Physikalisches Praktikum 4. Semester

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Physikalisches Praktikum 4. Semester"

Transkript

1 Torsten Leddig 08.Juni 2005 Mathias Arbeiter Betreuer: Dr.Enenkel Physikalisches Praktikum 4. Semester - γ-szintillationsspektroskopie - 1

2 Vorbetrachtung jedes radioaktive Präparat weist ein charakteristisches Spektrum auf allen Spektren gemein sind im wesintlichen 3 Elemente: Comptonkontinuum, Comptonkante, Photopeak das Comptonkontinuum sowie die Comptonkante resultieren aus dem Compton-Effekt, der Stoßwechselwirkung zwischen Quanten und Elektronen je nach Streuwinkel wird hierbei ein bestimmter Energiebetrag auf das Elektron übertragen diese bedeutet, dass das Quant Energie verliert und somit langwelliger wird die übertragene Energie folgt hierbei folgender Formel: E e = E γ ǫ (1 cosα) 1 + ǫ (1 cosα) dabei ist ǫ = E γ, und α der Streuwinkel m e c2 hierbei ist der Streuwinkel eine rein zufällige Variable somit bildet sich ein kontinuierliches Bild im Spektrum, das Comptonkontinuum der maximale Energieübertrag erfolgt folglich bei einem Streuwinkel von 180 diese Energie berechnet sich folgendermaßen: E 180 = E γ dieser Energiewert entspricht der Comptonkante 1 + sie ist durch einen steilen Abfall der Intensität im Spektrum gekennzeichnet dies resultiert daraus, dass über den Comptoneffekt nicht mehr Energie abgegeben werden kann betrachtet man die höherenergetischen Bereiche im Spektrum, so folgt nach der Comptonkante der Photopeak dieser scharfe Peak, auch Photolinie genannt, folgt aus dem Photoeffekt hierbei wird die gesamte Energie des Quants auf ein Elektron übertragen welches nun das Atom verlässt hierbei ist die Energie des Elektrons der Energie des Quants direkt proportional im niederenergetischen Bereich lässt sich noch ein weiterer Peak beobachten dieser liegt im Bereich des Comptonkontinuums und wird als Rückstreupeak bezeichnet dieser Peak resultiert aus der Kombination von Compton- und Photoeffekt Quanten die mit einem Winkel von 180 gestreut werden gelangen zurück ins Szintillatormaterial und geben dort mittels Photoeffekt ihre restl. Energie ab die durch Comptoneffekt und Photoeffekt befreiten Elektronen lösen nun Lichtblitze aus hierzu regen sie fluoreszierende Elemente, in unserem Fall Thalium, zu leuchten an diese Photonen werden mittels Photokathode in Elektronen umgewandelt die verstärkt werden und in den Impulshöhenanalysator gelangen 2

3 im Impulshöhenanalysator werden nun die eintreffenden Spannungspulse vom Verstärker gezählt allerdings werden hier nur Impulse registriert die eine Mindestenergie haben und eine bestimmte Obergrenze nicht überschreiten die Breite dieses Gebietes wird als Kanalbreite bezeichnet zur Aufnahme eines Spektrums werden viele Kanäle ausgemessen bevor dies jedoch gemessen werden kann, muss das γ-spektrometer kallibriert werden hierbei wird das gemessene Spektrum mit dem theoretisch zu erwarteten charakterischen Punkten verglichen liegt z.b. der theoretisch erwartete Photopeak bei 1 M ev und der gemessene an der 50%-Marke beträgt der Anstieg 1MeV 50% dieses wird für alle charakteristischen Punkte durchgeführt, und der Anstieg kann durch lineare Regression bestimmt werden somit lassen sich auch dem Spektrum von unbekannten Proben fest definierte Energiewerte zuweisen 1 Interpretation der Zerfallsschemata Durchführung: Zur Aufnahme der Zerfallschemata wird die Messapparatur als Impulshöhenanalysator verwendet. Dabei muss zunächst der Arbeitspunkt eingestellt werden, also die Hochspannung mit der die Spektralanalyse erfolgen soll. Dieser sollte so gewählt werden, dass er auf dem Plateu der Zählstatistik des Szintillators liegt, damit sich Spannungsschwankungen nicht negativ auswirken (Verweis Protokoll -Szintillationszähler-). Da der Arbeitspunkt während der Messung nicht verstellt werden darf, muss gewährleistet sein, dass alle charakterischen Punkte der verschiedenen Messungen im Anzeigebereich liegen. Da der Photoeffekt beim Cobalt ca. doppelt so energiereich, wie beim Cäsium ist, darf der Photopeak des Cäsiums nicht die Hälfte des Messbereichs überschreiten, da sonst der Photopeak des Cobalts nicht mehr angezeigt werden kann. Gemessen wurden die Kanäle 20 bis Abbildung 1: verschiedene Arbeitspunkte In der Grafik wurden drei verschiedene Hochspannungen eingestellt. Wie man sieht, bewirkt eine Veränderung der Hochspannung eine Streckung/Stauchung auf der Energie-Achse bzw. der Kanal-Achse. Die blaue 3

4 Linie, welche einer Hochspannung von 680 V entspricht wurde von uns gewählt. Sie liegt auf dem Plateau der Zählstatistik und (wie sich später zeigt) erfasst die charakterischen Punkte des Cobalt-Spektrums sehr gut! 1.1 Spektrum von 137 Cs Abbildung 2: Zerfalls-Schema von Cäsium Das Zerfallsschema beschreibt den Verlauf des Isotops Cs. Unter β-zerfall geht es mit 93.5%-iger Wahrscheinlichkeit in einen angeregten Zustand über und zerfällt dann unter Aussendung von γ-strahlung in Ba. Bei diesen Übergang strahlt es γ-quanten der Energie 0.66 MeV aus. Somit müsste der Photopeak unseres Spektrum bei dieser Energie liegen.es treten beim Zerfall demzufolge nur γ-strahlung mit einer festen Energie auf. Dadurch sollte auch nur ein Photopeak, eine Comptonkante und nur ein Rückstreupeak auftreten. Abbildung 3: Zerfallsspektrum von Cäsium (60s gemessen) Das obige Diagramm zeigt unser aufgenommenes Spektrum für 137 Cs. Deutlich zu erkennen sind zwei hohe Peaks. Hierbei handelt es sich beim ersten Peak um den Rückstreupeak. Der höhere Peak ist der Photopeak. Der Höhenunterschied zwischen beiden Peaks könnte aus der Stärke des Präparats folgen. Durch einen Vergleich mit den Spektren anderer Praktikumsgruppen sind wir zu dem Schluß gekommen, dass wir ein stärkeres Forschungspräparat hatten, während andere Gruppen ein schwächeres Schulpräparat untersucht haben. Für die Schulpräparate war charakteristisch, dass der Rückstreupeak höher lag als der Photopeak. 4

5 Auch die Comptonkante ist beim obigen Spektrum gut zu erkennen. Sie zeigt einen deutlichen Abfall der Zählrate in der Höhe von Kanal 593. Aufgrund des sehr ausgeprägten Rückstreupeaks, ist das Comptonkontinuum nicht sehr ausgeprägt, aber zu erkennen. Speziell im Bereich zwischen Rückstreupeak und Comptonkante ist ein Bereich gleich bleibender Zählrate zu erkennen. Abbildung 4: professionell erstelltes Zerfalls-spektrom von Cäsium Dieses professionell experimentell ermittelte Cs-Spektrum dient uns als Vergleich und soll den theoretisch zu erwartenden Verlauf repräsentieren Berechnungen Energie des Photons = Energie des Photopeaks: Comptonkante: E γ = eV E 180 = E γ 1 + ǫ = E gamma m e c 2 = E 180 = 0.662MeV 1 + Rückstreupeak: E 180 = MeV E γ E 180 = 0.662MeV 0.478MeV = 0.184MeV 5

