1.2 Einführung der Zahl Dominik Schomas Clemens Blank

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "1.2 Einführung der Zahl Dominik Schomas Clemens Blank"

Transkript

1 1.2 Einführung der Zahl Dominik Schomas Clemens Blank Die Zahl wird über den konstanten Quotienten eingeführt. Der Umfang sowie der Durchmesser werden von den Schülern experimentell gemessen mit und in einer Tabelle an der Tafel eingetragen. Konkrete Umsetzung Die Einführung findet an der Tafel statt, während die eigentliche Aufgabe in Gruppenarbeit bearbeitet wird. An der Tafel führt der Lehrer das Verfahren am Beispiel des Quadrates vor. Dessen Durchmesser ist hierbei wie im Bild definiert: Die Klasse soll hierbei erkennen, dass das Verhältnis konstant ist. Da der Durchmesser eines Quadrates und eines, in das Quadrat passenden, Kreises gleich ist, lässt sich daraus die Vermutung ableiten, dass beim Kreis das Verhältnis auch konstant ist und kleiner als 4 ist 1

2 Arbeitsauftrag Unter einer Zeitvorgabe versuchen die Schüler in Gruppen anhand eines kreisförmigen Gegenstands zu bestimmen. Als Ausrüstung erhält jede Gruppe genügend Schnur sowie einen Zollstock, wobei weitere Hilfsmittel ausdrücklich erlaubt sind. Nach kurzer Erklärung des Arbeitsauftrages suchen die Schüler selbstständig kreisförmige Gegenstände, an denen sie durch die Messung des Umfangs und Durchmessers den Quotienten ausrechnen. Die Ergebnisse werden in einer Tabelle an der Tafel gesammelt. Während des gesamten Vorganges wird noch nicht erwähnt, dass hierdurch berechnet wird Nach dem Zusammentragen der Ergebnisse wird auf das sich abzeichnende Zahlenverhältnis eingegangen. In Hinblick auf die Anzahl der Dezimalstellen, erscheint eine Abkürzung in Form eines Zeichens sinnvoll: wird eingeführt. Zum Abschluss der Übung wird das Ergebnis noch kurz mit dem Quotienten des Quadrates verglichen. Dabei kann man das Ergebnis für den Kreis mit dem Ergebnis für das Quadrat vergleichen. Auch beim Kreis ist das Verhältnis konstant und wie zu erwarten war auch etwas kleiner. Tipps zur Durchführung Um die Motivation noch weiter zu erhöhen kann man Belohnungen (z.b. Gummibärchen) für jede richtige Nachkommastelle von verteilen. Dies verstärkt das Bestreben, möglichst genau und sorgfältig zu arbeiten und Methoden zu entwickeln, welche den Messfehler möglichst gering halten (z.b. größere Gegenstände vermessen oder den Gegenstand mehrfach mit Schnur umwickeln). 2

3 Hintergründe Das Zentrale dieser Einführung ist, dass die Schüler hier selbst die Zahl anhand beliebiger kreisförmiger Gegenstände bestimmen muss. Durch die freie Wahl der Gegenstände wird verdeutlicht, dass nicht von der Größe des Kreises abhängen kann. Es wird ersichtlich, dass diese Zahl im alltäglichen Leben existiert und nicht bloß ein theoretisches, mathematisches Konstrukt ist. Durch einen Ansporn, genau zu messen, werden die Schüler zu sorgfältigem und bewusstem Arbeiten animiert. Dies führt zu einer ersten Auseinandersetzung mit Messfehlern und deren Bedeutung. Diese Überlegungen sind fachübergreifend wertvoll, wie z.b. in den Fächern Physik und Chemie. Messfehler Um ein möglichst gutes Ergebnis für zu bekommen muss man sich über die Messfehler klar werden. Es gibt einige einfache Dinge zu berücksichtigen um den Fehler gering zu halten. Zuerst gilt, dass eine dicke Schnur zu einem ungenauen Ergebnis führt, da die Seite der Schnur, die direkt am Gegenstand anliegt den Umfang korrekt angibt. Legt man die Schnur aber gerade hin und misst mit dem Metermaß die entsprechende Länge, so misst man den Umfang des Kreises mit dem Durchmesser. Aus dieser Gleichung folgt sofort, dass für dünne Schnüre das Ergebnis besser wird. 3

4 Eine weitere und effektivere Methode den Messfehler gering zu halten ist den Fehler, der bei der Messung entsteht zu verringern. Hierbei gibt es zwei Vorgehensweisen. Die erste ist, dass man große Gegenstände vermisst. Dies verringert nicht nur den statistischen Fehler (Ablesefehler), sondern auch den systematischen Fehler (oben beschrieben). In der obigen Formel sieht man dies, da falls d genügend groß ist. Die andere Methode den Ablesefehler zu Verringern ist den Gegenstand mehrfach zu umwickeln. 1.3 Vom Umfang zum Flächeninhalt eines Kreises Claudia Roosen Die Schüler erfahren anhand einer Pizza, wie sich die Formel für den Flächeninhalt eines Kreises aus seinem Umfang herleiten lässt. Konkrete Umsetzung Der Lehrer bestellt vor der Unterrichtsstunde eine Pizza bei einem Lieferdienst, der diese zu einem bestimmten Zeitpunkt in das Klassenzimmer bringt. Nachdem die Schüler gefragt wurden, wer am Schluss ein Stück von der Pizza haben möchte, zerteilt der Lehrer die Pizza in entsprechend viele, gleich große Kreisausschnitte. Diese legt er unter Mithilfe der Schüler so nebeneinander, dass sich eine zur Pizzakreisscheibe flächengleiche Figur ergibt, die einem Rechteck ähnelt. Durch diese Anordnung erkennen die Schüler, dass die Breite des Rechtecks ungefähr dem Radius des Kreises entspricht, sowie die Länge dem halben Kreisumfang. 4

5 Für den Flächeninhalt des Kreises ergibt sich somit die Formel: Hintergründe Pizzalieferung in den Mathematikunterricht Die Grundidee dieser Herleitung zur Berechnung des Flächeninhaltes eines Kreises ist allgemein bekannt. Der didaktische und pädagogische Vorteil dieser Vorgehensweise gegenüber einem gewöhnlichen Tafelbild besteht darin, dass sich das Riechen und Schmecken tief einprägen. Durch das Erlebnis, dass der Lieferdienst die Pizza bis in das Klassenzimmer bringt, wird die Erinnerung an die Herleitung der Formel bei den Schülern vertieft. 5

