilfe

Mehr

Diplom VP Numerik 28. August 2006

Diplom VP Numerik 28. August 2006 Diplom VP Numerik 8. August 6 Multiple-Choice-Test Punkte) Bei jeder MC-Aufgabe ist mindestens eine Aussage korrekt. Wird dennoch bei einer MC-Aufgabe keine einzige Aussage angekreuzt, gilt diese Aufgabe

Mehr

Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen

Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen Wintersemester 2012/201 Zwischentest Teil 1: 1. Was bedeuten die Bezeichnungen O(h) und o(h)? (Definition) (siehe Skript!)

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 0 0090 Aufgabe Punkte: Betrachten Sie das lineare Gleichungssystem Ax = b mit A = 0 und b

Mehr

Klausur Numerische Mathematik (für Elektrotechniker), 24. Februar 2016

Klausur Numerische Mathematik (für Elektrotechniker), 24. Februar 2016 Verständnisfragen-Teil ( Punkte) Jeder der Verständnisfragenblöcke besteht aus Verständnisfragen. Werden alle Fragen in einem Verständnisfragenblock richtig beantwortet, so gibt es für diesen Block Punkte.

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Verständnisfragen-Teil Institut für Geometrie und Praktische Mathematik (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben).

Mehr

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2.

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2. MATHEMATISCHES INSTITUT PROF. DR. ACHIM SCHÄDLE 9.8.7 KLAUSUR zur Numerik I mit Lösungen Aufgabe : ( Punkte) [ wahr falsch ]. Die maximale Ordnung einer s-stufigen Quadraturformel ist s. [ ]. Der Clenshaw

Mehr

Lösung der Diplom-Vorprüfung Höhere Mathematik III/IV 6.8.005 1 Aufgabe N1 Gegeben seien A = 5-10 -5-10 8-10 -5-10 13 R 3 3 und b = a) Überprüfen Sie, ob die Matrix A positiv definit ist. b) Bestimmen

Mehr

Vorlesung für Schüler

Vorlesung für Schüler Universität Siegen Facbereic Matematik Vorlesung für Scüler 1.12.2 Emmy-Noeter-Campus Prof. Dr. H. J. Reinardt Computerlösungen dynamiscer Probleme Zusammenfassung Es werden zunäcst einface dynamisce Probleme

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Institut für Geometrie und Praktische Mathematik Multiple-Choice-Test NumaMB F08 (30 Punkte) Bei jeder MC-Aufgabe ist mindestens eine Aussage korrekt. Wird dennoch bei einer MC-Aufgabe keine

Mehr

Musterlösungen zur Leistungsnachweisklausur vom Studiengang Informatik, Ingenieurinformatik, Lehramt

Musterlösungen zur Leistungsnachweisklausur vom Studiengang Informatik, Ingenieurinformatik, Lehramt TU ILMENAU Institut für Mathematik Numerische Mathematik PD Dr. W. Neundorf Musterlösungen zur Leistungsnachweisklausur vom.0.006 Studiengang Informatik, Ingenieurinformatik, Lehramt 1. Lineare Algebra

Mehr

Numerisches Programmieren (IN0019) 9. Symmetrisches Eigenwertproblem. Eigenwert-Problem. Verallgemeinerte Fourier-Reihe

Numerisches Programmieren (IN0019) 9. Symmetrisches Eigenwertproblem. Eigenwert-Problem. Verallgemeinerte Fourier-Reihe Numerisces Programmieren (IN009) Frank R. Scmidt 9. Symmetrisces Eigenwertproblem Winter Semester 06/07 Verallgemeinerte Fourier-Reie Das Berecnen von Eigenwerten wird bei viele praktisce Anwendungen vorausgesetzt,

Mehr

Mathematik und Nanotechnologie: Warum werden Computer immer kleiner?

Mathematik und Nanotechnologie: Warum werden Computer immer kleiner? 1 Matematik und Nanotecnologie: Warum werden Computer immer kleiner? Ansgar Jüngel Institut für Analysis und Scientific Computing www.juengel.at.vu Einleitung: vom Computer zum Halbleiterbauteil Herleitung

Mehr

Begleitmaterial zur Vorlesung Numerik II

Begleitmaterial zur Vorlesung Numerik II Begleitmaterial zur Vorlesung Numerik II Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik II 1 / 35 Inhalte der Numerik

Mehr

Explizite, eingebettete und implizite RK-Verfahren

Explizite, eingebettete und implizite RK-Verfahren Kutta-Teorie: Explizite, eingebettete und implizite RK-Verfaren Lukas Klic Kutta-Teorie: : Explizite, eingebettete und implizite RK- Verfaren Lukas Klic Seite: Gliederung -Verfaren - Explizite Verfaren

