Fähigkeitsuntersuchungen beim Lotpastendruck

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Fähigkeitsuntersuchungen beim Lotpastendruck"

Transkript

1 Fakultät Elektrotechnk und Informatonstechnk Insttut für Aufbau- und Verbndungstechnk der Elektronk Fähgketsuntersuchungen bem Lotpastendruck Dr.-Ing. H. Wohlrabe Ottobrunn, 2. Februar 2009

2 Qualtätsmerkmale bem Lotpastendruck Volumen der gedruckten Depots Schchtdcke der Depots Homogentät der Depots Genaugket der Poston der gedruckten Depots Form der Depots Errechbarer mnmaler Ptch Auslaufen u.ä. der Depots nach dem Druck Beenflusst von: Paste, Drucker, Schablone, Umgebung, Rengung, Substratoberfläche,.

3 Enflüsse auf de Genaugket der gedruckten Depots Für en Depot: Genaugket des konkreten Pads auf dem Substrat Genaugket der Schablone für das konkrete Depot Genaugket der Postonerung der Schablone zum Substrat Egenschaften der Lotpaste Rakelenflüsse (Rchtung, Druck, Typ,...) Umgebungsbedngungen (besonders de Temperatur) Der ganze Drucker: Summe aller Depots (über de gesamte bedruckte Fläche)

4 Möglche Auswrkung - Grabsteneffekt Gelb - potenteller Grabsten Rot Grabsten aufgetreten! Bestück- und Druckversätze snd potentelle Verursacher von Grabstenen! Wetere Quellen: Temperaturprofl Konstrukton (thermsche Senken) Lotpasten, Oberflächen,?? wetere zahlreche Wechselwrkungen??

5 Möglche Spezfkatonen fürlotpastendrucker Genaugket des Drucks Genaugket der gedruckten Depots (n x- and y-rchtung ) über de volle Fläche des Substrates Informaton über de Prozessfähgket typsch : d.h. C pk > µm/3 sgma mt T u µm und T o µm Das st de Größe, de den Kunden nteressert!!!

6 Genaugket des Drucks Was hat der Druckerhersteller zu verantworten?? Postonerung der Maske zum Substrat Umgebungsbedngungen (Temperatur) Enflüsse der Rakelrchtung und wetere Enstellungen (z.b. Rakeldruck) Was hat der Druckerhersteller ncht zu verantworten?? Ungenaugketen der Schablone (krtsch st nsbesondere de Lage der Fducals) Ungenaugketen und Veränderungen der Substrate (Fducals und Schrumpfungen nach dem ersten Lötprozess) Für ene objektve Beurtelung des Druckers sollten dese Enflüsse elmnert werden!!

7 Möglche Spezfkatonen für Lotpastendrucker De Wederholgenaugket De Genaugket der Postonerung der Maske zum Substrat (n x-, y- and Θ-Rchtung) Informaton über de Maschnenfähgket des Druckers typsch : 25 µm/6 sgma (x- and y-rchtung) 0,008 /6 sgma (rotaton) d.h. C mk >2.0 De Rotaton muss spezfzert werden, se st sehr bedeutend!! De Wederholgenaugket st ene notwendge, aber ncht hnrechende Egenschaft des Druckers

8 Messung der Wederholgenaugket von Druckern Grundprnzp: Postonerung ener spezellen Maske (aus Stahl oder besser Glas) über en hochgenaues Glassubstrat und Messung der Lagedfferenzen Marke auf der Maske Messmarke auf dem Glassubstrat Δy Bldausschntt Δx Messung mt Hlfe der Bldverarbetung Mnmale Anzahl der Messmarken: Messzet pro Marke: s Messgenaugket: < µm Anzahl der Postonerungen: Mnmal 50

9 Messung der Genaugket der gedruckten Depots Grundprnzp: Drucken von normalen Depots auf ene hochgenaue Glasplatte und deren Vermessung Gedrucktes Depot Messmarkenauf dem Glasssubstrat Empfohlene Form der Depots: Krese Vermessung mt Hlfe der Bldverarbetung Anzahl der Depots: 50 Messzet: s Messgenaugket: <5 µm Δy Bldausschntt Δx

10 Berechnung der Versätze Δ Δ Δ Δ n D n D y n y x n x + + Δ Δ Δ Δ ΔΘ n n n n n n n n n n D y x n y x x y y x n x y y x Gegeben: n Anzahl der vermessenen Depots Δx Δy gemessene Depotversätze x y Koordnaten der Depots Gesucht: Versätze Substrat-Schablone Δx D Δy D ΔΘ D

11 Das Drehpunktproblem Wenn systematsche Versätze bem Drucken festgestellt werden, dann muss der Drucker korrgert werden! Insbesondere de Verdrehung (Substrat/Schablone) kann Probleme bereten!! Solllage Istlage Drehpunkt Drehpunkt 2

12 Lage des Drehpunktes - Maske-Substrat. De Lage des Drehpunktes hat auf das Streuungsverhalten der Maschne kenen Enfluss! 2. Es wrd empfohlen, desen Drehpunkt n de Substratmtte zu legen Folgender Hauptvortel: de Enstellparameter (x, y, Θ) snd vonenander unabhängg!! Alle anderen Drehpunktlagen zehen Abhänggketen nach sch!! z.b. : Lage des Drehpunktes m Substratursprung (mestens das erste Fducal) Ene Änderung der Verdrehung ändert auch de Mttelwerte n x- und y--rchtung Forderung an de Maschnenhersteller, desen Drehpunkt enstellbar gestalten!! oder Be Engabe von Korrekturen st des geegnet umzurechnen!

