Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am 1.12.

Größe: px
Ab Seite anzeigen:

Download "Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am 1.12."

Transkript

1 Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik Name: Vorname(n): Matrikelnummer: Bitte... SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am Arbeitszeit: 15 min Aufgabe erreichbare Punkte erreichte Punkte... tragen Sie Name, Vorname und Matrikelnummer auf dem Deckblatt ein,... rechnen Sie die Aufgaben auf separaten Blättern, nicht auf dem Angabeblatt,... beginnen Sie für eine neue Aufgabe immer auch eine neue Seite,... geben Sie auf jedem Blatt den Namen sowie die Matrikelnummer an und Note: Musterlösung... begründen Sie Ihre Antworten ausführlich. Viel Erfolg!

2 1. In dieser Aufgabe soll die in Abbildung 1 dargestellte Anordnung von zwei Feder- 7 P. elementen mit einer konzentrierten Punktmasse untersucht werden. Im Rahmen der Berechnungen soll lediglich die Bewegung der Punktmasse m in x-richtung betrachtet werden. Die Position der Masse wird mit s bezeichnet. Die Position s = s 1 entspricht der entspannten Länge des Federelementes mit der Steifigkeit c 1. Die Position s = s 2 entspricht der entspannten Länge des Federelementes mit der Steifigkeit c 2. Weiteres soll c 1 > und c 2 > gelten. Bekannt: c 1, s 1, c 2, s 2. f e c 1, s 1 c 2, s 2 m s Abbildung 1: Eindimensionale Feder-Massekonfiguration. x a) Geben Sie für f e = die Federkräfte, eine Gesamtsteifigkeit c g und die dazu- 3 P. gehörige entspannte Länge s g an. b) Ermitteln Sie die Bewegungsgleichung der Punktmasse über den Impulserhal- 1 P. tungssatz. c) Bestimmen Sie den stationären Punkt s F für eine konstante externe Kraft 2 P. f e = F. d) Nach einer geeigneten Koordinatentransformation ergibt sich die Bewegungs- 1 P. gleichung des Systems aus Abbildung 1 für f e = zu mẍ = c g x. Verwenden Sie den Lösungsansatz x(t) = x cos(ω t). Bestimmen Sie die Eigenfrequenz ω und zeigen Sie, dass es sich bei der Relation x(t) = x cos(ω t) um eine Lösung der Differentialgleichung mẍ = c g x handelt. 2

3 Lösung: a) Federkräfte, Gesamtsteifigkeit und entspannte Länge b) Bewegungsgleichung f 1 = c 1 (s s 1 ) f 2 = c 2 (s s 2 ) c g = c 1 + c 2 s g = c 1s 1 + c 2 s 2 c g c) Stationärer Punkt m s = c g (s s og ) + f e d) Eigenfrequenz s = F + c gs g c g ω = cg m 3

4 2. Zwei Punktmassen m 1 und m 2 sind durch einen masselosen Faden konstanter Länge 8 P. L = r + h verbunden. Der Faden gleitet durch ein Loch in einer Ebene, wobei die Masse m 2 an dem Faden vertikal bewegt werden kann und die Masse m 1 auf der Ebene um das Loch mit dem Radius r und dem Winkel ϕ rotiert, siehe Abbildung 2. Dabei wird angenommen, dass das Seil stets gespannt sei und keine Reibung im System auftritt. Zusätzlich soll eine externe Kraft f e berücksichtigt werden, welche an m 2 in Richtung e z wirkt. r h e x e z e y ϕ m 1 g m 2 f e Abbildung 2: Zwei mit einem Seil verbundene Massen. a) Wie viele Freiheitsgrade hat das System? Begründen Sie ihre Antwort. 1 P. b) Stellen Sie die Lagrange-Funktion des Systems auf. Verwenden Sie dabei ge- 3 P. eignete unabhängige Koordinaten aus der Menge {r, h, ϕ}. c) Bestimmen Sie die Bewegungsgleichungen des Systems mithilfe des 3 P. Euler-Lagrange Formalismus. d) Nun wird angenommen, dass die Position der Masse m 2 fixiert ist. Bestimmen 1 P. Sie die Anzahl der Freiheitsgrade und die Bewegungsgleichungen ausgehend von der vorherigen Lösung. Interpretieren Sie das Ergebnis. 4