6 1.1.2 Auswertung: charakter. Stelle Kanal Energie in MeV theo. berechn. Wert E in MeV Abweichung E in MeV Photopeak ± Comptonkante ± Rückstreupeak ± Unser experimentell ermitteltetes Spektrum stimmt mit dem theoretisch vorausgesagtem Spektrum sehr gut überein. Deutlich sind die charakteristischen Punkte (Compton-Kante, Photopeak, Rückstreupeak) zu erkennen, und auch die Abstände zwischen diesen Punkten stimmen gut mit dem theoretisch erwarteten Spektrum überein. Die Höhe der Photopeaks weicht jedoch stark von unserer Messung ab. Dies ist jedoch kein Messfehler, sondern zum einen in der verwendeten radioaktiven Probe begründet, als auch in der Bauweise des Szintillationszählers (z.b. des Szintillationskristalls). Als Vergleich kann somit nur die Lage der charakteristischen Punkte auf der Energie- und nicht auf der Intensitätsachse dienen. 1.2 Spektrum von 60 Co Abbildung 5: Cobalt - Zerfallsschema Dem obigen Zerfallsschema ist der Verlauf eines 60 27Co-Isotops zu entnehmen. Mit 99.9 %-iger Wahrscheinlichkeit, zerfällt es unter β-strahlung in einen angeregten Zustand mit einem Energieniveau von 2506 kev. Unter Aussendung von γ-strahlung geht es in einen immer noch angeregten Zustand (Energieniveau 1333 kev) über, bevor es abermals unter Emittierung von γ-strahlung zerfällt und Ni entsteht. Somit entstehen bei Zerfall zwei unterschiedlich energiereiche γ-quanten. Mit 0.1 %-iger Wahrscheinlichkeit zerfällt 60 27Co bereits unter Aussendung von β-strahlung in den angeregten Zustand mit Energieniveau von 1333 kev (in der Grafik nicht dargestellt). Da dieser Zerfall jedoch vernachlässigbar häufig auftritt, kann davon ausgegangen werden, die beiden γ-zerfälle gleichhäufig passieren und somit gleich viele γ-quanten beider Energien entstehen. Demzufolge sollten nun jeweils zwei charakterische Punkte (Photopeak, Comptonkante etc.) auf dem Spektrum zu sehen sein. Da beide Zerfälle gleich häufig geschehen, sollte zudem die Höhe der Photopeaks und der anderem charakteristischen Punkte gleich groß sein. 6

7 Abbildung 6: Zerfalls-spektrom von Cobalt-60 (400s gemessen) Im obigen Spektrum sind 3 Peaks zu erkennen, hierbei dürfte der erste Peak ein Rückstreupeak sein. Auffällig ist, dass dieser Peak anscheinend aus 2 Peaks besteht. Da beim Cobaldt-Zerfall in 2 Schritten γ-quanten abgegeben werden, wäre zu vermuten, dass es sich hierbei um eine Überlagerung der Rückstreupeaks von beiden Strahlungsquantenarten handelt, allerdings ist dies wahrscheinlich nicht der Fall, da beie Peaks rein rechnerisch sehr nahe beieinander liegen, so dass es kaum möglich sein dürfte, sie auseinander zu halten. Die anderen beiden Peaks sind Photopeaks, die durch die 2 unterschiedlichen Energien der Quanten entstehen. Wie oben schon erläutert, haben die beiden Photopeaks unterschiedliche Höhen. Das weißt jedoch nicht auf einen Meßfehler hin, sondern auf die Tatsache, dass die Comptonkante des zweiten Photopeaks ungefähr an der gleichen Stelle liegt, wie der erste Photopeak. Somit addieren sich die Impulszahlen von Photopeak und Comptonkante, bzw. Comptonkontinuum. Daraus folgt der höhere erste Photopeak. Im Spektrum ist darum auch nur eine Comptonkante zu sehen. Abbildung 7: professionell erstelltes Zerfalls-spektrom von Cobalt-60 Zum Vergleich wurde abermals ein professionell experimentell ermitteltes Spektrum von Cobalt verwendet. 7

8 1.2.1 Berechnungen: 1. γ-quant Energie des Photons = Energie des Photopeaks: Comptonkante: E γ = 1.173MeV E 180 = E γ 1 + ǫ = E gamma m e c 2 = E 180 = 1.173MeV 1 + Rückstreupeak: E 180 = 0.963MeV E γ E 180 = 1.173MeV 0.963MeV = 0.210MeV 2. γ-quant Energie des Photons = Energie des Photopeaks: Comptonkante: E γ = 1.333MeV E 180 = E γ 1 + ǫ = E gamma m e c 2 = E 180 = 1.173MeV 1 + Rückstreupeak: E 180 = 1.119MeV E γ E 180 = 1.333MeV 1.119MeV = 0.214MeV charakter. Stelle Kanal Energie in MeV theo. berechn. Wert E in MeV Abweichung E in MeV Photopeak 1. Quant ± Photopeak 2. Quant ± Comptonkante 1. Quant ± Comptonkante 2. Quant n.a. n.a MeV Rückstreupeak

9 Die Comptonkante des 2. γ-quants konnte nicht gemessen werden, da sie im gleichen Bereich des Photopeaks des 1. γ-quants liegt. Die Rückstreupeaks konnten nur sehr ungenau abgelesen werden und die theoretisch berechneten Werte stimmen für beide γ-quanten in guter Näherung überein, so dass auf eine Trennung der beiden γ-sorten verzichtet wurde. Des Weiteren stimmt unser Energiespektrum gut mit dem theoretisch zu erwarteten Energiespektrum überein. Die Abstände der charakterischen Punkte stimmen ins Verhältnis gesetzt mit den unsrigen gut überein. 2 Kallibrierung des γ-spetrometers 2.1 Durchführung: da der Impulshöhenanalysator nur den Kanal ausgibt muss dem Kanal eine Energie zugeordnet werden hierzu werden die charakteristischen Punkte des Spektrums mit den theoretisch erwarteten Energien verglichen mittels linearer Regression kann anschließend skaliert werden es wurde über die Formel y = m x + n regressiert einen Durchgang durch den Koordinatenursprung kann nicht erwartet werden, da Hintergrundstrahlung (allg. Hintergrundrauschen) nicht verhindert werden kann die Skalierung der x-achse entspricht dem Anstieg m betrachtet wurden von uns nur die Photopeaks, da diese sehr gut aus dem Spektrum abzulesen sind, und zudem sehr gut theoretisch berechnet werden können 2.2 Messwerte und Regression Element Kanal theoret. Energie in MeV 137 Cs Co Co Abbildung 8: lineare Regression für den Skalierungsfaktor 9