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Verständnisfragen-Teil Institut für Geometrie und Praktische Mathematik 4 Punkte Es gibt zu jeder der Aufgaben vier Teilaufgaben. Diese sind mit bzw. zu kennzeichnen hinschreiben. Es müssen

Mehr

Klausur Numerische Mathematik (für Elektrotechniker), Samstag, 19. August 2017

Klausur Numerische Mathematik (für Elektrotechniker), Samstag, 19. August 2017 Verständnisfragen-Teil (5 Punkte) Jeder der 5 Verständnisfragenblöcke besteht aus 5 Verständnisfragen. Werden alle 5 Fragen in einem Verständnisfragenblock richtig beantwortet, so gibt es für diesen Block

Mehr

2. Geben Sie für das Jacobi-Verfahren eine scharfe a-priori Abschätzung für den Fehler. x (10) x p

2. Geben Sie für das Jacobi-Verfahren eine scharfe a-priori Abschätzung für den Fehler. x (10) x p Wiederholungsaufgaben Algorithmische Mathematik Sommersemester Prof. Dr. Beuchler Markus Burkow Übungsaufgaben Aufgabe. (Jacobi-Verfahren) Gegeben sei das lineare Gleichungssystem Ax b = für A =, b = 3.

Mehr

Nachklausur am Donnerstag, den 7. August 2008

Nachklausur am Donnerstag, den 7. August 2008 Nachklausur zur Vorlesung Numerische Mathematik (V2E2) Sommersemester 2008 Prof. Dr. Martin Rumpf Dr. Martin Lenz Dipl.-Math. Nadine Olischläger Nachklausur am Donnerstag, den 7. August 2008 Bearbeitungszeit:

Mehr

6. Polynom-Interpolation

6. Polynom-Interpolation 6. Polynom-Interpolation 1 6.1. Klassische Polynom-Interpolation 2 6.2. Lösung mit Hilfe Lagrange scher Basisfunktionen 3 6.3. Lösung mit Hilfe Newton scher Basisfunktionen 4 6.4. Fehlerabschätzung für

Mehr

Geometrische Mehrgitterverfahren. Annabell Schlüter

Geometrische Mehrgitterverfahren. Annabell Schlüter Geometrisce Mergitterverfaren Annabell Sclüter 13.07.2010 Inaltsverzeicnis 1 Einleitung 2 2 Das Mergitterverfaren für lineare Probleme 3 2.1 Dämpfungseigenscaften des Jacobiverfarens............ 3 2.2

Mehr

Geometrisch ergibt sich deren Graph als Schnitt von G mit der senkrechten Ebene y = b bzw. x = a:

Geometrisch ergibt sich deren Graph als Schnitt von G mit der senkrechten Ebene y = b bzw. x = a: Fläcen im Raum Grap und Scnittkurven Im ganzen Artikel bezeicnet D eine Teilmenge des R 2 und eine skalarwertige Funktion in zwei Veränderlicen. Der Grap f : D R 2 R : (x, y) z = f(x, y) G = { (x, y, z)

Mehr

5. Übungsblatt zur Analysis II

5. Übungsblatt zur Analysis II Facbereic Matematik Prof. Dr. R. Farwig C. Komo J. Prasiswa R. Sculz SS 009 8.05.009 5. Übungsblatt zur Analysis II Gruppenübung Aufgabe G (Differenzierbarkeit Gegeben sei die Funktion f : R R mit f(x,

Mehr

Lösung der Diplom-Vorprüfung Höhere Mathematik III/IV Aufgabe N1 (LR-Zerlegung mit Pivotisierung) Gegeben seien R 3.

Lösung der Diplom-Vorprüfung Höhere Mathematik III/IV Aufgabe N1 (LR-Zerlegung mit Pivotisierung) Gegeben seien R 3. Lösung der Diplom-Vorprüfung Höhere Mathematik III/IV 7.7.6 Aufgabe N (LR-Zerlegung mit Pivotisierung) Gegeben seien 6 8 A = 8 6 R und b = 6 R. a) Berechnen Sie die LR-Zerlegung von A mit Spaltenpivotisierung.

Mehr

Klausur,,Algorithmische Mathematik II

Klausur,,Algorithmische Mathematik II Institut für angewandte Mathematik Sommersemester 017 Andreas Eberle, Matthias Erbar / Behrend Heeren Klausur,,Algorithmische Mathematik II Musterlösung 1 (Unabhängige Zufallsvariablen) a) Wir bezeichnen

Mehr

D-ITET, D-MATL. Prüfung Numerische Methoden, Sommer 2012 Dr. Lars Kielhorn

D-ITET, D-MATL. Prüfung Numerische Methoden, Sommer 2012 Dr. Lars Kielhorn Name: Wichtige Hinweise D-ITET, D-MATL Prüfung Numerische Methoden, Sommer 2012 Dr. Lars Kielhorn Prüfungsdauer: 90 Minuten. Nur begründete Resultate werden bewertet. Zugelassene Hilfsmittel: 10 A4-Seiten

Mehr

(d) das zu Grunde liegende Problem gut konditioniert ist.