5 Lösung: a) Ein Körper im freien Raum hat maximal drei Freiheitsgrade. Das System bestehend aus zwei Körpern hat durch die vier Zwangsbedingungen z 1 =, x 2 = y 2 = und z 2 + x y1 2 = L schließlich = 2 Freiheitsgrade. b) Die Lösung ist abhängig von der Wahl der generalisierten Koordinaten: h q = Schwerpunkt von Masse 1: ϕ Schwerpunkt von Masse 2: cos ϕ r 1 = (L h) sin ϕ r 2 = h Geschwindigkeit der Masse 1: (L h) ϕ sin ϕ + ḣ cos ϕ ṙ 1 = (L h) ϕ cos ϕ ḣ sin ϕ Geschwindigkeit der Masse 2: ṙ 2 = ḣ Translatorische kinetische Energie q = r ϕ T t = 1 2 m 1ṙ T 1 ṙ m 2ṙ T 2 ṙ2 Rotatorische kinetische Energie T r =, da es sich um zwei Punktmassen handelt. Potentielle Energie V = m 2 gh Lagrange-Funktion L = T t V = 1 2 m 1( (L h)2 ϕ 2 + ḣ2) m 2ḣ2 + m 2 gh Schwerpunkt von Masse 1: cos ϕ r 1 = r sin ϕ Schwerpunkt von Masse 2: r 2 = L r 5

6 Geschwindigkeit der Masse 1: r ϕ sin ϕ ṙ cos ϕ ṙ 1 = r ϕ cos ϕ + ṙ sin ϕ Geschwindigkeit der Masse 2: ṙ 2 = ṙ Translatorische kinetische Energie T t = 1 2 m 1ṙ T 1 ṙ m 2ṙ T 2 ṙ2 Rotatorische kinetische Energie T r =, da es sich um zwei Punktmassen handelt. Potentielle Energie (Abhängig von der Wahl von V (r = )) Lagrange-Funktion V = m 2 g(l r) L = T t V = 1 2 m 1( r2 ϕ 2 + ṙ 2) m 2ḣ2 + m 2 g(l r) c) Die Lösung ist wieder abhängig von der Wahl der generalisierten Koordinaten: h q = Externe Kraft ϕ f e = Generalisierte Kräfte f e f h = f T e f ϕ = r 2 h = f e Bewegungsgleichungen q = r ϕ Externe Kraft ḧ = f e + m 2 g m 1 (L h) ϕ 2 m 1 + m 2 ϕ = 2 ϕḣ (L h) f e = f e 6

7 Generalisierte Kräfte f r = f T e f ϕ = r 2 r = f e Bewegungsgleichungen r = f e m 2 g + m 1 r ϕ 2 m 1 + m 2 ϕ = 2 ϕṙ r d) Da h = z 2 = konst. gilt, muss auch r = konst. und somit ḣ =, ṙ = gelten. Das System hat nun nur mehr einen Freiheitsgrad, den Winkel ϕ. Somit folgt aus der Bewegungsgleichung ϕ = und daraus ϕ = konst.. Die Masse m 1 bewegt sich somit auf einer Kreisbahn mit der konstanten Winkelgeschwindigkeit ϕ um den Ursprung, welche ausschließlich von den Anfangsbedingungen abhängt. 7

8 3. Betrachtet wird der in Abbildung 3 dargestellte elektrische Leiter mit dem län- 7 P. genbezogenen elektrischen Widerstand R (Einheit Ω m 1 ). Der Leiter wird vom zunächst unbekannten Strom I durchflossen, hat eine homogene Temperatur T l und ist mit einer elektrischen Isolationsschicht umgeben. Die Wärmekapazität der elektrischen Isolierschicht ist vernachlässigbar. Die Oberfläche tauscht mit der Umgebung (Lufttemperatur T ) Wärme in Form von Konvektion mit dem gemittelten Wärmeübergangskoeffizienten α o aus. Der Wärmeübergang an der Kontaktfläche zwischen Leiter und Isolationsschicht wird durch den Wärmeübergangskoeffizienten α i charakterisiert. α i α o r i Umgebungsluft T q r o Leiter T l, λ l, ρ l, c p,l Isolation T isol (r), λ isol, c p,isol = Abbildung 3: Stromdurchflossener Leiter mit elektrischer Isolationsschicht. a) Geben Sie den auf die Leiterlänge L r o bezogenen Wärmestrom q vom 2 P. Leiter zur Umgebung für unbekanntes I in Abhängigkeit von T l und T an. b) Aus dem Energieerhaltungssatz folgt für die Temperatur eines Körpers mit 3 P. dem Volumen V dt ρc p V dt dv = Q + P el mit dem über die Berandung V von V zugeführten Wärmestrom Q sowie der zugeführten elektrischen Leistung P el. Geben Sie die vollständige Differentialgleichung für die Temperatur des Leiters T l aus den gegebenen Größen an. Gehen Sie hierbei davon aus, dass der Strom I nun bekannt ist. c) Bestimmen Sie die Temperatur T l als eine Funktion der konstanten Stromstärke 2 P. I im stationären Fall. 8

9 Lösung: a) Der längenbezogene Wärmestrom durch die Isolierung lautet q = (T l T ) 2π 1 r i α i + 1 λ isol ln ro r i + 1 r }{{ oα o } :=k. b) Da T l, ρ l, c p,l homogen verteilt sind gilt V ρ l c p,l dt l dt dv = r2 i πρ lc p,l L dt l dt. Mit der zugeführten elektrischen Leistung (Joulsche Wärme) P el = I 2 R L und Q = q L ergibt sich die Differentialgleichung für die Temperatur des Leiters dt l dt = q + I 2 R r 2 i πρ l c p,l. c) Über die stationäre Lösung dt l dt = folgt T l = T + I2 R für die Temperatur des Leiters bei bekanntem Strom I. k 9

