Versuch P6: Polarimetrie

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Versuch P6: Polarimetrie"

Transkript

1 Physikalisch-chemisches Praktikum für Pharmazeuten Gruppennummer Name Vortestat Endtestat Vorname Versuch A. Vorbereitungsteil (VOR der Versuchsdurchführung lesen!) 1. Kurzbeschreibung In diesem Versuch werden die Grundlagen über polarisiertes Licht sowie das Verfahren der Polarimetrie erarbeitet. 1.1 Pharmazeutischer Kontext Die Polarimetrie dient dazu, optisch aktive Stoffe zu charakterisieren. Dabei wird die Drehung der Schwingungsebene des linear polarisierten Lichtes gemessen (optische Drehung). Die spezifische Drehung ist eine charakteristische Stoffkonstante, die in der Arzneistoffanalytik zur Identitäts-, Reinheits- und Gehaltsbestimmung eingesetzt wird. Viele wichtige Wirkstoffe sind Enantiomere und somit aufgrund ihrer Chiralität optisch aktiv. Verschiedene Enantiomere eines Wirkstoffes können unterschiedliche pharmakologische Eigenschaften besitzen, wie es z. B. bei der bekannten Tragödie um das Medikament Contergan der Fall war. Die spezifische Drehung wird in der Pharmazie und Chemie oft zur Identifizierung und Reinheitskontrolle von Substanzen benutzt. Besondere Bedeutung besitzt die Angabe der spezifischen Drehung für Naturstoffe, wie beispielsweise Aminosäuren, Terpene und Zucker, da die Mehrzahl dieser Stoffe optisch aktiv ist. Für chirale Arzneistoffe sind in den Arzneibüchern Toleranzen für die spezifische Drehung unter bestimmten Messbedingungen (u. a. Wellenlänge und Messtemperatur) angegeben. Teilweise wird die Polarimetrie in der Pharmazie auch zur Bestimmung der altbarkeit von chiralen Arzneistoffen eingesetzt. 1.2 Physikalischer Kontext Lichtwellen sind elektromagnetische Wellen. Bei ihnen ändert sich räumlich und zeitlich periodisch die Stärke des elektrischen und des magnetischen Feldes. Bei natürlichem Licht ist die Schwingungsrichtung der Feldvektoren bei den einzelnen Wellenzügen unterschiedlich und räumlich zufällig verteilt. Sorgt man aber z. B. durch spezielle Filter, so genannte Polarisationsfilter, dafür, dass die Felder jeweils nur in einer Schwingungsebene schwingen, dann bezeichnet man solches Licht als polarisiertes Licht. Neben dem eben beschriebenen linear polarisierten Licht gibt es auch noch zirkular bzw. elliptisch polarisiertes Licht. In der Alltagswelt begegnet einem die Polarisation des Lichts an vielen Stellen, angefangen bei den LCD-Displays von Taschenrechnern bis hin zum 3-dimensionalen Kinoerlebnis. In der Fotografie kann man mithilfe eines Polarisationsfilters, der vor das Objektiv gesetzt wird und drehbar ist, unerwünschte Reflexionen vermindern. 1

2 1.3 Grundbegriffe Unpolarisiertes und linear polarisiertes Licht, Unterschied, Beispiele, Polarisationseffekte, Brechung und Reflexion, Brewster sches Gesetz; Grundzüge von Dichroismus und Doppelbrechung; Anwendung von Polarisationsfolien; zirkulare und elliptische Polarisation; Optische Drehung, Abhängigkeit zwischen Drehung der Polarisationsebene sowie Konzentration des Stoffes, Lichtweglänge und Wellenlänge des Lichtes (Rotationsdispersion); Polarimeter, Aufbau und Wirkungsweise; albschattenapparat, Aufbau und Arbeitsweise B. Ausführungsteil (WÄREND der Versuchsdurchführung lesen!) 2. Komponenten für den Versuchsaufbau Na-Dampflampe Intensitätsmessgerät Optische Bank 2 Linsen 2 Polarisatoren λ/4-plättchen Doppelmuffen Polarimeter Küvette, mit Dichtung, Glasfenster, Zentrierkappe und Überwurfmutter Dextrosemonohydrat Ammoniak Mischkolben, Löffel, Messzylinder Waage 3. Durchführung des Versuches Die nachfolgende Anleitung zur Durchführung des Versuches hat vier wesentliche Komponenten:? Fragen und Aufgabenstellungen sind am Anfang mit einem? gekennzeichnet. F Formeln und Regeln werden vorne mit einem F gekennzeichnet und durchnummeriert. Kursiv geschriebene Zeilen markiert mit einer and dienen als Anleitung zur Versuchsdurchführung. Kursiv geschriebene Zeilen, die mit gekennzeichnet sind, enthalten Tipps und Erklärungen, die in einzelnen Fällen hilfreich sein können. 3.1 Vorbereitung Schalten Sie die Na-Lampe und das Intensitätsmessgerät ein. Die Lampe entwickelt ihre volle elligkeit erst nach einigen Minuten. Der intergrund ist, dass das Natrium erst mit wachsender Betriebstemperatur verdampft und durch die Gasentladung zum Leuchten angeregt wird. Sie können den Zustand der Lampe am Intensitätsmessgerät verfolgen. Die Lampe ist dann betriebsbereit, wenn sich die Intensität mit der Zeit nicht mehr ändert. In der Zwischenzeit können Sie schon 3.2 bearbeiten. 3.2 Machen Sie sich mit den Polarisationsfolien vertraut Nehmen Sie die beiden Polarisatoren in jeweils eine and, halten Sie sie hintereinander und schauen Sie durch beide gemeinsam durch. Verkippen Sie jetzt beide Polarisatoren zueinander einfach durch Verdrehen der ände. Achten Sie dabei auf die Stellung der beiden gelben Plastikfähnchen an den Polarisatoren. 2

3 ? Was beobachten Sie beim gegenseitigen Verdrehen der Polarisatoren? Diese Art von Polarisationsfolien stellen linear polarisiertes Licht her. 3.3 Untersuchen Sie die Winkelabhängigkeit der durchgelassenen Lichtintensität Bauen Sie die beiden Polarisatoren zwischen die beiden Linsen ein, so dass das Licht durch beide Polarisationsfolien hindurchläuft. Lassen Sie zwischen den beiden Polarisatoren mindestens 10 cm Platz, weil dort im Anschluss noch ein drittes Gerät eingebaut werden soll. Obwohl es sich bei den beiden Polarisatoren um völlig identische optische Geräte handelt, benennt man sie im Strahlengang entsprechend ihrer konkreten Aufgabe. Das Licht der Lampe ist unpolarisiert und wird durch die erste Folie polarisiert. Daher bezeichnet man das Gerät, das der Lampe am nächsten steht als Polarisator. Das Gerät, das von der Lampe aus betrachtet hinter dem Polarisator steht und die Aufgabe hat, das polarisierte Licht zu analysieren, nennt man den Analysator. Stellen Sie den Polarisator auf 0 und den Analysator auf 90 ein. Entsprechend Ihrer eigenen Beobachtung in 3.2 sollte nun kein Licht mehr durchkommen können. Das Messgerät zeigt daher Null an.? Ändern Sie nun in 10 -Schritten die Winkelstellung α des Analysators von 90 auf 0 und lesen Sie jedes Mal die Intensität I am Messgerät ab. Tragen Sie die Werte in die zweite Zeile der folgenden Tabelle ein. Auf dem Messgerät steht die Einheit mv. Das liegt daran, dass es sich bei dem Lichtdetektor um ein Photoelement handelt, das eine Spannung ausgibt, die der Lichtintensität proportional ist. Ignorieren Sie für diesen Versuch diese Einheit und verwenden Sie die Intensität ohne Einheit (also in Skalenteilen). Winkel α Intensität I I / I max (gemessen)? Suchen Sie die maximal durchgelassene Lichtintensität I max, indem Sie am Analysator drehen. I max =...? Normieren Sie Ihre Werte auf die Maximalintensität, d. h. berechnen Sie für jeden Ihrer Messwerte I / I max. Tragen Sie die normierten Werte in die dritte Zeile der Tabelle ein.? Stellen Sie I / I max in Abhängigkeit des Winkels α zwischen Polarisator und Analysator graphisch dar. 3