(d) das zu Grunde liegende Problem gut konditioniert ist. Aufgabe 0: (6 Punkte) Bitte kreuzen Sie die richtige Lösung an. Es ist jeweils genau eine Antwort korrekt. Für jede richtige Antwort erhalten Sie einen Punkt, für jede falsche Antwort wird Ihnen ein Punkt

Mehr

Einführung in die numerische Mathematik

Einführung in die numerische Mathematik Prof. Dr. M. Günther K. Gausling, M.Sc. C. Hendricks, M.Sc. Sommersemester 214 Bergische Universität Wuppertal Fachbereich C Mathematik und Naturwissenschaften Angewandte Mathematik / Numerische Analysis

Mehr

2 Ein Beispiel und der Haken an der Sache

2 Ein Beispiel und der Haken an der Sache Numerik I. Version: 9.02.08 2 Ein Beispiel und der Haken an der Sace In lineare Algebra I-II wurde gezeigt, wie durc das Gaußsce Verfaren lineare Gleicungssysteme gelöst werden. Das folgende einface Beispiel

Mehr

2. ELLIPTISCHE GLEICHUNGEN 57

2. ELLIPTISCHE GLEICHUNGEN 57 2 ELLIPTISCHE GLEICHUNGEN 57 2 Finite Differenzen für elliptisce Gleicungen Im Gegensatz zu yperboliscen Gleicungen aben elliptisce Gleicungen einen Glättungseffekt, d im Allgemeinen besitzen solce Gleicungen

Mehr

ZWEITE KLAUSUR zur Numerik I mit Lösungen. Bitte folgende Angaben ergänzen und DEUTLICH LESBAR in Druckbuchstaben schreiben:

ZWEITE KLAUSUR zur Numerik I mit Lösungen. Bitte folgende Angaben ergänzen und DEUTLICH LESBAR in Druckbuchstaben schreiben: MATHEMATISCHES INSTITUT PROF. DR. ACHIM SCHÄDLE FELIX LIEDER DR. GEORG JANSING.9.7 ZWEITE KLAUSUR zur Numerik I mit Lösungen Bitte folgende Angaben ergänzen und DEUTLICH LESBAR in Druckbuchstaben schreiben:

Mehr

MODULPRÜFUNG MODUL MA 1302 Einführung in die Numerik

MODULPRÜFUNG MODUL MA 1302 Einführung in die Numerik ................ Note Name Vorname 1 I II Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 Obige Angaben sind richtig: Unterschrift der Kandidatin/des Kandidaten 3 TECHNISCHE UNIVERSITÄT

Mehr

Aufgabe 1. Berechnen Sie die absolute und die relative Kondition des Problems x f(x) für die Abbildung. x = x 2 e x 1.

Aufgabe 1. Berechnen Sie die absolute und die relative Kondition des Problems x f(x) für die Abbildung. x = x 2 e x 1. Name: Matrikel-Nr.: 1 Aufgabe 1. Berechnen Sie die absolute und die relative Kondition des Problems x f(x) für die Abbildung R 3 R 2, x 1 f : x 1 + e x2 2 sin(x3 ) x = x 2 e x 1 (1 + x 2 1 + x, 2x 3 )

Mehr

Zuname: Vorname: KennNr: Matr.Nr: PRÜFUNG AUS MATHEMATIK 3. 1)(8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation.

Zuname: Vorname: KennNr: Matr.Nr: PRÜFUNG AUS MATHEMATIK 3. 1)(8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation. (8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation. y 7y + 10y = sin(2x), y(0) = 1, y (0) = 3. x ( ) Bemerkung: Für festes a gilt L(e ax ) = 1 und L sin(ax) = arctan a. s a x s Die auftretenden

Mehr

5 Interpolation und Approximation

5 Interpolation und Approximation 5 Interpolation und Approximation Problemstellung: Es soll eine Funktion f(x) approximiert werden, von der die Funktionswerte nur an diskreten Stellen bekannt sind. 5. Das Interpolationspolynom y y = P(x)

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 2016/17

Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 2016/17 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 6/7 837 Aufgabe Punkte): Gegeben sei das lineare Gleichungssystem Ax = b mit A = 6 3 und