10 4. Abbildung 4 zeigt einen doppelwandigen zylinderförmigen Behälter. Dieser ist durch 8 P. eine Vakuumschicht zwischen den zwei Wänden isoliert. Es soll die stationäre Wärmeübertragung untersucht werden. Der Behälter ist mit einem Gasgemisch mit einer konstanten mittleren Temperatur befüllt. Der vom Gasgemisch ausgehende, auf die Rohrlänge bezogene Wärmestrom sei q G in W/m (positiv nach außen). Die Zylinderwände seien vernachlässigbar dünn. Die Oberfläche A 1 soll als schwarzer diffuser Strahler betrachtet werden. Die Oberfläche A 2 ist ein grauer diffuser Strahler. An die umgebende Oberfläche, welche im mittel die feste Temperatur T besitzt, geht Wärme ausschließlich über freie Konvektion an der äußeren Oberfläche verloren. Die Wärmeverluste über die Grundund Deckfläche, sowie jene der thermischen Strahlung zwischen der Oberflächen A 2 und der Umgebung können vernachlässigt werden. Bekannt: q G, d 1, ε 1 = 1, d 2, ε 2 < 1, α, T. Gasgemisch Vakuumkammer Luft, T A 1, T 1, ε 1 A 2, T 2, ε 2, α d 1 d 2 Abbildung 4: Zylinderförmiger Gasbehälter. a) Berechnen Sie basierend auf den angegebenen bekannten Größen die Tempe- 2 P. ratur T 2 des Außenrohrs. b) Bestimmen Sie für die thermische Strahlung in der Vakuumkammer die Sicht- 2 P. faktoren zwischen den Oberflächen A 1 und A 2. Geben Sie die Sichtfaktormatrix an. c) Ermitteln Sie die Zusammenhänge der Nettowärmestromdichten an den Ober- 2 P. flächen A 1 und A 2 zufolge von thermischer Strahlung in der Vakuumkammer. Wählen Sie hierfür die Vektoren q = [ q 1 q 2 ] T, T 4 = [T1 4 T2 4 ] T und ε = [1 ε 2 ] T. Zeichnen Sie die Nettowärmestromdichten q 1 und q 2 an den Oberflächen A 1 und A 2 mit zwei Pfeilen in Abbildung 4 ein. d) Bestimmen Sie die Temperatur T 1 des Innenrohrs unter der Annahme, dass 2 P. zusätzlich zu den gegebenen Größen auch T 2 bekannt ist. 1

11 Lösung: a) Temperatur T 2 q 2 = α(t 2 T ) q 2 = 1 d 2 π q G T 2 = 1 d 1 πα q G + T b) Sichtfaktoren A 1 istkonvex : F 11 = Summenregel : F 11 + F 12 = 1 F 12 = 1 Reziprozitätsgesetz : A 1 F 12 = A 2 F 21 F 21 = A 1 F 12 = d 1 = D A 2 d 2 Summenregel : F 21 + F 22 = 1 F 22 = 1 D 1 F = D 1 D c) Nettowärmestromdichten q1 = q 2 σε 2 ε 2 (1 D) + 1 [ 1 ] 1 T 4 1 D D T 4 2 d) Temperatur T 1 q 1 = k ( T 4 1 T 4 2 q 1 = 1 d 1 π q G T 1 = ( 1 kd 1 π q G + T 4 2 ), mit k = σε 2 ε 2 (1 D) + 1 )

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am 05.0.016 Arbeitszeit: 10 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am 30.01.015 Arbeitszeit: 10 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am 13.05.2016 Arbeitszeit: 120 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am 8..04 Arbeitszeit: 0 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe 3 4

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik Name: Vorname(n): Matrikelnummer: Bitte... SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am 16.03.018 Arbeitszeit: 150 min Aufgabe

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am 31.01.014 Arbeitszeit: 10 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am 3.10.

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am 3.10. Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am 3.10.014 Arbeitszeit: 10 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

M. 59 Perle auf rotierendem Draht (F 2018)

M. 59 Perle auf rotierendem Draht (F 2018) M. 59 Perle auf rotierendem Draht (F 8) Eine Perle der Masse m bewegt sich reibungslos auf einem mit konstanter Winkelgeschwindigkeit ω um die z-achse rotierenden Draht. Für die Belange dieser Aufgabe

Mehr

Blatt 1. Kinematik- Lösungsvorschlag

Blatt 1. Kinematik- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 011 Blatt 1. Kinematik- Lösungsvorschlag Aufgabe 1.1. Schraubenlinie Die

Mehr

TECHNISCHE MECHANIK III (DYNAMIK)

