Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download ""

Transkript

1 Physik III (integrierter Kurs, exp. Teil), HU, WS 1999/2, T.H. September 26, 2 VORLESUNG 8 Nachdenken/Nachlesen: Sind Sterne farbig? Kann man die Farben besser direkt mit dem Auge oder mit Hilfe eines Films bestimmen? Warum? 4. Polarisation 4.1. Wiederholung Wir betrachten ebene monochromatische elektromagnetische Wellen in Materie ohne Netto-Ladung. In komplexer Notation: ~E = ~E e i(~ k~r,!t) (1) Beobachtbar/mebar ist nur der Realteil! ~E ist eine (komplexe) Konstante. Wegen ~r ~E = (2) stehen Ausbreitungsrichtung ~k und Feldstarke ~E senkrecht aufeinander. Das Magnetfeld ~B ist orthogonal zu beiden, wegen Es kann (im Vakuum) mit ~r ~B =, ~r ~E : (3) ~B = ~ k! ~E j ~Bj = 1 c j ~Ej (4) aus dem ~E-Feld berechnet werden und wird hier nicht weiter betrachtet, da die Wirkung auf Elektronen/Atome in Materie vernachlassigbar ist: j ~F B j = jq~v ~Bj < jqjj~vjj~bj = jqj j~vj c j ~Ej = j~vj c j ~F E jj~f E j (5) Licht z.b. einer Gluhlampe entsteht aus vielen einzelnen schwingenden Dipolen, die zufallig zueinander orientiert sind und deren Wellen sich uberlagern. Diese Wellen haben i.a. unterschiedliche Ausbreitungsrichtungen, Frequenzen, Amplituden j ~E j und auch Schwingungsrichtungen ~E. Man spricht von unpolarisiertem Licht. Wenn fur die einzelnen Wellenzuge auer ~k und! (unsere Annahme der monochromatischen ebenen Welle) auch die Richtungen (= Verhaltnis der Komponenten einschl. Phasen!) von ~E (nicht notwendigerweise die Betrage) ubereinstimmen, ist das Licht polarisiert. Man kann auch nicht monochromatisches Licht zulassen, aber diesen allgemeineren Fall wollen wir hier nicht behandeln. 1

2 Den Polarisationsgrad von teilweise linear polarisiertem Licht deniert man als Entsprechendes deniert man fur zirkular polarisiertes Licht Jones-Vektoren und Jones-Matrizen PG = I k, I? I k +I? (6) Im folgenden nehmen wir o.b.d.a. an, da die Welle sich in z-richtung ausbreitet. Dann sind die z-komponenten von ~E und ~E null und wir schreiben sie erst gar nicht auf: E x ~E = eix E y (7) e iy Die beiden Komponenten E x ;Ey sowie die Phasen x ; y sind reell. Wir denieren den Jones-Vektor ~E ~P = x ~E y e i (8) mit E = j ~E j = q (E x )2 +(E y ) 2 ~ E x = Ex E ~ Ey = Ey E = y, x (9) Oenbar gilt hier j ~P j = 1. Man beachte, da die Polarisationsrichtungen ~P und, ~P nicht unterschieden werden konnen. Schickt man eine polarisierte Welle durch einen Polarisator (s.u.), werden i.a. Amplitude und Intensitat geschwacht und es gilt dann j ~P j < 1. Der Jones-Vektor beschreibt den Polarisationszustand der Welle, denn: ~E = E ~P e i( ~k~r,!t+ x ) Die gemeinsame Phase x ist durch die Anfangsbedingungen (Zeitnullpunkt) festgelegt. Sie ist uninteressant und wir setzen sie hier zu null. Wir konnen drei Falle unterscheiden: (1) Lineare Polarisation: =. Der Polarisationsvektor ist reell. Sonderfalle: 1 ~P x = ~P y = 1 (11) sind die Polarisationsvektoren fur vollstandige Polarisation in x- bzw. y-richtung. 2

3 Ein allgemeiner linearer Polarisationszustand, mit Winkel relativ zur x-achse, ist gegeben durch cos ~P = cos ~P x + sin ~P y = (12) sin Umgekehrt kann man aus den Komponenten den Winkel berechnen: tan = ~ E y ~E x (13) Zirkulare Polarisation: = 9, ~ Ex = ~ Ey =1= p 2. Die zugehorigen Jones-Vektoren sind ~P R = 1 p 2 1 i ~P L = 1 p 2 1,i (14) In der x-y-ebene kreisen die Realteile der Vektoren ~E bzw. ~P mit dem Winkel (t) relativ zur x-achse: Fall = =2: Also: ReE x = E p cos(kz,!t+)= E p cos(!t, kz, ) (15) 2 2 ReE y = E p cos(kz,!t+ =2) = E p cos(!t, kz, =2) (16) 2 2 = E p sin(!t, kz) 2 R (t) =!t, kz (17) Entsprechendes ndet man fur =,=2, aber jetzt dreht sich der Polarisationsvektor andersherum: L (t) =,!t+ kz (18) In Ausbreitungsrichtung blickend beschreibt der Polarisationsvektor eine Rechtsschraube (Linksschraube) fur = +=2 ( =,=2). Entsprechend spricht man von rechts zirkular 3