10 Aus der Regression folgt folgende Skalierung: 4 MeV m = Kanal 4 MeV u m = Kanal 4 MeV m = (7.666 ± 0.029) 10 Kanal x Kanäle = m x MeV Na als γ-strahler Im folgenden wurde das Spektrum eines weiteren Strahlers aufgenommen. Im vorliegenden Fall handelt es sich um 22 Na. Abbildung 9: Zerfalls-Schema von Natrium-22 Natrium-22 zerfällt größtenteils unter Positronen-emittierung in einen angeregten Zustand auf einem Energieniveau von 1275 kev bevor es unter γ-zerfall in den Grundzustand 22 10Na übergeht. Demzufolge werden beim Natrium-Zerfall nur γ-quanten einer Energie E γ = 1275keV freigesetzt, sowie Positronen. 3.1 Lage der charakteristischen Punkte charakt.punkt Kanal Energie in MeV Interpretation Peak I ± Rückstreupeak Peak II ± Vernichtungspeak Peak III ± Photopeak Comptonkante ± Comptonkante 10

11 Abbildung 10: Zerfalls-spektrom von Natrium-22 (700s gemessen) Das obige Spektrum zeigt das Spektrum eines 22 Na-Strahlers. Natrium zerfällt über β + -Zerfall in angeregtes 22 Ne. Bei diesem Zerfall gibt es Positronen ab. Die Positronen sowie die Gammaquanten gelangen in den Detektor und erzeugen dort das obige Spektrum. Die γ-quanten rufen auf dem bereits beschriebenen Wege Rückstreupeak, Comptonkante und Photopeak hervor. Der erste Peak im aufgenommenen Spektrum, wurde von uns als Rückstreupeak interpretiert, da seine Energie addiert mit der Energie der Comptonkante in etwa den Photopeak ergibt. Allerdings sind Comptonkante und Photopeak nur sehr schwach ausgeprägt. Was darauf hindeutet, dass nur ein geringer Teil der γ-strahlung seine Energie sofort über den Photoeffekt abgegeben hat. Auffällig an unserem Spektrum ist der zweite sehr stark ausgeprägte Peak. Durch Recherche in verschiedenen Fachbüchern, konnten wir feststellen, dass es sich bei diesem Peak vermutlich um den Vernichtungspeak der Positronen handelt. Diese Positronen annihilieren sich mit den Elektronen des Szintillatormaterials. Hierbei entsteht eine deutlicher Peak bei einer Energie um die MeV. Diese Energie entspricht genau den Erwartungen, da ein Positrion nach der Formel E = m c 2 genau diese Energie hat. Bei der Vernichtung von Positron und Elektron entstehen somit 2 Photonen dieser Energie. Allerdings wird meistens nur eines dieser Photonen detektiert, während das andere den Szintillatorkristall verlässt und nicht registriert wird. Abbildung 11: professionell erstelltes Zerfalls-spektrom von Natrium-22 11

12 3.1.1 Auswertung: Unser experimentell ermitteltes Spektrum weicht vom professionell erstelltem Spektrum in einigen charakterischen Punkten ab. Der Photopeak und der Vernichtungspeak konnte sehr gut bei unserer Messung kenntlich gemacht werden und stimmt mit den Energiewerten auch gut mit der Theorie überein. Der Grund für unseren sehr hohen Rückstreupeak liegt wahrscheinlich in der radioaktiven Probe begründet. Bei den Cäsiumzerfällen konnten wir bereits feststellen, dass unterschiedliche Proben (Forschungsprobe vs. Schulprobe) sehr unterschiedlich hohe Peaks hervorrufen können. Wir vermuten, dass dies der Grund für unseren sehr hohen Rückstreupeak ist. Ansonsten konnte der Natrium-Zerfall gut spektroskopiert werden. 12

Physikalisches Fortgeschrittenenpraktikum Gamma-Koinzidenzspektroskopie. Vorbereitung

Physikalisches Fortgeschrittenenpraktikum Gamma-Koinzidenzspektroskopie. Vorbereitung Physikalisches Fortgeschrittenenpraktikum Gamma-Koinzidenzspektroskopie Vorbereitung Armin Burgmeier Robert Schittny 1 Grundlagen 1.1 Gammastrahlung Gammastrahlung ist die durchdringendste radioaktive

Mehr

Fortgeschrittenen - Praktikum. Gamma Spektroskopie

Fortgeschrittenen - Praktikum. Gamma Spektroskopie Fortgeschrittenen - Praktikum Gamma Spektroskopie Versuchsleiter: Bernd Zimmermann Autor: Daniel Bruns Gruppe: 10, Donnerstag Daniel Bruns, Simon Berning Versuchsdatum: 14.12.2006 Gamma Spektroskopie;

Mehr

F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur

F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur David Riemenschneider & Felix Spanier 31. Januar 2001 1 Inhaltsverzeichnis 1 Einleitung 3 2 Auswertung 3 2.1 Darstellung sämtlicher PL-Spektren................

Mehr

Auswertung des Versuches Lebensdauer von Positronen in Materie

Auswertung des Versuches Lebensdauer von Positronen in Materie Auswertung des Versuches Lebensdauer von Positronen in Materie Andreas Buhr, Matrikelnummer 122993 23. Mai 26 Inhaltsverzeichnis Lebensdauer von Positronen in Materie 1 Formales 3 2 Überblick über den

Mehr

KAT e. Beta - Absorption. 1 Aufbau

KAT e. Beta - Absorption. 1 Aufbau Beta - Absorption 1 Aufbau Es soll nun die Absorption von Beta-Strahlung durch Materie (in unserem Fall Aluminium) untersucht werden. Dazu wurde mittels eines Szintillationszählers die Aktivität eines

Mehr

Stundenprotokoll vom : Compton Effekt

Stundenprotokoll vom : Compton Effekt Stundenprotokoll vom 9.12.2011: Compton Effekt Zunächst beschäftigten wir uns mit den einzelnen Graphen des Photoeffekts (grün), des Compton-Effekts (gelb) und mit der Paarbildung (blau). Anschließend

Mehr

1.1 Auflösungsvermögen von Spektralapparaten

1.1 Auflösungsvermögen von Spektralapparaten Physikalisches Praktikum für Anfänger - Teil Gruppe Optik. Auflösungsvermögen von Spektralapparaten Einleitung - Motivation Die Untersuchung der Lichtemission bzw. Lichtabsorption von Molekülen und Atomen

Mehr

Vorbereitungshilfe zum Versuch Gamma-Spektroskopie

Vorbereitungshilfe zum Versuch Gamma-Spektroskopie Vorbereitungshilfe zum Versuch Gamma-Spektroskopie Diese Vorbereitungshilfe kann nicht das Studium von Fachliteratur für die Vorbereitung auf den Versuch ersetzen. Sie soll aber einen 'roten Faden' spannen,

Mehr

Gamma-Spektroskopie und Statistik Versuch P2-72,73,83

Gamma-Spektroskopie und Statistik Versuch P2-72,73,83 Auswertung Gamma-Spektroskopie und Statistik Versuch P2-72,73,83 Iris Conradi und Melanie Hauck Gruppe Mo-02 20. Mai 2011 Inhaltsverzeichnis Inhaltsverzeichnis 1 Impulshöhenspektren 3 1.1 Einkanalbetrieb................................

Mehr

F 23 Beta-Zähler. Inhaltsverzeichnis. Wolfgang Unger, Robert Wagner 25. Juni 2003

F 23 Beta-Zähler. Inhaltsverzeichnis. Wolfgang Unger, Robert Wagner 25. Juni 2003 F 23 Beta-Zähler Wolfgang Unger, Robert Wagner 25. Juni 2003 Inhaltsverzeichnis 1 Auswertung 2 1.1 Eichung des Proportionalzählers mit 55 F e............. 2 1.2 Energieverlust von 40K im Zählrohr................

