Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download ""

Transkript

1 Physik III (integrierter Kurs, exp. Teil), HU, WS 1999/2, T.H. September 26, 2 VORLESUNG 8 Nachdenken/Nachlesen: Sind Sterne farbig? Kann man die Farben besser direkt mit dem Auge oder mit Hilfe eines Films bestimmen? Warum? 4. Polarisation 4.1. Wiederholung Wir betrachten ebene monochromatische elektromagnetische Wellen in Materie ohne Netto-Ladung. In komplexer Notation: ~E = ~E e i(~ k~r,!t) (1) Beobachtbar/mebar ist nur der Realteil! ~E ist eine (komplexe) Konstante. Wegen ~r ~E = (2) stehen Ausbreitungsrichtung ~k und Feldstarke ~E senkrecht aufeinander. Das Magnetfeld ~B ist orthogonal zu beiden, wegen Es kann (im Vakuum) mit ~r ~B =, ~r ~E : (3) ~B = ~ k! ~E j ~Bj = 1 c j ~Ej (4) aus dem ~E-Feld berechnet werden und wird hier nicht weiter betrachtet, da die Wirkung auf Elektronen/Atome in Materie vernachlassigbar ist: j ~F B j = jq~v ~Bj < jqjj~vjj~bj = jqj j~vj c j ~Ej = j~vj c j ~F E jj~f E j (5) Licht z.b. einer Gluhlampe entsteht aus vielen einzelnen schwingenden Dipolen, die zufallig zueinander orientiert sind und deren Wellen sich uberlagern. Diese Wellen haben i.a. unterschiedliche Ausbreitungsrichtungen, Frequenzen, Amplituden j ~E j und auch Schwingungsrichtungen ~E. Man spricht von unpolarisiertem Licht. Wenn fur die einzelnen Wellenzuge auer ~k und! (unsere Annahme der monochromatischen ebenen Welle) auch die Richtungen (= Verhaltnis der Komponenten einschl. Phasen!) von ~E (nicht notwendigerweise die Betrage) ubereinstimmen, ist das Licht polarisiert. Man kann auch nicht monochromatisches Licht zulassen, aber diesen allgemeineren Fall wollen wir hier nicht behandeln. 1

2 Den Polarisationsgrad von teilweise linear polarisiertem Licht deniert man als Entsprechendes deniert man fur zirkular polarisiertes Licht Jones-Vektoren und Jones-Matrizen PG = I k, I? I k +I? (6) Im folgenden nehmen wir o.b.d.a. an, da die Welle sich in z-richtung ausbreitet. Dann sind die z-komponenten von ~E und ~E null und wir schreiben sie erst gar nicht auf: E x ~E = eix E y (7) e iy Die beiden Komponenten E x ;Ey sowie die Phasen x ; y sind reell. Wir denieren den Jones-Vektor ~E ~P = x ~E y e i (8) mit E = j ~E j = q (E x )2 +(E y ) 2 ~ E x = Ex E ~ Ey = Ey E = y, x (9) Oenbar gilt hier j ~P j = 1. Man beachte, da die Polarisationsrichtungen ~P und, ~P nicht unterschieden werden konnen. Schickt man eine polarisierte Welle durch einen Polarisator (s.u.), werden i.a. Amplitude und Intensitat geschwacht und es gilt dann j ~P j < 1. Der Jones-Vektor beschreibt den Polarisationszustand der Welle, denn: ~E = E ~P e i( ~k~r,!t+ x ) Die gemeinsame Phase x ist durch die Anfangsbedingungen (Zeitnullpunkt) festgelegt. Sie ist uninteressant und wir setzen sie hier zu null. Wir konnen drei Falle unterscheiden: (1) Lineare Polarisation: =. Der Polarisationsvektor ist reell. Sonderfalle: 1 ~P x = ~P y = 1 (11) sind die Polarisationsvektoren fur vollstandige Polarisation in x- bzw. y-richtung. 2

3 Ein allgemeiner linearer Polarisationszustand, mit Winkel relativ zur x-achse, ist gegeben durch cos ~P = cos ~P x + sin ~P y = (12) sin Umgekehrt kann man aus den Komponenten den Winkel berechnen: tan = ~ E y ~E x (13) Zirkulare Polarisation: = 9, ~ Ex = ~ Ey =1= p 2. Die zugehorigen Jones-Vektoren sind ~P R = 1 p 2 1 i ~P L = 1 p 2 1,i (14) In der x-y-ebene kreisen die Realteile der Vektoren ~E bzw. ~P mit dem Winkel (t) relativ zur x-achse: Fall = =2: Also: ReE x = E p cos(kz,!t+)= E p cos(!t, kz, ) (15) 2 2 ReE y = E p cos(kz,!t+ =2) = E p cos(!t, kz, =2) (16) 2 2 = E p sin(!t, kz) 2 R (t) =!t, kz (17) Entsprechendes ndet man fur =,=2, aber jetzt dreht sich der Polarisationsvektor andersherum: L (t) =,!t+ kz (18) In Ausbreitungsrichtung blickend beschreibt der Polarisationsvektor eine Rechtsschraube (Linksschraube) fur = +=2 ( =,=2). Entsprechend spricht man von rechts zirkular 3

4 und links zirkular polarisiertem Licht. VORSICHT: Teilweise wird die andere Konvention benutzt! In der Quantentheorie werden Lichtstrahlen durch Photonen beschrieben. Diese haben einen `Spin' der entweder in Richtung der Flugrichtung weist oder entgegengesetzt. Im klassischen Wellenbild entspricht dies links- bzw. rechtszirkular polarisiertem Licht. In einer linear polarisierten Lichtwelle ist die Zahl der Photonen beider Sorten gleich. Elliptische Polarisation: a) = 9, ~ Ex beliebig. b) beliebig, ~ Ex = ~ Ey =1= p 2. Das ergibt elliptische Spiralen: in der x-y-ebene beschreibt die Spitze des E-Vektors eine Ellipse. Dieser allgemeinere Fall wird hier nicht weiter diskutiert. Siehe auch 2. Semester, Lissajous-Figuren! Beachte: die eingefuhrten Jones-Vektoren-Paare ~P x, ~P y einerseits und ~P R, ~P L andererseits bilden jeweils eine Basis fur den zugehorigen zweidimensionalen Vektorraum. Insbesondere: ~P R;L = 1 p 2 ( ~P x i ~P y ) ~P x = 1 p 2 ( ~P R + ~P L ) ~P y =,i p 2 ( ~P R, ~P L ) (19) Man kann also eine lineare Position aufbauen durch Uberlagerung von zirkular polarisiertem Licht und umgekehrt! Beispiel: Phasenverschiebung von = =2 der y-linear polarisierten Welle relativ zur x-polarisierten: ~P = ~P x + e i=2 ~P y = ~P x + i ~P y = p 2 ~P R (2) Ein optisches Element welches die Polarisation von Licht verandert, heit Polarisator. Man kann die Wirkung durch eine Jones-Matrix beschreiben: ~P 2 = M ~P 1 (21) ahnlich wie bei der Matrixmethode der Vorlesung 6. Insbesondere berechnet man die Wirkung mehrerer Polarisatoren durch Multiplikation der entsprechenden Matrizen. Wichtig: Die Polarisatoren sind auf die Feldstarken (Amplituden) anzuwenden, nicht auf die Intensitaten! Beispiele: Linearer Polarisator in x-richtung: M x = 1 (22) Polarisator in Richtung \": M = cos 2 sin cos sin cos sin 2 (23) Herleitung: Ubung. Dieser Polarisator lat Licht mit einer Polarisationsrichtung mit Winkel zur x-achse ungehindert passieren: M ~P = M (cos ~P x + sin ~P y ) = cos ~P x + sin ~P y = ~P (24) 4