4 und links zirkular polarisiertem Licht. VORSICHT: Teilweise wird die andere Konvention benutzt! In der Quantentheorie werden Lichtstrahlen durch Photonen beschrieben. Diese haben einen `Spin' der entweder in Richtung der Flugrichtung weist oder entgegengesetzt. Im klassischen Wellenbild entspricht dies links- bzw. rechtszirkular polarisiertem Licht. In einer linear polarisierten Lichtwelle ist die Zahl der Photonen beider Sorten gleich. Elliptische Polarisation: a) = 9, ~ Ex beliebig. b) beliebig, ~ Ex = ~ Ey =1= p 2. Das ergibt elliptische Spiralen: in der x-y-ebene beschreibt die Spitze des E-Vektors eine Ellipse. Dieser allgemeinere Fall wird hier nicht weiter diskutiert. Siehe auch 2. Semester, Lissajous-Figuren! Beachte: die eingefuhrten Jones-Vektoren-Paare ~P x, ~P y einerseits und ~P R, ~P L andererseits bilden jeweils eine Basis fur den zugehorigen zweidimensionalen Vektorraum. Insbesondere: ~P R;L = 1 p 2 ( ~P x i ~P y ) ~P x = 1 p 2 ( ~P R + ~P L ) ~P y =,i p 2 ( ~P R, ~P L ) (19) Man kann also eine lineare Position aufbauen durch Uberlagerung von zirkular polarisiertem Licht und umgekehrt! Beispiel: Phasenverschiebung von = =2 der y-linear polarisierten Welle relativ zur x-polarisierten: ~P = ~P x + e i=2 ~P y = ~P x + i ~P y = p 2 ~P R (2) Ein optisches Element welches die Polarisation von Licht verandert, heit Polarisator. Man kann die Wirkung durch eine Jones-Matrix beschreiben: ~P 2 = M ~P 1 (21) ahnlich wie bei der Matrixmethode der Vorlesung 6. Insbesondere berechnet man die Wirkung mehrerer Polarisatoren durch Multiplikation der entsprechenden Matrizen. Wichtig: Die Polarisatoren sind auf die Feldstarken (Amplituden) anzuwenden, nicht auf die Intensitaten! Beispiele: Linearer Polarisator in x-richtung: M x = 1 (22) Polarisator in Richtung \": M = cos 2 sin cos sin cos sin 2 (23) Herleitung: Ubung. Dieser Polarisator lat Licht mit einer Polarisationsrichtung mit Winkel zur x-achse ungehindert passieren: M ~P = M (cos ~P x + sin ~P y ) = cos ~P x + sin ~P y = ~P (24) 4

5 Auch linear polarisiertes Licht mit 6= verlat den Polarisator mit Polarisationsrichtung, aber geschwacht! Zahlen-Beispiel: Polarisationszustand mit =3 zur x-achse geneigter Polarisationsrichtung: p cos 3=2 ~P a = = sin 1=2 Der Polarisator lat diese Wellen hindurch: cos2 sin cos M a = sin cos sin 2 = Der dazu senkrechte Polarisationszustand hat keine Chance: M a ~P a = ~P a ~P b = cos(9 + ) sin(9 + ) Der Polarisationszustand mit Winkel =6 ~P c = cos sin = M a ~P b = ~ = wird gedreht in -Richtung gedreht und geschwacht: 3=4 M a ~P c = p = 3=4 p p 3=4 3=4 3=4 1=4 p,1=2 3=2 p 1=2 3=2 p 3 2 ~P a 4.3. Lineare Polarisationslter Bevor wir uns mit der Erzeugung von polarisiertem Licht befassen, eine erste Demonstration der Wirkung von (idealen) linearen Polarisationsltern: Pol-Filter 1 sei durch die Matrix (22) beschrieben: M P = M x = M (25) Wir nennen ihn Polarisator. Da das Auge oder ein Film die Polarisation nicht erkennen konnen, setzten wir ein zweites gleich gebautes Pol-Filter 2 ein, als Analysator und messen die Intensitat des durchgelassenen Lichtes: 5

6 Die Lichtquelle liefere unpolarisiertes Licht. Der Analysator und damit die von ihm durchgelassene Polarisationsrichtung sei drehbar: M A = M (26) Die Wirkung der Kombination der beiden Polarisationslter berechnet man durch Multiplikation der beiden Matrizen: cos2 M PA () =M M x = (27) sin cos Bei senkrecht zueinander stehenden Pol-Richtungen ( =9 ) wird also kein Licht durchgelassen. DV /T4.1 Drehbare lineare Polarisationslter Wir berechnen jetzt noch die Intensitat des Lichtes, das Polarisator und Analysator passiert, als Funktion des Drehwinkels, relativ zur Intensitat ohne jegliche Filter, I. Dazu betrachten wir die durchgelassene Intensitat fur einen beliebig orientierten Polarisationsvektor ~P = cos sin mit Winkel relativ zur x-achse und integrieren/mitteln uber alle Richtungen : Integration fur M =1(kein Filter): I Z 9 (28) I = const jm ~P j 2 const ^I (29) const ^I d = const Also const = 2 I =. Nur der Polarisator im Strahl: I P = 2 I Z 9 ^I d = 2 I Mit Polarisator und Analysator: I PA () = 2 I Z 9 Z 9 Z 9 jm x ~P j 2 d = 2 I Z 9 I d = 2 I Z 9 1d = =2 const (3) cos 2 d = I 2 (31) jm PA ~P j 2 d (32) = 2 I Z 9 [(cos 2 cos ) 2 + (sin cos sin ) 2 ] d = I 2 (cos4 + sin 2 cos 2 )= I 2 cos2 Das ist das Gesetz von Malus. Insbesondere ist I PA = fur = 9, wie erwartet. Fur = folgt I PA = I P, d.h. der Analysator hat in diesem Fall keine Wirkung. Bei = 45 ndet man I PA =1=2 I P =1=4 I. Besonders interessant wird dieses Experiment bei Einfugen eines dritten Pol-Filters 3 mit Pol- Richtung unter Winkel zur x-achse. Stellt man dieses zwischen Polarisator und Analysator, so ist die Gesamtwirkung auf die Amplitude cos2 sin cos cos2 M = M M M x = sin cos sin 2 (33) sin cos cos2 cos = 2 + sin cos sin cos cos 2 sin cos + sin cos sin 2 6