6 Grenzwertprozess Da die nebeneinander gelegten Pizzastücke nicht direkt ein Rechteck ergeben, wird von den Schülern ein Vorstellungsvermögen gefordert. Wenn die Schüler verstanden haben, dass sich die aus den Pizzastücken zusammengelegte Figur durch Erhöhung der Anzahl der Kreisausschnitte immer mehr einem Rechteck annähert, können sie die Formel für den Flächeninhalt eines Kreises herleiten und haben dabei einen Grenzwertprozess nachvollzogen. 1.4 Berechnung des Kreisbogens und des Flächeninhalts eines Kreisstücks Simon Steiert Ziel ist die Einführung der Berechnung des Kreisbogens und des Flächeninhalts eines Kreisstücks. Voraussetzung für diese Aufgabe ist die Kenntnis über die Berechnung des Umfangs und des Flächeninhalts eines Kreises mit bekanntem Radius. Konkrete Umsetzung Wie in 1.3 fragt der Lehrer die Schüler, wer ein Stück Pizza haben möchte. Anschließend zerschneidet der Lehrer die Pizza in genauso viele Stücke, wie sich Schüler gemeldet haben. Nachdem die Pizza in die entsprechende Anzahl an gleichgroße Stücke zerschnitten ist stellt der Lehrer den Schülern die Frage nach dem Flächeninhalts und der Länge des Kreisbogens eines Pizzastückes. Die Schüler sollen überlegen, welche Daten zur Berechnung der geforderten Größen von Nöten sind. Nachdem die Schüler den Ansatz zur Berechnung gefunden haben (Anzahl der Pizzastücke und Radius) darf sich jeder Schüler ein Stück Pizza mit an den Platz nehmen und soll die Werte berechnen. Das Pizzastück darf erst gegessen werden, wenn der Schüler dem Lehrer die korrekten Ergebnisse mitgeteilt hat. 6

7 Hintergründe Haptische Herleitung Durch die Zerteilung der Pizza in gleich große Stücke soll dem Schüler klar gemacht werden, dass er einen gewissen Anteil vom Ganzen bekommen wird. Mit den Kenntnissen aus dem Bereich der Bruchrechnung wird der Schüler verstehen, dass man den Umfang/Flächeninhalt der ganzen Pizza durch die Anzahl der Pizzastücke teilen muss, um auf den korrekten Wert des Flächeninhalts und die Länge des Kreisbogens eines Pizzastückes zu kommen. Zudem kann der Zusammenhang der Gleichung A= α 360 π r 2 = 1 An z ahl d e r P i z z a st üc k e π r 2 klar gemacht werden. Visuelle und haptische Erfahrung von Größenverhältnissen Durch die Berechnung des Kreisbogens/Flächeninhalts eines konkreten Objektes, das sowohl haptisch, als auch visuell vorliegt, bekommt der Schüler einen Eindruck von den Größenverhältnissen im Kreis. Der Schüler erfährt, wie viel Quadratzentimeter Pizza er zu sich nimmt. Somit bekommt der berechnete Wert des Flächeninhalts des Pizzastückes eine konkrete mengenhafte Bedeutung. 7

8 1.5 Oberfläche eines Kegels Kristina Weber Yannick Sulz Hinter einer scheinbar einfachen Aufgabenstellung verbirgt sich eine Hinführung zur Oberfläche eines Kegels Konkrete Umsetzung Aufgabenstellung Für diese Übung finden sich die Schüler in ihrer Farbgruppen zusammen. Nun stellt der Lehrer den Gruppen den Auftrag aus einem DIN-A4 Blatt einen Kegel zu bauen. Hierfür gibt er den Radius der Kegelgrundfläche mit r = 6cm und die Höhe des Kegels mit h = 7cm vor. Außerdem wird ein Zeitfenster angegeben (von ca. 20 Minuten). Hilfsmittel sind Klebestifte, Scheren und Zirkel. 8

9 Erweiterter Arbeitsauftrag Jede Farbgruppe schreibt anschließend auf ihren Kegel die von ihr errechnete Oberflächengröße des Kegels. Lösungsvorschlag Für die Mantellinie s gilt: Der Kreis mit dem Radius s kann jetzt mit Hilfe des Zirkels gezeichnet werden. Um den Kegelmantel anzufertigen, rechnet man anschließend die Bogenlänge b des Kreisausschnittes aus. Da b auch der Umfang des Kreises ist, gilt: Eingesetzt ergibt sich: Alle nötigen Größen für den Bau des Kegelmantels sind jetzt bekannt. Für die erweiterte Aufgabenstellung muss berechnet werden. 9

10 Da aus folgt: gilt: (Für den Mantel gilt: ) Für und ergibt sich somit eine Oberfläche. Hintergründe Der Lehrer hat den Schülern eine scheinbar einfache Aufgabe gestellt: Es soll ein Kegel gebastelt werden. Im Laufe der Bastelphase stoßen die Schüler auf einige Hürden. Die erste Hürde wird häufig darin bestehen, zu bestimmen wie groß der Zirkel eingestellt werden muss. Die Länge, mit welcher der Zirkel eingestellt werden muss, wird mit dem Satz des Pythagoras bestimmt. Des Weiteren muss der Winkel berechnet werden, mit welchem geschnitten wird. Durch das Lösen eines einfachen Problems werden die Schüler mit erhöhtem Ehrgeiz und Motivation versuchen, weitere anfallende Probleme zu bearbeiten. Durch den leichten Einstieg wird die Motivation der Schüler gefördert auch an weiterführende Überlegungen heran zu gehen. Beim Bau des Kegels machen die Schüler bereits alle Beweisschritte, wodurch das Verständnis der Schüler für die anschließende Herleitung mit Variablen durch den Lehrer gefördert wird. Für die Schüler ist es somit leichter Bereitschaft für den nachfolgenden Beweis zu zeigen und ihm zu folgen. Bei dieser Übung steht eine konkrete Aufgabe im Vordergrund, anhand dessen die Schüler später die allgemeine Herleitung erarbeiten. Die gebauten Kegel werden vorne zur allgemeinen Betrachtung gesammelt, wodurch der Ehrgeiz erhöht wird, möglichst gute Resultate abzuliefern. Beim gemeinsamen Vergleichen der errechneten Oberflächen kann das Thema Rundungen angeschnitten werden. 10

1.1 Innenwinkelsatz eines Dreiecks Christina Körber

1.1 Innenwinkelsatz eines Dreiecks Christina Körber 1.1 Innenwinkelsatz eines Dreiecks Christina Körber Über Parkettierung wird der Innenwinkelsatz gefunden. Zaubertrick und erste Vermutung Konkrete Umsetzung Jeder Schüler schneidet ein eigenes Dreieck

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

In ein quadratisches Blech werden Löcher gestanzt. Insgesamt sind es 85 Löcher. Wie viele Löcher sind in der untersten Reihe?