5 Auch linear polarisiertes Licht mit 6= verlat den Polarisator mit Polarisationsrichtung, aber geschwacht! Zahlen-Beispiel: Polarisationszustand mit =3 zur x-achse geneigter Polarisationsrichtung: p cos 3=2 ~P a = = sin 1=2 Der Polarisator lat diese Wellen hindurch: cos2 sin cos M a = sin cos sin 2 = Der dazu senkrechte Polarisationszustand hat keine Chance: M a ~P a = ~P a ~P b = cos(9 + ) sin(9 + ) Der Polarisationszustand mit Winkel =6 ~P c = cos sin = M a ~P b = ~ = wird gedreht in -Richtung gedreht und geschwacht: 3=4 M a ~P c = p = 3=4 p p 3=4 3=4 3=4 1=4 p,1=2 3=2 p 1=2 3=2 p 3 2 ~P a 4.3. Lineare Polarisationslter Bevor wir uns mit der Erzeugung von polarisiertem Licht befassen, eine erste Demonstration der Wirkung von (idealen) linearen Polarisationsltern: Pol-Filter 1 sei durch die Matrix (22) beschrieben: M P = M x = M (25) Wir nennen ihn Polarisator. Da das Auge oder ein Film die Polarisation nicht erkennen konnen, setzten wir ein zweites gleich gebautes Pol-Filter 2 ein, als Analysator und messen die Intensitat des durchgelassenen Lichtes: 5

6 Die Lichtquelle liefere unpolarisiertes Licht. Der Analysator und damit die von ihm durchgelassene Polarisationsrichtung sei drehbar: M A = M (26) Die Wirkung der Kombination der beiden Polarisationslter berechnet man durch Multiplikation der beiden Matrizen: cos2 M PA () =M M x = (27) sin cos Bei senkrecht zueinander stehenden Pol-Richtungen ( =9 ) wird also kein Licht durchgelassen. DV /T4.1 Drehbare lineare Polarisationslter Wir berechnen jetzt noch die Intensitat des Lichtes, das Polarisator und Analysator passiert, als Funktion des Drehwinkels, relativ zur Intensitat ohne jegliche Filter, I. Dazu betrachten wir die durchgelassene Intensitat fur einen beliebig orientierten Polarisationsvektor ~P = cos sin mit Winkel relativ zur x-achse und integrieren/mitteln uber alle Richtungen : Integration fur M =1(kein Filter): I Z 9 (28) I = const jm ~P j 2 const ^I (29) const ^I d = const Also const = 2 I =. Nur der Polarisator im Strahl: I P = 2 I Z 9 ^I d = 2 I Mit Polarisator und Analysator: I PA () = 2 I Z 9 Z 9 Z 9 jm x ~P j 2 d = 2 I Z 9 I d = 2 I Z 9 1d = =2 const (3) cos 2 d = I 2 (31) jm PA ~P j 2 d (32) = 2 I Z 9 [(cos 2 cos ) 2 + (sin cos sin ) 2 ] d = I 2 (cos4 + sin 2 cos 2 )= I 2 cos2 Das ist das Gesetz von Malus. Insbesondere ist I PA = fur = 9, wie erwartet. Fur = folgt I PA = I P, d.h. der Analysator hat in diesem Fall keine Wirkung. Bei = 45 ndet man I PA =1=2 I P =1=4 I. Besonders interessant wird dieses Experiment bei Einfugen eines dritten Pol-Filters 3 mit Pol- Richtung unter Winkel zur x-achse. Stellt man dieses zwischen Polarisator und Analysator, so ist die Gesamtwirkung auf die Amplitude cos2 sin cos cos2 M = M M M x = sin cos sin 2 (33) sin cos cos2 cos = 2 + sin cos sin cos cos 2 sin cos + sin cos sin 2 6

7 Wir betrachten den Spezialfall =9 : M = sin cos (34) Man erhalt also (im allgemeinen) in der y-richtung polarisiertes Licht! Das Einschieben des dritten Filters hat die Intensitat erhoht! Das kann man so verstehen: Bei z.b. = 45 und = 9 ist das Licht nach Filter 1 in der x-achse polarisiert. Bei Auftreen auf Filter 2 wird diese Feldstarke in eine Komponente parallel und senkrecht zur neuen Filter-Richtung zerlegt. Beide Komponenten sind gleich gro, die Halfte der Intensitat passiert, das durchgelassene Licht ist lin. polarisiert mit Richtung 45 relativ zur x-achse. Das gleiche spielt sich am dritten Filter ab. Wieder gibt es eine Komponente in Pol- Richtung des Filters, wieder passiert die halbe Intensitat. Insgesamt wird durch Filter 2+3 also 1=4 = (sin 45 cos 45 ) 2 durchgelassen. Die Intensitat I des unpolarisierten Lichtes vor Filter 1 wird insgesamt auf ein 1=8 reduziert. Experimente bestatigen diese Formeln und damit, da man zuerst die Amplituden berechnen mu und erst dann durch Quadrieren die Intensitat (Quantenmechanik!): jm 1 M 2 j 2 6= jm 1 j 2 jm 2 j 2! (35) FRAGE: Was passiert, wenn man das 3. Pollter (Winkel ) vor Filter 1 oder hinter Filter 2 stellt? FRAGE: Was passiert, wenn man zirkular polarisiertes Licht auf ein einzelnes lineares Polarisationslter schickt? 4.4. Erzeugung polarisierten Lichtes Allgemein: Linear polarisiertes Licht stellt man aus unpolarisiertem Licht her, indem man die unerwunschten Feldrichtungen entfernt. Zirkular polarisiertes Licht bekommt man aus linear polarisierten Wellen durch Einfuhrung einer Phasenverschiebung zwischen den beiden Komponenten Reexion unter Brewster-Winkel Dieses Phanomen hatten wir schon kennengelernt: Bei Reexion unter dem Brewster-Winkel tritt nur eine Polarisationsrichtung auf, das Licht ist linear senkrecht zur Einfallsebene polarisiert. In der Regel ist es praktischer, das gewunschte Licht durchtransmission zu erzeugen. Bei Reexion unter dem Brewster-Winkel ist das durchgelassene Licht zwar nicht vollstandig polarisiert (PG < 1% fur Glas), aber durch mehrfachen Durchgang kann man den Polarisationsgrad erhohen: 7