7 Wir betrachten den Spezialfall =9 : M = sin cos (34) Man erhalt also (im allgemeinen) in der y-richtung polarisiertes Licht! Das Einschieben des dritten Filters hat die Intensitat erhoht! Das kann man so verstehen: Bei z.b. = 45 und = 9 ist das Licht nach Filter 1 in der x-achse polarisiert. Bei Auftreen auf Filter 2 wird diese Feldstarke in eine Komponente parallel und senkrecht zur neuen Filter-Richtung zerlegt. Beide Komponenten sind gleich gro, die Halfte der Intensitat passiert, das durchgelassene Licht ist lin. polarisiert mit Richtung 45 relativ zur x-achse. Das gleiche spielt sich am dritten Filter ab. Wieder gibt es eine Komponente in Pol- Richtung des Filters, wieder passiert die halbe Intensitat. Insgesamt wird durch Filter 2+3 also 1=4 = (sin 45 cos 45 ) 2 durchgelassen. Die Intensitat I des unpolarisierten Lichtes vor Filter 1 wird insgesamt auf ein 1=8 reduziert. Experimente bestatigen diese Formeln und damit, da man zuerst die Amplituden berechnen mu und erst dann durch Quadrieren die Intensitat (Quantenmechanik!): jm 1 M 2 j 2 6= jm 1 j 2 jm 2 j 2! (35) FRAGE: Was passiert, wenn man das 3. Pollter (Winkel ) vor Filter 1 oder hinter Filter 2 stellt? FRAGE: Was passiert, wenn man zirkular polarisiertes Licht auf ein einzelnes lineares Polarisationslter schickt? 4.4. Erzeugung polarisierten Lichtes Allgemein: Linear polarisiertes Licht stellt man aus unpolarisiertem Licht her, indem man die unerwunschten Feldrichtungen entfernt. Zirkular polarisiertes Licht bekommt man aus linear polarisierten Wellen durch Einfuhrung einer Phasenverschiebung zwischen den beiden Komponenten Reexion unter Brewster-Winkel Dieses Phanomen hatten wir schon kennengelernt: Bei Reexion unter dem Brewster-Winkel tritt nur eine Polarisationsrichtung auf, das Licht ist linear senkrecht zur Einfallsebene polarisiert. In der Regel ist es praktischer, das gewunschte Licht durchtransmission zu erzeugen. Bei Reexion unter dem Brewster-Winkel ist das durchgelassene Licht zwar nicht vollstandig polarisiert (PG < 1% fur Glas), aber durch mehrfachen Durchgang kann man den Polarisationsgrad erhohen: 7

8 Ubung! Anwendung: Fur den Photografen storende Reexe auf Glasscheiben (polarisiert!) konnen mit Pol-Filtern reduziert werden (aber er verwendet in der Regel ein Filter wie in beschrieben) Streuung unter 9 Grad Den Brewster-Eekt konnten wir durch die Abstrahlcharakteristik angeregter Dipole verstehen. Auch bei Streuung von Licht beobachtet man ein analoges Phanomen: Insbesondere in der Atmosphare tritt dieser Eekt auf, der Polarisationsgrad des Sonnenlichtes PG = 1, cos2 1 + cos 2 (36) wird 1 fur =9. Das gestreute Licht ist senkrecht zur Zeichenebene polarisiert. DV /- Streuung an kolloidaler Losung Fur Laborzwecke und praktische Anwendungen ist diese Methode nicht gut geeignet! Anwendung: Photographie: Um das Himmelsblau zu verstarken (= die Intensitat zu verringern!) wendet man Polarisationslter an. Das funktioniert nur, wenn die Blickrichtung in etwa senkrecht zur Sonnenrichtung zeigt Selektive Absorption Die einfachste Methode, linear polarisiertes Licht zu erzeugen: Polarisationsfolien bestehen z.b. aus langen Molekulen, die entlang einer Richtung ausgerichtet sind, z.b. durch Strecken des Kunststomaterials. Entlang der Molekulachse konne die Elektronen leichter schwingen und absorbieren mehr Licht als in der senkrechten Richtung. Ein analoges Phanomen hatten wir bei Mikrowellen beobachtet: 8

9 Insgesamt wird also eine Polarisationsrichtung starker geschwacht als die andere. Bei horizontaler Ausrichtung der Molekulketten: Man erreicht ein Transmissionsvermogen (Intensitat) von 25% in der Durchlarichtung, wahrend nur :1% der Intensitat des `falsch' polarisierten Lichtes passieren kann. Als es diese Kunststo-Folien noch nicht gab, benutzte man Gelatineschichten mit eingebetteten orientierten (doppelbrechenden, s.u.) Kristallen, die auch eine richtungsabhangige Absorption aufweisen (`Dichroismus'). 9

Gitterherstellung und Polarisation

Gitterherstellung und Polarisation Versuch 1: Gitterherstellung und Polarisation Bei diesem Versuch wollen wir untersuchen wie man durch Überlagerung von zwei ebenen Wellen Gttterstrukturen erzeugen kann. Im zweiten Teil wird die Sichtbarkeit

Mehr

5.9.301 Brewsterscher Winkel ******

5.9.301 Brewsterscher Winkel ****** 5.9.301 ****** 1 Motivation Dieser Versuch führt vor, dass linear polarisiertes Licht, welches unter dem Brewsterwinkel auf eine ebene Fläche eines durchsichtigen Dielektrikums einfällt, nur dann reflektiert

Mehr

PO Doppelbrechung und elliptisch polarisiertes Licht

PO Doppelbrechung und elliptisch polarisiertes Licht PO Doppelbrechung und elliptisch polarisiertes Licht Blockpraktikum Herbst 27 (Gruppe 2b) 24. Oktober 27 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Polarisation.................................. 2 1.2 Brechung...................................