4 Abszisse (x-achse): Winkel α; Ordinate (y-achse): normierte Intensität I / I max. Wählen Sie die Grenzen anhand Ihrer Messwerte; das Diagramm soll möglichst eine halbe DIN A4- Seite groß sein! 3.4 Vergleichen Sie Ihre Messwerte mit dem Malus schen Gesetz Stehen zwei Polarisationsfolien für linear polarisiertes Licht hintereinander, so ergibt sich die Intensität des durchgelassenen Lichts nach dem Malus schen Gesetz entsprechend der Formel F (1): F (1) I = I 2 max cos α I : durchgelassene Intensität I max : maximale durchgelassene Intensität α : Winkel zwischen Polarisator und Analysator? Berechnen Sie I / I max nach der Formel F (1) und tragen Sie die Werte für die dort angegebenen Winkel α in die nachfolgende Tabelle ein. Winkel α I / I max (berechnet)? Stellen Sie auch diese Werte graphisch dar, indem Sie sie in dasselbe Diagramm aus 3.3 mit einzeichnen.? Vergleichen Sie die experimentellen mit den theoretischen Werten und bewerten Sie damit die Qualität Ihrer Messung. 3.5 Stellen Sie zirkular polarisiertes Licht her. Beim zirkular polarisierten Licht schwingt der Vektor des elektrischen Feldes nicht in einer festen Ebene, sondern rotiert bei der Fortbewegung des Lichts um die Ausbreitungsrichtung herum. Zirkular polarisiertes Licht lässt sich mit einem λ/4-plättchen herstellen. Stellen Sie den Analysator wieder auf 90 und den Polarisator auf 0 ein, so dass das Messgerät Null anzeigt. Fügen Sie das λ/4-plättchen ihrem Aufbau hinzu, indem Sie es zwischen den Polarisator und den Analysator einbauen. Achten Sie darauf, dass das Licht ungehindert durch alle drei Geräte hindurchtreten kann. Stellen Sie den Winkel des λ/4-plättchen so ein, dass die Intensität auf dem Messgerät minimal (möglichst Null) wird. Verdrehen Sie anschließend das λ/4-plättchen ausgehend von dieser Position um 45.? Messen Sie die durchgelassene Intensität, während Sie den Analysator von -90 auf +90 drehen. Normieren Sie die Werte gleich auf die Maximalintensität, indem Sie Ihre abgelesenen Intensität durch I max aus Abschnitt 3.3 teilen. Tragen Sie I / I max in die folgende Tabelle ein. 4

5 5

6 Auf den Polarisatoren hat die Winkelskala kein Vorzeichen. Definieren Sie sich selber eine der beiden Seiten als negativ und die andere jenseits von 0 als positiv. Winkel α I / I max Winkel α I / I max ---? Stellen Sie die normierte Intensität I / I max auf dem untenstehenden Polarkoordinatenpapier graphisch dar und gewinnen Sie so einen Eindruck von der Winkelabhängigkeit der Intensität. Beim Polarkoordinatenpapier darf man den Nullpunkt nicht bei der Skalierung unterdrücken. Daher ist er im Diagramm bereits fest eingezeichnet. Ansonsten können Sie I / I max auf der radialen Achse nach Belieben skalieren. Sie werden sicher eine kreisförmige Intensitätsverteilung für zirkular polarisiertes Licht erwarten, und so sollte es auch tatsächlich sein. Dass Ihre Kurve leicht elliptisch aussieht liegt daran, dass das λ in λ/4-plättchen natürlich für die Wellenlänge steht, d. h. diese zirkularen Polarisatoren sind von der Wellenlänge des verwendeten Lichts abhängig. Das Na-Licht mit einer Wellenlänge von λ = 589 nm passt nicht 100%ig zum verwendeten λ/4-plättchen, so dass sich hier eine geringe Elliptizität zeigt. Wenn Sie alle Messungen in den Abschnitten 3.2 bis 3.5 gemacht haben, schalten Sie die Na- Lampe aus. 3.6 Machen Sie sich mit dem Polarimeter vertraut. Zu der optischen Aktivität einer Zuckerlösung wird ein sog. Polarimeter verwendet. Als Lichtquelle dient eine Leuchtdiode, die Licht mit genau derselben Wellenlänge aussendet wie die Na-Lampe. Gemäß der DAB-Vorschrift muss mit monochromatischem Licht dieser Wellenlänge gemessen werden, weil die spezifische Drehung von der Wellenlänge abhängt. Das von der Leuchtdiode kommende Licht durchläuft einen Dreifeld-Polarisator, dessen drei Felder aus Polarisatoren bestehen, die gegeneinander jeweils um 90 verkippt sind (s. Abb. 9 in Abschnitt 4.4). Stecken Sie das Netzteil des Polarimeters in die Steckdose und nehmen Sie eine eventuell noch enthaltene Küvette heraus. Schauen Sie durch eine der beiden seitlichen Lupen an dem Okular auf eine der beiden Skalen. Drehen Sie an dem horizontalen Stellrad, so dass die Winkelskala auf Null steht. Der Schalter an dem Polarimeter stammt noch aus der Zeit, als das Gerät mit einer Na- Lampe betrieben wurde, und hat keine Funktion mehr. Schauen Sie durch das Okular in das Gerät hinein und drehen Sie dabei das horizontale Stellrad immer abwechselnd ein wenig nach links und rechts. 6