Mehr

H.J. Oberle Analysis II SoSe Interpolation

H.J. Oberle Analysis II SoSe Interpolation HJ Oberle Analysis II SoSe 2012 7 Interpolation 71 Allgemeine Problemstellung Interpolation ist die Kunst, zwischen den Zeilen einer Tabelle zu lesen (Rutishauser) Von f : R R seien Funktionswerte (x j,

Mehr

Funktionentheorie A. K. Hulek

Funktionentheorie A. K. Hulek Funktionenteorie A K. Hulek 1 Holomorpe Funktionen Die wictigsten Objekte dieser Vorlesung sind die olomorpen Funktionen. Es sei U C offen, f : U C eine Abbildung und z 0 U ein Punkt. Definition (i Die

Mehr

Diplom VP Informatik / Numerik 2. September 2002

Diplom VP Informatik / Numerik 2. September 2002 Diplom VP Informatik / Numerik. September 00 Aufgabe Gegeben sei das lineare Gleichungssystem A x = b mit 0 4 0 0 0 0 A = 4 0 0 0 0 0 0 0 0 und b = 4 4 8 5. Punkte a Berechnen Sie die Cholesky Zerlegung

Mehr

Ferienkurs Theoretische Mechanik SS 2011

Ferienkurs Theoretische Mechanik SS 2011 Ferienkurs Teoretisce Mecanik SS Lösungen Freitag Aufgabe : Rotation eines Quaders um die Raumdiagonale Die Hauptacsen verlaufen durc den Scwerpunkt des Quaders parallel zu den Kanten. Die Kante der Länge

Mehr

Name: Matr.-Nr.: 2. Aufgabe 1. Gegeben sei das folgende lineare Gleichungssystem: b a 2 3a 1

Name: Matr.-Nr.: 2. Aufgabe 1. Gegeben sei das folgende lineare Gleichungssystem: b a 2 3a 1 Name: Matr.-Nr.: 2 Aufgabe 1. Gegeben sei das folgende lineare Gleichungssystem: 1 1 0 2 b 1 1 2 4 1 1 4 6 x = 1 1. 2 2 2a 2 3a 1 (a) Bringen Sie das lineare Gleichungssystem auf Treppenform. (b) Für welche

Mehr

1 2 x x x x x x2 + 83

1 2 x x x x x x2 + 83 Polynominterpolation Aufgabe 1 Gegeben sei die Wertetabelle i 0 1 2 3 x i 0 1 2 4 f i 3 1 2 7 a) Bestimmen Sie das Interpolationspolynom von Lagrange durch die obigen Wertepaare. b) Interpolieren Sie die

Mehr

Inhaltsverzeichnis. Kapitel 1: Rechnen mit Zahlen. Kapitel 2: Umformen von Ausdrücken. Kapitel 3: Gleichungen, Ungleichungen, Gleichungssysteme

Inhaltsverzeichnis. Kapitel 1: Rechnen mit Zahlen. Kapitel 2: Umformen von Ausdrücken. Kapitel 3: Gleichungen, Ungleichungen, Gleichungssysteme Kapitel 1: Rechnen mit Zahlen 1.1 Rechnen mit reellen Zahlen 1.2 Berechnen von Summen und Produkten 1.3 Primfaktorzerlegung 1.4 Größter gemeinsamer Teiler 1.5 Kleinstes gemeinsames Vielfaches 1.6 n-te

Mehr

VF-3: Gegeben seien die Daten f(x 0 ), f(x 1 ),..., f(x n ) mit x 0,..., x n paarweise verschiedenen und

VF-3: Gegeben seien die Daten f(x 0 ), f(x 1 ),..., f(x n ) mit x 0,..., x n paarweise verschiedenen und IGPM RWTH Aachen Verständnisfragen-Teil NumaMB F10 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Aussagen Diese sind mit wahr bzw falsch zu kennzeichnen (hinschreiben) Es müssen alle Fragen mit wahr

Mehr

Begleitmaterial zur Vorlesung Numerik I

Begleitmaterial zur Vorlesung Numerik I Begleitmaterial zur Vorlesung Numerik I Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik I 1 / 49 Inhalte der Numerik

Mehr

(c) Gegeben sei der zweidimensionale Raum L mit den Basisfunktionen. [ φ i, φ j ] 3 i,j=1 =

(c) Gegeben sei der zweidimensionale Raum L mit den Basisfunktionen. [ φ i, φ j ] 3 i,j=1 = 1. (a) i. Wann besitzt A R n n eine eindeutige LR-Zerlegung mit R invertierbar? ii. Definieren Sie die Konditionszahl κ(a) einer Matrix A bzgl. einer Norm.! iii. Welche Eigenschaften benötigt eine Matrix

Mehr

Das Matrizenexponential

Das Matrizenexponential Das Matrizenexponential Tobias Fleckenstein 18 Mai 215 Das Matrizenexponential Seminar im Sommersemester 215 HCM Bonn Einleitung Bei der Untersucung von Differentialgleicung kommt man ser scnell in die