In ein quadratisches Blech werden Löcher gestanzt. Insgesamt sind es 85 Löcher. Wie viele Löcher sind in der untersten Reihe? Aufgabe 1: Das Stanzblech: Löcher In ein quadratisches Blech werden Löcher gestanzt. Insgesamt sind es 85 Löcher. Wie viele Löcher sind in der untersten Reihe? Bei dieser Aufgabe kann rückwärts gearbeitet

Mehr

Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am 24.11.2011

Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am 24.11.2011 Praktikum Physik Protokoll zum Versuch: Geometrische Optik Durchgeführt am 24.11.2011 Gruppe X Name1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das

Mehr

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1 B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,

Mehr

Geometrie. Umfang/Fläche (eckige Körper)

Geometrie. Umfang/Fläche (eckige Körper) Seite 1 Hier lernst du, Umfänge und Flächen bei folgenden geometrischen Flächen zu ermitteln: Quadrat, Rechteck, Parallelogramm, Dreieck, Trapez Und einfache zusammengesetzte Formen Prinzipielle Grundlagen

Mehr

http://www.olympiade-mathematik.de 7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1967/1968 Aufgaben und Lösungen

http://www.olympiade-mathematik.de 7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1967/1968 Aufgaben und Lösungen 7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1967/1968 Aufgaben und Lösungen 1 OJM 7. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 12 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

Frühjahr 2000, Thema 2, Der elektrische Widerstand

Frühjahr 2000, Thema 2, Der elektrische Widerstand Frühjahr 2000, Thema 2, Der elektrische Widerstand Referentin: Dorothee Abele Dozent: Dr. Thomas Wilhelm Datum: 01.02.2007 1) Stellen Sie ein schülergemäßes Modell für einen elektrisch leitenden bzw. nichtleitenden

Mehr

Lernen an Stationen Thema: Flächenberechnung

Lernen an Stationen Thema: Flächenberechnung Lernen an Stationen Thema: Flächenberechnung 8. Jahrgang Mathematics is a way of thinking, not a collection of facts! Ausgehend von dieser grundsätzlichen Überzeugung sollte ein Unterricht zum Thema Flächenberechnung

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

Kreis Kreisabschnitt Kreissegment Kreisbogen

Kreis Kreisabschnitt Kreissegment Kreisbogen Kreis Kreisabschnitt Kreissegment Kreisbogen Bezeichnung in einem Kreis: M = Mittelpunkt d = Durchmesser r = Radius k = Kreislinie Die Menge aller Punkte, die von einem bestimmten Punkt M (= Mittelpunkt)

Mehr

LERNZIRKEL WIEDERHOLUNG DER FLÄCHEN

LERNZIRKEL WIEDERHOLUNG DER FLÄCHEN LERNZIRKEL WIEDERHOLUNG DER FLÄCHEN Lehrplaneinheit Methode Sozialform Einsatzmöglichkeit Ziel, Erwartungshorizont Zeitlicher Umfang Didaktische Hinweise Berufsrelevantes Rechnen Einzelarbeit Wiederholung

Mehr

Die Größe von Flächen vergleichen

Die Größe von Flächen vergleichen Vertiefen 1 Die Größe von Flächen vergleichen zu Aufgabe 1 Schulbuch, Seite 182 1 Wer hat am meisten Platz? Ordne die Figuren nach ihrem Flächeninhalt. Begründe deine Reihenfolge. 1 2 3 4 zu Aufgabe 2

Mehr

Vergleichsarbeiten in 3. Grundschulklassen. Mathematik. Aufgabenheft 1

Vergleichsarbeiten in 3. Grundschulklassen. Mathematik. Aufgabenheft 1 Vergleichsarbeiten in 3. Grundschulklassen Mathematik Aufgabenheft 1 Name: Klasse: Herausgeber: Projekt VERA (Vergleichsarbeiten in 3. Grundschulklassen) Universität Koblenz-Landau Campus Landau Fortstraße

Mehr

Motivation. Jede Messung ist mit einem sogenannten Fehler behaftet, d.h. einer Messungenauigkeit

Motivation. Jede Messung ist mit einem sogenannten Fehler behaftet, d.h. einer Messungenauigkeit Fehlerrechnung Inhalt: 1. Motivation 2. Was sind Messfehler, statistische und systematische 3. Verteilung statistischer Fehler 4. Fehlerfortpflanzung 5. Graphische Auswertung und lineare Regression 6.

Mehr

Stationsunterricht im Physikunterricht der Klasse 10

Stationsunterricht im Physikunterricht der Klasse 10 Oranke-Oberschule Berlin (Gymnasium) Konrad-Wolf-Straße 11 13055 Berlin Frau Dr. D. Meyerhöfer Stationsunterricht im Physikunterricht der Klasse 10 Experimente zur spezifischen Wärmekapazität von Körpern

Mehr

Verlauf Material LEK Glossar Lösungen. Das Pizza-Problem ein Einstieg in die Kreisberechnung. Kerstin Langer, Kiel VORANSICHT

Verlauf Material LEK Glossar Lösungen. Das Pizza-Problem ein Einstieg in die Kreisberechnung. Kerstin Langer, Kiel VORANSICHT Reihe 51 S 1 Verlauf Material Das Pizza-Problem ein Einstieg in die Kreisberechnung Kerstin Langer, Kiel Klasse: Dauer: Mm, lecker! 10 (G9) / 9 (G8) Inhalt: 4 7 Unterrichtsstunden Ein alltagsorientierter