Mehr

POLARISATION. Von Carla, Pascal & Max

POLARISATION. Von Carla, Pascal & Max POLARISATION Von Carla, Pascal & Max Die Entdeckung durch MALUS 1808 durch ÉTIENNE LOUIS MALUS entdeckt Blick durch einen Kalkspat auf die an einem Fenster reflektierten Sonnenstrahlen, durch Drehen wurde

Mehr

Versuch O3. Polarisiertes Licht. Sommersemester 2006. Daniel Scholz

Versuch O3. Polarisiertes Licht. Sommersemester 2006. Daniel Scholz Demonstrationspraktikum für Lehramtskandidaten Versuch O3 Polarisiertes Licht Sommersemester 2006 Name: Daniel Scholz Mitarbeiter: Steffen Ravekes EMail: daniel@mehr-davon.de Gruppe: 4 Durchgeführt am:

Mehr

6.4. Polarisation und Doppelbrechung. Exp. 51: Doppelbrechung am Kalkspat. Dieter Suter - 389 - Physik B2. 6.4.1. Polarisation

6.4. Polarisation und Doppelbrechung. Exp. 51: Doppelbrechung am Kalkspat. Dieter Suter - 389 - Physik B2. 6.4.1. Polarisation Dieter Suter - 389 - Physik B2 6.4. Polarisation und Doppelbrechung 6.4.1. Polarisation Wie andere elektromagnetische Wellen ist Licht eine Transversalwelle. Es existieren deshalb zwei orthogonale Polarisationsrichtungen.

Mehr

Polarisation des Lichts

Polarisation des Lichts PeP Vom Kerzenlicht zum Laser Versuchsanleitung Versuch 4: Polarisation des Lichts Polarisation des Lichts Themenkomplex I: Polarisation und Reflexion Theoretische Grundlagen 1.Polarisation und Reflexion

Mehr

PO - Doppelbrechung und elliptisch polarisiertes Licht Blockpraktikum Herbst 2005

PO - Doppelbrechung und elliptisch polarisiertes Licht Blockpraktikum Herbst 2005 PO - Doppelbrechung und elliptisch polarisiertes Licht Blockpraktikum Herbst 00 Assistent Florian Jessen Tübingen, den. Oktober 00 1 Vorwort In diesem Versuch ging es um das Phänomen der Doppelbrechung

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 11. Übungsblatt - 17. Januar 2011 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (7 Punkte) a)

Mehr

Polarimetrie. I p I u. teilweise polarisiert. Polarimetrie

Polarimetrie. I p I u. teilweise polarisiert. Polarimetrie E B z I I p I u I I p 2 I u teilweise polarisiert unpolarisiertes Licht: Licht transversale, elektromagnetische Welle Schwingung senkrecht zur Ausbreitungsrichtung elektr. Feldstärke E und magnet. Feldstärke

Mehr

Überraschende Effekte mit 3D-Brillen (Surprising effects with 3D glasses)

Überraschende Effekte mit 3D-Brillen (Surprising effects with 3D glasses) -1/17- Überraschende Effekte mit 3D-Brillen (Surprising effects with 3D glasses) Quelle des Ursprungsbildes: D-Kuru/Wikimedia Commons -2/17- Was sieht man, wenn man......mit einer 3D-Kinobrille in den

Mehr

QED Materie, Licht und das Nichts. Wissenschaftliches Gebiet und Thema: Physikalische Eigenschaften von Licht

QED Materie, Licht und das Nichts. Wissenschaftliches Gebiet und Thema: Physikalische Eigenschaften von Licht QED Materie, Licht und das Nichts 1 Wissenschaftliches Gebiet und Thema: Physikalische Eigenschaften von Licht Titel/Jahr: QED Materie, Licht und das Nichts (2005) Filmstudio: Sciencemotion Webseite des

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

E-10, E-20 und Polfilter

E-10, E-20 und Polfilter 1. Aufgabenstellung E-10, E-20 und Polfilter Klaus Schräder Januar 2002 Polfilter und UV-Sperrfilter zählen zu den meist benutzten Filtern in der Fotografie. Dabei wird häufig geraten, bei Digitalkameras

Mehr

Eine solche Anordnung wird auch Fabry-Pérot Interferometer genannt

Eine solche Anordnung wird auch Fabry-Pérot Interferometer genannt Interferenz in dünnen Schichten Interferieren die an dünnen Schichten reflektierten Wellen miteinander, so können diese sich je nach Dicke der Schicht und Winkel des Einfalls auslöschen oder verstärken

Mehr

EM-Wellen. david vajda 3. Februar 2016. Zu den Physikalischen Größen innerhalb der Elektrodynamik gehören:

EM-Wellen. david vajda 3. Februar 2016. Zu den Physikalischen Größen innerhalb der Elektrodynamik gehören: david vajda 3. Februar 2016 Zu den Physikalischen Größen innerhalb der Elektrodynamik gehören: Elektrische Stromstärke I Elektrische Spannung U Elektrischer Widerstand R Ladung Q Probeladung q Zeit t Arbeit

Mehr

3.2 Spiegelungen an zwei Spiegeln

3.2 Spiegelungen an zwei Spiegeln 3 Die Theorie des Spiegelbuches 45 sehen, wenn die Person uns direkt gegenüber steht. Denn dann hat sie eine Drehung um die senkrechte Achse gemacht und dabei links und rechts vertauscht. 3.2 Spiegelungen

Mehr

Erstellen einer Collage. Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu])

Erstellen einer Collage. Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu]) 3.7 Erstellen einer Collage Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu]) Dann Größe des Dokuments festlegen beispielsweise A4 (weitere

Mehr

Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert

Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert Bachelor Physikalische Technik: Lasertechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert O08 Polarisation (Pr_PhII_O08_Polarisation_7, 25.10.2015) 1. 2. Name Matr. Nr. Gruppe Team Protokoll ist ok O Datum

Mehr

P = U eff I eff. I eff = = 1 kw 120 V = 1000 W

P = U eff I eff. I eff = = 1 kw 120 V = 1000 W Sie haben für diesen 50 Minuten Zeit. Die zu vergebenen Punkte sind an den Aufgaben angemerkt. Die Gesamtzahl beträgt 20 P + 1 Formpunkt. Bei einer Rechnung wird auf die korrekte Verwendung der Einheiten

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

Der schwingende Dipol (Hertzscher Dipol): Experimentalphysik I/II für Studierende der Biologie und Zahnmedizin Caren Hagner V6 17.01.