7 ? Beschreiben Sie, was Sie beobachten, während Sie am Stellrad drehen. 3.7 Bestimmen Sie den Nullwinkel des Polarimeters. Um eine geringfügige Dejustage des Winkelanzeigers und die optische Aktivität der Küvette korrigieren zu können, soll zunächst eine Nullmessung mit destilliertem Wasser durchgeführt werden. Dieses hat eine optische Aktivität von Null, d. h. die Schwingungsebene des polarisierten Lichts wird beim Durchgang durch Wasser nicht gedreht. Füllen Sie die Küvette mit destilliertem Wasser. Achten Sie darauf, dass die Küvette wirklich maximal gefüllt ist, so dass aufgrund der Oberflächenspannung des Wassers ein kleiner Wasserberg herausschaut. Verschließen Sie nun die Küvette mit dem kleinen runden Glasfenster, indem Sie es an den Berg schräg ansetzen und herunterkippen lassen. Dadurch vermeiden Sie, dass sich Luftbläschen in der Küvette befinden. Legen Sie anschließend die runde Gummidichtung auf das Glasfenster und darauf schließlich die schwarze Zentrierkappe. Zuletzt drehen Sie die Küvette mit der Überwurfmutter so fest zu, dass keine Flüssigkeit mehr herausläuft. (Bitte nicht übertreiben: Sie müssen die Küvette hinterher auch wieder öffnen können!) Falls Sie doch noch ein Luftbläschen in der Küvette haben, können sie dieses in die Verdickung am oberen Ende hineinbalancieren. Es stört dann nicht im Strahlengang. Legen Sie die Küvette in das Polarimeter ein, schließen Sie die Verschlussklappe und schauen Sie in das Okular hinein. Das monochromatische und linear polarisierte Licht durchsetzt nun die Küvette mit dem Wasser, bevor es einen drehbaren Analysator durchläuft. Den Winkel, um den das Licht beim Durchgang gedreht wird, kann man nun messen, indem man den Analysator mit dem Stellrad um genau diesen Winkel nachdreht. Dazu schaut man in das Gerät durch den Analysator hinein und dreht diesen so lange, bis die Flächen des Dreifeld-Polarisators dieselbe elligkeit besitzen und der Kontrast vollständig verschwunden ist. (Dreht man den Analysator zu weit, sind die drei Flächen sehr hell, und man kann die elligkeitsunterschiede mit dem Auge kaum wahrnehmen.) Mit dem auf diese Weise eingestellten Analysator kann man nun entweder links oder rechts vom Okular auf einer Nonius-Skala den Drehwinkel α auf 0,05 genau ablesen. Drehen Sie das Stellrad so, dass Sie eine einfarbige Fläche sehen (bei Bedarf am Okular scharfstellen).? Lesen Sie nun den Nullwinkel α 0 am Polarimeter ab. α 0 =... 7

8 3.8 Messen Sie die optische Aktivität einer Zuckerlösung. Bei diesem Versuchsteil ist höchste Sauberkeit erforderlich. Die Küvette muss vor jeder Füllung mit der entsprechenden Konzentration ausgespült werden. Die Deckgläser müssen für die Messung vorher abgetrocknet werden. Nach dem Versuch die Küvette bitte entleeren, mit dest. Wasser spülen und im zugehörigen Plastikkasten ablegen (nicht im Polarimeter lagern!). Die übrigen Geräte bitte ebenfalls mit dest. Wasser spülen. Stellen Sie eine Stammlösung her, die 5 g Glucose in 100 ml Lösung enthält (im Messkolben ansetzen, dabei 2-3 Tropfen Ammoniak-Lösung zugeben). Zu beachten ist, dass als Ausgangssubstanz Glucosemonohydrat verwendet wird. Bei dieser Verbindung ist an ein Zuckermolekül ein Wassermolekül als Kristallwasser gebunden. Molekulargewichte: Glucose: 180,16 g/mol, Glucosemonohydrat: 198,17 g/mol Die wässrige Lösung des Glucosemonohydrats zeigt die Eigenschaft der sog. Mutarotation. Dieser Begriff beschreibt die Erscheinung, dass frisch bereitete Zuckerlösungen erst nach einiger Zeit einen konstanten Wert für die optische Drehung annehmen. Löst sich Glucosemonohydrat in Wasser, so bilden sich zwei zyklische albazetalformen, die erst nach längerer Zeit in einen Gleichgewichtszustand übergehen. Durch Zugabe von ein wenig Ammoniak- Lösung stellt sich der Gleichgewichtszustand sofort ein. Füllen Sie die Küvette wie in 3.7 beschrieben mit dieser Zuckerlösung, und bringen Sie die Küvette mit dieser Lösung in den Strahlengang des Polarimeters.? Bestimmen Sie den Winkel α mess, um den der Analysator aus der Nullstellung gedreht werden muss, damit der Kontrast im Dreifeld-Polarisators wieder verschwindet. Tragen Sie den Winkel in die Tabelle entsprechend der Konzentration 0,05 g/ml ein. Stellen Sie durch stufenweises Verdünnen Lösungen her, die 4, 3, 2 und 1 g Glucose in 100 ml Lösung enthalten. Bestimmen Sie für jede dieser Konzentrationen auch den Winkel α mess. Konzentration c 0,05 g/ml 0,04 g/ml 0,03 g/ml 0,02 g/ml 0,01 g/ml Winkel α mess α = α mess α 0? Tragen Sie alle gemessenen Winkel α mess entsprechend der Konzentration c in die Tabelle ein.? Korrigieren Sie die Messwerte um den Nullwinkel α 0, indem Sie ihn vom gemessenen Winkel α mess subtrahieren. Tragen Sie auch diese Werte in die untere Zeile der Tabelle ein. 3.9 Bestimmen Sie die spezifische Drehung? Stellen Sie α in Abhängigkeit der Zuckerkonzentration graphisch dar und legen Sie durch die Messpunkte eine Bestgerade. Diese Gerade muss durch den Nullpunkt gehen. Abszisse (x-achse): Konzentration c; Ordinate (y-achse): Winkel α. Wählen Sie die Grenzen anhand Ihrer Messwerte; das Diagramm soll möglichst eine halbe DIN A4- Seite groß sein! 8

9 ? Bestimmen Sie die Steigung m = der Größen α und c. α aus Ihrem Graphen. Achten Sie dabei auf die Einheiten c m =... Die charakteristische Größe für die optische Aktivität einer Substanz ist die spezifische Drehung α 20, die sich bei einer Temperatur von 20 C aus der Steigung m nach der Formel F (2) berechnet: { } D F (2) { } 20 m α = D l m: Steigung des Graphen l: Länge der Küvette (l = 20 cm)? Berechnen Sie die spezifische Drehung Ihrer Zuckerlösung und geben Sie Ihr Ergebnis in SI- Einheiten an. { } 20 α =... D 9

Polarisation des Lichts

Polarisation des Lichts PeP Vom Kerzenlicht zum Laser Versuchsanleitung Versuch 4: Polarisation des Lichts Polarisation des Lichts Themenkomplex I: Polarisation und Reflexion Theoretische Grundlagen 1.Polarisation und Reflexion

Mehr

Polarimetrie - Deutschlands nationales Metrologieinstitut

Polarimetrie - Deutschlands nationales Metrologieinstitut Polarimetrie - Deutschlands nationales Metrologieinstitut - 1 - Anwendungen der Polarimetrie In vielen Bereichen wird Polarimetrie eingesetzt, um optisch aktive Substanzen nachzuweisen und deren Konzentration

Mehr

1.2 Drehung der Polarisationsebene, Faradayeffekt, Doppelbrechung

1.2 Drehung der Polarisationsebene, Faradayeffekt, Doppelbrechung Physikalisches Praktikum für Anfänger - Teil 1 Gruppe 1 - Optik 1.2 Drehung der Polarisationsebene, Faradayeffekt, Doppelbrechung 1 Drehung der Polarisationsebene Durch einige Kristalle, z.b. Quarz wird

Mehr

Gitterherstellung und Polarisation

Gitterherstellung und Polarisation Versuch 1: Gitterherstellung und Polarisation Bei diesem Versuch wollen wir untersuchen wie man durch Überlagerung von zwei ebenen Wellen Gttterstrukturen erzeugen kann. Im zweiten Teil wird die Sichtbarkeit

Mehr

Theoretische Grundlagen Physikalisches Praktikum. Versuch 12: Fotometrie und Polarimetrie

Theoretische Grundlagen Physikalisches Praktikum. Versuch 12: Fotometrie und Polarimetrie Theoretische Grundlagen Physikalisches Praktikum Versuch 12: Fotometrie und Polarimetrie Licht als elektromagnetische Welle sichtbares Licht ist eine elektromagnetische Welle andere elektromagnetische

Mehr

Spektroskopie. im IR- und UV/VIS-Bereich. Optische Rotationsdispersion (ORD) und Circulardichroismus (CD) http://www.analytik.ethz.