Mehr

1 C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R

1 C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R L Ö S U N G E N Seite 7 n Wenn vier Menschen auf einem Quadratmeter stehen, dann hat jeder eine Fläche von 50 mal 50 Zentimeter

Mehr

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X Praktikum Physik Protokoll zum Versuch 1: Viskosität Durchgeführt am 26.01.2012 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das Protokoll

Mehr

Berufsreifeprüfung Studienberechtigung. Mathematik. Einstiegsniveau

Berufsreifeprüfung Studienberechtigung. Mathematik. Einstiegsniveau Berufsreifeprüfung Studienberechtigung Mathematik Einstiegsniveau Zusammenstellung von relevanten Unterstufenthemen, die als Einstiegsniveau für BRP /SBP Kurse Mathematik beherrscht werden sollten. /brp

Mehr

F 23 Beta-Zähler. Inhaltsverzeichnis. Wolfgang Unger, Robert Wagner 25. Juni 2003

F 23 Beta-Zähler. Inhaltsverzeichnis. Wolfgang Unger, Robert Wagner 25. Juni 2003 F 23 Beta-Zähler Wolfgang Unger, Robert Wagner 25. Juni 2003 Inhaltsverzeichnis 1 Auswertung 2 1.1 Eichung des Proportionalzählers mit 55 F e............. 2 1.2 Energieverlust von 40K im Zählrohr................

Mehr

Lösung. Prüfungsteil 1: Aufgabe 1

Lösung. Prüfungsteil 1: Aufgabe 1 Zentrale Prüfung 01 Lösung Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Ministeriums für Schule und Weiterbildung des Landes. Prüfungsteil 1: Aufgabe 1 a)

Mehr

BMS Aufnahmeprüfung Jahr 2014 Basierend auf Lehrmittel: Mathematik (Schelldorfer)

BMS Aufnahmeprüfung Jahr 2014 Basierend auf Lehrmittel: Mathematik (Schelldorfer) Bildungsdirektion des Kantons Zürich Mittelschul- und Bildungsamt BMS Aufnahmeprüfung Jahr 2014 Basierend auf Lehrmittel: Mathematik (Schelldorfer) Fach Mathematik Teil 1 Serie A Dauer 45 Minuten Hilfsmittel

Mehr

Erster Prüfungsteil: Aufgabe 1

Erster Prüfungsteil: Aufgabe 1 Erster Prüfungsteil: Aufgabe Kriterien: Der Prüfling Lösung: Punkte: a) entscheidet sich für passenden Wert 8 000 000 b) wählt ein geeignetes Verfahren zur z. B. Dreisatz Berechnung gibt das richtige Ergebnis

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Das Pizza-Problem - ein Einstieg in die Kreisberechnung

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Das Pizza-Problem - ein Einstieg in die Kreisberechnung Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Das Pizza-Problem - ein Einstieg in die Kreisberechnung Das komplette Material finden Sie hier: School-Scout.de S 1 Das Pizza-Problem

Mehr

IGS Robert-Schuman-Schule Frankenthal

IGS Robert-Schuman-Schule Frankenthal Thema: Gleichungen und Ungleichungen Zeitraum: September - November Terme Rechengesetze Umkehren von Rechenoperationen Systematisches Probieren Terme auswerten und interpretieren Terme aufstellen und für

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Unterrichtsreihe zum Thema "Kreis" Das komplette Material finden Sie hier:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Unterrichtsreihe zum Thema Kreis Das komplette Material finden Sie hier: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Unterrichtsreihe zum Thema "Kreis" Das komplette Material finden Sie hier: School-Scout.de Thema: Unterrichtsreihe zum Thema Kreis

Mehr

Station Gleichdicks. Hilfestellungen

Station Gleichdicks. Hilfestellungen Station Gleichdicks Hilfestellungen Liebe Schülerinnen und Schüler! Dies ist das Hilfestellungsheft zur Station Gleichdicks. Ihr könnt es nutzen, wenn ihr bei einer Aufgabe Schwierigkeiten habt. Falls

Mehr

BIST Mathematik AK 3 Kommunikation. Die Sprache der Mathematik sprechen - Sprechen über Mathematik

BIST Mathematik AK 3 Kommunikation. Die Sprache der Mathematik sprechen - Sprechen über Mathematik BIST Mathematik AK 3 Kommunikation Die Sprache der Mathematik sprechen - Sprechen über Mathematik 1 Lehrer sollen ihren SchülerInnen Gelegenheit geben, mehr zu reden! Lehrer sollen lernen, ihren SchülerInnen

Mehr

P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK

P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK GRUPPE 19 - SASKIA MEIßNER, ARNOLD SEILER 1 Bestimmung der Brennweite 11 Naives Verfahren zur Bestimmung der Brennweite Es soll nur mit Maÿstab und Schirm die

Mehr

Übungsaufgaben Klasse 7

Übungsaufgaben Klasse 7 Übungsaufgaben Klasse 7 2. Oktober 2006 Dreieckskonstruktion Versuche erst, alle Aufgaben zu lösen. Die Lösungen findest du ab Montag auf: http://www.hagener-berg.de/serdar/ unter dem Punkt Schulinfos.

Mehr

Aufgabe 1: Malerarbeiten

Aufgabe 1: Malerarbeiten Aufgabe 1: Malerarbeiten Fritz braucht zwei Stunden, um ein Zimmer zu streichen. Susi braucht für das gleiche Zimmer drei Stunden. Wie lange brauchen beide zusammen, um das Zimmer zu streichen? Lösung:

Mehr

Y b 2 - a 2 = p 2 - q 2 (*)

Y b 2 - a 2 = p 2 - q 2 (*) Um den Flächeninhalt eines Dreieckes zu bestimmen, das keinen rechten Winkel besitzt, muss man bekanntlich die Längen einer Seite mit der dazugehörigen Höhe kennen Wir setzen voraus, dass uns alle 3 Seitenlängen

Mehr

Innere Reibung von Gasen

Innere Reibung von Gasen Blatt: 1 Aufgabe Bestimmen Sie die Viskosität η von Gasen aus der Messung der Strömung durch Kapillaren. Berechnen Sie aus den Messergebnissen für jedes Gas die Sutherland-Konstante C, die effektiven Moleküldurchmesser