Mehr

Klausur zur Vordiplom-Prüfung

Klausur zur Vordiplom-Prüfung Technische Universität Hamburg-Harburg SS 25 Arbeitsbereich Mathematik Dr. Jens-Peter M. Zemke Klausur zur Vordiplom-Prüfung Numerische Verfahren 22. Juli 25 Sie haben 9 Minuten Zeit zum Bearbeiten der

Mehr

8 Interpolation. 8.1 Problemstellung. Gegeben: Diskrete Werte einer Funktion f : R R an n + 1 Stützstellen. x 0 < x 1 <... < x n.

8 Interpolation. 8.1 Problemstellung. Gegeben: Diskrete Werte einer Funktion f : R R an n + 1 Stützstellen. x 0 < x 1 <... < x n. 8 Interpolation 81 Problemstellung Gegeben: Diskrete Werte einer Funktion f : R R an n + 1 Stützstellen x 0 < x 1 < < x n Eingabedaten: (x 0, f 0 ),(x 1, f 1 ),,(x n, f n ) Gegebene Daten (x j, f j ) Analysis

Mehr

Finite Elemente. Dr. S.-J. Kimmerle Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Wintertrimester 2015

Finite Elemente. Dr. S.-J. Kimmerle Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Wintertrimester 2015 Dr. S.-J. Kimmerle Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Wintertrimester 5 Aufgabe 8 (Speichertechniken) Finite Elemente Übung 5 a) Stellen Sie die Matrix

Mehr

Modulprüfung Numerische Mathematik 1

Modulprüfung Numerische Mathematik 1 Prof. Dr. Klaus Höllig 18. März 2011 Modulprüfung Numerische Mathematik 1 Lösungen Aufgabe 1 Geben Sie (ohne Beweis an, welche der folgenden Aussagen richtig und welche falsch sind. 1. Die Trapezregel

Mehr

Ferienkurs Numerik Lösungsskizze. 1 Iterative Verfahren für lineare Gleichungssysteme

Ferienkurs Numerik Lösungsskizze. 1 Iterative Verfahren für lineare Gleichungssysteme Technische Universität München SoSe 1 Zentrum Mathematik Ferienkurse Dipl.-Math. Konrad Waldherr Ferienkurs Numerik Lösungsskizze 1 Iterative Verfahren für lineare Gleichungssysteme 1. Wir erhalten folgende

Mehr

Analysis: Ableitung, Änderungsrate,Tangente 1 Analysis Ableitung, Änderungsrate, Tangente Teil 1 Gymnasium Klasse 10

Analysis: Ableitung, Änderungsrate,Tangente 1 Analysis Ableitung, Änderungsrate, Tangente Teil 1 Gymnasium Klasse 10 www.mate-aufgaben.com Analysis: Ableitung, Änderungsrate,Tangente Analysis Ableitung, Änderungsrate, Tangente Teil Gymnasium Klasse 0 Alexander Scwarz www.mate-aufgaben.com April 0 www.mate-aufgaben.com

Mehr

Einführung in die numerische Mathematik

Einführung in die numerische Mathematik Prof. Dr. M. Günther K. Gausling, M.Sc. C. Hendricks, M.Sc. Sommersemester 014 Bergische Universität Wuppertal Fachbereich C Mathematik und Naturwissenschaften Angewandte Mathematik / Numerische Analysis

Mehr

NUMERIK 1. Sommersemester 2016

NUMERIK 1. Sommersemester 2016 NUMERIK 1 Soerseester 2016 KLAUSUR LÖSUNGSVORSCHLAG Aufgabe 1 (Multiple Choice) (ca. 20 Minuten, 8 Punkte) Kreuzen Sie korrekte Aussagen an. Es können ehrere Antworten richtig sein, indestens eine ist

Mehr

6 Polynominterpolation

6 Polynominterpolation Vorlesungsskript HM-Numerik (SS 2014): Kapitel 6 Version: 1 Juli 2014 6 Polynominterpolation Gegeben: Wertepaare { (x i,f i ) R 2 i = 0,,n } Gesucht: Einfache Funktion g : R R mit g(x i ) = f i i {0,1,,n}

Mehr

Spline-Interpolation

Spline-Interpolation Spline-Interpolation Tim Schmölzer 20 November 2009 Tim Schmölzer Spline-Interpolation 20 November 2009 1 / 38 Übersicht 1 Vorbemerkungen 2 Lösbarkeit des Interpolationsproblems 3 Stabilität der Interpolation

Mehr

Mathematik GK 11 m3, AB 06 Klausurvorbereitung Differentialq. Lsg x 3 9x 4 2x 2 x 4. 4x 3 9x 4 : 2x 2 x 4 =2x 1 x 3 2x 2 8x