Der schwingende Dipol (Hertzscher Dipol): Experimentalphysik I/II für Studierende der Biologie und Zahnmedizin Caren Hagner V6 17.01. Der schwingende Dipol (Hertzscher Dipol): 1 Dipolachse Ablösung der elektromagnetischen Wellen vom Dipol 2 Dipolachse KEINE Abstrahlung in Richtung der Dipolachse Maximale Abstrahlung senkrecht zur Dipolachse

Mehr

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!. 040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl

Mehr

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:

Mehr

Musterlösungen zur Linearen Algebra II Blatt 5

Musterlösungen zur Linearen Algebra II Blatt 5 Musterlösungen zur Linearen Algebra II Blatt 5 Aufgabe. Man betrachte die Matrix A := über dem Körper R und über dem Körper F und bestimme jeweils die Jordan- Normalform. Beweis. Das charakteristische

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

18. Magnetismus in Materie

18. Magnetismus in Materie 18. Magnetismus in Materie Wir haben den elektrischen Strom als Quelle für Magnetfelder kennen gelernt. Auch das magnetische Verhalten von Materie wird durch elektrische Ströme bestimmt. Die Bewegung der

Mehr

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt

Mehr

Wellenoptik II Polarisation

Wellenoptik II Polarisation Phsik A VL41 (31.01.2013) Polarisation Polarisation Polarisationsarten Polarisatoren Polarisation durch Streuung und Refleion Polarisation und Doppelbrechung Optische Aktivität 1 Polarisation Polarisationsarten

Mehr

Lichtbrechung an Linsen

Lichtbrechung an Linsen Sammellinsen Lichtbrechung an Linsen Fällt ein paralleles Lichtbündel auf eine Sammellinse, so werden die Lichtstrahlen so gebrochen, dass sie durch einen Brennpunkt der Linse verlaufen. Der Abstand zwischen

Mehr

Wechselstrom (Widerstand von Kondensator, Spule, Ohmscher Widerst.) Abstrahlung von elektromagnetischen Wellen (Hertzscher Dipol)

Wechselstrom (Widerstand von Kondensator, Spule, Ohmscher Widerst.) Abstrahlung von elektromagnetischen Wellen (Hertzscher Dipol) Heutiges Programm: 1 Wechselstrom (Widerstand von Kondensator, Spule, Ohmscher Widerst.) Elektrischer Schwingkreis Abstrahlung von elektromagnetischen Wellen (Hertzscher Dipol) Elektromagnetische Wellen

Mehr

Stellen Sie bitte den Cursor in die Spalte B2 und rufen die Funktion Sverweis auf. Es öffnet sich folgendes Dialogfenster

Stellen Sie bitte den Cursor in die Spalte B2 und rufen die Funktion Sverweis auf. Es öffnet sich folgendes Dialogfenster Es gibt in Excel unter anderem die so genannten Suchfunktionen / Matrixfunktionen Damit können Sie Werte innerhalb eines bestimmten Bereichs suchen. Als Beispiel möchte ich die Funktion Sverweis zeigen.

Mehr

Kapitalerhöhung - Verbuchung

Kapitalerhöhung - Verbuchung Kapitalerhöhung - Verbuchung Beschreibung Eine Kapitalerhöhung ist eine Erhöhung des Aktienkapitals einer Aktiengesellschaft durch Emission von en Aktien. Es gibt unterschiedliche Formen von Kapitalerhöhung.

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt für die Klassen 7 bis 9: Linsen und optische Geräte

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt für die Klassen 7 bis 9: Linsen und optische Geräte Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lernwerkstatt für die Klassen 7 bis 9: Linsen und optische Geräte Das komplette Material finden Sie hier: Download bei School-Scout.de

Mehr

Was meinen die Leute eigentlich mit: Grexit?

Was meinen die Leute eigentlich mit: Grexit? Was meinen die Leute eigentlich mit: Grexit? Grexit sind eigentlich 2 Wörter. 1. Griechenland 2. Exit Exit ist ein englisches Wort. Es bedeutet: Ausgang. Aber was haben diese 2 Sachen mit-einander zu tun?

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: If-clauses - conditional sentences - Nie mehr Probleme mit Satzbau im Englischen! Das komplette Material finden Sie hier: School-Scout.de

Mehr

Algorithmische Kryptographie

Algorithmische Kryptographie Algorithmische Kryptographie Walter Unger Lehrstuhl für Informatik I 16. Februar 2007 Quantenkryptographie 1 Einleitung Grundlagen aus der Physik 2 Datenübertragung 1. Idee 2. Idee Nochmal Physik 3 Sichere

Mehr

Professionelle Seminare im Bereich MS-Office

Professionelle Seminare im Bereich MS-Office Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion

Mehr

1 mm 20mm ) =2.86 Damit ist NA = sin α = 0.05. α=arctan ( 1.22 633 nm 0.05. 1) Berechnung eines beugungslimitierten Flecks

1 mm 20mm ) =2.86 Damit ist NA = sin α = 0.05. α=arctan ( 1.22 633 nm 0.05. 1) Berechnung eines beugungslimitierten Flecks 1) Berechnung eines beugungslimitierten Flecks a) Berechnen Sie die Größe eines beugungslimitierten Flecks, der durch Fokussieren des Strahls eines He-Ne Lasers (633 nm) mit 2 mm Durchmesser entsteht.