Mehr

Dynamische Mathematik mit GeoGebra 30. März 1. April 2009

Dynamische Mathematik mit GeoGebra 30. März 1. April 2009 Dynamische Mathematik mit GeoGebra 30. März 1. April 2009 Angebote für Fortgeschrittene Thema 1 Gegeben ist ein beliebiges Dreieck. Über die Seiten des Dreiecks werden Quadrate errichtet. In zwei Ecken

Mehr

Mathematik I Prüfung für den Übertritt aus der 9. Klasse

Mathematik I Prüfung für den Übertritt aus der 9. Klasse Aufnahmeprüfung 015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 9. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle

Mehr

Pyramide und Kegel 14

Pyramide und Kegel 14 1 6 1 Falls genau gearbeitet wurde, sollte der Steigungswinkel der Pyramidenseiten 5 betragen. Falls dem so ist, ist das Modell ähnlich zum Original und der Verkleinerungsmassstab kann eindeutig bestimmt

Mehr

Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt

Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt 1 7 Flächeninhalt 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt A = cm 2 und die Grundlinie a = 4 cm haben. Rechteck: h = 2,5 cm Parallelogramm:

Mehr

2. Vorlesung. Slide 40

2. Vorlesung. Slide 40 2. Vorlesung Slide 40 Knobelaufgabe Was tut dieses Programm? Informell Formal Wie stellt man dies sicher? knobel(a,b) { Wenn a = 0 dann return b sonst { solange b 0 wenn a > b dann { a := a - b sonst b

Mehr

Zinseszinsrechnung. für GeoGebraCAS

Zinseszinsrechnung. für GeoGebraCAS Zinseszinsrechnung für GeoGebraCAS Letzte Änderung: 01/ April 2011 Überblick 1.1 Zusammenfassung Bei dieser Unterrichtssequenz sollen die Kenntnisse der Schüler/innen zur Prozentrechnung (6. Schulstufe)

Mehr

1.1. Zentrische Streckung und das eigene Spiegelbild

1.1. Zentrische Streckung und das eigene Spiegelbild 1.1. Zentrische Streckung und das eigene Spiegelbild Lena Brinkmann Anhand des Spiegelbilds wird die zentrische Streckung eingeführt. Konkrete Umsetzung Melanie Haas Daniel Kilchling Jede Farbgruppe bestimmt

Mehr

Erfolg im Mathe-Abi 2012

Erfolg im Mathe-Abi 2012 Gruber I Neumann Erfolg im Mathe-Abi 2012 Übungsbuch für den Wahlteil Baden-Württemberg mit Tipps und Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis 1 Windkraftanlage... 5 2 Heizkosten... 6 3

Mehr

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion

Mehr

Wachstum 2. Michael Dröttboom 1 LernWerkstatt-Selm.de

Wachstum 2. Michael Dröttboom 1 LernWerkstatt-Selm.de 1. Herr Meier bekommt nach 3 Jahren Geldanlage 25.000. Er hatte 22.500 angelegt. Wie hoch war der Zinssatz? 2. Herr Meiers Vorfahren haben bei der Gründung Roms (753. V. Chr.) 1 Sesterze auf die Bank gebracht

Mehr

Info zum Zusammenhang von Auflösung und Genauigkeit

Info zum Zusammenhang von Auflösung und Genauigkeit Da es oft Nachfragen und Verständnisprobleme mit den oben genannten Begriffen gibt, möchten wir hier versuchen etwas Licht ins Dunkel zu bringen. Nehmen wir mal an, Sie haben ein Stück Wasserrohr mit der

Mehr

Fit in Mathe. Januar Klassenstufe 10 Körper und Figuren mit π (hier wegen π = 3, Taschenrechner erlaubt)

Fit in Mathe. Januar Klassenstufe 10 Körper und Figuren mit π (hier wegen π = 3, Taschenrechner erlaubt) Thema Musterlösung 1 Körper und Figuren mit (hier wegen 3,14159654... Taschenrechner erlaubt) Ein 15 cm hohes, kegelförmiges Sektglas soll einen Rauminhalt von 150 cm 3 haben. Bestimme den Durchmesser

Mehr

Logo-Aufgaben mit Verbindung zur Mathematik

Logo-Aufgaben mit Verbindung zur Mathematik Logo-Aufgaben mit Verbindung zur Mathematik Student: Dozent: Prof. Juraj Hromkovic Datum: 13.06.007 Logo-Kenntnisse Für die Lösung der Aufgaben werden folge Logo-Befehle benötigt: Arithmetik: +, -, *,

Mehr

Staatlich geprüfte Techniker

Staatlich geprüfte Techniker Auszug aus dem Lernmaterial ortbildungslehrgang Staatlich geprüfte Techniker Auszug aus dem Lernmaterial Maschinenbautechnische Grundlagen DAA-Technikum Essen / www.daa-technikum.de, Infoline: 001 83 16

Mehr

Staatsexamensaufgabe 2004/I,3 - Teilaufgabe 3

Staatsexamensaufgabe 2004/I,3 - Teilaufgabe 3 Staatsexamensaufgabe 2004/I,3 - Teilaufgabe 3 Entwickeln Sie eine Unterrichtseinheit zur Einführung des Flächeninhalts des Kreises. Sachanalyse Die Sachanalyse wurde bereits in Aufgabenteil 1 behandelt.

Mehr

- Arbeitsblätter - Evtl. Weitere Arbeitsblätter zum Thema (gratis herunterzuladen auf www.laureundtom.ch > Arbeitsblätter)

- Arbeitsblätter - Evtl. Weitere Arbeitsblätter zum Thema (gratis herunterzuladen auf www.laureundtom.ch > Arbeitsblätter) 4 Karten Anleitung LP Ziel Aufgabe Die Schüler/-innen lernen Begriffe wie Kartenmassstab, Grundriss, Vogelperspektive usw. kennen. Sie berechnen Distanzen und machen sich Gedanken zur Entstehung von Karten.

Mehr

BL Brennweite von Linsen

BL Brennweite von Linsen BL Brennweite von Linsen Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Geometrische Optik................... 2 2.2 Dünne Linse........................