8 Ubung! Anwendung: Fur den Photografen storende Reexe auf Glasscheiben (polarisiert!) konnen mit Pol-Filtern reduziert werden (aber er verwendet in der Regel ein Filter wie in beschrieben) Streuung unter 9 Grad Den Brewster-Eekt konnten wir durch die Abstrahlcharakteristik angeregter Dipole verstehen. Auch bei Streuung von Licht beobachtet man ein analoges Phanomen: Insbesondere in der Atmosphare tritt dieser Eekt auf, der Polarisationsgrad des Sonnenlichtes PG = 1, cos2 1 + cos 2 (36) wird 1 fur =9. Das gestreute Licht ist senkrecht zur Zeichenebene polarisiert. DV /- Streuung an kolloidaler Losung Fur Laborzwecke und praktische Anwendungen ist diese Methode nicht gut geeignet! Anwendung: Photographie: Um das Himmelsblau zu verstarken (= die Intensitat zu verringern!) wendet man Polarisationslter an. Das funktioniert nur, wenn die Blickrichtung in etwa senkrecht zur Sonnenrichtung zeigt Selektive Absorption Die einfachste Methode, linear polarisiertes Licht zu erzeugen: Polarisationsfolien bestehen z.b. aus langen Molekulen, die entlang einer Richtung ausgerichtet sind, z.b. durch Strecken des Kunststomaterials. Entlang der Molekulachse konne die Elektronen leichter schwingen und absorbieren mehr Licht als in der senkrechten Richtung. Ein analoges Phanomen hatten wir bei Mikrowellen beobachtet: 8

9 Insgesamt wird also eine Polarisationsrichtung starker geschwacht als die andere. Bei horizontaler Ausrichtung der Molekulketten: Man erreicht ein Transmissionsvermogen (Intensitat) von 25% in der Durchlarichtung, wahrend nur :1% der Intensitat des `falsch' polarisierten Lichtes passieren kann. Als es diese Kunststo-Folien noch nicht gab, benutzte man Gelatineschichten mit eingebetteten orientierten (doppelbrechenden, s.u.) Kristallen, die auch eine richtungsabhangige Absorption aufweisen (`Dichroismus'). 9

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 11. Übungsblatt - 17. Januar 2011 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (7 Punkte) a)

Mehr

Polarisation des Lichts

Polarisation des Lichts PeP Vom Kerzenlicht zum Laser Versuchsanleitung Versuch 4: Polarisation des Lichts Polarisation des Lichts Themenkomplex I: Polarisation und Reflexion Theoretische Grundlagen 1.Polarisation und Reflexion

Mehr

Gitterherstellung und Polarisation

Gitterherstellung und Polarisation Versuch 1: Gitterherstellung und Polarisation Bei diesem Versuch wollen wir untersuchen wie man durch Überlagerung von zwei ebenen Wellen Gttterstrukturen erzeugen kann. Im zweiten Teil wird die Sichtbarkeit

Mehr

6.4. Polarisation und Doppelbrechung. Exp. 51: Doppelbrechung am Kalkspat. Dieter Suter - 389 - Physik B2. 6.4.1. Polarisation

6.4. Polarisation und Doppelbrechung. Exp. 51: Doppelbrechung am Kalkspat. Dieter Suter - 389 - Physik B2. 6.4.1. Polarisation Dieter Suter - 389 - Physik B2 6.4. Polarisation und Doppelbrechung 6.4.1. Polarisation Wie andere elektromagnetische Wellen ist Licht eine Transversalwelle. Es existieren deshalb zwei orthogonale Polarisationsrichtungen.

Mehr

Versuch O3. Polarisiertes Licht. Sommersemester 2006. Daniel Scholz

Versuch O3. Polarisiertes Licht. Sommersemester 2006. Daniel Scholz Demonstrationspraktikum für Lehramtskandidaten Versuch O3 Polarisiertes Licht Sommersemester 2006 Name: Daniel Scholz Mitarbeiter: Steffen Ravekes EMail: daniel@mehr-davon.de Gruppe: 4 Durchgeführt am:

Mehr

Polarimetrie. I p I u. teilweise polarisiert. Polarimetrie

Polarimetrie. I p I u. teilweise polarisiert. Polarimetrie E B z I I p I u I I p 2 I u teilweise polarisiert unpolarisiertes Licht: Licht transversale, elektromagnetische Welle Schwingung senkrecht zur Ausbreitungsrichtung elektr. Feldstärke E und magnet. Feldstärke

Mehr

POLARISATION. Von Carla, Pascal & Max

POLARISATION. Von Carla, Pascal & Max POLARISATION Von Carla, Pascal & Max Die Entdeckung durch MALUS 1808 durch ÉTIENNE LOUIS MALUS entdeckt Blick durch einen Kalkspat auf die an einem Fenster reflektierten Sonnenstrahlen, durch Drehen wurde

Mehr

5.9.301 Brewsterscher Winkel ******

5.9.301 Brewsterscher Winkel ****** 5.9.301 ****** 1 Motivation Dieser Versuch führt vor, dass linear polarisiertes Licht, welches unter dem Brewsterwinkel auf eine ebene Fläche eines durchsichtigen Dielektrikums einfällt, nur dann reflektiert

Mehr

PO Doppelbrechung und elliptisch polarisiertes Licht

PO Doppelbrechung und elliptisch polarisiertes Licht PO Doppelbrechung und elliptisch polarisiertes Licht Blockpraktikum Herbst 27 (Gruppe 2b) 24. Oktober 27 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Polarisation.................................. 2 1.2 Brechung...................................

Mehr

Wellenoptik II Polarisation

Wellenoptik II Polarisation Phsik A VL41 (31.01.2013) Polarisation Polarisation Polarisationsarten Polarisatoren Polarisation durch Streuung und Refleion Polarisation und Doppelbrechung Optische Aktivität 1 Polarisation Polarisationsarten

Mehr

Eine solche Anordnung wird auch Fabry-Pérot Interferometer genannt

Eine solche Anordnung wird auch Fabry-Pérot Interferometer genannt Interferenz in dünnen Schichten Interferieren die an dünnen Schichten reflektierten Wellen miteinander, so können diese sich je nach Dicke der Schicht und Winkel des Einfalls auslöschen oder verstärken

Mehr

Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert

Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert Bachelor Physikalische Technik: Lasertechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert O08 Polarisation (Pr_PhII_O08_Polarisation_7, 25.10.2015) 1. 2. Name Matr. Nr. Gruppe Team Protokoll ist ok O Datum

Mehr

QED Materie, Licht und das Nichts. Wissenschaftliches Gebiet und Thema: Physikalische Eigenschaften von Licht

QED Materie, Licht und das Nichts. Wissenschaftliches Gebiet und Thema: Physikalische Eigenschaften von Licht QED Materie, Licht und das Nichts 1 Wissenschaftliches Gebiet und Thema: Physikalische Eigenschaften von Licht Titel/Jahr: QED Materie, Licht und das Nichts (2005) Filmstudio: Sciencemotion Webseite des