Mehr

Kreatives Occhi. - V o r s p a n n - Alle Knoten und Knüpfelemente sowie ihre Verwendbarkeit. Die Knoten

Kreatives Occhi. - V o r s p a n n - Alle Knoten und Knüpfelemente sowie ihre Verwendbarkeit. Die Knoten Kreatives Occhi - V o r s p a n n - Alle Knoten und Knüpfelemente sowie ihre Verwendbarkeit Die Knoten Der Doppelknoten: Er wird mit nur 1 Schiffchen gearbeitet (s. page Die Handhabung der Schiffchen )

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Zwei Gleichungen mit zwei Unbekannten Es kommt häufig vor, dass man nicht mit einer Variablen alleine auskommt, um ein Problem zu lösen. Das folgende Beispiel soll dies verdeutlichen

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 1, Montag vormittag Vektoralgebra Ein Vektor lässt sich geometrisch als eine gerichtete Strecke darstellen,

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Eine Firma stellt USB-Sticks her. Sie werden in der Fabrik ungeprüft in Packungen zu je 20 Stück verpackt und an Händler ausgeliefert. 1 Ein Händler

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben

Mehr

1 Anregung von Oberflächenwellen (30 Punkte)

1 Anregung von Oberflächenwellen (30 Punkte) 1 Anregung von Oberflächenwellen (30 Punkte) Eine ebene p-polarisierte Welle mit Frequenz ω und Amplitude E 0 trifft aus einem dielektrischen Medium 1 mit Permittivität ε 1 auf eine Grenzfläche, die mit

Mehr

Das große ElterngeldPlus 1x1. Alles über das ElterngeldPlus. Wer kann ElterngeldPlus beantragen? ElterngeldPlus verstehen ein paar einleitende Fakten

Das große ElterngeldPlus 1x1. Alles über das ElterngeldPlus. Wer kann ElterngeldPlus beantragen? ElterngeldPlus verstehen ein paar einleitende Fakten Das große x -4 Alles über das Wer kann beantragen? Generell kann jeder beantragen! Eltern (Mütter UND Väter), die schon während ihrer Elternzeit wieder in Teilzeit arbeiten möchten. Eltern, die während

Mehr

3.1. Die komplexen Zahlen

3.1. Die komplexen Zahlen 3.1. Die komplexen Zahlen Es gibt viele Wege, um komplexe Zahlen einzuführen. Wir gehen hier den wohl einfachsten, indem wir C R als komplexe Zahlenebene und die Punkte dieser Ebene als komplexe Zahlen

Mehr

Zeichen bei Zahlen entschlüsseln

Zeichen bei Zahlen entschlüsseln Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren

Mehr

der Eingabe! Haben Sie das Ergebnis? Auf diesen schwarzen Punkt kommen wir noch zu sprechen.

der Eingabe! Haben Sie das Ergebnis? Auf diesen schwarzen Punkt kommen wir noch zu sprechen. Medizintechnik MATHCAD Kapitel. Einfache Rechnungen mit MATHCAD ohne Variablendefinition In diesem kleinen Kapitel wollen wir die ersten Schritte mit MATHCAD tun und folgende Aufgaben lösen: 8 a: 5 =?

Mehr

Lineare Differentialgleichungen erster Ordnung erkennen

Lineare Differentialgleichungen erster Ordnung erkennen Lineare Differentialgleichungen erster Ordnung In diesem Kapitel... Erkennen, wie Differentialgleichungen erster Ordnung aussehen en für Differentialgleichungen erster Ordnung und ohne -Terme finden Die

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen

Mehr

Spektroskopie. im IR- und UV/VIS-Bereich. Optische Rotationsdispersion (ORD) und Circulardichroismus (CD) http://www.analytik.ethz.

Spektroskopie. im IR- und UV/VIS-Bereich. Optische Rotationsdispersion (ORD) und Circulardichroismus (CD) http://www.analytik.ethz. Spektroskopie im IR- und UV/VIS-Bereich Optische Rotationsdispersion (ORD) und Circulardichroismus (CD) Dr. Thomas Schmid HCI D323 schmid@org.chem.ethz.ch http://www.analytik.ethz.ch Enantiomere sind Stereoisomere,

Mehr

5.1 Anforderungen an die SVG-Datei

5.1 Anforderungen an die SVG-Datei Kapitel 5 Toolchain Nachdem wir nun experimentell die Grundlagen und Einstellungen herausgefunden haben, wollen wir uns mit der Toolchain befassen, um von der Datei zum fertigen Objekt zu kommen. 5.1 Anforderungen

Mehr

Das Mathematik-Abitur im Saarland

Das Mathematik-Abitur im Saarland Informationen zum Abitur Das Mathematik-Abitur im Saarland Sie können Mathematik im Abitur entweder als grundlegenden Kurs (G-Kurs) oder als erhöhten Kurs (E-Kurs) wählen. Die Bearbeitungszeit für die

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen .3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt

Mehr

Charakteristikenmethode im Beispiel

Charakteristikenmethode im Beispiel Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)

Mehr

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Vollständigkeit halber aufgeführt. Gehen wir einmal davon aus, dass die von uns angenommenen 70% im Beispiel exakt berechnet sind. Was würde

Mehr

Was ist Sozial-Raum-Orientierung?

Was ist Sozial-Raum-Orientierung? Was ist Sozial-Raum-Orientierung? Dr. Wolfgang Hinte Universität Duisburg-Essen Institut für Stadt-Entwicklung und Sozial-Raum-Orientierte Arbeit Das ist eine Zusammen-Fassung des Vortrages: Sozialräume

Mehr

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1 B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,

Mehr

Polarisationszustände

Polarisationszustände Polarisationszustände Natürliches Licht: Unpolarisiertes Licht = zufällig polarisiert Linear polarisiertes Licht: P-Zustand; Zirkular polarisiertes Licht: Linkszirkular polarisiert: L-Zustand Rechtszirkular

Mehr

Praktikum Grundlagen der Elektrotechnik

Praktikum Grundlagen der Elektrotechnik raktikum Grundlagen der Elektrotechnik Kondensatoren und Spulen m Wechselstromkreis (ersuch 10) Fachhochschule Fulda Fachbereich Elektrotechnik durchgeführt von (rotokollführer) zusammen mit Matrikel-Nr.