Mehr

Versuch 3: Bestimmung des Volumenausdehnungskoeffizienten γ von Luft

Versuch 3: Bestimmung des Volumenausdehnungskoeffizienten γ von Luft ersuch : Bestimmung des olumenausdehnungskoeffizienten γ von Luft Theoretische Grundlagen: I. Theoretische Bestimmung des vom Wassertropfen eingeschlossenen Gases nach ersuchsaufbau. olumen des Erlenmeyerkolbens:.

Mehr

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben

Mehr

Über den Zusammenhang zwischen geometrischer Parallaxe und der Entfernung des Mondes

Über den Zusammenhang zwischen geometrischer Parallaxe und der Entfernung des Mondes Über den Zusammenhang zwischen geometrischer Parallaxe und der Entfernung des Mondes U. Backhaus Universität Duisburg-Essen Wenn man ein entferntes Objekt von verschiedenen Orten aus anpeilt, dann unterscheiden

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

Charakteristikum des Gutachtenstils: Es wird mit einer Frage begonnen, sodann werden die Voraussetzungen Schritt für Schritt aufgezeigt und erörtert.

Charakteristikum des Gutachtenstils: Es wird mit einer Frage begonnen, sodann werden die Voraussetzungen Schritt für Schritt aufgezeigt und erörtert. Der Gutachtenstil: Charakteristikum des Gutachtenstils: Es wird mit einer Frage begonnen, sodann werden die Voraussetzungen Schritt für Schritt aufgezeigt und erörtert. Das Ergebnis steht am Schluß. Charakteristikum

Mehr

Pi über den Kreisumfang berechnen

Pi über den Kreisumfang berechnen Pi über den Kreisumfang berechnen Die Babylonier wussten schon vor über 4000 Jahren, dass das Verhältnis von Kreisumfang zum Durchmesser konstant sein muss. Tatsächlich beschreibt die Zahl das Verhältnis

Mehr

WORKSHOP 27.-29.APRIL 2015

WORKSHOP 27.-29.APRIL 2015 JIAJIA SONG WORKSHOP 7.-9.APRIL A VARIATIONEN MATERIALITÄT & SENSORISCHE FORSCHUNG Textil- & Flächendesign, Sommer INHALT 03 KONZEPT 0 EXPERIMENTE 0 INSPIRATION & RECHERCHE PROZESS ERGEBNIS 8 DANKE IMPRESSUM

Mehr

1.1. Zentrische Streckung und das eigene Spiegelbild

1.1. Zentrische Streckung und das eigene Spiegelbild 1.1. Zentrische Streckung und das eigene Spiegelbild Lena Brinkmann Konkrete Umsetzung Melanie Haas Daniel Kilchling Anhand des Spiegelbilds wird die zentrische Streckung eingeführt. Jede Farbgruppe bestimmt

Mehr

Mathematik: Korrekturanleitung

Mathematik: Korrekturanleitung Kanton St.Gallen Bildungsdepartement St.Gallische Kantonsschulen Gymnasium Aufnahmeprüfung 2014 Mathematik: Korrekturanleitung Die Korrekturanleitung legt die Verteilung der Punkte auf die einzelnen Aufgaben

Mehr

Darstellende Geometrie Übungen. Tutorial. Übungsblatt: Perspektive - Rekonstruktion

Darstellende Geometrie Übungen. Tutorial. Übungsblatt: Perspektive - Rekonstruktion Darstellende Geometrie Übungen Institut für Architektur und Medien Tutorial Übungsblatt: Perspektive - Rekonstruktion Gegeben sind ein Foto von einem quaderförmigen Objekt sowie die Abmessungen des Basisrechteckes.

Mehr

2012/13 Jahrgangsstufe 7 A. Jahrgangsstufentest im Fach Mathematik am Hanns-Seidel-Gymnasium am 28.9.2012

2012/13 Jahrgangsstufe 7 A. Jahrgangsstufentest im Fach Mathematik am Hanns-Seidel-Gymnasium am 28.9.2012 2012/13 Jahrgangsstufe 7 A Jahrgangsstufentest im Fach Mathematik am Hanns-Seidel-Gymnasium am 28.9.2012 Name: Note: Klasse: Punkte: 1 Aufgabe 1 In einer Umfrage wurden 640 Schüler befragt: "Für welche

Mehr

DOWNLOAD VORSCHAU. Bilderrahmen und Bilderhalter. zur Vollversion. Alltagsgegenstände fantasievoll gestalten. Gerlinde Blahak

DOWNLOAD VORSCHAU. Bilderrahmen und Bilderhalter. zur Vollversion. Alltagsgegenstände fantasievoll gestalten. Gerlinde Blahak DOWNLOAD Gerlinde Blahak Bilderrahmen und Bilderhalter Alltagsgegenstände fantasievoll gestalten auszug aus dem Originaltitel: Lehrerhinweise zu den einzelnen Projekten Haltevorrichtung für Bilder Zeitaufwand:

Mehr

Lineare Differentialgleichungen erster Ordnung erkennen

Lineare Differentialgleichungen erster Ordnung erkennen Lineare Differentialgleichungen erster Ordnung In diesem Kapitel... Erkennen, wie Differentialgleichungen erster Ordnung aussehen en für Differentialgleichungen erster Ordnung und ohne -Terme finden Die

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

100 % Mathematik - Lösungen

100 % Mathematik - Lösungen 100 % Mathematik: Aus der Geometrie Name: Klasse: Datum: 1 Ordne die gemessenen Längenangaben den beschriebenen Objekten zu. 22 m 37 cm Tischdicke 22 mm Breite eines Turnsaals 2 m 45 cm Sitzhöhe 258 mm

Mehr

Modellbildungssysteme: Pädagogische und didaktische Ziele

Modellbildungssysteme: Pädagogische und didaktische Ziele Modellbildungssysteme: Pädagogische und didaktische Ziele Was hat Modellbildung mit der Schule zu tun? Der Bildungsplan 1994 formuliert: "Die schnelle Zunahme des Wissens, die hohe Differenzierung und

Mehr

Terme und Formeln Umgang mit Termen

Terme und Formeln Umgang mit Termen Terme und Formeln Umgang mit Termen Al Charazmi (* um 780, um 840) war ein persischer Mathematiker, Astronom und Geograph. Vom Titel seines Werkes Al-kitab al-mukhtasar fi hisab al- abr wa l-muqabala (Arabisch

Mehr

Ermittlung der Bevorzugung einer Investitionsvariante aufgrund des Vergleichs der Kosten, die bei den verschiedenen Varianten entstehen.