Mehr

P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK

P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK GRUPPE 19 - SASKIA MEIßNER, ARNOLD SEILER 1 Bestimmung der Brennweite 11 Naives Verfahren zur Bestimmung der Brennweite Es soll nur mit Maÿstab und Schirm die

Mehr

Praktikum II NR: Natürliche Radioativität

Praktikum II NR: Natürliche Radioativität Praktikum II NR: Natürliche Radioativität Betreuer: Dr. Torsten Hehl Hanno Rein praktikum2@hanno-rein.de Florian Jessen florian.jessen@student.uni-tuebingen.de 06. April 2004 Made with L A TEX and Gnuplot

Mehr

Radioaktivität II. Gamma Absorption. (Lehrer AB) Abstract:

Radioaktivität II. Gamma Absorption. (Lehrer AB) Abstract: Radioaktivität II Gamma Absorption (Lehrer AB) Abstract: Den SchülerInnen soll der Umgang mit radioaktiven Stoffen nähergebracht werden. Im Rahmen dieses Versuches nehmen die SchülerInnen Messwerte eines

Mehr

Detektoren für α - und γ -Strahlung

Detektoren für α - und γ -Strahlung Detektoren für α - und γ -Strahlung M. Wittenberg, J. Kalden 12. Dezember 2003 1 Einleitung Der Versuch soll einführen in die Messmethoden zur Feststellung von radioaktiver Strahlung. Diese entsteht durch

Mehr

Physik. Semester III Teil 2. Abiturwiederholung

Physik. Semester III Teil 2. Abiturwiederholung Semester III Teil 2 Selbstständige Auswertung von Experimenten zu Emissions- und Absorptionsspektren Grundlagen einer Atomvorstellung (Größe, Struktur, einfache Termschemata) und qualitative Deutungen

Mehr

F-Praktikum Versuch 2.10. Umweltradioaktivität

F-Praktikum Versuch 2.10. Umweltradioaktivität F-Praktikum Versuch 2.10 Diego Semmler, Nils Höres S.1/16 F-Praktikum Versuch 2.10 Umweltradioaktivität Inhaltsverzeichnis Teil 1: Aufnahme der γ-spektren...2 Motivation...2 Theoretische Grundlagen...2

Mehr

Gamma-Spektroskopie und Statistik P2-72,73,83

Gamma-Spektroskopie und Statistik P2-72,73,83 Karlsruher Institut für Technologie (KIT) SS 2012 Physikalisches Anfängerpraktikum - P2 Gamma-Spektroskopie und Statistik P2-72,73,83 Auswertung von Tobias Renz und Raphael Schmager Gruppe: Do-28 Durchgeführt

Mehr

2.8b: Positronen-Emissions- Tomographie

2.8b: Positronen-Emissions- Tomographie 2.8b: Positronen-Emissions- Tomographie Anton Konrad Cyrol Andreas Kleiner Matr-Nr.: 1639629 Matr-Nr.: 1574166 E-Mail: anton.cyrol@stud.tu-darmstadt.de E-Mail: akleiner@online.de Betreuer: Jacob Beller

Mehr

Protokoll Grundpraktikum I: F7 Statistik und Radioaktivität

Protokoll Grundpraktikum I: F7 Statistik und Radioaktivität Protokoll Grundpraktikum I: F7 Statistik und Radioaktivität Sebastian Pfitzner 13. Mai 013 Durchführung: Sebastian Pfitzner (553983), Anna Andrle (55077) Arbeitsplatz: Platz Betreuer: Michael Große Versuchsdatum:

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

Physikalisches Praktikum 4. Semester

Physikalisches Praktikum 4. Semester Torsten Leddig 18.Mai 2005 Mathias Arbeiter Betreuer: Dr.Enenkel Physikalisches Praktikum 4. Semester - Michelson Inteferometer - 1 1 Vorbetrachtung: zwei wellen heißen kohärent wenn sie bis auf eine Phase

Mehr

Freie Universität Berlin

Freie Universität Berlin 13.6.2014 Freie Universität Berlin - Fachbereich Physik Gamma- Spektroskopie Protokoll zum Versuch des physikalischen Grundpraktikums I Teilnehmer: Ludwig Schuster, ludwig.schuster@fu- berlin.de Florian

Mehr

PS 3. Radioaktivität Version vom 13. März 2015

PS 3. Radioaktivität Version vom 13. März 2015 PS 3 Radioaktivität Version vom 13. März 2015 Inhaltsverzeichnis Inhaltsverzeichnis 1 Radioaktiver Zerfall - Halbwertszeit von Kupfer 2 1.1 Grundlagen................................... 2 1.1.1 Begriffe.................................

Mehr

Physikalisches Praktikum 5. Semester

Physikalisches Praktikum 5. Semester Torsten Leddig 22.Dezember 2005 Mathias Arbeiter Betreuer: Toralf Ziems Physikalisches Praktikum 5. Semester - Zeeman-Effekt - Inhaltsverzeichnis 1 Aufgabenstellung 3 2 Normaler Zeeman-Effekt 3 3 Messung

Mehr

F-Praktikum Versuch 2.6 Compton-Streuung

F-Praktikum Versuch 2.6 Compton-Streuung F-Praktikum Versuch 2.6 Diego Semmler, Nils Höres 1/18 F-Praktikum Versuch 2.6 Compton-Streuung Diego Semmler, Nils Höres Inhaltsverzeichnis F-Praktikum...1 Theoretische Grundlagen...3 Die γ-strahlung...3

Mehr

Praktikumsprotokoll. vom 25.06.2002. Thema: Radioaktiver Zerfall, radioaktive Strahlung. Tutor: Arne Henning. Gruppe: Sven Siebler Martin Podszus

Praktikumsprotokoll. vom 25.06.2002. Thema: Radioaktiver Zerfall, radioaktive Strahlung. Tutor: Arne Henning. Gruppe: Sven Siebler Martin Podszus Praktikumsprotokoll vom 25.6.22 Thema: Radioaktiver Zerfall, radioaktive Strahlung Tutor: Arne Henning Gruppe: Sven Siebler Martin Podszus Versuch 1: Reichweite von α -Strahlung 1.1 Theorie: Die Reichweite

Mehr

Bericht zum Versuch Comptoneffekt

Bericht zum Versuch Comptoneffekt Bericht zum Versuch Comptoneffekt Michael Goerz, Anton Haase 13. November 2006 Freie Universität Berlin Fortgeschrittenenpraktikum Teil A Tutor: W. Harneit Inhalt 1 Einführung 2 1.1 Wechselwirkung von

Mehr

Seiko Instruments GmbH NanoTechnology

Seiko Instruments GmbH NanoTechnology Seiko Instruments GmbH NanoTechnology Röntgenfluoreszenz Analyse Eine Beschreibung der Röntgenfluoreszenzanalysetechnik mit Beispielen. 1. Prinzip Röntgenstrahlen sind elektromagnetische Wellen, ähnlich

Mehr

Natürliche Radioaktivität

Natürliche Radioaktivität Natürliche Radioaktivität Definition Natürliche Radioaktivität Die Eigenschaft von Atomkernen sich spontan in andere umzuwandeln, wobei Energie in Form von Teilchen oder Strahlung frei wird, nennt man

Mehr

Radioaktivität und Strahlenschutz. FOS: Energie von Strahlungsteilchen und Gammaquanten

Radioaktivität und Strahlenschutz. FOS: Energie von Strahlungsteilchen und Gammaquanten R. Brinkmann http://brinkmann-du.de Seite 1 25.11.2013 Radioaktivität und Strahlenschutz FOS: Energie von Strahlungsteilchen und Gammaquanten Energieeinheit Elektronenvolt (ev) Bekannte Energieeinheiten:

Mehr

γ-spektren Compton-Streuung

γ-spektren Compton-Streuung Ziele γ-spektren Compton-Streuung In diesem Versuch werden Sie die Energiespektren von γ-photonen unterschiedlicher radioaktiver Kerne untersuchen. Unter γ- Strahlung versteht man elektromagnetische Strahlung

Mehr

Biochemisches Grundpraktikum

Biochemisches Grundpraktikum Biochemisches Grundpraktikum Versuch Nummer G-01 01: Potentiometrische und spektrophotometrische Bestim- mung von Ionisationskonstanten Gliederung: I. Titrationskurve von Histidin und Bestimmung der pk-werte...