Spektroskopie. im IR- und UV/VIS-Bereich. Optische Rotationsdispersion (ORD) und Circulardichroismus (CD) http://www.analytik.ethz. Spektroskopie im IR- und UV/VIS-Bereich Optische Rotationsdispersion (ORD) und Circulardichroismus (CD) Dr. Thomas Schmid HCI D323 schmid@org.chem.ethz.ch http://www.analytik.ethz.ch Enantiomere sind Stereoisomere,

Mehr

Versuch O3. Polarisiertes Licht. Sommersemester 2006. Daniel Scholz

Versuch O3. Polarisiertes Licht. Sommersemester 2006. Daniel Scholz Demonstrationspraktikum für Lehramtskandidaten Versuch O3 Polarisiertes Licht Sommersemester 2006 Name: Daniel Scholz Mitarbeiter: Steffen Ravekes EMail: daniel@mehr-davon.de Gruppe: 4 Durchgeführt am:

Mehr

POLARISATION. Von Carla, Pascal & Max

POLARISATION. Von Carla, Pascal & Max POLARISATION Von Carla, Pascal & Max Die Entdeckung durch MALUS 1808 durch ÉTIENNE LOUIS MALUS entdeckt Blick durch einen Kalkspat auf die an einem Fenster reflektierten Sonnenstrahlen, durch Drehen wurde

Mehr

Eine solche Anordnung wird auch Fabry-Pérot Interferometer genannt

Eine solche Anordnung wird auch Fabry-Pérot Interferometer genannt Interferenz in dünnen Schichten Interferieren die an dünnen Schichten reflektierten Wellen miteinander, so können diese sich je nach Dicke der Schicht und Winkel des Einfalls auslöschen oder verstärken

Mehr

Polarisation und Doppelbrechung

Polarisation und Doppelbrechung Fortgeschrittenen Praktikum Technische Universita t Darmstadt Betreuer: Dr. Mathias Sinther Durchfu hrung: 06.07.2009 Abgabe: 28.07.2009 Versuch A 3.3 Polarisation und Doppelbrechung Oliver Bitterling

Mehr

SC Saccharimetrie. Inhaltsverzeichnis. Konstantin Sering, Moritz Stoll, Marcel Schmittfull. 25. April 2007. 1 Einführung 2

SC Saccharimetrie. Inhaltsverzeichnis. Konstantin Sering, Moritz Stoll, Marcel Schmittfull. 25. April 2007. 1 Einführung 2 SC Saccharimetrie Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Geometrische Optik und Wellenoptik.......... 2 2.2 Linear polarisiertes Licht.................

Mehr

Wellenoptik II Polarisation

Wellenoptik II Polarisation Phsik A VL41 (31.01.2013) Polarisation Polarisation Polarisationsarten Polarisatoren Polarisation durch Streuung und Refleion Polarisation und Doppelbrechung Optische Aktivität 1 Polarisation Polarisationsarten

Mehr

Versuch O3 - Wechselwirkung Licht - Materie. Gruppennummer: lfd. Nummer: Datum:

Versuch O3 - Wechselwirkung Licht - Materie. Gruppennummer: lfd. Nummer: Datum: Ernst-Moritz-Arndt Universität Greifswald Institut für Physik Namen: Versuch O3 - Wechselwirkung Licht - Materie Gruppennummer: lfd. Nummer: Datum: 1. Aufgabenstellung 1.1. Versuchsziel Untersuchen Sie

Mehr

Polarisation des Lichtes

Polarisation des Lichtes Polarisation des Lichtes Licht = transversal schwingende el.-magn. Welle Polarisationsrichtung: Richtung des el. Feldvektors Polarisationsarten: unpolarisiert: keine Raumrichtung bevorzugt (z.b. Glühbirne)

Mehr

Physikalisches Praktikum I. Polarisation durch ein optisch aktives Medium

Physikalisches Praktikum I. Polarisation durch ein optisch aktives Medium Fachbereich Physik Physikalisches Praktikum I Name: Polarisation durch ein optisch aktives Medium Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser

Mehr

Versuch C3: Refraktometrie

Versuch C3: Refraktometrie Physikalisch-chemisches Praktikum ür Pharmazeuten Gruppennummer Name Vortestat Endtestat Vorname Versuch A. Vorbereitungsteil (VOR der Versuchsdurchührung lesen!) Wichtig: Bitte denken Sie daran, dass

Mehr

PO - Doppelbrechung und elliptisch polarisiertes Licht Blockpraktikum Herbst 2005

PO - Doppelbrechung und elliptisch polarisiertes Licht Blockpraktikum Herbst 2005 PO - Doppelbrechung und elliptisch polarisiertes Licht Blockpraktikum Herbst 00 Assistent Florian Jessen Tübingen, den. Oktober 00 1 Vorwort In diesem Versuch ging es um das Phänomen der Doppelbrechung

Mehr

6.4. Polarisation und Doppelbrechung. Exp. 51: Doppelbrechung am Kalkspat. Dieter Suter - 389 - Physik B2. 6.4.1. Polarisation

6.4. Polarisation und Doppelbrechung. Exp. 51: Doppelbrechung am Kalkspat. Dieter Suter - 389 - Physik B2. 6.4.1. Polarisation Dieter Suter - 389 - Physik B2 6.4. Polarisation und Doppelbrechung 6.4.1. Polarisation Wie andere elektromagnetische Wellen ist Licht eine Transversalwelle. Es existieren deshalb zwei orthogonale Polarisationsrichtungen.

Mehr

Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert

Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert Bachelor Physikalische Technik: Lasertechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert O08 Polarisation (Pr_PhII_O08_Polarisation_7, 25.10.2015) 1. 2. Name Matr. Nr. Gruppe Team Protokoll ist ok O Datum

Mehr

PO Doppelbrechung und elliptisch polarisiertes Licht

PO Doppelbrechung und elliptisch polarisiertes Licht PO Doppelbrechung und elliptisch polarisiertes Licht Blockpraktikum Herbst 27 (Gruppe 2b) 24. Oktober 27 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Polarisation.................................. 2 1.2 Brechung...................................

Mehr

Fakultät Maschinenbau, Verfahrens- und Energietechnik Institut für Mechanik und Fluiddynamik Praktikum Messmethoden der Mechanik

Fakultät Maschinenbau, Verfahrens- und Energietechnik Institut für Mechanik und Fluiddynamik Praktikum Messmethoden der Mechanik Fakultät Maschinenbau, Verfahrens- und Energietechnik Institut für Mechanik und Fluiddynamik Praktikum Messmethoden der Mechanik Versuch: Spannungsoptik 1. Spannungsoptik eine Einleitung Spannungsoptik

Mehr

PHYSIKALISCHES SCHULVERSUCHSPRAKTIKUM

PHYSIKALISCHES SCHULVERSUCHSPRAKTIKUM PHYSIKALISCHES SCHULVERSUCHSPRAKTIKUM WS 2000 / 2001 Protokoll zum Thema WELLENOPTIK Petra Rauecker 9855238 INHALTSVERZEICHNIS 1. Grundlagen zu Polarisation Seite 3 2. Versuche zu Polarisation Seite 5

Mehr

E-10, E-20 und Polfilter

E-10, E-20 und Polfilter 1. Aufgabenstellung E-10, E-20 und Polfilter Klaus Schräder Januar 2002 Polfilter und UV-Sperrfilter zählen zu den meist benutzten Filtern in der Fotografie. Dabei wird häufig geraten, bei Digitalkameras

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 11. Übungsblatt - 17. Januar 2011 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (7 Punkte) a)

Mehr

OSTSACHSEN - DRESDEN. Von der Spannung zum Bruch - Zeichengeräte im Härtetest. ZfP-Sonderpreis der DGZfP beim Regionalwettbewerb Jugend forscht

OSTSACHSEN - DRESDEN. Von der Spannung zum Bruch - Zeichengeräte im Härtetest. ZfP-Sonderpreis der DGZfP beim Regionalwettbewerb Jugend forscht ZfP-Sonderpreis der DGZfP beim Regionalwettbewerb Jugend forscht OSTSACHSEN - DRESDEN Von der Spannung zum Bruch - Zeichengeräte im Härtetest Nico Herrmann Jonas König Schule: Freie Christliche Schule

Mehr

DEUTSCHE GESELLSCHAFT FÜR ZERSTÖRUNGSFREIE PRÜFUNG E.V.