Ermittlung der Bevorzugung einer Investitionsvariante aufgrund des Vergleichs der Kosten, die bei den verschiedenen Varianten entstehen. Kapitel 63 Investitionsrechnung b) Statische Investitionsrechnung I. Kostenvergleich Zweck Ermittlung der Bevorzugung einer Investitionsvariante aufgrund des Vergleichs der Kosten, die bei den verschiedenen

Mehr

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung

Mehr

Was ist Mathematik? Eine Strukturwissenschaft, eine Geisteswissenschaft, aber keine Naturwissenschaft.

Was ist Mathematik? Eine Strukturwissenschaft, eine Geisteswissenschaft, aber keine Naturwissenschaft. Vorlesung 1 Einführung 1.1 Praktisches Zeiten: 10:00-12:00 Uhr Vorlesung 12:00-13:00 Uhr Mittagspause 13:00-14:30 Uhr Präsenzübung 14:30-16:00 Uhr Übungsgruppen Material: Papier und Stift wacher Verstand

Mehr

Drei Kreise Was ist zu tun?

Drei Kreise Was ist zu tun? 1 Drei Kreise Der Radius der Kreise beträgt drei Zentimeter. Zeichnet die Abbildung nach, falls ihr einen Zirkel zur Hand habt. Ansonsten genügt auch eine Skizze. Bestimmt den Flächeninhalt der schraffierten

Mehr

Messung der Astronomischen Einheit nach Aristarch

Messung der Astronomischen Einheit nach Aristarch Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen Messung der Astronomischen Einheit nach Aristarch 1 Einleitung Bis ins 17. Jahrhundert war die

Mehr

Vorab möchte ich Ihnen aber gerne noch ein paar allgemeine Informationen zum praktischen Teil der AEVO-Prüfung weitergeben.

Vorab möchte ich Ihnen aber gerne noch ein paar allgemeine Informationen zum praktischen Teil der AEVO-Prüfung weitergeben. SO FINDE ICH DIE RICHTIGE UNTERWEISUNG FÜR DIE ADA-PRÜFUNG Hilfen & Tipps für die Auswahl & Durchführung der Unterweisungsprobe Sehr geehrte Damen und Herren, ich freue mich, dass ich Ihnen in diesem kostenlosen

Mehr

Quelle: Peter Labudde, Alltagsphysik in Schülerversuchen, Bonn: Dümmler.

Quelle: Peter Labudde, Alltagsphysik in Schülerversuchen, Bonn: Dümmler. Projektor Aufgabe Ein Diaprojektor, dessen Objektiv eine Brennweite von 90mm hat, soll in unterschiedlichen Räumen eingesetzt werden. Im kleinsten Raum ist die Projektionsfläche nur 1m vom Standort des

Mehr

Hausaufgabe: Der Energieeffizienz auf der Spur

Hausaufgabe: Der Energieeffizienz auf der Spur Bevor du startest, lass bitte die folgenden Zeilen deine Eltern lesen und unterschreiben: Ihre Tochter/ Ihr Sohn hat heute ein Energiemessgerät für Energiemessungen zu Hause erhalten. Achten Sie bitte

Mehr

Messung von Spannung und Strömen

Messung von Spannung und Strömen Basismodul-Versuch 2 BM-2-1 Messung von Spannung und Strömen 1 Vorbereitung llgemeine Vorbereitung für die Versuche zur Elektrizitätslehre, insbesondere Punkt 7 ufbau eines Drehspulmesswerks Lit.: WLCHER

Mehr

R-C-Kreise. durchgeführt am 07.06.2010. von Matthias Dräger und Alexander Narweleit

R-C-Kreise. durchgeführt am 07.06.2010. von Matthias Dräger und Alexander Narweleit R-C-Kreise durchgeführt am 07.06.200 von Matthias Dräger und Alexander Narweleit PHYSIKALISCHE GRUNDLAGEN Physikalische Grundlagen. Kondensator Ein Kondensator ist ein passives elektrisches Bauelement,

Mehr

Der Kreis. Theorie. M Mittelpunkt, r Radius oder Halbmesser, d Durchmesser s Sehne

Der Kreis. Theorie. M Mittelpunkt, r Radius oder Halbmesser, d Durchmesser s Sehne Der Kreis Theorie Was ist ein Kreis? Die Menge aller Punkte P, die von einem festen Punkt M die gleiche Entfernung r haben, bilden einen Kreis oder genauer eine Kreislinie mit dem Mittelpunkt M und dem

Mehr

Mit Papier, Münzen und Streichhölzern rechnen kreative Aufgaben zum Umgang mit Größen. Von Florian Raith, Fürstenzell VORANSICHT

Mit Papier, Münzen und Streichhölzern rechnen kreative Aufgaben zum Umgang mit Größen. Von Florian Raith, Fürstenzell VORANSICHT Mit Papier, Münzen und Streichhölzern rechnen kreative Aufgaben zum Umgang mit Größen Von Florian Raith, Fürstenzell Alltagsgegenstände sind gut greifbar so werden beim Rechnen mit ihnen Größen begreifbar.

Mehr

Download. Klassenarbeiten Mathematik 8. Flächeninhalt und Umfang von Vielecken. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel:

Download. Klassenarbeiten Mathematik 8. Flächeninhalt und Umfang von Vielecken. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel: Download Jens Conrad, Hardy Seifert Klassenarbeiten Mathematik 8 Flächeninhalt und Umfang von Vielecken Downloadauszug aus dem Originaltitel: Klassenarbeiten Mathematik 8 Flächeninhalt und Umfang von Vielecken

Mehr

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:

Mehr

Smart 450: Kompressionstest Anleitung 02: von Mike07 für das smart-forum

Smart 450: Kompressionstest Anleitung 02: von Mike07 für das smart-forum Smart 450: Kompressionstest Anleitung 02: von Mike07 für das smart-forum WARNUNG!!! Bei der Zündanlage werden Spannungen über 20 000 Volt generiert. Während der Messung und einige Zeit danach unbedingt

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

Vermessung und Verständnis von FFT Bildern

Vermessung und Verständnis von FFT Bildern Vermessung und Verständnis von FFT Bildern Viele Auswertungen basieren auf der "Fast Fourier Transformation" FFT um die (ungewünschten) Regelmäßigkeiten im Schliffbild darzustellen. Die Fourier-Transformation

Mehr

Aufgaben. 2.1. Leiten Sie die Formeln (9) und (10) her! Vorbetrachtungen. Der High-Fall

Aufgaben. 2.1. Leiten Sie die Formeln (9) und (10) her! Vorbetrachtungen. Der High-Fall Aufgaben 2.1. Leiten Sie die Formeln (9) und (10) her! Vorbetrachtungen I. Die open-collector-gatter auf der "in"-seite dürfen erst einen High erkennen, wenn alle open-collector-gatter der "out"-seite

Mehr

Durch diese Anleitung soll eine einheitliche Vorgehensweise bei der Vermessung und Bewertung von Golfplätzen sichergestellt werden.