Mehr

1. HPLC-Pumpe (2-Kanal Gradient) Überprüfung der Flussrate und der Gradientenzusammensetzung. Einstellungen Mobile Phase entgastes Wasser

1. HPLC-Pumpe (2-Kanal Gradient) Überprüfung der Flussrate und der Gradientenzusammensetzung. Einstellungen Mobile Phase entgastes Wasser Geräte im Labor Pharmafirma Qualifizierungsplan (OQ) Seite 1 von 7 Inhalt 1. HPLC-Pumpe (2-Kanal Gradient) 1.a Überprüfung der 1.b Überprüfung der Gradientenzusammensetzung und des Rauschens des Gradientenmischers

Mehr

Michelson-Interferometer & photoelektrischer Effekt

Michelson-Interferometer & photoelektrischer Effekt Michelson-Interferometer & photoelektrischer Effekt Branche: TP: Autoren: Klasse: Physik / Physique Michelson-Interferometer & photoelektrischer Effekt Cedric Rey David Schneider 2T Datum: 01.04.2008 &

Mehr

Physikalisches Grundpraktikum II Versuch 1.1 Geometrische Optik. von Sören Senkovic & Nils Romaker

Physikalisches Grundpraktikum II Versuch 1.1 Geometrische Optik. von Sören Senkovic & Nils Romaker Physikalisches Grundpraktikum II Versuch 1.1 Geometrische Optik von Sören Senkovic & Nils Romaker 1 Inhaltsverzeichnis Theoretischer Teil............................................... 3 Grundlagen..................................................

Mehr

Radioaktivität und Strahlenschutz. FOS: Kernumwandlungen und Radioaktivität

Radioaktivität und Strahlenschutz. FOS: Kernumwandlungen und Radioaktivität R. Brinkmann http://brinkmann-du.de Seite 25..23 -, Beta- und Gammastrahlen Radioaktivität und Strahlenschutz FOS: Kernumwandlungen und Radioaktivität Bestimmte Nuklide haben die Eigenschaft, sich von

Mehr

FPI K125 Nukleare Elektronik und Lebensdauermessung

FPI K125 Nukleare Elektronik und Lebensdauermessung FPI K125 Nukleare Elektronik und Lebensdauermessung Maurice Schlichtenmayer Andreas Küpper 27. Oktober 2003 1 Inhaltsverzeichnis 1 Einleitung 2 2 Vorkenntnisse 2 2.1 Benutzte Präparate..........................

Mehr

R-C-Kreise. durchgeführt am 07.06.2010. von Matthias Dräger und Alexander Narweleit

R-C-Kreise. durchgeführt am 07.06.2010. von Matthias Dräger und Alexander Narweleit R-C-Kreise durchgeführt am 07.06.200 von Matthias Dräger und Alexander Narweleit PHYSIKALISCHE GRUNDLAGEN Physikalische Grundlagen. Kondensator Ein Kondensator ist ein passives elektrisches Bauelement,

Mehr

Gymnasium / Realschule. Atomphysik 2. Klasse / G8. Aufnahme und Abgabe von Energie (Licht)

Gymnasium / Realschule. Atomphysik 2. Klasse / G8. Aufnahme und Abgabe von Energie (Licht) Aufnahme und Abgabe von Energie (Licht) 1. Was versteht man unter einem Elektronenvolt (ev)? 2. Welche physikalische Größe wird in Elektronenvolt gemessen? Definiere diese Größe und gib weitere Einheiten

Mehr

TOBIAS FREY, FREYA GNAM

TOBIAS FREY, FREYA GNAM VORBEREITUNG: γ-spektroskopie UND STATISTIK TOBIAS FREY, FREYA GNAM 0. PHYSIKALISCHE GRUNDLAGEN 0.1. γ-strahlung. γ-strahlen bestehen aus energiereichen Lichtquanten (γ-quanten) und bilden eine kurzwellige

Mehr

Ist Tabak radioaktiv?

Ist Tabak radioaktiv? Eine Untersuchung im Rahmen des Schülerwettbewerbs des Fachverban- bandes für Strahlenschutz. Paul Saary Ludwig-Georgs-Gymnasium Darmstadt 07.01.2011 Inhaltsverzeichnis 1 Anlass und Aufgabenstellung: Ist

Mehr

Protokoll zum Physikalischen Praktikum Versuch 9 - Plancksches Wirkungsquantum

Protokoll zum Physikalischen Praktikum Versuch 9 - Plancksches Wirkungsquantum Protokoll zum Physikalischen Praktikum Versuch 9 - Plancksches Wirkungsquantum Experimentatoren: Thomas Kunze Sebastian Knitter Betreuer: Dr. Holzhüter Rostock, den 12.04.2005 Inhaltsverzeichnis 1 Ziel

Mehr

ANALYSEN GUTACHTEN BERATUNGEN. aktuelle Kurzinformationen zu

ANALYSEN GUTACHTEN BERATUNGEN. aktuelle Kurzinformationen zu ANALYSEN GUTACHTEN BERATUNGEN aktuelle Kurzinformationen zu Radioaktivität Stand Mai 2011 Institut Kirchhoff Berlin GmbH Radioaktivität Radioaktivität (von lat. radius, Strahl ; Strahlungsaktivität), radioaktiver

Mehr

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X Praktikum Physik Protokoll zum Versuch 1: Viskosität Durchgeführt am 26.01.2012 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das Protokoll

Mehr

Praktikum Nr. 3. Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum

Praktikum Nr. 3. Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum Fachhochschule Bielefeld Fachbereich Elektrotechnik Versuchsbericht für das elektronische Praktikum Praktikum Nr. 3 Manuel Schwarz Matrikelnr.: 207XXX Pascal Hahulla Matrikelnr.: 207XXX Thema: Transistorschaltungen

Mehr

Versuch 28. Wintersemester 2005 / 2006. Daniel Scholz. physik@mehr-davon.de

Versuch 28. Wintersemester 2005 / 2006. Daniel Scholz. physik@mehr-davon.de Physikalisches Praktikum für das Hauptfach Physik Versuch 28 Röntgenstrahlung Wintersemester 2005 / 2006 Name: Mitarbeiter: EMail: Gruppe: Daniel Scholz Hauke Rohmeyer physik@mehr-davon.de B9 Assistent:

Mehr

Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am 24.11.2011

Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am 24.11.2011 Praktikum Physik Protokoll zum Versuch: Geometrische Optik Durchgeführt am 24.11.2011 Gruppe X Name1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das

Mehr

Michelson-Interferometer. Jannik Ehlert, Marko Nonho

Michelson-Interferometer. Jannik Ehlert, Marko Nonho Michelson-Interferometer Jannik Ehlert, Marko Nonho 4. Juni 2014 Inhaltsverzeichnis 1 Einführung 1 2 Auswertung 2 2.1 Thermische Ausdehnung... 2 2.2 Magnetostriktion... 3 2.2.1 Beobachtung mit dem Auge...