Mehr

PO - Doppelbrechung und elliptisch polarisiertes Licht Blockpraktikum Herbst 2005

PO - Doppelbrechung und elliptisch polarisiertes Licht Blockpraktikum Herbst 2005 PO - Doppelbrechung und elliptisch polarisiertes Licht Blockpraktikum Herbst 00 Assistent Florian Jessen Tübingen, den. Oktober 00 1 Vorwort In diesem Versuch ging es um das Phänomen der Doppelbrechung

Mehr

Überraschende Effekte mit 3D-Brillen (Surprising effects with 3D glasses)

Überraschende Effekte mit 3D-Brillen (Surprising effects with 3D glasses) -1/17- Überraschende Effekte mit 3D-Brillen (Surprising effects with 3D glasses) Quelle des Ursprungsbildes: D-Kuru/Wikimedia Commons -2/17- Was sieht man, wenn man......mit einer 3D-Kinobrille in den

Mehr

Versuch O3 - Wechselwirkung Licht - Materie. Gruppennummer: lfd. Nummer: Datum:

Versuch O3 - Wechselwirkung Licht - Materie. Gruppennummer: lfd. Nummer: Datum: Ernst-Moritz-Arndt Universität Greifswald Institut für Physik Namen: Versuch O3 - Wechselwirkung Licht - Materie Gruppennummer: lfd. Nummer: Datum: 1. Aufgabenstellung 1.1. Versuchsziel Untersuchen Sie

Mehr

1.2 Drehung der Polarisationsebene, Faradayeffekt, Doppelbrechung

1.2 Drehung der Polarisationsebene, Faradayeffekt, Doppelbrechung Physikalisches Praktikum für Anfänger - Teil 1 Gruppe 1 - Optik 1.2 Drehung der Polarisationsebene, Faradayeffekt, Doppelbrechung 1 Drehung der Polarisationsebene Durch einige Kristalle, z.b. Quarz wird

Mehr

Polarisationszustände

Polarisationszustände Polarisationszustände Natürliches Licht: Unpolarisiertes Licht = zufällig polarisiert Linear polarisiertes Licht: P-Zustand; Zirkular polarisiertes Licht: Linkszirkular polarisiert: L-Zustand Rechtszirkular

Mehr

Polarisation durch Reflexion

Polarisation durch Reflexion Version: 27. Juli 2004 Polarisation durch Reflexion Stichworte Erzeugung von polarisiertem Licht, linear, zirkular und elliptisch polarisiertes Licht, Polarisator, Analysator, Polarisationsebene, optische

Mehr

Brewster-Winkel - Winkelabhängigkeit der Reflexion.

Brewster-Winkel - Winkelabhängigkeit der Reflexion. 5.9.30 ****** 1 Motivation Polarisiertes Licht wird an einem geschwärzten Glasrohr reflektiert, so dass auf der Hörsaalwand das Licht unter verschiedenen Relexionswinkeln auftrifft. Bei horizontaler Polarisation

Mehr

PHYSIKALISCHES SCHULVERSUCHSPRAKTIKUM

PHYSIKALISCHES SCHULVERSUCHSPRAKTIKUM PHYSIKALISCHES SCHULVERSUCHSPRAKTIKUM WS 2000 / 2001 Protokoll zum Thema WELLENOPTIK Petra Rauecker 9855238 INHALTSVERZEICHNIS 1. Grundlagen zu Polarisation Seite 3 2. Versuche zu Polarisation Seite 5

Mehr

Polarisation und Doppelbrechung

Polarisation und Doppelbrechung Fortgeschrittenen Praktikum Technische Universita t Darmstadt Betreuer: Dr. Mathias Sinther Durchfu hrung: 06.07.2009 Abgabe: 28.07.2009 Versuch A 3.3 Polarisation und Doppelbrechung Oliver Bitterling

Mehr

3.3 Polarisation und Doppelbrechung. Ausarbeitung

3.3 Polarisation und Doppelbrechung. Ausarbeitung 3.3 Polarisation und Doppelbrechung Ausarbeitung Fortgeschrittenenpraktikum an der TU Darmstadt Versuch durchgeführt von: Mussie Beian, Florian Wetzel Versuchsdatum: 8.6.29 Betreuer: Dr. Mathias Sinther

Mehr

Physikalisches Praktikum I. Polarisation durch ein optisch aktives Medium

Physikalisches Praktikum I. Polarisation durch ein optisch aktives Medium Fachbereich Physik Physikalisches Praktikum I Name: Polarisation durch ein optisch aktives Medium Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser

Mehr

E-10, E-20 und Polfilter

E-10, E-20 und Polfilter 1. Aufgabenstellung E-10, E-20 und Polfilter Klaus Schräder Januar 2002 Polfilter und UV-Sperrfilter zählen zu den meist benutzten Filtern in der Fotografie. Dabei wird häufig geraten, bei Digitalkameras

Mehr

Physikalisches Praktikum O 1 Polarisation und optische Aktivität

Physikalisches Praktikum O 1 Polarisation und optische Aktivität Versuchsziel Physikalisches Praktikum O 1 Polarisation und optische Aktivität Es soll das Malussche Gesetz überprüft und Wellenlängenabhängigkeit des spezifischen Drehvermögens einer Zuckerlösung untersucht

Mehr

Polarisation des Lichtes

Polarisation des Lichtes Polarisation des Lichtes Licht = transversal schwingende el.-magn. Welle Polarisationsrichtung: Richtung des el. Feldvektors Polarisationsarten: unpolarisiert: keine Raumrichtung bevorzugt (z.b. Glühbirne)

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Musterlösung Montag 14. März 2011 1 Maxwell Wir bilden die Rotation der Magnetischen Wirbelbleichung mit j = 0: ( B) = +µµ 0 ɛɛ 0 ( E) t und verwenden wieder die Vektoridenditäet

Mehr

SC Saccharimetrie. Inhaltsverzeichnis. Konstantin Sering, Moritz Stoll, Marcel Schmittfull. 25. April 2007. 1 Einführung 2

SC Saccharimetrie. Inhaltsverzeichnis. Konstantin Sering, Moritz Stoll, Marcel Schmittfull. 25. April 2007. 1 Einführung 2 SC Saccharimetrie Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Geometrische Optik und Wellenoptik.......... 2 2.2 Linear polarisiertes Licht.................

Mehr

Klausurtermine. Klausur 15. Februar 2010, 9:00-11:00 (Klausur 90min) in HS 3 (erste Woche in der vorlesungsfreien Zeit)

Klausurtermine. Klausur 15. Februar 2010, 9:00-11:00 (Klausur 90min) in HS 3 (erste Woche in der vorlesungsfreien Zeit) Klausurtermine Klausur 15. Februar 2010, 9:00-11:00 (Klausur 90min) in HS 3 (erste Woche in der vorlesungsfreien Zeit) Nachklausur Buchung noch nicht bestätigt. Angefragt ist 15. April 2010 (letzte Woche

Mehr

DEUTSCHE GESELLSCHAFT FÜR ZERSTÖRUNGSFREIE PRÜFUNG E.V.