Mathematik GK 11 m3, AB 06 Klausurvorbereitung Differentialq. Lsg x 3 9x 4 2x 2 x 4. 4x 3 9x 4 : 2x 2 x 4 =2x 1 x 3 2x 2 8x Aufgabe : Berecne a) 4x 5x 5x 4x b) 4x 9x 4 x x 4 4x 5x 5x : 4x x x 4x x 4x 5x 4x x 4x 4x 4x 9x 4 : x x 4 x x x 8x x x 4 x x 4 c) 4x 4 x 8x 4x 4 x 4x 4 x 4 x 4x x : x x x x 4 4x 4x x x x x Aufgabe : Bestimme

Mehr

Name: Matr.-Nr.: 2. Aufgabe 1. Gegeben sei die Matrix

Name: Matr.-Nr.: 2. Aufgabe 1. Gegeben sei die Matrix Name: Matr.-Nr.: 2 Aufgabe 1. Gegeben sei die Matrix 1 1 1 A = 3 3 3 2 2 2 (a) Bestimmen Sie Rang(A), Kern(A) und Bild(A). Ist A invertierbar? Geben Sie zwei verschiedene rechte Seiten b 1, b 2 an, so

Mehr

Wiederholung von Linearer Algebra und Differentialrechnung im R n

Wiederholung von Linearer Algebra und Differentialrechnung im R n Wiederholung von Linearer Algebra und Differentialrechnung im R n 1 Lineare Algebra 11 Matrizen Notation: Vektor x R n : x = x 1 x n = (x i ) n i=1, mit den Komponenten x i, i {1,, n} zugehörige Indexmenge:

Mehr

a) Die Householder-Transformation, welche den ersten Spaltenvektor a 1 = der Matrix A auf , a 1 αe A = QR, A k =: Q k R k, A k+1 := R k Q k.

a) Die Householder-Transformation, welche den ersten Spaltenvektor a 1 = der Matrix A auf , a 1 αe A = QR, A k =: Q k R k, A k+1 := R k Q k. Karlsruher Institut für Technologie (KIT) Institut für Analysis Prof. Dr. W. Reichel Sommersemester 00 7.07.00 MODULPRÜFUNG Numerische Methoden (Höhere Mathematik IV für die Fachrichtung Meteorologie bzw.

Mehr

Inhaltsverzeichnis Kapitel 1: Rechnen mit Zahlen... 1 Kapitel 2: Umformen von Ausdrücken... 10

Inhaltsverzeichnis Kapitel 1: Rechnen mit Zahlen... 1 Kapitel 2: Umformen von Ausdrücken... 10 Kapitel 1: Rechnen mit Zahlen...1 1.1 Rechnen mit reellen Zahlen...2 1.2 Berechnen von Summen und Produkten...3 1.3 Primfaktorzerlegung...4 1.4 Größter gemeinsamer Teiler...4 1.5 Kleinstes gemeinsames

Mehr

8 Polynominterpolation

8 Polynominterpolation 8 Polynominterpolation Interpolations-Aufgabe: Von einer glatten Kurve seien nur lich viele Punktewerte gegeben. Wähle einen lichdimensionalen Funktionenraum. Konstruiere nun eine Kurve in diesem Funktionenraum

Mehr

A 1 A 2 A 3 A 4 A 5 A 6 A 7

A 1 A 2 A 3 A 4 A 5 A 6 A 7 Institut für Geometrie und Praktische Mathematik Numerisches Rechnen für Informatiker WS 7/8 Prof. Dr. H. Esser J. Grande, Dr. M. Larin Klausur Numerisches Rechnen für Informatiker Hilfsmittel: keine (außer

Mehr

2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren

2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren 2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren Problem (P2): Löse Ax = b, A R n und b R. 2.1 Satz: Die folgenden Aussagen sind äquivalent: (i) Ax = b ist für jedes b eindeutig lösbar;

Mehr

Numerische Simulation von Differential-Gleichungen der Himmelsmechanik

Numerische Simulation von Differential-Gleichungen der Himmelsmechanik Numerisce Simulation von Differential-Gleicungen der Himmelsmecanik Teilnemer: Max Dubiel (Andreas-Oberscule) Frank Essenberger (Herder-Oberscule) Constantin Krüger (Andreas-Oberscule) Gabriel Preuß (Heinric-Hertz-Oberscule)

Mehr

Klausur zur Vordiplom-Prüfung

Klausur zur Vordiplom-Prüfung Technische Universität Hamburg-Harburg SS Arbeitsbereich Mathematik Dr. Jens-Peter M. Zemke Klausur zur Vordiplom-Prüfung Numerische Verfahren. Juli Sie haben Minuten Zeit zum Bearbeiten der Klausur. Bitte