TECHNISCHE MECHANIK III (DYNAMIK) Klausur im Fach TECHNISCHE MECHANIK III (DYNAMIK) WS 2014 / 2015 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 Summe Punkte: 15 7 23 15 60 Davon erreicht Bearbeitungszeit: Hilfsmittel:

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am 10.12.2010 Arbeitszeit: 120 min Name: Vorname(n): Matrikelnummer:

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Klausur zur Vorlesung

Klausur zur Vorlesung Institut für Thermodynamik 9. März 20 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Wärme- und Stoffübertragung Für alle Aufgaben gilt: Der Rechen- und Gedankengang

Mehr

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe:

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe: Übungen zu Theoretische Physik I - Mechanik im Sommersemester 03 Blatt 7 vom 0.06.3 Abgabe: 7.06.3 Aufgabe 9 3 Punkte Keplers 3. Gesetz Das 3. Keplersche Gesetz für die Planetenbewegung besagt, dass das

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2013 Probeklausur Technische Universität München 1 Fakultät für Physik 1 Kurze Fragen [20 Punkte] Beantworten Sie folgende Fragen. Für jede richtige Antwort

Mehr

(a) Λ ist eine Erhaltungsgröße. (b) Λ ist gleich der Exzentrizität ε der Bahnkurve.

(a) Λ ist eine Erhaltungsgröße. (b) Λ ist gleich der Exzentrizität ε der Bahnkurve. PD Dr. S. Mertens S. Falkner, S. Mingramm Theoretische Physik I Mechanik Blatt 7 WS 007/008 0.. 007. Lenz scher Vektor. Für die Bahn eines Teilchens der Masse m im Potential U(r) = α/r definieren wir mit

Mehr

Aufgabe 1: (18 Punkte)

Aufgabe 1: (18 Punkte) MODULPRÜFUNG TECHNISCHE MECHANIK IV (PO 2004) VOM 26.07.2011 Seite 1 Aufgabe 1: (18 Punkte) Zwei Massenpunkte m 1 = 5 kg und m 2 = 2 kg sind durch ein dehnstarres und massenloses Seil über eine reibungsfrei

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am 12.12.2008 Name: Vorname(n): Matrikelnummer: Note: Aufgabe 1 2 3 4

Mehr

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern WS 16/17, 25.2.217 1. Aufgabe: (TM3) a g y a S v S ϕ x m P A 1111111 1111111 1111 1111 Die abgebildete homogene

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2013 Übung 4 - Angabe Technische Universität München 1 Fakultät für Physik 1 Trägheitstensor 1. Ein starrer Körper besteht aus den drei Massenpunkten mit

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 27.04.2012 Arbeitszeit: 120 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Übungen zu Lagrange-Formalismus und kleinen Schwingungen

Übungen zu Lagrange-Formalismus und kleinen Schwingungen Übungen zu Lagrange-Formalismus und kleinen Schwingungen Jonas Probst 22.09.2009 1 Teilchen auf der Stange Ein Teilchen der Masse m wird durch eine Zwangskraft auf einer masselosen Stange gehalten, auf

Mehr

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06 Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 25/6 http://www.pt.tu-clausthal.de/qd/teaching.html 17. Januar 26 Übungsblatt 9 Lösungsvorschlag 4 Aufgaben,

Mehr

Lagrange Formalismus

Lagrange Formalismus Lagrange Formalismus Frank Essenberger FU Berlin 1.Oktober 26 Inhaltsverzeichnis 1 Oszillatoren 1 1.1 Fadenpendel.............................. 1 1.2 Stabpendel.............................. 3 1.3 U-Rohr................................

Mehr

Experimentalphysik 1

Experimentalphysik 1 Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 16/17 Lösung 1 Ronja Berg (ronja.berg@tum.de) Katharina Scheidt (katharina.scheidt@tum.de) Aufgabe 1: Superposition

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik Name: Vorname(n): Matrikelnummer: Bitte... SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am 18.11.216 Arbeitszeit: 15 min Aufgabe

Mehr

Probeklausur zur T1 (Klassische Mechanik)

Probeklausur zur T1 (Klassische Mechanik) Probeklausur zur T1 (Klassische Mechanik) WS 006/07 Bearbeitungsdauer: 10 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 8.6.13 Arbeitszeit: 1 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 3 - Lösung Technische Universität München 1 Fakultät für Physik 1 Gleiten und Zwangsbedingungen Wir betrachten einen Block der Masse m 1 auf einem Keil der

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 4.3.11 Arbeitszeit: 1 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06 Übungen zu: Theoretische Physik I klassische Mechanik W 13 Tobias Spranger - Prof. Tom Kirchner WS 005/06 http://www.pt.tu-clausthal.de/qd/teaching.html. Dezember 005 Übungsblatt 7 Lösungsvorschlag 4 Aufgaben,

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2013 Übung 3 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zweiteilchenproblem im Lagrange-Formalismus Betrachten Sie ein System aus zwei