Durch diese Anleitung soll eine einheitliche Vorgehensweise bei der Vermessung und Bewertung von Golfplätzen sichergestellt werden. Da die Länge der Spielbahnen auch unter dem Course-Rating-System (CRS) das wichtigste Bewertungskriterium für einen Golfplatz darstellt, ist die korrekte Vermessung der Spielbahnen eine unverzichtbar notwendige

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2010 im Fach Mathematik. 26. Mai 2010

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2010 im Fach Mathematik. 26. Mai 2010 Senatsverwaltung für Bildung, Wissenschaft und Forschung Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 00 im Fach Mathematik 6. Mai 00 Arbeitsbeginn: 0.00 Uhr Bearbeitungszeit: 0 Minuten Zugelassene

Mehr

Dauer des Vormittags: 1. bis 6. Stunde. Die Schülerinnen und Schüler (Sch.) sollen am Projekttag folgendes mitbringen:

Dauer des Vormittags: 1. bis 6. Stunde. Die Schülerinnen und Schüler (Sch.) sollen am Projekttag folgendes mitbringen: Anleitung zum Projekttag»Konfliktbewältigung«in Klassenstufe 6 Seite 1 Einige Wochen vor dem Projekt-Termin Planungsphase Planung Ankündigung des Projektes Projekttermin rechtzeitig mit der Schulleitung

Mehr

Mathematische Grundlagen 2. Termrechnen

Mathematische Grundlagen 2. Termrechnen Inhaltsverzeichnis: 2. Termrechnen... 2 2.1. Bedeutung von Termen... 2 2.2. Terme mit Variablen... 4 2.3. Vereinfachen von Termen... 5 2.3.1. Zusammenfassen von gleichartigen Termen... 5 2.3.2. Vereinfachen

Mehr

Falten regelmäßiger Vielecke

Falten regelmäßiger Vielecke Blatt 1 Gleichseitige Dreiecke Ausgehend von einem quadratischen Stück Papier kann man ohne weiteres Werkzeug viele interessante geometrische Figuren nur mit den Mitteln des Papierfaltens (Origami) erzeugen.

Mehr

1. Allgemeine Hinweise Alexander.Martin.Koenig@TU-Clausthal.de

1. Allgemeine Hinweise Alexander.Martin.Koenig@TU-Clausthal.de 1. Allgemeine Hinweise Alexander.Martin.Koenig@TU-Clausthal.de Man sollte eine Excel-Tabelle immer so übersichtlich wie möglich halten. Dazu empfiehlt es sich, alle benötigten Daten, Konstanten und Messwerte

Mehr

EINFACHES HAUSHALT- KASSABUCH

EINFACHES HAUSHALT- KASSABUCH EINFACHES HAUSHALT- KASSABUCH Arbeiten mit Excel Wir erstellen ein einfaches Kassabuch zur Führung einer Haushalts- oder Portokasse Roland Liebing, im November 2012 Eine einfache Haushalt-Buchhaltung (Kassabuch)

Mehr

Körperberechnung. Würfel - Einheitswürfel. Pyramide. - Oberfläche - Volumen. - Oberfläche. - Volumen. Kegel. Quader. - Oberfläche - Volumen

Körperberechnung. Würfel - Einheitswürfel. Pyramide. - Oberfläche - Volumen. - Oberfläche. - Volumen. Kegel. Quader. - Oberfläche - Volumen Körperberechnung Würfel - Einheitswürfel - Oberfläche - Volumen Quader - Oberfläche - Volumen - zusammengesetzte Körper Prisma - Oberfläche Zylinder - Oberfläche Pyramide - Oberfläche - Volumen Kegel -

Mehr

1 topologisches Sortieren

1 topologisches Sortieren Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung

Mehr

Approximation durch Taylorpolynome

Approximation durch Taylorpolynome TU Berlin Fakultät II - Mathematik und Naturwissenschaften Sekretariat MA 4-1 Straße des 17. Juni 10623 Berlin Hochschultag Approximation durch Taylorpolynome Im Rahmen der Schülerinnen- und Schüler-Uni

Mehr

Geht dir ein Licht auf? Grundkenntnisse zum Thema Strom und Stromsparen

Geht dir ein Licht auf? Grundkenntnisse zum Thema Strom und Stromsparen Geht dir ein Licht auf? Grundkenntnisse zum Thema Strom und Stromsparen Ein Leben ohne Strom ist undenkbar, denn im Alltag können wir kaum auf Strom verzichten. In dieser Unterrichtseinheit für eine Vertretungsstunde

Mehr

Oberfläche von Körpern

Oberfläche von Körpern Definition Die Summe der Flächeninhalte der Flächen eines Körpers nennt man Oberflächeninhalt. Quader Der Oberflächeninhalt eines Quaders setzt sich folgendermaßen zusammen: O Q =2 h b+2 h l+2 l b=2 (h

Mehr

Mathematik II Prüfung für den Übertritt aus der 9. Klasse

Mathematik II Prüfung für den Übertritt aus der 9. Klasse Aufnahmeprüfung 2014 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik II Prüfung für den Übertritt aus der 9. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle

Mehr

Chemie Zusammenfassung KA 2

Chemie Zusammenfassung KA 2 Chemie Zusammenfassung KA 2 Wärmemenge Q bei einer Reaktion Chemische Reaktionen haben eine Gemeinsamkeit: Bei der Reaktion wird entweder Energie/Wärme frei (exotherm). Oder es wird Wärme/Energie aufgenommen

Mehr