DEUTSCHE GESELLSCHAFT FÜR ZERSTÖRUNGSFREIE PRÜFUNG E.V. DEUTSCHE GESELLSCHAFT FÜR ZERSTÖRUNGSFREIE PRÜFUNG E.V. ZfP-Sonderpreis der DGZfP beim Landeswettbewerb Jugend forscht SAARLAND Versuche zu linear polarisiertem Licht Jaqueline Schriefl Manuel Kunzler

Mehr

Polarisation und optische Aktivität

Polarisation und optische Aktivität Polarisation und optische Aktivität 1 Entstehung polarisiertes Licht Streuung und Brechung einer Lichtwelle Reflexion einer Lichtwelle Emission durch eine polarisierte Quelle z.b. einen schwingenden Dipol

Mehr

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B Kapitel 0 WELLE im VAKUUM In den Maxwell-Gleichungen erscheint eine Asymmetrie durch Ladungen, die Quellen des E-Feldes sind und durch freie Ströme, die Ursache für das B-Feld sind. Im Vakuum ist ρ und

Mehr

Polarisation und Doppelbrechung

Polarisation und Doppelbrechung Technische Universität Darmstadt Fachbereich Physik Institut für Angewandte Physik Versuch 3.3: Polarisation und Doppelbrechung Praktikum für Fortgeschrittene Von Isabelle Zienert (106586) & Mischa Hildebrand

Mehr

Polarisation durch Doppelbrechung

Polarisation durch Doppelbrechung Version: 27. Juli 24 O4 O4 Polarisation durch Doppelbrechung Stichworte Erzeugung von polarisiertem Licht, linear, zirkular und elliptisch polarisiertes Licht, Polarisator, Analysator, Polarisationsebene,

Mehr

Der schwingende Dipol (Hertzscher Dipol): Experimentalphysik I/II für Studierende der Biologie und Zahnmedizin Caren Hagner V6 17.01.

Der schwingende Dipol (Hertzscher Dipol): Experimentalphysik I/II für Studierende der Biologie und Zahnmedizin Caren Hagner V6 17.01. Der schwingende Dipol (Hertzscher Dipol): 1 Dipolachse Ablösung der elektromagnetischen Wellen vom Dipol 2 Dipolachse KEINE Abstrahlung in Richtung der Dipolachse Maximale Abstrahlung senkrecht zur Dipolachse

Mehr

Versuch pl : Polarisation des Lichts

Versuch pl : Polarisation des Lichts UNIVERSITÄT REGENSBURG Naturwissenschaftliche Fakultät II - Physik Anleitung zum Anfängerpraktikum B Versuch pl : Polarisation des Lichts 5. Auflage 2009 Dr. Stephan Giglberger Prof. Dr. Joe Zweck ÁÒ ÐØ

Mehr

Versuch 3.3: Polarisation und Doppelbrechung

Versuch 3.3: Polarisation und Doppelbrechung Versuch 3.3: Polarisation und Doppelbrechung Praktikanten: Carl Böhmer, Maxim Singer Betreuer: Mathias Sinther Durchführung: 18.04.2011 1 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Polarisation.............................

Mehr

Theoretische Grundlagen Physikalisches Praktikum. Versuch 12: Fotometrie und Polarimetrie

Theoretische Grundlagen Physikalisches Praktikum. Versuch 12: Fotometrie und Polarimetrie Theoretische Grundlagen Physikalisches Praktikum Versuch 12: Fotometrie und Polarimetrie Licht als elektromagnetische Welle sichtbares Licht ist eine elektromagnetische Welle andere elektromagnetische

Mehr

Versuch 3.3: Polarisation und Doppelbrechung

Versuch 3.3: Polarisation und Doppelbrechung Versuch 3.3: Polarisation und Doppelbrechung Markus Rosenstihl e-mail:rosenst@prp.physik.tu-darmstadt.de Praktikumspartner: Shona Mackie, Wolfgang Schleifenbaum Betreuer: Dr. Holzfuss 6. Juli 2005 1 1

Mehr

EM-Wellen. david vajda 3. Februar 2016. Zu den Physikalischen Größen innerhalb der Elektrodynamik gehören:

EM-Wellen. david vajda 3. Februar 2016. Zu den Physikalischen Größen innerhalb der Elektrodynamik gehören: david vajda 3. Februar 2016 Zu den Physikalischen Größen innerhalb der Elektrodynamik gehören: Elektrische Stromstärke I Elektrische Spannung U Elektrischer Widerstand R Ladung Q Probeladung q Zeit t Arbeit

Mehr

Polarisiertes Licht. 1 Einleitung. 1.1 Polarisation. 1.2 Linear polarisiertes Licht

Polarisiertes Licht. 1 Einleitung. 1.1 Polarisation. 1.2 Linear polarisiertes Licht 1 Polarisiertes Licht Dieser Bereich der Optik ist besonders interessant, weil die Entdeckung der Polarisation historisch die Vorstellung des Lichtes als elektromagnetische Welle etabliert hat. Vorbereitung:

Mehr

Wechselstrom (Widerstand von Kondensator, Spule, Ohmscher Widerst.) Abstrahlung von elektromagnetischen Wellen (Hertzscher Dipol)

Wechselstrom (Widerstand von Kondensator, Spule, Ohmscher Widerst.) Abstrahlung von elektromagnetischen Wellen (Hertzscher Dipol) Heutiges Programm: 1 Wechselstrom (Widerstand von Kondensator, Spule, Ohmscher Widerst.) Elektrischer Schwingkreis Abstrahlung von elektromagnetischen Wellen (Hertzscher Dipol) Elektromagnetische Wellen

Mehr

O02. Polarisation. 1. Theoretische Grundlagen 1.1 Verschiedene Arten der Polarisation

O02. Polarisation. 1. Theoretische Grundlagen 1.1 Verschiedene Arten der Polarisation O0 Polarisation Die Polarisation von Licht ist neben ihrer prinzipiellen Bedeutung als Hinweis auf die Transversalwellennatur von Licht auch von Interesse für viele Anwendungen. Eines dieser Anwendungsgebiete

Mehr

Geschichte der Entdeckung der Gravitationswellen

Geschichte der Entdeckung der Gravitationswellen Geschichte der Entdeckung der Gravitationswellen Diese ganze Sache hatte einen zufälligen und irdischen Charakter. Es war im Jahre 1972 in Danzig-Oliva, im März, gegen 9 Uhr früh. Ich spielte im Bad mit

Mehr

3.7.1 Polarisationsfolien Polarisationsfolien haben hohe Elektronenbeweglichkeit entlang einer Richtung y in der Ebene der Folie. Analog zum Durchgang

3.7.1 Polarisationsfolien Polarisationsfolien haben hohe Elektronenbeweglichkeit entlang einer Richtung y in der Ebene der Folie. Analog zum Durchgang Prof. Ch. Berger, Physik f. Maschinenbauer, WS 02/03 11. Vorlesung 3.6 Spektralapparate Im Prinzip kann die Bestimmung von Wellenlangen durch Beugung am Spalt erfolgen. Eine wesentlich bessere Auosung