Mehr

1 Lagrange-Formalismus

1 Lagrange-Formalismus Lagrange-Formalismus SS 4 In der gestrigen Vorlesung haben wir die Beschreibung eines physikalischen Systems mit Hilfe der Newton schen Axiome kennen gelernt. Oft ist es aber nicht so einfach die Kraftbilanz

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 27.9.213 Arbeitszeit: 12 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13 Prof. C. Greiner, Dr. H. van Hees Sommersemester 014 Übungen zur Theoretischen Physik Lösungen zu Blatt 13 Aufgabe 51: Massenpunkt auf Kugel (a) Als generalisierte Koordinaten bieten sich Standard-Kugelkoordinaten

Mehr

() = Aufgabe 1 ( Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 2012 P 2

() = Aufgabe 1 ( Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 2012 P 2 Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 212 P 2 BachelorPrüfung in Technischer Mechanik II/III Nachname, Vorname Matr.Nummer Fachrichtung 28.

Mehr

Übungen zu Theoretischer Mechanik (T1)

Übungen zu Theoretischer Mechanik (T1) Arnold Sommerfeld Center Ludwig Maximilians Universität München Prof. Dr. Viatcheslav Mukhanov Sommersemester 08 Übungen zu Theoretischer Mechanik T Übungsblatt 8, Besprechung ab 04.06.08 Aufgabe 8. Lineare

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am )

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am ) Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: 14.09.11, Abgabe am 1.09.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 2 - Lösung Technische Universität München 1 Fakultät für Physik 1 Perle Eine Perle der Masse m gleite reibungsfrei auf einem vertikal stehenden Ring vom Radius

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerkung Dies ist ein abgegebener Übungszettel aus dem Modul physik221. Dieser Übungszettel wurde nicht korrigiert. Es handelt sich lediglich um meine Abgabe und keine Musterlösung. Alle Übungszettel

Mehr

Klassische Theoretische Physik I WS 2013/2014

Klassische Theoretische Physik I WS 2013/2014 Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 213/214 Prof. Dr. J. Schmalian Blatt 6 Dr. P. P. Orth bgabe und Besprechung 6.12.213 1. Vektoranalysis I (2

Mehr

Fallender Stein auf rotierender Erde

Fallender Stein auf rotierender Erde Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 4 vom 13.05.13 Abgabe: 27. Mai Aufgabe 16 4 Punkte allender Stein auf rotierender Erde Wir lassen einen Stein der Masse m in einen

Mehr

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T) im SoSe 20 Blatt 0. Hamilton-Formalismus- Lösungsvorschlag Aufgabe 0.. Hamilton-Formalismus

Mehr

Klausur zur T1 (Klassische Mechanik)

Klausur zur T1 (Klassische Mechanik) Klausur zur T1 (Klassische Mechanik) WS 2006/07 Bearbeitungsdauer: 120 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zwei Kugeln und der Satz von Steiner Nehmen Sie zwei Kugeln mit identischem Radius R und

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am Technische Universität Wien Institut für utomatisieruns- un Reelunstechnik SCHRIFTLICHE PRÜFUNG zur VU Moellbilun am 27.09.2013 rbeitszeit: 120 min Name: Vorname(n): Matrikelnummer: Note: ufabe 1 2 3 erreichbare

Mehr

M1 Maxwellsches Rad. 1. Grundlagen

M1 Maxwellsches Rad. 1. Grundlagen M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten

Mehr

Übungen zu Lagrange-Formalismus und kleinen Schwingungen

Übungen zu Lagrange-Formalismus und kleinen Schwingungen Übungen zu Lagrange-Foralisus und kleinen Schwingungen Jonas Probst.9.9 Teilchen auf der Stange Aufgabe: Ein Teilchen der Masse wird durch eine Zwangskraft auf einer asselosen Stange gehalten, auf der

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 26.06.2015 Arbeitszeit: 120 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 8.7.211 Arbeitszeit: 12 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 1/13/14) Dozent: J. von Delft Übungen: B. Kubala Klausur zur Vorlesung T1: Theoretische Mechanik, SoSe 008 (3. Juli 007) Bearbeitungszeit:

Mehr

Ferienkurs Mechanik: Probeklausur

Ferienkurs Mechanik: Probeklausur Ferienkurs Mechanik: Probeklausur Simon Filser 5.9.09 1 Kurze Fragen Geben Sie möglichst kurze Antworten auf folgende Fragen: a) Ein Zug fährt mit konstanter Geschwindigkeit genau von Norden nach Süden.