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

Handbuch zur Anlage von Turnieren auf der NÖEV-Homepage

Handbuch zur Anlage von Turnieren auf der NÖEV-Homepage Handbuch zur Anlage von Turnieren auf der NÖEV-Homepage Inhaltsverzeichnis 1. Anmeldung... 2 1.1 Startbildschirm... 3 2. Die PDF-Dateien hochladen... 4 2.1 Neue PDF-Datei erstellen... 5 3. Obelix-Datei

Mehr

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort:

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort: Tangentengleichung Wie Sie wissen, gibt die erste Ableitung einer Funktion deren Steigung an. Betrachtet man eine fest vorgegebene Stelle, gibt f ( ) also die Steigung der Kurve und somit auch die Steigung

Mehr

WORKSHOP für das Programm XnView

WORKSHOP für das Programm XnView WORKSHOP für das Programm XnView Zur Bearbeitung von Fotos für die Nutzung auf Websites und Online Bildergalerien www.xnview.de STEP 1 ) Bild öffnen und Größe ändern STEP 2 ) Farbmodus prüfen und einstellen

Mehr

Michelson Interferometer: Aufbau und Anwendungen. 21. Mai 2015

Michelson Interferometer: Aufbau und Anwendungen. 21. Mai 2015 Michelson Interferometer: Aufbau und Anwendungen 1. Mai 015 1 Prinzipieller Aufbau eines Michelson Interferometers Interferenz zweier ebener elektromagnetischer Wellen gleicher Frequenz, aber unterschiedlicher

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Gleichungen Ungleichungen. Lineare Gleichungen Sei die Gleichung ax = b gegeben, wobei x die Unbekannte ist a, b reelle Zahlen sind. Diese Gleichung hat als Lösung die einzige reelle Zahl x = b, falls

Mehr

4. AUSSAGENLOGIK: SYNTAX. Der Unterschied zwischen Objektsprache und Metasprache lässt sich folgendermaßen charakterisieren:

4. AUSSAGENLOGIK: SYNTAX. Der Unterschied zwischen Objektsprache und Metasprache lässt sich folgendermaßen charakterisieren: 4. AUSSAGENLOGIK: SYNTAX 4.1 Objektsprache und Metasprache 4.2 Gebrauch und Erwähnung 4.3 Metavariablen: Verallgemeinerndes Sprechen über Ausdrücke von AL 4.4 Die Sprache der Aussagenlogik 4.5 Terminologie

Mehr

4.12 Elektromotor und Generator

4.12 Elektromotor und Generator 4.12 Elektromotor und Generator Elektromotoren und Generatoren gehören neben der Erfindung der Dampfmaschine zu den wohl größten Erfindungen der Menschheitsgeschichte. Die heutige elektrifizierte Welt

Mehr

Arbeit Leistung Energie

Arbeit Leistung Energie Arbeit Leistung Energie manuell geistig Was ist Arbeit Wie misst man Arbeit? Ist geistige Arbeit messbar? Wann wird physikalische Arbeit verrichtet? Es wird physikalische Arbeit verrichtet, wenn eine Kraft

Mehr

Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte

Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte Nachhilfe-Kurs Mathematik Klasse 3 Freie Waldorfschule Mitte März 8 Aufgaben zur analytischen Geometrie Musterlösung Gegeben sind die Ebenen E und E sowie die Punkte A und B: E : 4x + y + 3z = 3 E : x

Mehr

Wechselstromkreis mit verschiedenen Bauteilen

Wechselstromkreis mit verschiedenen Bauteilen Wechselstromkreis mit verschiedenen Bauteilen Im Folgenden werden nun die Auswirkungen eines ohmschen Widerstands, eines induktiven Widerstands (Spule) und eines kapazitiven Widerstands (Kondensator) auf

Mehr

1.2 Drehung der Polarisationsebene, Faradayeffekt, Doppelbrechung

1.2 Drehung der Polarisationsebene, Faradayeffekt, Doppelbrechung Physikalisches Praktikum für Anfänger - Teil 1 Gruppe 1 - Optik 1.2 Drehung der Polarisationsebene, Faradayeffekt, Doppelbrechung 1 Drehung der Polarisationsebene Durch einige Kristalle, z.b. Quarz wird

Mehr

Zahlenwinkel: Forscherkarte 1. alleine. Zahlenwinkel: Forschertipp 1

Zahlenwinkel: Forscherkarte 1. alleine. Zahlenwinkel: Forschertipp 1 Zahlenwinkel: Forscherkarte 1 alleine Tipp 1 Lege die Ziffern von 1 bis 9 so in den Zahlenwinkel, dass jeder Arm des Zahlenwinkels zusammengezählt das gleiche Ergebnis ergibt! Finde möglichst viele verschiedene

Mehr

Prozentrechnung. Wir können nun eine Formel für die Berechnung des Prozentwertes aufstellen:

Prozentrechnung. Wir können nun eine Formel für die Berechnung des Prozentwertes aufstellen: Prozentrechnung Wir beginnen mit einem Beisiel: Nehmen wir mal an, ein Handy kostet 200 und es gibt 5% Rabatt (Preisnachlass), wie groß ist dann der Rabatt in Euro und wie viel kostet dann das Handy? Wenn

Mehr

Thema: Winkel in der Geometrie:

Thema: Winkel in der Geometrie: Thema: Winkel in der Geometrie: Zuerst ist es wichtig zu wissen, welche Winkel es gibt: - Nullwinkel: 0 - spitzer Winkel: 1-89 (Bild 1) - rechter Winkel: genau 90 (Bild 2) - stumpfer Winkel: 91-179 (Bild

Mehr

Bruchrechnung Wir teilen gerecht auf

Bruchrechnung Wir teilen gerecht auf Bruchrechnung Wir teilen gerecht auf Minipizzen auf Personen. Bruchrechnung Wir teilen gerecht auf Minipizzen auf Personen. : (+) : + Wir teilen einen Teil Eine halbe Minipizza auf Personen. :? Wir teilen

Mehr

Die reellen Lösungen der kubischen Gleichung

Die reellen Lösungen der kubischen Gleichung Die reellen Lösungen der kubischen Gleichung Klaus-R. Löffler Inhaltsverzeichnis 1 Einfach zu behandelnde Sonderfälle 1 2 Die ganzrationale Funktion dritten Grades 2 2.1 Reduktion...........................................