Mehr

Photonik Technische Nutzung von Licht

Photonik Technische Nutzung von Licht Photonik Technische Nutzung von Licht Polarisation Überblick Polarisation Fresnel sche Formeln Brewster-Winkel Totalreflexion Regensensor Doppelbrechung LCD-Display 3D Fernsehen und Kino Polarisation Polarisation

Mehr

Fakultät Maschinenbau, Verfahrens- und Energietechnik Institut für Mechanik und Fluiddynamik Praktikum Messmethoden der Mechanik

Fakultät Maschinenbau, Verfahrens- und Energietechnik Institut für Mechanik und Fluiddynamik Praktikum Messmethoden der Mechanik Fakultät Maschinenbau, Verfahrens- und Energietechnik Institut für Mechanik und Fluiddynamik Praktikum Messmethoden der Mechanik Versuch: Spannungsoptik 1. Spannungsoptik eine Einleitung Spannungsoptik

Mehr

,im folgenden in z-richtung, ausbreiten. Der einfachste Ansatz führt auf eine ebene Welle, die z. B. der partiellen Dgl.

,im folgenden in z-richtung, ausbreiten. Der einfachste Ansatz führt auf eine ebene Welle, die z. B. der partiellen Dgl. Technische Universität Dresden Fachrichtung Physik L. Jahn, H. Lichte Entw. 5/01 Polarisation Aufgabenstellung: Physikalisches Praktikum Versuch: PO (96) 1. Mit einem Polarimeter wird der Drehwinkel der

Mehr

Versuch WP1 Polarisation von Licht durch Streuung und Reflexion und die elliptische Polarisation von Lichtwellen

Versuch WP1 Polarisation von Licht durch Streuung und Reflexion und die elliptische Polarisation von Lichtwellen BERGISCHE UNIVERSITÄT WUPPERTAL Versuch WP1 Polarisation von Licht durch Streuung und Reflexion und die elliptische Polarisation von Lichtwellen I. Vorkenntnisse 9.06 Licht als ebene, transversale elektromagnetische

Mehr

FK Ex 4 - Musterlösung Montag

FK Ex 4 - Musterlösung Montag FK Ex 4 - Musterlösung Montag 1 Wellengleichung Leiten Sie die Wellengleichungen für E und B aus den Maxwellgleichungen her. Berücksichtigen Sie dabei die beiden Annahmen, die in der Vorlesung für den

Mehr

Physikalisches Praktikum 5. Semester

Physikalisches Praktikum 5. Semester Torsten Leddig 22.Dezember 2005 Mathias Arbeiter Betreuer: Toralf Ziems Physikalisches Praktikum 5. Semester - Zeeman-Effekt - Inhaltsverzeichnis 1 Aufgabenstellung 3 2 Normaler Zeeman-Effekt 3 3 Messung

Mehr

Polarisationsapparat

Polarisationsapparat 1 Polarisationsapparat Licht ist eine transversale elektromagnetische Welle, d.h. es verändert die Länge der Vektoren des elektrischen und magnetischen Feldes. Das elektrische und magnetische Feld ist

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 1, Montag vormittag Vektoralgebra Ein Vektor lässt sich geometrisch als eine gerichtete Strecke darstellen,

Mehr

5.8.8 Michelson-Interferometer ******

5.8.8 Michelson-Interferometer ****** 5.8.8 ****** Motiation Ein wird mit Laser- bzw. mit Glühlampenlicht betrieben. Durch Verschieben eines der beiden Spiegel werden Intensitätsmaxima beobachtet. Experiment S 0 L S S G Abbildung : Aufsicht

Mehr

Laser B Versuch P2-23,24,25

Laser B Versuch P2-23,24,25 Vorbereitung Laser B Versuch P2-23,24,25 Iris Conradi und Melanie Hauck Gruppe Mo-02 20. Mai 2011 Inhaltsverzeichnis Inhaltsverzeichnis 1 Fouriertransformation 3 2 Michelson-Interferometer 4 2.1 Magnetostriktion...............................

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 9 Freitag. $Id: quadrat.tex,v.5 9//5 ::59 hk Exp $ $Id: orthogonal.tex,v.4 9// ::54 hk Exp $ $Id: fourier.tex,v. 9// :: hk Exp $ Symmetrische Matrizen und quadratische

Mehr

Versuch 35: Speckle. F-Praktikum Versuch 35: Speckle N. Lindlein

Versuch 35: Speckle. F-Praktikum Versuch 35: Speckle N. Lindlein Versuch 35: Speckle Norbert Lindlein nstitut für Optik, nformation und Photonik (Max-Planck-Forschungsgruppe) Universität Erlangen-Nürnberg Staudtstr. 7/B, D-958 Erlangen E-mail: norbert.lindlein@optik.uni-erlangen.de

Mehr

Polarisationszustände, Polarisation von Materie

Polarisationszustände, Polarisation von Materie Übung 5 Abgabe: 31.03. bzw. 04.03.2017 Elektromagnetische Felder & Wellen Frühjahrssemester 2017 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Polarisationszustände, Polarisation von Materie 1

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Lissajous-Figuren Versuche mit dem Oszilloskop und dem X Y Schreiber

Lissajous-Figuren Versuche mit dem Oszilloskop und dem X Y Schreiber Protokoll VIII Lissajous-Figuren Versuche mit dem Oszilloskop und dem X Y Schreiber Datum: 10.12.2001 Projektgruppe 279 Tutorin: Grit Petschick Studenten: Mina Günther Berna Gezik Carola Nisse Michael

Mehr

3.2 Spiegelungen an zwei Spiegeln

3.2 Spiegelungen an zwei Spiegeln 3 Die Theorie des Spiegelbuches 45 sehen, wenn die Person uns direkt gegenüber steht. Denn dann hat sie eine Drehung um die senkrechte Achse gemacht und dabei links und rechts vertauscht. 3.2 Spiegelungen

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Wintersemester 214/215 Thomas Maier, Alexander Wolf Lösung 1 Wellengleichung und Polarisation Aufgabe 1: Wellengleichung Eine transversale elektromagnetische Welle im Vakuum

Mehr

Die Grundkonzepte der Quantenmechanik illustriert an der Polarisation von Photonen

Die Grundkonzepte der Quantenmechanik illustriert an der Polarisation von Photonen Die Grundkonzepte der Quantenmechanik illustriert an der Polarisation von Photonen Frank Wilhelm-Mauch February 5, 013 Fachrichtung Theoretische Physik, Universität des Saarlandes, Saarbrücken 0. Februar

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

PROTOKOLL ZUM ANFÄNGERPRAKTIKUM. Polarisation von Licht. Sebastian Finkel Sebastian Wilken

PROTOKOLL ZUM ANFÄNGERPRAKTIKUM. Polarisation von Licht. Sebastian Finkel Sebastian Wilken PROTOKOLL ZUM ANFÄNGERPRAKTIKUM PHYSIK Polarisation von Licht Sebastian Finkel Sebastian Wilken Versuchsdurchführung: 1. Juli 006 0. Inhalt 1. Einleitung. Theoretischer Teil.1. Polarisationszustände..