DEUTSCHE GESELLSCHAFT FÜR ZERSTÖRUNGSFREIE PRÜFUNG E.V. DEUTSCHE GESELLSCHAFT FÜR ZERSTÖRUNGSFREIE PRÜFUNG E.V. ZfP-Sonderpreis der DGZfP beim Landeswettbewerb Jugend forscht SAARLAND Versuche zu linear polarisiertem Licht Jaqueline Schriefl Manuel Kunzler

Mehr

5.9.301 Brewsterscher Winkel ******

5.9.301 Brewsterscher Winkel ****** 5.9.301 ****** 1 Motivation Dieser Versuch führt vor, dass linear polarisiertes Licht, welches unter dem Brewsterwinkel auf eine ebene Fläche eines durchsichtigen Dielektrikums einfällt, nur dann reflektiert

Mehr

Polarisationszustände

Polarisationszustände Polarisationszustände Natürliches Licht: Unpolarisiertes Licht = zufällig polarisiert Linear polarisiertes Licht: P-Zustand; Zirkular polarisiertes Licht: Linkszirkular polarisiert: L-Zustand Rechtszirkular

Mehr

Polarimetrie. I p I u. teilweise polarisiert. Polarimetrie

Polarimetrie. I p I u. teilweise polarisiert. Polarimetrie E B z I I p I u I I p 2 I u teilweise polarisiert unpolarisiertes Licht: Licht transversale, elektromagnetische Welle Schwingung senkrecht zur Ausbreitungsrichtung elektr. Feldstärke E und magnet. Feldstärke

Mehr

Versuch 3.3: Polarisation und Doppelbrechung

Versuch 3.3: Polarisation und Doppelbrechung Versuch 3.3: Polarisation und Doppelbrechung Praktikanten: Carl Böhmer, Maxim Singer Betreuer: Mathias Sinther Durchführung: 18.04.2011 1 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Polarisation.............................

Mehr

Überraschende Effekte mit 3D-Brillen (Surprising effects with 3D glasses)

Überraschende Effekte mit 3D-Brillen (Surprising effects with 3D glasses) -1/17- Überraschende Effekte mit 3D-Brillen (Surprising effects with 3D glasses) Quelle des Ursprungsbildes: D-Kuru/Wikimedia Commons -2/17- Was sieht man, wenn man......mit einer 3D-Kinobrille in den

Mehr

Polarisation und Doppelbrechung

Polarisation und Doppelbrechung Polarisation und Doppelbrechung Fortgeschrittenen Praktikum der TU Darmstadt Konstantin Ristl und Jan Wagner Betreuer: Dr. Mathias Sinther Datum: 29.Juni 2009 Erklärung zum fortgeschrittenen Praktikum

Mehr

QED Materie, Licht und das Nichts. Wissenschaftliches Gebiet und Thema: Physikalische Eigenschaften von Licht

QED Materie, Licht und das Nichts. Wissenschaftliches Gebiet und Thema: Physikalische Eigenschaften von Licht QED Materie, Licht und das Nichts 1 Wissenschaftliches Gebiet und Thema: Physikalische Eigenschaften von Licht Titel/Jahr: QED Materie, Licht und das Nichts (2005) Filmstudio: Sciencemotion Webseite des

Mehr

Elektrischer Widerstand

Elektrischer Widerstand In diesem Versuch sollen Sie die Grundbegriffe und Grundlagen der Elektrizitätslehre wiederholen und anwenden. Sie werden unterschiedlichen Verfahren zur Messung ohmscher Widerstände kennen lernen, ihren

Mehr

Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1. Spezifische Drehung von gelöstem Rohrzucker - Rohrzuckerinversion

Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1. Spezifische Drehung von gelöstem Rohrzucker - Rohrzuckerinversion Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1 A 33 Spezifische Drehung von gelöstem Rohrzucker - Rohrzuckerinversion Aufgabe: 1. Bestimmen Sie den Drehwinkel für Rohrzucker für

Mehr

1.1 Auflösungsvermögen von Spektralapparaten

1.1 Auflösungsvermögen von Spektralapparaten Physikalisches Praktikum für Anfänger - Teil Gruppe Optik. Auflösungsvermögen von Spektralapparaten Einleitung - Motivation Die Untersuchung der Lichtemission bzw. Lichtabsorption von Molekülen und Atomen

Mehr

Laser B Versuch P2-23,24,25

Laser B Versuch P2-23,24,25 Vorbereitung Laser B Versuch P2-23,24,25 Iris Conradi und Melanie Hauck Gruppe Mo-02 20. Mai 2011 Inhaltsverzeichnis Inhaltsverzeichnis 1 Fouriertransformation 3 2 Michelson-Interferometer 4 2.1 Magnetostriktion...............................

Mehr

Laborversuche zur Experimentalfysik II. Versuch II-02: Polarisiertes Licht

Laborversuche zur Experimentalfysik II. Versuch II-02: Polarisiertes Licht Laborversuche zur Experimentalfysik II Versuch II-02: Polarisiertes Licht Versuchsleiter: Monika Wesner Autoren: Kai Dinges Michael Beer Gruppe: 12 (Di) Versuchsdatum: 13. Juni 2006 Inhaltsverzeichnis

Mehr

Versuch P2: Optische Abbildungen und Mikroskop

Versuch P2: Optische Abbildungen und Mikroskop Physikalisches Praktikum für Pharmazeuten Gruppennummer Name Vortestat Endtestat Vorname Versuch A. Vorbereitungsteil (VOR der Versuchsdurchführung lesen!) 1. Kurzbeschreibung In diesem Versuch werden

Mehr

2. Bestimmen Sie die Geschwindigkeitskonstante k der Rohrzuckerinversion in s -1.

2. Bestimmen Sie die Geschwindigkeitskonstante k der Rohrzuckerinversion in s -1. Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1 A 33 Spezifische Drehung von gelöstem Rohrzucker - Rohrzuckerinversion Aufgabe: 1. Bestimmen Sie den Drehwinkel α für Rohrzucker für

Mehr

Polarisationsapparat

Polarisationsapparat 1 Polarisationsapparat Licht ist eine transversale elektromagnetische Welle, d.h. es verändert die Länge der Vektoren des elektrischen und magnetischen Feldes. Das elektrische und magnetische Feld ist

Mehr

O10 PhysikalischesGrundpraktikum

O10 PhysikalischesGrundpraktikum O10 PhysikalischesGrundpraktikum Abteilung Optik Michelson-Interferometer 1 Lernziele Aufbau und Funktionsweise von Interferometern, Räumliche und zeitliche Kohärenz, Kohärenzeigenschaften verschiedener