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Tecnisce Universität Müncen SoSe 2013 Institut für Informatik Prof. Dr. Tomas Huckle Dipl.-Inf. Cristop Riesinger Dipl.-Mat. Jürgen Bräckle Numerisces Programmieren, Übungen 2. Übungsblatt: Kondition,

Mehr

Lösung Semesterendprüfung

Lösung Semesterendprüfung MNUM Mathematik: Numerische Methoden Herbstsemester 17 Dr Christoph Kirsch ZHAW Winterthur Aufgabe 1 : Lösung Semesterendprüfung Wir schreiben zuerst die Gleichungen f(x i ; a, a 1, a y i, i 1,,, 1, als

Mehr

2 Lineare Gleichungssysteme

2 Lineare Gleichungssysteme Vorlesungsskript HM-Numerik (SS 4): Kapitel Version: 9 Mai 4 Lineare Gleichungssysteme Gegeben: A R n n mit det(a) b R n Gesucht: x R n mit Ax = b Zeilenäquilibrierung Möchten zunächst die Kondition des

Mehr

2 a 6. a 4 a Wir führen nun den Gauÿalgorithmus durch: 2 a a 2 4a 2 4a a a 2 2a 0 2 a

2 a 6. a 4 a Wir führen nun den Gauÿalgorithmus durch: 2 a a 2 4a 2 4a a a 2 2a 0 2 a Aufgabe 8 Punkte). Bestimmen Sie die Lösungsmenge in R in Abhängigkeit von a R) des folgenden linearen Gleichungssystem: x + ax + 6x = 4, ax + 4x + ax =, x + 4x =. Lösung. Wir schreiben das lineare Gleichungssystem

Mehr

Übungsblatt 2 Musterlösung

Übungsblatt 2 Musterlösung MSE SoSe Übungsblatt Musterlösung Lösung 4 Einfluß von Randbedingungen) a) Durc Integration erälten wir: u x) = ux) = x x fy)dy +c = x π sinπz)+c b) Seien nun u) = u) = Daraus folgt: cosπy)dy +c = π sinπx)+c.

Mehr

Beispiele. zum Tutorium Numerisches Rechnen und Lineare Algebra WS 2016/2017

Beispiele. zum Tutorium Numerisches Rechnen und Lineare Algebra WS 2016/2017 Beispiele zum Tutorium Numerisches Rechnen und Lineare Algebra WS 6/7 Zur positiven Beurteilung der LV ist es notwendig, dass aus jedem der 9 Abschnitte (Lineare Gleichungssysteme, Determinanten, Vektorräume,

Mehr

Interpolation, numerische Integration, Eigenwerte

Interpolation, numerische Integration, Eigenwerte Neunte Vorlesung, 29. Mai 2008, Inhalt Interpolation, numerische Integration, Eigenwerte Polynomiale Interpolation (Lagrange, Newton, Neville) Splines und weitere Interpolationsverfahren numerische Integration

Mehr

Die Fourier-Transformation

Die Fourier-Transformation Die Fourier-ransformation Im Vorerigem wurde sic intensiv mit der Fourier-Reie zur Approximation periodiscer Funktionen bescäftigt. In diesem Kapitel wird die kontinuierlice Erweiterung dieser Gedanken

Mehr

ÜBUNGSAUFGABEN ZUR NUMERIK 1

ÜBUNGSAUFGABEN ZUR NUMERIK 1 ÜBUNGSAUFGABEN ZUR NUMERIK 1 MARTIN EHLER, WS 2015/16 Teil 1. Matlab,... Aufgabe 1. Arbeiten Sie die Matlab Einführung von Waltraud Huyer durch, die unter dem Link http://www.mat.univie.ac.at/ huyer/matlab.pdf

Mehr

Kapitel 4: Interpolation Sei U eine Klasse von einfach strukturierten Funktionen, z.b.

Kapitel 4: Interpolation Sei U eine Klasse von einfach strukturierten Funktionen, z.b. Kapitel 4: Interpolation Sei U eine Klasse von einfach strukturierten Funktionen, z.b. - Polynome, - rationale Funktionen, - trigonometrische Polynome, - Splines. Interpolationsproblem 4: Sei f : [a,b]

Mehr

TU Dresden Fakultät Mathematik Institut für Numerische Mathematik 1

TU Dresden Fakultät Mathematik Institut für Numerische Mathematik 1 TU Dresden Fakultät Matematik Institut für Numerisce Matematik Lösung zur Aufgabe 4 (a) des 9. Übungsblattes größtmöglicer Definitionsbereic: Die Funktion ist überall definiert, außer an der Stelle = 3