Mehr

Repetitionsaufgaben Wurzelgleichungen

Repetitionsaufgaben Wurzelgleichungen Repetitionsaufgaben Wurzelgleichungen Inhaltsverzeichnis A) Vorbemerkungen B) Lernziele C) Theorie mit Aufgaben D) Aufgaben mit Musterlösungen 4 A) Vorbemerkungen Bitte beachten Sie: Bei Wurzelgleichungen

Mehr

2.8 Grenzflächeneffekte

2.8 Grenzflächeneffekte - 86-2.8 Grenzflächeneffekte 2.8.1 Oberflächenspannung An Grenzflächen treten besondere Effekte auf, welche im Volumen nicht beobachtbar sind. Die molekulare Grundlage dafür sind Kohäsionskräfte, d.h.

Mehr

Physik & Musik. Stimmgabeln. 1 Auftrag

Physik & Musik. Stimmgabeln. 1 Auftrag Physik & Musik 5 Stimmgabeln 1 Auftrag Physik & Musik Stimmgabeln Seite 1 Stimmgabeln Bearbeitungszeit: 30 Minuten Sozialform: Einzel- oder Partnerarbeit Voraussetzung: Posten 1: "Wie funktioniert ein

Mehr

Versuch 3. Frequenzgang eines Verstärkers

Versuch 3. Frequenzgang eines Verstärkers Versuch 3 Frequenzgang eines Verstärkers 1. Grundlagen Ein Verstärker ist eine aktive Schaltung, mit der die Amplitude eines Signals vergößert werden kann. Man spricht hier von Verstärkung v und definiert

Mehr

Grundlagen der Elektrotechnik 1 Übungsaufgaben zur Wechselstromtechnik mit Lösung

Grundlagen der Elektrotechnik 1 Übungsaufgaben zur Wechselstromtechnik mit Lösung Grundlagen der Elektrotechnik Aufgabe Die gezeichnete Schaltung enthält folgende Schaltelemente:.0kΩ, ω.0kω, ω 0.75kΩ, /ωc.0k Ω, /ωc.3kω. Die gesamte Schaltung nimmt eine Wirkleistung P mw auf. C 3 C 3

Mehr

Simulation LIF5000. Abbildung 1

Simulation LIF5000. Abbildung 1 Simulation LIF5000 Abbildung 1 Zur Simulation von analogen Schaltungen verwende ich Ltspice/SwitcherCAD III. Dieses Programm ist sehr leistungsfähig und wenn man weis wie, dann kann man damit fast alles

Mehr

Binärdarstellung von Fliesskommazahlen

Binärdarstellung von Fliesskommazahlen Binärdarstellung von Fliesskommazahlen 1. IEEE 754 Gleitkommazahl im Single-Format So sind in Gleitkommazahlen im IEEE 754-Standard aufgebaut: 31 30 24 23 0 S E E E E E E E E M M M M M M M M M M M M M

Mehr

Lösungsmethoden gewöhnlicher Differentialgleichungen (Dgl.)

Lösungsmethoden gewöhnlicher Differentialgleichungen (Dgl.) Lösungsmethoden gewöhnlicher Dierentialgleichungen Dgl) Allgemeine und partikuläre Lösung einer gewöhnlichen Dierentialgleichung Eine Dierentialgleichung ist eine Gleichung! Zum Unterschied von den gewöhnlichen

Mehr

Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer

Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Allgemein: Das RSA-Verschlüsselungsverfahren ist ein häufig benutztes Verschlüsselungsverfahren, weil es sehr sicher ist. Es gehört zu der Klasse der

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit sin() f() =. Aufgabe : ( VP) Berechnen Sie das Integral ( )

Mehr

A Lösungen zu Einführungsaufgaben zu QueueTraffic

A Lösungen zu Einführungsaufgaben zu QueueTraffic A Lösungen zu Einführungsaufgaben zu QueueTraffic 1. Selber Phasen einstellen a) Wo im Alltag: Baustelle, vor einem Zebrastreifen, Unfall... 2. Ankunftsrate und Verteilungen a) poissonverteilt: b) konstant:

Mehr

Formelsammlung zur Kreisgleichung

Formelsammlung zur Kreisgleichung zur Kreisgleichung Julia Wolters 6. Oktober 2008 Inhaltsverzeichnis 1 Allgemeine Kreisgleichung 2 1.1 Berechnung des Mittelpunktes und Radius am Beispiel..... 3 2 Kreis und Gerade 4 2.1 Sekanten, Tangenten,

Mehr

Repetitionsaufgaben: Lineare Funktionen

Repetitionsaufgaben: Lineare Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Funktionen Zusammengestellt von Irina Bayer-Krakvina, KSR Lernziele: - Wissen, was ein Steigungsdreieck einer Geraden ist und wie die Steigungszahl

Mehr

Inhalt 1. Was wird gefördert? Bausparverträge

Inhalt 1. Was wird gefördert? Bausparverträge Inhalt 1. Was wird gefördert? 2. Wie viel Prozent bringt das? 3. In welchem Alter ist das sinnvoll? 4. Wie viel muss man sparen? 5. Bis zu welchem Einkommen gibt es Förderung? 6. Wie groß sollten die Verträge

Mehr

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert:

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: Beispiel: Wir untersuchen die rekursiv definierte Folge a 0 + auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: ( ) (,, 7, 5,...) Wir können also vermuten, dass die Folge monoton fallend

Mehr

Polarisation und Doppelbrechung

Polarisation und Doppelbrechung Fortgeschrittenen Praktikum Technische Universita t Darmstadt Betreuer: Dr. Mathias Sinther Durchfu hrung: 06.07.2009 Abgabe: 28.07.2009 Versuch A 3.3 Polarisation und Doppelbrechung Oliver Bitterling

Mehr

Das Leitbild vom Verein WIR

Das Leitbild vom Verein WIR Das Leitbild vom Verein WIR Dieses Zeichen ist ein Gütesiegel. Texte mit diesem Gütesiegel sind leicht verständlich. Leicht Lesen gibt es in drei Stufen. B1: leicht verständlich A2: noch leichter verständlich

Mehr