Mehr

1.6 Michelson-Interferometer und Newtonsche Ringe

1.6 Michelson-Interferometer und Newtonsche Ringe Physikalisches Praktikum für Anfänger - Teil 1 Gruppe 1 - Optik 1.6 Michelson-Interferometer und Newtonsche Ringe 1 Michelson-Interferometer Interferometer dienen zur Messung von Längen oder Längendifferenzen

Mehr

Polarisation und Doppelbrechung

Polarisation und Doppelbrechung Technische Universität Darmstadt Fachbereich Physik Institut für Angewandte Physik Versuch 3.3: Polarisation und Doppelbrechung Praktikum für Fortgeschrittene Von Isabelle Zienert (106586) & Mischa Hildebrand

Mehr

Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am 24.11.2011

Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am 24.11.2011 Praktikum Physik Protokoll zum Versuch: Geometrische Optik Durchgeführt am 24.11.2011 Gruppe X Name1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das

Mehr

22 Optische Spektroskopie; elektromagnetisches Spektrum

22 Optische Spektroskopie; elektromagnetisches Spektrum 22 Optische Spektroskopie; elektromagnetisches Spektrum Messung der Wellenlänge von Licht mithilfedes optischen Gitters Versuch: Um das Spektrum einer Lichtquelle, hier einer Kohlenbogenlampe, aufzunehmen

Mehr

Thema 9: Optische Polarisation

Thema 9: Optische Polarisation Version vom 26. April 2015 Thema 9: Optische Polarisation Abbildung 9.1: Übersicht des Versuchsaufbaus Abbildung 9.2: Detailansicht der Proben 1 Einführung und Grundbegriffe 1.1 Einführung Neben Beugungs

Mehr

3.16. Diffraktive Optik

3.16. Diffraktive Optik 3.16 Diffraktive Optik 421 3.16. Diffraktive Optik SICHERHEITSHINWEIS: Während der Versuchsdauer darf das Lasermodul nur bestimmungsgemäß im Experiment verwendet werden. Vor Versuchsbeginn sind reflektierende

Mehr

O02. Polarisation. 1. Theoretische Grundlagen 1.1 Verschiedene Arten der Polarisation

O02. Polarisation. 1. Theoretische Grundlagen 1.1 Verschiedene Arten der Polarisation O0 Polarisation Die Polarisation von Licht ist neben ihrer prinzipiellen Bedeutung als Hinweis auf die Transversalwellennatur von Licht auch von Interesse für viele Anwendungen. Eines dieser Anwendungsgebiete

Mehr

Polarisation durch Reflexion

Polarisation durch Reflexion Version: 27. Juli 2004 Polarisation durch Reflexion Stichworte Erzeugung von polarisiertem Licht, linear, zirkular und elliptisch polarisiertes Licht, Polarisator, Analysator, Polarisationsebene, optische

Mehr

Fachhochschule Flensburg. Institut für Physik

Fachhochschule Flensburg. Institut für Physik Name: Fachhochschule Flensburg Fachbereich Technik Institut für Physik Versuch-Nr.: W 2 Bestimmung der Verdampfungswärme von Wasser Gliederung: Seite Einleitung Versuchsaufbau (Beschreibung) Versuchsdurchführung

Mehr

Polarisation und optische Aktivität

Polarisation und optische Aktivität Polarisation und optische Aktivität 1 Entstehung polarisiertes Licht Streuung und Brechung einer Lichtwelle Reflexion einer Lichtwelle Emission durch eine polarisierte Quelle z.b. einen schwingenden Dipol

Mehr

Protokoll des Versuches 7: Umwandlung von elektrischer Energie in Wärmeenergie

Protokoll des Versuches 7: Umwandlung von elektrischer Energie in Wärmeenergie Name: Matrikelnummer: Bachelor Biowissenschaften E-Mail: Physikalisches Anfängerpraktikum II Dozenten: Assistenten: Protokoll des Versuches 7: Umwandlung von elektrischer Energie in ärmeenergie Verantwortlicher

Mehr

Optische Aktivität und Spiegelbildisomerie

Optische Aktivität und Spiegelbildisomerie Optische Aktivität und Spiegelbildisomerie Die optische Aktivität gibt Aufschluß über die chemische Struktur Zusammenfassung Dieses Script ist eine Einführung in die Spiegelbildisomerie von Molekülen.

Mehr

PROTOKOLL ZUM ANFÄNGERPRAKTIKUM. Polarisation von Licht. Sebastian Finkel Sebastian Wilken

PROTOKOLL ZUM ANFÄNGERPRAKTIKUM. Polarisation von Licht. Sebastian Finkel Sebastian Wilken PROTOKOLL ZUM ANFÄNGERPRAKTIKUM PHYSIK Polarisation von Licht Sebastian Finkel Sebastian Wilken Versuchsdurchführung: 1. Juli 006 0. Inhalt 1. Einleitung. Theoretischer Teil.1. Polarisationszustände..

Mehr

MODELOPTIC Best.- Nr. MD02973

MODELOPTIC Best.- Nr. MD02973 MODELOPTIC Best.- Nr. MD02973 1. Beschreibung Bei MODELOPTIC handelt es sich um eine optische Bank mit deren Hilfe Sie die Funktionsweise der folgenden 3 Geräte demonstrieren können: Mikroskop, Fernrohr,

Mehr

Versuch pl : Polarisation des Lichts

Versuch pl : Polarisation des Lichts UNIVERSITÄT REGENSBURG Naturwissenschaftliche Fakultät II - Physik Anleitung zum Anfängerpraktikum B Versuch pl : Polarisation des Lichts 5. Auflage 2009 Dr. Stephan Giglberger Prof. Dr. Joe Zweck ÁÒ ÐØ

Mehr

auf, so erhält man folgendes Schaubild: Temperaturabhängigkeit eines Halbleiterwiderstands

auf, so erhält man folgendes Schaubild: Temperaturabhängigkeit eines Halbleiterwiderstands Auswertung zum Versuch Widerstandskennlinien und ihre Temperaturabhängigkeit Kirstin Hübner (1348630) Armin Burgmeier (1347488) Gruppe 15 2. Juni 2008 1 Temperaturabhängigkeit eines Halbleiterwiderstands

Mehr

Arbeitspunkt einer Diode

Arbeitspunkt einer Diode Arbeitspunkt einer Diode Liegt eine Diode mit einem Widerstand R in Reihe an einer Spannung U 0, so müssen sich die beiden diese Spannung teilen. Vom Widerstand wissen wir, dass er bei einer Spannung von

Mehr

Kapitel 13: Laugen und Neutralisation

Kapitel 13: Laugen und Neutralisation Kapitel 13: Laugen und Neutralisation Alkalimetalle sind Natrium, Kalium, Lithium (und Rubidium, Caesium und Francium). - Welche besonderen Eigenschaften haben die Elemente Natrium, Kalium und Lithium?

Mehr

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X Praktikum Physik Protokoll zum Versuch 1: Viskosität Durchgeführt am 26.01.2012 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das Protokoll

Mehr

R-C-Kreise. durchgeführt am 07.06.2010. von Matthias Dräger und Alexander Narweleit

R-C-Kreise. durchgeführt am 07.06.2010. von Matthias Dräger und Alexander Narweleit R-C-Kreise durchgeführt am 07.06.200 von Matthias Dräger und Alexander Narweleit PHYSIKALISCHE GRUNDLAGEN Physikalische Grundlagen. Kondensator Ein Kondensator ist ein passives elektrisches Bauelement,

Mehr

Physikalisches Praktikum 5. Semester

Physikalisches Praktikum 5. Semester Torsten Leddig 22.Dezember 2005 Mathias Arbeiter Betreuer: Toralf Ziems Physikalisches Praktikum 5. Semester - Zeeman-Effekt - Inhaltsverzeichnis 1 Aufgabenstellung 3 2 Normaler Zeeman-Effekt 3 3 Messung

Mehr

TP 6: Windenergie. 1 Versuchsaufbau. TP 6: Windenergie -TP 6.1- Zweck der Versuche:...