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Inhaltsverzeichnis Physikalisches Praktikum Versuchsbericht M4 Stoßgesetze in einer Dimension Dozent: Prof. Dr. Hans-Ilja Rückmann email: irueckm@uni-bremen.de http: // www. praktikum. physik. uni-bremen.

Mehr

Atomphysik NWA Klasse 9

Atomphysik NWA Klasse 9 Atomphysik NWA Klasse 9 Radioaktive Strahlung Strahlung, die im Inneren der Atomkerne entsteht heißt radioaktive Strahlung. Wir unterscheiden zwischen Teilchen- und Wellenstrahlung! Strahlung in der Natur

Mehr

Praktikum Gamma-Spektroskopie

Praktikum Gamma-Spektroskopie Praktikum Gamma-Spektroskopie IRS / Leibniz-Universität-Hannover Kurzversion Wechselwirkungen der Gamma-Strahlung Es werden drei Wechselwirkungen der Photonen mit der Materie unterschieden : Photoeffekt,

Mehr

11.4 Detektion von radioaktiver Strahlung. 11.4.1 Die Wilsonsche Nebelkammer

11.4 Detektion von radioaktiver Strahlung. 11.4.1 Die Wilsonsche Nebelkammer 11.4 Detektion von radioaktiver Strahlung Jegliche radioaktive Strahlung die beim radioaktiven Zerfall von instabilen Atomkernen entsteht ist unsichtbar. Dies gilt sowohl für die Alpha- und Betastrahlung,

Mehr

Dieter Suter Physik B3

Dieter Suter Physik B3 Dieter Suter - 421 - Physik B3 9.2 Radioaktivität 9.2.1 Historisches, Grundlagen Die Radioaktivität wurde im Jahre 1896 entdeckt, als Becquerel feststellte, dass Uransalze Strahlen aussenden, welche den

Mehr

γ-spektroskopie Dennis Getzkow & Julian Bergmann 11. Dezember 2011

γ-spektroskopie Dennis Getzkow & Julian Bergmann 11. Dezember 2011 γ-spektroskopie & 11. Dezember 2011 γ-spektroskopie - Inhaltsverzeichnis I - 18 Inhaltsverzeichnis 1 Theoretische Grundlagen 1 1.1 α- und β-strahlung..................................... 1 1.2 γ-strahlung.........................................

Mehr

Strahlenschutzbelehrung zum Umgang mit radioaktiven Quellen im Physikalischen Fortgeschrittenen-Praktikum. Strahlenart Versuch Energie

Strahlenschutzbelehrung zum Umgang mit radioaktiven Quellen im Physikalischen Fortgeschrittenen-Praktikum. Strahlenart Versuch Energie Strahlenschutzbelehrung zum Umgang mit radioaktiven Quellen im Physikalischen Fortgeschrittenen-Praktikum Strahlenarten im F.-Praktkum Strahlenart Versuch Energie α-teilchen (Energieverlust) E α < 6 MeV

Mehr

Bestimmung der Primärstruktur kleiner Moleküle mittels 1D-NMR-Spektroskopie

Bestimmung der Primärstruktur kleiner Moleküle mittels 1D-NMR-Spektroskopie Bestimmung der Primärstruktur kleiner Moleküle mittels 1D-NMR-Spektroskopie Zusammenfassung Mit Hilfe von 1D 1 H- und 13 C-NMR-Spektren und gegebener Summenformel wird die Primärstruktur eines unbekannten

Mehr

Protokoll des Versuches 7: Umwandlung von elektrischer Energie in Wärmeenergie

Protokoll des Versuches 7: Umwandlung von elektrischer Energie in Wärmeenergie Name: Matrikelnummer: Bachelor Biowissenschaften E-Mail: Physikalisches Anfängerpraktikum II Dozenten: Assistenten: Protokoll des Versuches 7: Umwandlung von elektrischer Energie in ärmeenergie Verantwortlicher

Mehr

auf, so erhält man folgendes Schaubild: Temperaturabhängigkeit eines Halbleiterwiderstands

auf, so erhält man folgendes Schaubild: Temperaturabhängigkeit eines Halbleiterwiderstands Auswertung zum Versuch Widerstandskennlinien und ihre Temperaturabhängigkeit Kirstin Hübner (1348630) Armin Burgmeier (1347488) Gruppe 15 2. Juni 2008 1 Temperaturabhängigkeit eines Halbleiterwiderstands

Mehr

Reaktorvergleich mittels Verweilzeitverteilung

Reaktorvergleich mittels Verweilzeitverteilung Reaktorvergleich mittels Verweilzeitverteilung Bericht für das Praktikum Chemieingenieurwesen I WS06/07 Studenten: Francisco José Guerra Millán fguerram@student.ethz.ch Andrea Michel michela@student.ethz.ch

Mehr

Institut für Physik und Werkstoffe Labor für Physik

Institut für Physik und Werkstoffe Labor für Physik Name : Fachhochschule Flensburg Institut für Physik und Werkstoffe Labor für Physik Name: Versuch-Nr: K4 Absorption von - Strahlen und Bestimmung der Halbwertsdicke von Blei Gliederung: Seite Schwächung

Mehr

Protokoll. Kombinierte Anwendung verschiedener Spektroskopischer Methoden

Protokoll. Kombinierte Anwendung verschiedener Spektroskopischer Methoden Protokoll Kombinierte Anwendung verschiedener Spektroskopischer Methoden Zielstellung: Durch die Auswertung von IR-, Raman-, MR-, UV-VIS- und Massenspektren soll die Struktur einer unbekannten Substanz

Mehr

Protokoll Physikalisch-Chemisches Praktikum für Fortgeschrittene

Protokoll Physikalisch-Chemisches Praktikum für Fortgeschrittene K. B. Datum des Praktikumstags: 4.12.2007 Matthias Ernst Protokoll-Datum: 8.12.2007 Gruppe 11 Assistent: T. Bentz Testat: AK-Versuch: Modellierung von verbrennungsrelevanten Prozessen Aufgabenstellung

Mehr

Erstellen von wissenschaftlichen Protokollen

Erstellen von wissenschaftlichen Protokollen Erstellen von wissenschaftlichen Protokollen Anleitung für Protokolle im physikalischchemischen Grundpraktikum Erstellen von wissenschaftlichen Protokollen Anleitung für Protokolle im physikalisch-chemischen

Mehr

Abnahme der Intensität radioaktiver Strahlung mit der Entfernung von der Strahlungsquelle

Abnahme der Intensität radioaktiver Strahlung mit der Entfernung von der Strahlungsquelle Thema 2: Beispiel A Abnahme der Intensität radioaktiver Strahlung mit der Entfernung von der Strahlungsquelle Grundlagen Unter der Aktivität eines radioaktiven Präparates versteht man die Anzahl der Kernumwandlungen

Mehr

Protokollbuch. Friedrich-Schiller-Universität Jena. Physikalisch-Astronomische Fakultät SS 2008. Messtechnikpraktikum