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SoSe 20 Institut für Informatik Prof Dr Thomas Huckle Dipl-Inf Christoph Riesinger Dipl-Math Jürgen Bräckle Numerisches Programmieren, Übungen Musterlösung 6 Übungsblatt:

Mehr

Öffnen Sie den Klausurbogen erst nach Aufforderung! Mathematische Grundlagen II (CES) SS 2016 Klausur

Öffnen Sie den Klausurbogen erst nach Aufforderung! Mathematische Grundlagen II (CES) SS 2016 Klausur Prof. Dr. Benjamin Stamm Prof. Dr. Martin Grepl Öffnen Sie den Klausurbogen erst nach Aufforderung! Zugelassene Hilfsmittel: Mathematische Grundlagen II (CES) SS 2016 Klausur 29.07.2016 Dokumentenechtes

Mehr

Vorkurs Mathematik Herbst Skript Teil VI

Vorkurs Mathematik Herbst Skript Teil VI Vorkurs Matematik Herbst 2009 M. Carl E. Bönecke Skript Teil VI. Stetigkeit Definition. Eine Funktion f : R R eißt stetig im Punkt p, wenn für alle konvergente Folgen x : N R, n x n mit gleicen Grenzwert

Mehr

Jgst. 11/I 1.Klausur

Jgst. 11/I 1.Klausur Jgst. /I.Klausur..00 A. Bestimme den Scnittpunkt und den Scnittwinkel der beiden folgenden Geraden: g : x y = 5 : + y = 5x Zunäcst müssen die beiden Geraden auf Normalform gebract werden: x y = 5 y = x

Mehr

Institut für Analysis SS 2014 Prof. Dr. Roland Schnaubelt Dipl.-Math. Leonid Chaichenets. Höhere Mathematik II für die Fachrichtung Physik

Institut für Analysis SS 2014 Prof. Dr. Roland Schnaubelt Dipl.-Math. Leonid Chaichenets. Höhere Mathematik II für die Fachrichtung Physik Institut für Analysis SS 4 Prof. Dr. Roland Scnaubelt 8.7.4 Dipl.-Mat. Leonid Caicenets Höere Matematik II für die Facrictung Pysik Lösungsvorscläge zum 3. Übungsblatt Aufgabe 68: Wir arbeiten den Folgenden

Mehr

Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan :00-14:00 (120 min)

Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan :00-14:00 (120 min) Lehrstuhl für Angewandte Mathematik Montanuniversität Leoben 70 004 Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan. 207 2:00-4:00 (20 min) Name Matrikelnummer Mündliche Prüfung: Bitte markieren

Mehr

Numerik für Ingenieure I Wintersemester 2008

Numerik für Ingenieure I Wintersemester 2008 1 / 32 Numerik für Ingenieure I Wintersemester 2008 J. Michael Fried Lehrstuhl Angewandte Mathematik III 23.1.2009 2 / 32 Wiederholung Stückweise Polynominterpolation Stückweise lineare Interpolierende

Mehr

Numerische Mathematik

Numerische Mathematik Hans Rudolf Schwarz I Norbert Köckler Numerische Mathematik 8., aktualisierte Auflage STUDIUM VIEWEG+, TEUBNER / Iahalt Einleitung 13 1 Fehlertheorie 15 1.1 Fehlerarten 15 1.2 Zahldarstellung 16 1.3 Rundungsfehler

Mehr

Numerische Mathematik

Numerische Mathematik Hans Rudolf Schwarz I Norbert Köckler Numerische Mathematik 8., aktualisierte Auflage STUDIUM 11 VIEWEG+ TEUBNER Inhalt Einleitung 13 1 1.1 1.2 1.3 1.4 1..5 1.6 1.7 2 2.1 2.1.1 2.1.2 2.1.3 2.2 2.2.1 2.2.2

Mehr

Musterlösung Prüfung Numerische Methoden, Sommer 2012 Dr. Lars Kielhorn

Musterlösung Prüfung Numerische Methoden, Sommer 2012 Dr. Lars Kielhorn D-ITET, D-MATL Musterlösung Prüfung umerische Methoden, Sommer 01 Dr. Lars Kielhorn 1. a) z = exp(iϕ) = dz = i exp(iϕ) dϕ = c n [f] = 1 π f(exp(iϕ)) exp( iϕn) dϕ π 0 b) Allgemeine zusammengesetzte Trapezregel

Mehr

3.2 Spline Interpolation

3.2 Spline Interpolation 3.2 Spline Interpolation 3.2 Spline Interpolation Ein wesentlicer Defekt der globalen Interpolation aus dem vorerigen Abscnitt ist, dass die interpolierenden Polynome starke Oszillationen zwiscen den Stützstellen

Mehr