TP 6: Windenergie. 1 Versuchsaufbau. TP 6: Windenergie -TP 6.1- Zweck der Versuche:... TP 6: Windenergie -TP 6.1- TP 6: Windenergie Zweck der ersuche: 1 ersuchsaufbau Der Aufbau des Windgenerators und des Windkanals (Abb.1) erfolgt mit Hilfe der Klemmreiter auf der Profilschiene. Dabei sind

Mehr

Versuch Polarisiertes Licht

Versuch Polarisiertes Licht Versuch Polarisiertes Licht Vorbereitung: Eigenschaften und Erzeugung von polarisiertem Licht, Gesetz von Malus, Fresnelsche Formeln, Brewstersches Gesetz, Doppelbrechung, Optische Aktivität, Funktionsweise

Mehr

3.3 Polarisation und Doppelbrechung. Ausarbeitung

3.3 Polarisation und Doppelbrechung. Ausarbeitung 3.3 Polarisation und Doppelbrechung Ausarbeitung Fortgeschrittenenpraktikum an der TU Darmstadt Versuch durchgeführt von: Mussie Beian, Florian Wetzel Versuchsdatum: 8.6.29 Betreuer: Dr. Mathias Sinther

Mehr

F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur

F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur David Riemenschneider & Felix Spanier 31. Januar 2001 1 Inhaltsverzeichnis 1 Einleitung 3 2 Auswertung 3 2.1 Darstellung sämtlicher PL-Spektren................

Mehr

Versuch 3.3: Polarisation und Doppelbrechung

Versuch 3.3: Polarisation und Doppelbrechung Versuch 3.3: Polarisation und Doppelbrechung Markus Rosenstihl e-mail:rosenst@prp.physik.tu-darmstadt.de Praktikumspartner: Shona Mackie, Wolfgang Schleifenbaum Betreuer: Dr. Holzfuss 6. Juli 2005 1 1

Mehr

Stromdurchossene Leiter im Magnetfeld, Halleekt

Stromdurchossene Leiter im Magnetfeld, Halleekt Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 2005/06 Jens Küchenmeister (1253810) Versuch: P1-73 Stromdurchossene Leiter im Magnetfeld, Halleekt - Vorbereitung - Inhaltsverzeichnis 1

Mehr

Praktikum Physikalische Chemie I 30. Januar Aktivierungsenergie. Guido Petri Anastasiya Knoch PC111/112, Gruppe 11

Praktikum Physikalische Chemie I 30. Januar Aktivierungsenergie. Guido Petri Anastasiya Knoch PC111/112, Gruppe 11 Praktikum Physikalische Chemie I 30. Januar 2016 Aktivierungsenergie Guido Petri Anastasiya Knoch PC111/112, Gruppe 11 1 Aufgabenstellung Für die Reaktion von Saccharose mit Wasser zu Glucose und Fructose

Mehr

1. Allgemeine Hinweise Alexander.Martin.Koenig@TU-Clausthal.de

1. Allgemeine Hinweise Alexander.Martin.Koenig@TU-Clausthal.de 1. Allgemeine Hinweise Alexander.Martin.Koenig@TU-Clausthal.de Man sollte eine Excel-Tabelle immer so übersichtlich wie möglich halten. Dazu empfiehlt es sich, alle benötigten Daten, Konstanten und Messwerte

Mehr

Experimentelle Übungen I E5 Kleine Widerstände / Thermoelement Protokoll

Experimentelle Übungen I E5 Kleine Widerstände / Thermoelement Protokoll Experimentelle Übungen I E5 Kleine Widerstände / Thermoelement Protokoll Jan-Gerd Tenberge 1 Tobias Südkamp 2 6. Januar 2009 1 Matrikel-Nr. 349658 2 Matrikel-Nr. 350069 Experimentelle Übungen I E5 Tenberge,

Mehr

Protokoll des Versuches 5: Messungen der Thermospannung nach der Kompensationsmethode

Protokoll des Versuches 5: Messungen der Thermospannung nach der Kompensationsmethode Name: Matrikelnummer: Bachelor Biowissenschaften E-Mail: Physikalisches Anfängerpraktikum II Dozenten: Assistenten: Protokoll des Versuches 5: Messungen der Thermospannung nach der Kompensationsmethode

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Arbeitsblätter für die Klassen 7 bis 9: Linsen und optische Geräte

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Arbeitsblätter für die Klassen 7 bis 9: Linsen und optische Geräte Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Arbeitsblätter für die Klassen 7 bis 9: Linsen und optische Geräte Das komplette Material finden Sie hier: School-Scout.de Thema:

Mehr

Geometrische Optik. Versuch: P1-40. - Vorbereitung - Inhaltsverzeichnis

Geometrische Optik. Versuch: P1-40. - Vorbereitung - Inhaltsverzeichnis Physikalisches Anfängerpraktikum Gruppe Mo-6 Wintersemester 2005/06 Julian Merkert (229929) Versuch: P-40 Geometrische Optik - Vorbereitung - Vorbemerkung Die Wellennatur des Lichts ist bei den folgenden

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

Versuchsvorbereitung: P1-42, 44: Lichtgeschwindigkeitsmessung

Versuchsvorbereitung: P1-42, 44: Lichtgeschwindigkeitsmessung Praktikum Klassische Physik I Versuchsvorbereitung: P1-42, 44: Lichtgeschwindigkeitsmessung Christian Buntin Gruppe Mo-11 Karlsruhe, 30. November 2009 Inhaltsverzeichnis 1 Drehspiegelmethode 2 1.1 Vorbereitung...............................

Mehr

Versuch C2: Gasthermometer

Versuch C2: Gasthermometer Physikalisch-chemisches Praktikum für Pharmazeuten Gruppennummer Name Vortestat Endtestat Name Versuch A. Vorbereitungsteil (VOR der Versuchsdurchführung lesen!). Kurzbeschreibung In diesem Versuch werden

Mehr

Laborversuche zur Physik 2 II - 2. Polarisiertes Licht

Laborversuche zur Physik 2 II - 2. Polarisiertes Licht FB Physik Laborversuche zur Physik 2 II - 2 Versuche mit polarisiertem Licht Reyher, 27.02.15 Polarisiertes Licht Ziele Beschreibung und Erzeugung von polarisiertem Licht Optische Aktivität von Quarz und

Mehr

P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK

P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK GRUPPE 19 - SASKIA MEIßNER, ARNOLD SEILER 1 Bestimmung der Brennweite 11 Naives Verfahren zur Bestimmung der Brennweite Es soll nur mit Maÿstab und Schirm die

Mehr

Versuch 3. Frequenzgang eines Verstärkers

Versuch 3. Frequenzgang eines Verstärkers Versuch 3 Frequenzgang eines Verstärkers 1. Grundlagen Ein Verstärker ist eine aktive Schaltung, mit der die Amplitude eines Signals vergößert werden kann. Man spricht hier von Verstärkung v und definiert