Protokollbuch. Friedrich-Schiller-Universität Jena. Physikalisch-Astronomische Fakultät SS 2008. Messtechnikpraktikum Friedrich-Schiller-Universität Jena Physikalisch-Astronomische Fakultät SS 2008 Protokollbuch Messtechnikpraktikum Erstellt von: Christian Vetter (89114) Helena Kämmer (92376) Christian.Vetter@Uni-Jena.de

Mehr

Untersuchungen von SiPM als Photodetektoren für Szintillatoren. Bachelorarbeit im Studiengang Bachelor of Science im Fach Physik

Untersuchungen von SiPM als Photodetektoren für Szintillatoren. Bachelorarbeit im Studiengang Bachelor of Science im Fach Physik Untersuchungen von SiPM als Photodetektoren für Szintillatoren Bachelorarbeit im Studiengang Bachelor of Science im Fach Physik an der Fakultät für Physik und Astronomie der Ruhr-Universität Bochum von

Mehr

Radioaktiver Zerfall Strahlung Nukliderzeugung. Nukliderzeugung

Radioaktiver Zerfall Strahlung Nukliderzeugung. Nukliderzeugung Radioaktiver Zerfall Strahlung Nukliderzeugung Wiederholung: Struktur der Materie Radioaktivität Nuklidkarte, Nuklide Zerfallsarten Strahlung Aktivität Nukliderzeugung Was ist Radioaktivität? Eigenschaft

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerkung Dies ist ein abgegebenes Praktikumsprotokoll aus dem Modul physik512. Dieses Praktikumsprotokoll wurde nicht bewertet. Es handelt sich lediglich um meine Abgabe und keine Musterlösung. Alle

Mehr

Strom-Spannungs-Kennlinie und Leistung eines Windrades

Strom-Spannungs-Kennlinie und Leistung eines Windrades Strom-Spannungs-Kennlinie und ENT Schlüsselworte Windenergie, Kennlinie, Spannung, Stromstärke, Leistung, Widerstand, Innenwiderstand, Anpassung Prinzip Die Strom-Spannungs-Kennlinie eines Windgenerators

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Physikalisches Praktikum Versuchsbericht M13 Schwingende Saite Dozent: Prof. Dr. Hans-Ilja Rückmann email: irueckm@uni-bremen.de http: // www. praktikum. physik. uni-bremen. de Betreuer: Yannik Schädler

Mehr

Physikalisches Anfaengerpraktikum. Radioaktivität

Physikalisches Anfaengerpraktikum. Radioaktivität Physikalisches Anfaengerpraktikum Radioaktivität Ausarbeitung von Constantin Tomaras & David Weisgerber (Gruppe 10) Montag, 28. November 2005 email: Weisgerber@mytum.de 1 (1) Einleitung Im folgenden Versuch

Mehr

Übertragungsglieder mit Sprung- oder Impulserregung

Übertragungsglieder mit Sprung- oder Impulserregung Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum Protokoll-Nr.: 4 Übertragungsglieder mit Sprung- oder Impulserregung Protokollant: Jens Bernheiden Gruppe: Aufgabe durchgeführt:

Mehr

Positronium. Martin Will, Fred Stober Gruppe 106 Betreuer: Schmitt, Udo

Positronium. Martin Will, Fred Stober Gruppe 106 Betreuer: Schmitt, Udo Positronium Martin Will, Fred Stober Gruppe 106 Betreuer: Schmitt, Udo 17. Februar 2006 Zusammenfassung In diesem Versuch soll die mittlere Lebensdauer von Positronium in Plexiglas gemessen werden. Als

Mehr

Theoretische Grundlagen Physikalisches Praktikum. Versuch 8: Radioaktivität

Theoretische Grundlagen Physikalisches Praktikum. Versuch 8: Radioaktivität Theoretische Grundlagen Physikalisches Praktikum Versuch 8: Radioaktivität Radioaktivität spontane Umwandlung instabiler tomkerne natürliche Radioaktivität: langlebige Urnuklide und deren Zerfallsprodukte

Mehr

Protokoll Grundpraktikum I: M5 - Oberflächenspannung

Protokoll Grundpraktikum I: M5 - Oberflächenspannung Protokoll Grundpraktiku I: M5 - Oberflächenspannung Sebastian Pfitzner 28. April 2013 Durchführung: Sebastian Pfitzner (553983), Anna Andrle (550727) Arbeitsplatz:!!Platz!! Betreuer: Stefan Weideann Versuchsdatu:

Mehr

Versuchsprotokoll Optische Spektroskopie Teil 2 Fluoreszenz und Excimerenbildung

Versuchsprotokoll Optische Spektroskopie Teil 2 Fluoreszenz und Excimerenbildung Versuchsprotokoll Optische Spektroskopie Teil 2 Fluoreszenz und Excimerenbildung Physikalisch-chemisches Fortgeschrittenenpraktikum WS 07/08 Johanna Seemann und Veronika Beer Gruppe B10 29. Januar 2008

Mehr

Protokoll des Versuches 5: Messungen der Thermospannung nach der Kompensationsmethode

Protokoll des Versuches 5: Messungen der Thermospannung nach der Kompensationsmethode Name: Matrikelnummer: Bachelor Biowissenschaften E-Mail: Physikalisches Anfängerpraktikum II Dozenten: Assistenten: Protokoll des Versuches 5: Messungen der Thermospannung nach der Kompensationsmethode

Mehr

Lasertechnik Praktikum. Nd:YAG Laser

Lasertechnik Praktikum. Nd:YAG Laser Lasertechnik Praktikum Nd:YAG Laser SS 2013 Gruppe B1 Arthur Halama Xiaomei Xu 1. Theorie 2. Messung und Auswertung 2.1 Justierung und Beobachtung des Pulssignals am Oszilloskop 2.2 Einfluss der Verstärkerspannung

Mehr

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 28. Atomphysik, Röntgenstrahlung (Fortsetzung: Röntgenröhre, Röntgenabsorption) 29. Atomkerne, Radioaktivität (Nuklidkarte, α-, β-, γ-aktivität, Dosimetrie)

Mehr

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M.

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Physikalisches Praktikum Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert E 0 Ohmsches Gesetz & nnenwiderstand (Pr_Ph_E0_nnenwiderstand_5, 30.8.2009).

Mehr

Der Dampfdruck von Wasser

Der Dampfdruck von Wasser Physikalisches Grundpraktikum Versuch 8 Der Dampfdruck von Wasser Praktikant: Tobias Wegener Alexander Osterkorn E-Mail: tobias.wegener@stud.uni-goettingen.de a.osterkorn@stud.uni-goettingen.de Tutor:

Mehr

Praktikum Physik Radioaktivität 13GE RADIOAKTIVITÄT VERSUCHSAUSWERTUNG

Praktikum Physik Radioaktivität 13GE RADIOAKTIVITÄT VERSUCHSAUSWERTUNG RADIOAKIVIÄ VERSUCHSAUSWERUNG I. VERSUCHSZIEL Die Zerfallskurve einer radioaktiven Substanz soll aufgenommen werden. Aus dieser Zerfallskurve soll das Gesetz des radioaktiven Zerfalls hergeleitet werden.