Mehr

τ 30 N/mm bekannt. N mm N mm Aufgabe 1 (7 Punkte)

τ 30 N/mm bekannt. N mm N mm Aufgabe 1 (7 Punkte) Institut für Technische und Num. Mechanik Technische Mechanik IIIII Profs. P. Eberhard, M. Hanss WS 114 P 1. Februar 14 Bachelor-Prüfung in Technischer Mechanik IIIII Nachname, Vorname Matr.-Nummer Fachrichtung

Mehr

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ. Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010

Mehr

1. Aufgabe: (ca. 14% der Gesamtpunkte)

1. Aufgabe: (ca. 14% der Gesamtpunkte) Institut für Mechanik Prof. Dr.-Ing. habil. P. Betsch Prof. Dr.-Ing. habil. Th. Seelig Prüfung in Baudynamik 23. Juli 2018 1. Aufgabe: (ca. 14% der Gesamtpunkte) a) Geben Sie Amplitude, Frequenz und Phasenverschiebung

Mehr

Matr.-Nummer Fachrichtung

Matr.-Nummer Fachrichtung Institut für Technische und Num. Mechanik Technische Mechanik II+III Profs. P. Eberhard, M. Hanss WS 2015/16 P 1 18. Februar 2016 Bachelor-Prüfung in Technischer Mechanik II+III Nachname, Vorname E-Mail-Adresse

Mehr

Thermodynamik II Musterlösung Rechenübung 8

Thermodynamik II Musterlösung Rechenübung 8 Thermodynamik II Musterlösung Rechenübung 8 Aufgabe a) Annahmen: (a) stationärer Zustand (b) -dimensionale Wärmeleitung (x-richtg.) (c) λ = konst., α = konst. (d) keine Wärmequellen (e) keine Wärmestrahlung

Mehr

2. Physikalisches Pendel

2. Physikalisches Pendel 2. Physikalisches Pendel Ein physikalisches Pendel besteht aus einem starren Körper, der um eine Achse drehbar gelagert ist. A L S φ S z G Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.2-1 2.1 Bewegungsgleichung

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 3.11.218 Arbeitszeit: 15 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern WS 12/13, 13.02.2013 1. Aufgabe: (TM III) Um vom Boden aufzustehen, rutscht ein Mensch mit konstanter Geschwindigkeitv

Mehr

Klausur. zur Vorlesung Experimentalphysik für Studierende der Biologie, Gartenbauwissenschaften, Pflanzenbiotechnologie und Life Science

Klausur. zur Vorlesung Experimentalphysik für Studierende der Biologie, Gartenbauwissenschaften, Pflanzenbiotechnologie und Life Science Klausur zur Vorlesung Experimentalphysik für Studierende der Biologie, Gartenbauwissenschaften, Pflanzenbiotechnologie und Life Science Leibniz Universität Hannover 03.02.2010 Barthold Name, Vorname: Matrikelnummer:

Mehr

Schwingungen. a. Wie lautet die Gleichung für die Position der Masse als Funktion der Zeit? b. Die höchste Geschwindigkeit des Körpers.

Schwingungen. a. Wie lautet die Gleichung für die Position der Masse als Funktion der Zeit? b. Die höchste Geschwindigkeit des Körpers. Schwingungen Aufgabe 1 Sie finden im Labor eine Feder. Wenn Sie ein Gewicht von 100g daran hängen, dehnt die Feder sich um 10cm. Dann ziehen Sie das Gewicht 6cm herunter von seiner Gleichgewichtsposition

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am..9 Name: Vorname(n): Matrikelnummer: Note: Aufgabe 3 4 erreichbare

Mehr

Teilnehmer-Nr: Integrierter Kurs I. 2. Klausur, WiSe 2010/ März 2011

Teilnehmer-Nr: Integrierter Kurs I. 2. Klausur, WiSe 2010/ März 2011 Integrierter Kurs I 2. Klausur, WiSe 2010/2011 03. März 2011 Name: Gruppenleiter: Aufgabe Punkte 1 / 5 2 /16 3 /10 4 /13 5 /10 6 /12 7 / 8 8 / 6 insgesamt (max. 80) 1. Gravitationskraft (5 Punkte) Im Jahr

Mehr

Massenträgheitsmomente homogener Körper

Massenträgheitsmomente homogener Körper http://www.youtube.com/watch?v=naocmb7jsxe&feature=playlist&p=d30d6966531d5daf&playnext=1&playnext_from=pl&index=8 Massenträgheitsmomente homogener Körper 1 Ma 1 Lubov Vassilevskaya Drehbewegung um c eine

Mehr

Technische Mechanik III Übung WS 2002 / Klausur Teil 1. Linz, 29. November Name: Vorname: Matrikelnummer: Studienkennzahl: Unterschrift:

Technische Mechanik III Übung WS 2002 / Klausur Teil 1. Linz, 29. November Name: Vorname: Matrikelnummer: Studienkennzahl: Unterschrift: echnische Mechanik III Übung WS 2002 / 2003 Klausur eil 1 Abteilung für obotik o. Univ.-Prof. Dr.-Ing. Hartmut Bremer el.: +43/732/2468-9786 Fax: +43/732/2468-9792 bremer@mechatronik.uni-linz.ac.at Sekretariat:

Mehr

Elektromagnetische Felder (TET 1) Gedächtnisprotokoll

Elektromagnetische Felder (TET 1) Gedächtnisprotokoll Elektromagnetische Felder (TET 1) Gedächtnisprotokoll 8. August 2017 Dies ist ein Gedächtnisprotokoll. Leider konnte ich mich nicht an alle Details jeder Aufgabe erinnern. Für korrigierte Exemplare dieses

Mehr

Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen! Kein zusätzliches Papier zugelassen!

Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen! Kein zusätzliches Papier zugelassen! Physik 1 / Klausur Anfang SS 0 Heift / Kurtz Name: Vorname: Matrikel-Nr.: Unterschrift: Formeln siehe letzte Rückseite! Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen!

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am 07.03.2014 Arbeitszeit: 120 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 9.05.07 Arbeitszeit: 50 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Name: Vorname(n): Matrikelnummer: Bitte... Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 3.11.18 Arbeitszeit: 15 min Aufgabe

Mehr

Regelungstechnik I (WS 13/14) Klausur ( )

Regelungstechnik I (WS 13/14) Klausur ( ) Regelungstechnik I (WS 13/14) Klausur (13.03.2014) Prof. Dr. Ing. habil. Thomas Meurer Lehrstuhl für Regelungstechnik Name: Matrikelnummer: Bitte beachten Sie: a) Diese Klausur enthält 4 Aufgaben auf den

Mehr

Berechnen Sie die Ersatzfedersteifigkeiten für die Gruppierungen, die am oberen (c o ) und am unteren (c u ) Seil befestigt sind.

Berechnen Sie die Ersatzfedersteifigkeiten für die Gruppierungen, die am oberen (c o ) und am unteren (c u ) Seil befestigt sind. Aufgabe 1 (Seite 1 von 3) a) Das nebenstehende System besteht aus einer um den Punkt A drehbar gelagerten Stufenrolle (Radien r und R = 2r). Die Massenträgheitsmomente der beiden Stufen bezogen auf den

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am 7.6.14 Arbeitszeit: 1 min Name: Vornamen): Matrikelnummer: Note: Aufgabe 1 3

Mehr

Übungen zur Vorlesung Fahrdynamik

Übungen zur Vorlesung Fahrdynamik Seite 1 Aufgabe 1 : Der skizzierte Manipulator mit den Hebeln r 1,2 und r 2,3 besitzt zwei Drehgelenke (Drehachsen u 1, u 2 u 1 ). Gegeben seien die Drehwinkel Θ 1 und Θ 2 sowie die Winkelgeschwindigkeiten

Mehr

Mitschrift zu Wärmetransportphänomene bei Prof. Polifke SoSe 2010

Mitschrift zu Wärmetransportphänomene bei Prof. Polifke SoSe 2010 Inhalt 1. Einführung... 3 2. Grundbegriffe der Wärmeleitung... 3 2.1. Fourier sches Gesetz... 3 2.2. Fourier sche DGL... 3 3. Stationäre Wärmeleitung... 4 3.1. Wärmeleitung in einfachen Geometrien... 4

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 23.11.2012 Arbeitszeit: 120 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik Name: Vornamen): Matrikelnummer: Bitte... SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am 02.02.2018 Arbeitszeit: 150 min Aufgabe

Mehr

Rechenübungen zur Physik I im WS 2009/2010

Rechenübungen zur Physik I im WS 2009/2010 Rechenübungen zur Physik I im WS 2009/2010 2. Klausur (Abgabe Fr 12.3.2010, 12.00 Uhr N7) Name, Vorname: Geburtstag: Ihre Identifizierungs-Nr. (ID 2) ist: 122 Hinweise: Studentenausweis: Hilfsmittel: Lösungen:

Mehr

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Lösung - Serie 12

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Lösung - Serie 12 D-MAVT/D-MATL Analysis I HS 8 Dr. Andreas Steiger Lösung - Serie MC-Aufgaben Online-Abgabe. Liegt der Schwerpunkt eines rotationssymmetrischen Körpers immer auf dessen Rotationsachse? a Nein. Dies würde

Mehr

Klausur Technische Mechanik C

Klausur Technische Mechanik C Klausur Technische Mechanik C 1/2/14 Matrikel: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel sind: Formelsammlungen, Deckblätter der Übungsaufgaben und Taschenrechner

Mehr

Technische Mechanik III Übung WS 2004 / Klausur Teil 2. Linz, 21. Jänner Name: Vorname: Matrikelnummer: Studienkennzahl: Unterschrift:

Technische Mechanik III Übung WS 2004 / Klausur Teil 2. Linz, 21. Jänner Name: Vorname: Matrikelnummer: Studienkennzahl: Unterschrift: Technische Mechanik III Übung WS 004 / 005 Klausur Teil Institut für Robotik o. Univ.-Prof. Dr.-Ing. Hartmut Bremer Tel.: +43/73/468-9786 Fax: +43/73/468-979 bremer@mechatronik.uni-linz.ac.at Sekretariat:

Mehr

06/02/12. Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise:

06/02/12. Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Prof Dr-Ing Ams Klausur Technische Mechanik C 06/0/1 Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am 2.10.