Mehr

Linsen und Linsensysteme

Linsen und Linsensysteme 1 Ziele Linsen und Linsensysteme Sie werden hier die Brennweiten von Linsen und Linsensystemen bestimmen und dabei lernen, wie Brillen, Teleobjektive und andere optische Geräte funktionieren. Sie werden

Mehr

Konfiguration der Messkanäle. Konfiguration der Zeitachse. Abb. 3: Konfigurationsmenü des Sensoreingangs A. Abb. 4: Messparameter Konfigurationsmenü

Konfiguration der Messkanäle. Konfiguration der Zeitachse. Abb. 3: Konfigurationsmenü des Sensoreingangs A. Abb. 4: Messparameter Konfigurationsmenü Anleitung zum Programm CASSY Lab für den Versuch E12 Starten Sie das Programm CASSY Lab durch Doppelklick auf das Icon auf dem Windows- Desktop. Es erscheint ein Fenster mit Lizensierungsinformationen,

Mehr

Universität der Pharmazie

Universität der Pharmazie Universität der Pharmazie Institut für Pharmazie Pharmazie-Straße 1 12345 Pharmastadt Identitäts-, Gehalts- und Reinheitsbestimmung von Substanzen in Anlehnung an Methoden des Europäischen Arzneibuchs

Mehr

Berufspädagogisches Konzept

Berufspädagogisches Konzept Berufspädagogisches Konzept Schule SPŠCH Brno (CZ) Bereich Berufliche Fachrichtungen Berufliches Handlungsfeld Berufliche Bildung 1. Angewandte Chemie Analytische Chemie Pharmazeutische Substanzen Umweltschutz

Mehr

Offset, Buffer, Nullpunkt, DpH, Asymmetrie oder ph = 7.

Offset, Buffer, Nullpunkt, DpH, Asymmetrie oder ph = 7. Arbeitskreis Allgemeine Anleitung zur Kalibrierung F 01 Kappenberg und Messung von ph -Werten ph- Wert Vorinformation Die ph- Elektrode ist Umwelt- und Alterungsprozessen unterworfen. Aus diesem Grunde

Mehr

Thema: Winkel in der Geometrie:

Thema: Winkel in der Geometrie: Thema: Winkel in der Geometrie: Zuerst ist es wichtig zu wissen, welche Winkel es gibt: - Nullwinkel: 0 - spitzer Winkel: 1-89 (Bild 1) - rechter Winkel: genau 90 (Bild 2) - stumpfer Winkel: 91-179 (Bild

Mehr

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben

Mehr

Frühjahr 2000, Thema 2, Der elektrische Widerstand

Frühjahr 2000, Thema 2, Der elektrische Widerstand Frühjahr 2000, Thema 2, Der elektrische Widerstand Referentin: Dorothee Abele Dozent: Dr. Thomas Wilhelm Datum: 01.02.2007 1) Stellen Sie ein schülergemäßes Modell für einen elektrisch leitenden bzw. nichtleitenden

Mehr

Physik III - Anfängerpraktikum- Versuch 302

Physik III - Anfängerpraktikum- Versuch 302 Physik III - Anfängerpraktikum- Versuch 302 Sebastian Rollke (103095) und Daniel Brenner (105292) 15. November 2004 Inhaltsverzeichnis 1 Theorie 2 1.1 Beschreibung spezieller Widerstandsmessbrücken...........

Mehr

Einführungspraktikum O5 Polarimetrie

Einführungspraktikum O5 Polarimetrie Einführungspraktikum O5 Polarimetrie Julien Kluge 8. Oktober 2015 Student: Julien Kluge (564513) Partner: Emily Albert (564536) Betreuer: Moritz Futscher Raum: 315 Messplatz: hpr02287 INHALTSVERZEICHNIS

Mehr

Stationsunterricht im Physikunterricht der Klasse 10

Stationsunterricht im Physikunterricht der Klasse 10 Oranke-Oberschule Berlin (Gymnasium) Konrad-Wolf-Straße 11 13055 Berlin Frau Dr. D. Meyerhöfer Stationsunterricht im Physikunterricht der Klasse 10 Experimente zur spezifischen Wärmekapazität von Körpern

Mehr

Physik III (integrierter Kurs, exp. Teil), HU, WS 1999/2, T.H. September 26, 2 VORLESUNG 8 Nachdenken/Nachlesen: Sind Sterne farbig? Kann man die Farben besser direkt mit dem Auge oder mit Hilfe eines

Mehr

Repetitionsaufgaben: Lineare Funktionen

Repetitionsaufgaben: Lineare Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Funktionen Zusammengestellt von Irina Bayer-Krakvina, KSR Lernziele: - Wissen, was ein Steigungsdreieck einer Geraden ist und wie die Steigungszahl

Mehr

Pockels-Effekt und optische Aktivität

Pockels-Effekt und optische Aktivität Praktikumsversuch zur Wahlpflicht-Vorlesung Atom- und Quantenoptik (WS 2009) Dr. Robert Löw, Dr. Sven M. Ulrich, Jochen Kunath Pockels-Effekt und optische Aktivität Einleitung Dieser Versuch besteht aus

Mehr

Physikalisches Grundpraktikum II Versuch 1.1 Geometrische Optik. von Sören Senkovic & Nils Romaker

Physikalisches Grundpraktikum II Versuch 1.1 Geometrische Optik. von Sören Senkovic & Nils Romaker Physikalisches Grundpraktikum II Versuch 1.1 Geometrische Optik von Sören Senkovic & Nils Romaker 1 Inhaltsverzeichnis Theoretischer Teil............................................... 3 Grundlagen..................................................

Mehr

Interferometer OPL 29

Interferometer OPL 29 Interferometer OPL 29 Material: 1 Interferometer nach Michelson DL408-2I 1 Rundfuß mit Klemmsäule DS100-1R Theoretische Grundlagen: Beim Interferometer nach Michelson wird das von der Lichtquelle L kommende

Mehr

Naturwissenschaftliche Fakultät II - Physik. Anleitung zum Anfängerpraktikum A2

Naturwissenschaftliche Fakultät II - Physik. Anleitung zum Anfängerpraktikum A2 U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Anfängerpraktikum A2 Versuch 3 - Gedämpfte freie Schwingung des RLC-Kreises 23. überarbeitete Auflage

Mehr

Physikalisches Praktikum 1. Versuch Mi 1 Mikrowellen. Bergische Universität Wuppertal Sommersemester 2007. Verfasser: Moritz Schubotz.

Physikalisches Praktikum 1. Versuch Mi 1 Mikrowellen. Bergische Universität Wuppertal Sommersemester 2007. Verfasser: Moritz Schubotz. Bergische Universität Wuppertal Fachbereich C Sommersemester 007 Physikalisches Praktikum 1 Versuch Mi 1 Mikrowellen Verfasser: Moritz Schubotz Betreuer: Sebastian Weber Abgabetermin: 0 Ausgangssituation

Mehr

Klausurtermine. Klausur 15. Februar 2010, 9:00-11:00 (Klausur 90min) in HS 3 (erste Woche in der vorlesungsfreien Zeit)

Klausurtermine. Klausur 15. Februar 2010, 9:00-11:00 (Klausur 90min) in HS 3 (erste Woche in der vorlesungsfreien Zeit) Klausurtermine Klausur 15. Februar 2010, 9:00-11:00 (Klausur 90min) in HS 3 (erste Woche in der vorlesungsfreien Zeit) Nachklausur Buchung noch nicht bestätigt. Angefragt ist 15. April 2010 (letzte Woche

Mehr