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerkung Dies ist ein abgegebenes Praktikumsprotokoll aus dem Modul physik512. Dieses Praktikumsprotokoll wurde nicht bewertet. Es handelt sich lediglich um meine Abgabe und keine Musterlösung. Alle

Mehr

Ganzkörperzähler (Messung)

Ganzkörperzähler (Messung) Ganzkörperzähler (Body Counter) Allgemeines: Im Body Counter werden Personen, die mit offenen radioaktiven Stoffen umgehen auf Inkorporation (Aufnahme in den Körper) untersucht. Dabei können die Radionuklide

Mehr

Physik III - Anfängerpraktikum- Versuch 302

Physik III - Anfängerpraktikum- Versuch 302 Physik III - Anfängerpraktikum- Versuch 302 Sebastian Rollke (103095) und Daniel Brenner (105292) 15. November 2004 Inhaltsverzeichnis 1 Theorie 2 1.1 Beschreibung spezieller Widerstandsmessbrücken...........

Mehr

Stromdurchossene Leiter im Magnetfeld, Halleekt

Stromdurchossene Leiter im Magnetfeld, Halleekt Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 2005/06 Jens Küchenmeister (1253810) Versuch: P1-73 Stromdurchossene Leiter im Magnetfeld, Halleekt - Vorbereitung - Inhaltsverzeichnis 1

Mehr

Bericht zum Versuch Hall-Effekt

Bericht zum Versuch Hall-Effekt Bericht zum Versuch Hall-Effekt Michael Goerz, Anton Haase 20. September 2005 GP II Tutor: K. Lenz 1 Einführung Hall-Effekt Als Hall-Effekt bezeichnet man das Auftreten einer Spannung in einem stromdurchflossenen

Mehr

Gamma-Spektrometrie. Fortgeschrittenenpraktikum Vorbereitung. Erik Streb. 5. Juni 2007 Betreuer: Kristian Döbrich. 1 Einleitung

Gamma-Spektrometrie. Fortgeschrittenenpraktikum Vorbereitung. Erik Streb. 5. Juni 2007 Betreuer: Kristian Döbrich. 1 Einleitung Freie Universität Berlin Sommersemester 2007 Arnimallee 14 14195 Berlin Fortgeschrittenenpraktikum Vorbereitung Gamma-Spektrometrie Erik Streb 5. Juni 2007 Betreuer: Kristian Döbrich 1 Einleitung Gammastrahlen

Mehr

K9H PhysikalischesGrundpraktikum

K9H PhysikalischesGrundpraktikum K9H PhysikalischesGrundpraktikum Abteilung Kernphysik Szintillationsdetektoren, Koinzidenzspektroskopie und ihre Anwendung 1 Lernziele Im Versuch K9 lernen Sie einen der wichtigsten Detektortypen im Bereich

Mehr

37. Lektion Strahlenschutz und Dosimetrie. Reichweite und Abschirmung von radioaktiver Strahlung

37. Lektion Strahlenschutz und Dosimetrie. Reichweite und Abschirmung von radioaktiver Strahlung 37. Lektion Strahlenschutz und Dosimetrie Reichweite und Abschirmung von radioaktiver Strahlung Lernziel: Der beste Schutz vor radioaktiver Strahlung ist Abstand und keine Aufnahme von radioaktiven Stoffen

Mehr

FP-Versuch K125 Nukleare Elektronik und Lebensdauermessung

FP-Versuch K125 Nukleare Elektronik und Lebensdauermessung FP-Versuch K125 Nukleare Elektronik und Lebensdauermessung Martin Urban, Philipp Wilking 10. August 2007 Ziel dieses Versuchs ist es, den Umgang mit nuklearer Elektronik zu erlernen. Als Anwendung soll

Mehr

Positronen Emissions Tomographie

Positronen Emissions Tomographie Positronen Emissions Tomographie Fortgeschrittenen Praktikum der TU Darmstadt Konstantin Ristl und Jan Wagner Betreuer: Iryna Poltoratska Datum: 20. April 2009 Erklärung zum fortgeschrittenen Praktikum

Mehr

Unterlagen für die Lehrkraft. Abiturprüfung Physik, Leistungskurs. Bearbeitung einer Aufgabe, die fachspezifisches Material enthält

Unterlagen für die Lehrkraft. Abiturprüfung Physik, Leistungskurs. Bearbeitung einer Aufgabe, die fachspezifisches Material enthält Seite 1 von 1 Unterlagen für die Lehrkraft Abiturprüfung 015 Physik, Leistungskurs 1. Aufgabenart Bearbeitung einer Aufgabe, die fachspezifisches Material enthält. Aufgabenstellung 1 Aufgabe: Radioaktivität

Mehr

Leistungskurs Physik (Bayern): Abiturprüfung 2002 Aufgabe III Atomphysik

Leistungskurs Physik (Bayern): Abiturprüfung 2002 Aufgabe III Atomphysik Leistungskurs Physik (Bayern): Abiturprüfung 2002 Aufgabe III Atomphysik 1. Röntgenstrahlung und Compton-Effekt a) Je nah Entstehung untersheidet man bei Röntgenstrahlung u. a. zwishen Bremsstrahlung,

Mehr

Kennlinie der Vakuum-Diode

Kennlinie der Vakuum-Diode Physikalisches Praktikum für das Hauptfach Physik Versuch 20 Kennlinie der Vakuum-Diode Wintersemester 2005 / 2006 Name: Mitarbeiter: EMail: Gruppe: Daniel Scholz Hauke Rohmeyer physik@mehr-davon.de B9

Mehr

Linearer Zusammenhang von Datenreihen

Linearer Zusammenhang von Datenreihen Linearer Zusammenhang von Datenreihen Vielen Problemen liegen (möglicherweise) lineare Zusammenhänge zugrunde: Mein Internetanbieter verlangt eine Grundgebühr und rechnet minutenweise ab Ich bestelle ein

Mehr

Gibt es myonische Atome?

Gibt es myonische Atome? Minitest 7 Das Myon it ist ein Elementarteilchen, t das dem Elektron ähnelt, jedoch jd eine deutlich höhere Masse (105,6 MeV/c 2 statt 0,511 MeV/c 2 ) aufweist. Wie das Elektron ist es mit einer Elementarladung

Mehr

- Eine typische Ausfallrate, wie sie bei vielen technischen Anwendungen zu sehen ist hat die Form einer Badewanne, deshalb nennt man diese Kurve auch

- Eine typische Ausfallrate, wie sie bei vielen technischen Anwendungen zu sehen ist hat die Form einer Badewanne, deshalb nennt man diese Kurve auch 1 2 - Eine typische Ausfallrate, wie sie bei vielen technischen Anwendungen zu sehen ist hat die Form einer Badewanne, deshalb nennt man diese Kurve auch Badewannenkurve. -mit der Badewannenkurve lässt

Mehr

FP2-Experiment K225 Protokoll Positronenlebensdauer in Metallen und Isolatoren

FP2-Experiment K225 Protokoll Positronenlebensdauer in Metallen und Isolatoren FP2-Experiment K225 Protokoll Positronenlebensdauer in Metallen und Isolatoren Dimitri Pritzkau, Niels Räth 26. Februar 27 Universität Bonn Inhaltsverzeichnis 1 Theoretische Grundlagen 2 1.1 Positronenquelle....................................

Mehr

4 Produktspezifische Ausfallwahrscheinlichkeit und Ausbeute

4 Produktspezifische Ausfallwahrscheinlichkeit und Ausbeute 4.1 Grundlagen 4 Produktspezifische Ausfallwahrscheinlichkeit und Ausbeute 4.1 Grundlagen In den bisherigen Ausführungen wurden die Grundlagen der Ausbeuteberechnung behandelt. So wurde bereits im Abschnitt

Mehr