Mehr

11 Elektromagnetische Schwingungen und Wellen

11 Elektromagnetische Schwingungen und Wellen 16 11 Elektromagnetische Schwingungen und Wellen 11.1 Elektromagnetischer Schwingkreis Ein elektromagnetischer Schwingkreis besteht aus einer Induktivität L und einem Kondensator C (LC-Kreis) Lädt man

Mehr

Inhaltsverzeichnis. 1 Einleitung 2

Inhaltsverzeichnis. 1 Einleitung 2 Inhaltsverzeichnis 1 Einleitung 2 2 Physikalische Grundlagen 2 2.1 Eigenschaften von Licht............................. 2 2.2 Polarisation.................................... 2 2.2.1 Herstellung von polarisiertem

Mehr

1 Anregung von Oberflächenwellen (30 Punkte)

1 Anregung von Oberflächenwellen (30 Punkte) 1 Anregung von Oberflächenwellen (30 Punkte) Eine ebene p-polarisierte Welle mit Frequenz ω und Amplitude E 0 trifft aus einem dielektrischen Medium 1 mit Permittivität ε 1 auf eine Grenzfläche, die mit

Mehr

Repetitionsaufgaben: Lineare Funktionen

Repetitionsaufgaben: Lineare Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Funktionen Zusammengestellt von Irina Bayer-Krakvina, KSR Lernziele: - Wissen, was ein Steigungsdreieck einer Geraden ist und wie die Steigungszahl

Mehr

HÖHERE PHYSIK SKRIPTUM VORLESUNGBLATT V 12-19.11.2004

HÖHERE PHYSIK SKRIPTUM VORLESUNGBLATT V 12-19.11.2004 Pro. Dr. F. Koch Dr. H. E. Porteanu koch@ph.tum.de porteanu@ph.tum.de WS 004-005 HÖHERE PHYSIK SKRIPTUM VORLESUNGBLATT V 1-19.11.004 OPTIK geometriche und phyikaliche Optik C. Polariation Al tranverale

Mehr

Wir betrachten hier den Polarisationszustand einer Normalmode

Wir betrachten hier den Polarisationszustand einer Normalmode Kapitel 5 Die Polarisation elektromagnetischer Wellen 5.1 Einführung Der zeitliche Verlauf des reellen elektrischen Feldvektors E r r,t) bestimmt den Polarisationszustand des Feldes. Wir betrachten hier

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt für die Klassen 7 bis 9: Linsen und optische Geräte

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt für die Klassen 7 bis 9: Linsen und optische Geräte Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lernwerkstatt für die Klassen 7 bis 9: Linsen und optische Geräte Das komplette Material finden Sie hier: Download bei School-Scout.de

Mehr

Versuch O08: Polarisation des Lichtes

Versuch O08: Polarisation des Lichtes Versuch O08: Polarisation des Lichtes 5. März 2014 I Lernziele Wellenoptik Longitudinal- und Transversalwellen Elektromagnetische Wellen II Physikalische Grundlagen Nachweismethode Elektromagnetische Wellen

Mehr

Thema 9: Optische Polarisation

Thema 9: Optische Polarisation Version vom 26. April 2015 Thema 9: Optische Polarisation Abbildung 9.1: Übersicht des Versuchsaufbaus Abbildung 9.2: Detailansicht der Proben 1 Einführung und Grundbegriffe 1.1 Einführung Neben Beugungs

Mehr

Polarimetrie - Deutschlands nationales Metrologieinstitut

Polarimetrie - Deutschlands nationales Metrologieinstitut Polarimetrie - Deutschlands nationales Metrologieinstitut - 1 - Anwendungen der Polarimetrie In vielen Bereichen wird Polarimetrie eingesetzt, um optisch aktive Substanzen nachzuweisen und deren Konzentration

Mehr

Terbium-Gallium-Granat-Zylinder (TGG) in Plastikfassungen (Länge 20 mm), ebenfalls mit halbrunder Plexiglashalterung

Terbium-Gallium-Granat-Zylinder (TGG) in Plastikfassungen (Länge 20 mm), ebenfalls mit halbrunder Plexiglashalterung 4.10 Faraday-Effekt 523 4.10. Faraday-Effekt Ziel Untersuchung der durch ein Magnetfeld hervorgerufenen Drehung der Schwingungsebene von linear polarisiertem Licht beim Durchgang durch Glas und andere

Mehr

1 mm 20mm ) =2.86 Damit ist NA = sin α = 0.05. α=arctan ( 1.22 633 nm 0.05. 1) Berechnung eines beugungslimitierten Flecks

1 mm 20mm ) =2.86 Damit ist NA = sin α = 0.05. α=arctan ( 1.22 633 nm 0.05. 1) Berechnung eines beugungslimitierten Flecks 1) Berechnung eines beugungslimitierten Flecks a) Berechnen Sie die Größe eines beugungslimitierten Flecks, der durch Fokussieren des Strahls eines He-Ne Lasers (633 nm) mit 2 mm Durchmesser entsteht.

Mehr

18. Magnetismus in Materie

18. Magnetismus in Materie 18. Magnetismus in Materie Wir haben den elektrischen Strom als Quelle für Magnetfelder kennen gelernt. Auch das magnetische Verhalten von Materie wird durch elektrische Ströme bestimmt. Die Bewegung der

Mehr

C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!)

C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!) C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!) 4. Physikalische Grundlagen Licht ist als elektromagnetische Welle eine Transversalwelle, d.h. der elektrische Feldvektor schwingt in einer

Mehr

Physik-Abitur 2006 Aufgabe II d. Offizielle Lösungshinweise. Operatorendefinitionen aus den EPA

Physik-Abitur 2006 Aufgabe II d. Offizielle Lösungshinweise. Operatorendefinitionen aus den EPA Physik-Abitur 2006 Aufgabe II d Photonen einer monochromatischen Lichtquelle stehen zwei Wege zur Verfügung, die über einen Strahlteiler, je einen Spiegel und einen halbdurchlässigen Spiegel auf den gleichen

Mehr

Vorlesung Messtechnik 2. Hälfte des Semesters Dr. H. Chaves

Vorlesung Messtechnik 2. Hälfte des Semesters Dr. H. Chaves Vorlesung Messtechnik 2. Hälfte des Semesters Dr. H. Chaves 1. Einleitung 2. Optische Grundbegriffe 3. Optische Meßverfahren 3.1 Grundlagen dρ 3.2 Interferometrie, ρ(x,y), dx (x,y) 3.3 Laser-Doppler-Velozimetrie

Mehr

Versuch P6: Polarimetrie

Versuch P6: Polarimetrie Physikalisch-chemisches Praktikum für Pharmazeuten Gruppennummer Name Vortestat Endtestat Vorname Versuch A. Vorbereitungsteil (VOR der Versuchsdurchführung lesen!) 1. Kurzbeschreibung In diesem Versuch

Mehr

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR.