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am 2.10. Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am 2.0.205 Arbeitszeit: 20 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 013 Übung 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Trägheitstensor 1. Ein starrer Körper besteht aus den drei Massenpunkten mit

Mehr

Ferienkurs Theoretische Mechanik Sommer 2010 Hamiltonformalismus und Schwingungssysteme

Ferienkurs Theoretische Mechanik Sommer 2010 Hamiltonformalismus und Schwingungssysteme Fakultät für Physik Christoph Schnarr & Michael Schrapp Technische Universität München Übungsblatt 3 - Lösungsvorschlag Ferienkurs Theoretische Mechanik Sommer 00 Hamiltonformalismus und Schwingungssysteme

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 3..7 Arbeitszeit: 5 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe 3

Mehr

Universität Karlsruhe Klassissche Theoretische Physik II (Theorie B) Sommersemester 2009 V: PD. Dr. M. Eschrig Ü: Dr. habil. W.

Universität Karlsruhe Klassissche Theoretische Physik II (Theorie B) Sommersemester 2009 V: PD. Dr. M. Eschrig Ü: Dr. habil. W. Universität Karlsruhe Klassissche Theoretische Physik II (Theorie B) Sommersemester 009 V: PD. Dr. M. Eschrig Ü: Dr. habil. W. Lang Lösungen der Klausur vom 4. September 009 Aufgabe : Pendelnde Hantel

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am 04.02.20 Arbeitszeit: 20 min Name: Vorname(n): Matrikelnummer: Note:

Mehr

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Technische Universität München Department of Physics Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Montag Daniel Jost Datum 2/8/212 Aufgabe 1: (a) Betrachten Sie eine Ladung, die im Ursprung

Mehr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 27. Juli 2015, Uhr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 27. Juli 2015, Uhr KIT SS 05 Klassische Theoretische Physik II V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch Klausur Lösung 7. Juli 05, 6-8 Uhr Aufgabe : Kurzfragen (+4++3=0 Punkte) (a) Zwangsbedingungen beschreiben Einschränkungen

Mehr

Repetitorium Theoretische Mechanik, SS 2008

Repetitorium Theoretische Mechanik, SS 2008 Physik Departement Technische Universität München Dominik Fauser Blatt Repetitorium Theoretische Mechanik, SS 8 Aufgaben zum selbständigen Lösen. Ring mit Kugel Ein Ring, auf dem eine Kugel angebracht

Mehr

Musterlösungen (ohne Gewähr)

Musterlösungen (ohne Gewähr) Seite /9 Frage ( Punkte) Eine Waschmaschine hat einen mit Feder und Dämpfer gelagerten Motor (Masse m), an dem ohne Unwucht die Trommel befestigt ist. Wieviel Wäsche m u kann geschleudert werden, wenn

Mehr

F b. Abbildung 1: Fachwerk

F b. Abbildung 1: Fachwerk AUTOMATION & CONTROL INSTITUTE INSTITUT FÜR AUTOMATISIERUNGS- & REGELUNGSTECHNIK VU Modellbildung Übungsbeispiele: Mechanische Systeme Beispiel 1: Fachwerke bezeichnen eine im Bauingenieurwesen oftmals

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 31.03.017 Arbeitszeit: 150 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Name: Vorname(n): Matrikelnummer: Aufgabe erreichbare Punkte erreichte Punkte Punkte aus Übungsmitarbeit Gesamtpunktanzahl

Name: Vorname(n): Matrikelnummer: Aufgabe erreichbare Punkte erreichte Punkte Punkte aus Übungsmitarbeit Gesamtpunktanzahl Universität des Saarlandes, Lehrstuhl für Systemtheorie und Regelungstechnik SCHRIFTLICHE PRÜFUNG aus SYSTEMTHEORIE UND REGELUNGSTECHNIK I am 3.0.007 Name: Vorname(n): Matrikelnummer: Note: Aufgabe 3 4

Mehr

Hinweis: Geben Sie für den Winkel α keinen konkreten Wert, sondern nur für sin α und/oder cos α an.

Hinweis: Geben Sie für den Winkel α keinen konkreten Wert, sondern nur für sin α und/oder cos α an. 1. Geschwindigkeiten (8 Punkte) Ein Schwimmer, der sich mit konstanter Geschwindigkeit v s = 1.25 m/s im Wasser vorwärts bewegen kann, möchte einen mit Geschwindigkeit v f = 0.75 m/s fließenden Fluß der

Mehr

Klausur zu Theoretische Physik 2 Klassische Mechanik

Klausur zu Theoretische Physik 2 Klassische Mechanik Klausur zu Theoretische Physik 2 Klassische Mechanik 1. August 216 Prof. Marc Wagner Goethe-Universität Frankfurt am Main Institut für Theoretische Physik 5 Aufgaben mit insgesamt 25 Punkten. Die Klausur

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 Karsten Kruse 2. Mechanische Schwingungen und Wellen - Theoretische Betrachtungen 2.1 Der harmonische Oszillator Wir betrachten eine lineare Feder mit der Ruhelänge l 0.

Mehr