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Weitere Files findest du auf www.semestra.ch/files DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Messung von c und e/m Autor: Noé Lutz Assistent:

Mehr

Polarisation und Doppelbrechung

Polarisation und Doppelbrechung Polarisation und Doppelbrechung Fortgeschrittenen Praktikum der TU Darmstadt Konstantin Ristl und Jan Wagner Betreuer: Dr. Mathias Sinther Datum: 29.Juni 2009 Erklärung zum fortgeschrittenen Praktikum

Mehr

OSTSACHSEN - DRESDEN. Von der Spannung zum Bruch - Zeichengeräte im Härtetest. ZfP-Sonderpreis der DGZfP beim Regionalwettbewerb Jugend forscht

OSTSACHSEN - DRESDEN. Von der Spannung zum Bruch - Zeichengeräte im Härtetest. ZfP-Sonderpreis der DGZfP beim Regionalwettbewerb Jugend forscht ZfP-Sonderpreis der DGZfP beim Regionalwettbewerb Jugend forscht OSTSACHSEN - DRESDEN Von der Spannung zum Bruch - Zeichengeräte im Härtetest Nico Herrmann Jonas König Schule: Freie Christliche Schule

Mehr

3 Licht als elektromagnetische Welle

3 Licht als elektromagnetische Welle 3 Licht als elektromagnetische Welle Die bisherige eschreibung des Lichtes als Welle entspricht etwa dem historischen Stand der Wellentheorie des Lichts bevor Maxwell (James lerk Maxwell, 1831-1879) und

Mehr

NG Brechzahl von Glas

NG Brechzahl von Glas NG Brechzahl von Glas Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Geometrische Optik und Wellenoptik.......... 2 2.2 Linear polarisiertes

Mehr

Polarisation von Licht

Polarisation von Licht 68 Carl von Ossietzky Universität Oldenburg - Fakultät V- Institut für Physik Modul Grundpraktikum Physik Teil II Polarisation von Licht Stichworte: Elektromagnetische Welle, Transversalwelle, Wellenvektor,

Mehr

Praktikum II PO: Doppelbrechung und eliptisch polatisiertes Licht

Praktikum II PO: Doppelbrechung und eliptisch polatisiertes Licht Praktikum II PO: Doppelbrechung und eliptisch polatisiertes Licht Betreuer: Norbert Lages Hanno Rein praktikum2@hanno-rein.de Florian Jessen florian.jessen@student.uni-tuebingen.de 26. April 2004 Made

Mehr

Michelson Interferometer: Aufbau und Anwendungen. 21. Mai 2015

Michelson Interferometer: Aufbau und Anwendungen. 21. Mai 2015 Michelson Interferometer: Aufbau und Anwendungen 1. Mai 015 1 Prinzipieller Aufbau eines Michelson Interferometers Interferenz zweier ebener elektromagnetischer Wellen gleicher Frequenz, aber unterschiedlicher

Mehr

Ferienkurs Experimentalphysik III

Ferienkurs Experimentalphysik III Ferienkurs Experimentalphysik III Aufgaben Montag - Elektrodynamik und Polarisation Monika Beil, Michael Schreier 27. Juli 2009 1 Prisma Gegeben sei ein Prisma mit Önungswinkel γ. Zeigen Sie dass bei symmetrischem

Mehr

Übungsblatt 04 Grundkurs IIIa für Physiker, Wirtschaftsphysiker und Physik Lehramt

Übungsblatt 04 Grundkurs IIIa für Physiker, Wirtschaftsphysiker und Physik Lehramt Übungsblatt 4 Grundkurs IIIa für Physiker, Wirtschaftsphysiker und Physik Lehramt Othmar Marti, (othmar.marti@physik.uni-ulm.de) 17., 23. und 24. 6. 23 1 Aufgaben Das Fermatsche Prinzip 1, Polarisation

Mehr

Optische Bauelemente

Optische Bauelemente Optische Bauelemente (Teil 2) Matthias Pospiech Universität Hannover Optische Bauelemente p. 1/15 Inhalt 1. Akusto-Optische Modulatoren (AOMs) 2. Faraday Rotator (Faraday Effekt) 3. Optische Diode Optische

Mehr

Spektroskopie. im IR- und UV/VIS-Bereich. Optische Rotationsdispersion (ORD) und Circulardichroismus (CD) http://www.analytik.ethz.

Spektroskopie. im IR- und UV/VIS-Bereich. Optische Rotationsdispersion (ORD) und Circulardichroismus (CD) http://www.analytik.ethz. Spektroskopie im IR- und UV/VIS-Bereich Optische Rotationsdispersion (ORD) und Circulardichroismus (CD) Dr. Thomas Schmid HCI D323 schmid@org.chem.ethz.ch http://www.analytik.ethz.ch Enantiomere sind Stereoisomere,

Mehr

Polarisation und Doppelbrechung Versuchsvorbereitung

Polarisation und Doppelbrechung Versuchsvorbereitung Versuche P2-11 Polarisation und Doppelbrechung Versuchsvorbereitung Thomas Keck und Marco A., Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 18.04.2011 1 1 Licht 1.1 Licht

Mehr

Laborversuche zur Physik 2 II - 2. Polarisiertes Licht

Laborversuche zur Physik 2 II - 2. Polarisiertes Licht FB Physik Laborversuche zur Physik 2 II - 2 Versuche mit polarisiertem Licht Reyher, 27.02.15 Polarisiertes Licht Ziele Beschreibung und Erzeugung von polarisiertem Licht Optische Aktivität von Quarz und

Mehr

Physik III Übung 8 - Lösungshinweise

Physik III Übung 8 - Lösungshinweise Physik III Übung 8 - Lösungshinweise Stefan Reutter WiSe 01 Moritz Kütt Stand: 0.1.01 Franz Fujara Aufgabe 1 [H,D] LCD Wie funktionieren LCD-Bildschirme (LCD = Liquid Crystal Display)? LCD Bildschirme

Mehr

MUSTER 2 FÜR DIE ABITURPRÜFUNG AM BERUFLICHEN GYMNASIUM AB DEM SCHULJAHR 2016/2017. Teil 1: Keine Hilfsmittel zugelassen.

MUSTER 2 FÜR DIE ABITURPRÜFUNG AM BERUFLICHEN GYMNASIUM AB DEM SCHULJAHR 2016/2017. Teil 1: Keine Hilfsmittel zugelassen. MINISTERIUM FÜR KULTUS, JUGEND UND SPORT BADEN-WÜRTTEMBERG MUSTER 2 FÜR DIE ABITURPRÜFUNG AM BERUFLICHEN GYMNASIUM AB DEM SCHULJAHR 21/217 Hauptprüfung LÖSUNGSVORSCHLAG FÜR DAS FACH Arbeitszeit Hilfsmittel

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt für die Klassen 5 bis 6: Magnetismus

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt für die Klassen 5 bis 6: Magnetismus Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lernwerkstatt für die Klassen 5 bis 6: Magnetismus Das komplette Material finden Sie hier: Download bei School-Scout.de SCHOOL-SCOUT

Mehr