13 Messbespel 40 Devaton Berechnete Fähgketen; Spezfkaton 25 µm/3 sgma) C p C pk x 0,80 0,78 y 0,46 0, lfd. Num. All prnts x-devaton All prnts y-devaton

14 Enflüsse der Genaugket der Schablone x-devaton [µm] 0-0 measurement x-devaton measurement y-devaton lfd. Num Das Drucken mt ener solchen Schablone und enem dealen Drucker st en unfähger Druckprozess!!

15 Analyse der Ungenaugketen der Maske Versätze [µm] measurement x-devaton measurement y-devaton x-koordnate [mm] Systematken erkennbar!! Möglche Ursache: Vorspannung der Schablone

16 Analyse der Enflüsse x-versatz [µm] lfd. Num. Gemessene Werte Nach Elmnerung der Schablonenund Temperaturenflüsse

17 Typsches Bespel Anfangszustand

18 Auswertung der ersten 8 Drucke x-offset [µm] Mean/Standard devaton cont. number of measurement x-offset y-offset

19 Endzustand 20 Drucke

20 Enfluss des Lotpastentyps y-versatz [µm] lfd. Nummer Messung lfd. Nummer Messung Lotpaste Lotpaste 2 y-versatz [µm] 5 0-5

21 Rolle der Verdrehung - Überlagerung der Enflüsse Genaugket bem Lotpastendruck Statstsche Beschrebung des Enflusses des Verdrehwnkels zwschen Leterplatte und Schablone Gesucht: Vertelungsdchten der x/y-versätze!

22 Genaugket bem Lotpastendruck Berechnung der Versätze (für klene Wnkel) Δx Dep, Δy Dep x Co,y Co x Rot,y Rot Δx P, Δy P ΔΘ P Annahmen: Δx P, Δx P, ΔΘ P x Co, y Co Gesucht: Δx Δy Dep Dep Δx Δy ndvduelle Versätze des Depots Koordnate der Struktur Rotatonspunkt Schablone -Substrat Versätze Schablone - Leterplatte normalvertelt glechvertelt Vertelung der Komponenten auf der Leterplatte Vertelung von Δx Dep und Δy Dep? P P + ( y co y rot ) Δθ p ( xco xrot ) Δθ p

23 Genaugket bem Lotpastendruck Vertelung der Versätze Δx Dep Δx P y co Δθ p + y rot Δθ p normalvertelt glechvertelt Konstante Als Zufallsgröße: ΔX Dep ΔX P Y co ΔΘ P + y rot ΔΘ P Faltung Multplkaton von Zufallsgrößen ΔX D

24 Ermttlung der Vertelungsdchte des Lotpastendrucks + dx x z f x f z f Y X Z Y X Z ) ( ) ( ) ( Faltung (Addton bzw. Subtrakton) dx x z f x f x z f Y X Z Y X Z ) ( ) ( ) ( Multplkaton ( ) ( ) P x y P Sze p D X p P sze sze co YCo d e y x f e f y y y y f p p P D Sze D p p P P ΔΘ ΔΘ Δ ΔΘ Θ Θ Θ Θ ΔΘ Δ Θ Δ ΔΘ Θ ΔΘ ) ( sonst 0 0 ) ( σ μ σ μ πσ πσ nur numersch oder mt Monte-Carlo-Smulaton lösbar Multplkatve Verknüpfung der Zufallsgrößen y-koordnate Y Co (glechvertelt) und des Verdrehwnkels ΔΘ p (normalvertelt)

25 Analyse der Smulatonsergebnsse Es ergeben sch symmetrsche, sptzgpflge und bret auslaufende Vertelungen! Maßstab dafür st besonders der Excess (Wölbung) >0! 80 Vertelung Cauchy Normal De Cauchy-Vertelung st am besten angepasst, lefert aber kene technsche Erklärung!

26 Konsequenzen - Berechnung der Fähgketsndces De Prozessfähgket wrd durch ene Qualtätsfähgketskennzahl beschreben, mt der de Fähgket enes Prozesses zum Ausdruck gebracht wrd, en bestmmtes Merkmal n glechblebender Wese nnerhalb der vorgegebenen Toleranzgrenzen zu erzeugen. Unser Zel: gerngste Fehlerquoten (z.b. 3,4 DPM)! Nchtnormalverteltes Merkmal Prozessmodell A2 DIN 5539 Nutzung der Methoden M2 und M4 für de Prozessfähgket Methode M2 - Überschretungsantelmethode p u p o C pk 3 u max( p u, p o ) T u T o

27 Auswrkungen auf Fähgketskoeffzenten Prozentantelmethode M4 0,35 % Punkt 99,865 % Punkt 3s u µ 3s o C p To Tu 3 s + 3s u o C pk Mn x T 3s u u To ; 3s o x Berechnung der Ersatzstreuungen s u, s o über de Quantle!

28 Verglech der Methoden M2 und M4 Verglech Normalvertelung - t-vertelung (f) 3-sgma Normalvertelung 3-sgma t-vertelung 4-sgma Normalvertelung 4-sgma t-vertelung De Überschretungsantelmethode M2 berückschtgt das starke Auslaufen der Vertelung und damt de auftretenden Fehler am Rand! De Prozentantelmethode M4 berückschtgt vor allem de Form der Vertelung m 3-sgma Berech! Vorzug für de Überschretungsantelmethode M2!

29 Auswrkungen auf Fähgketskoeffzenten Nutzung der Überschretungsantelmethode M2 m Verglech zur klassschen Methode M be gegebener Normalvertelung C pk u p 3 C pk Methode M Sprechwese Fehlerquote p Nutzung der Normalvertelung Fehlerquote p (smulerte Lotpastendepots) C pk (Methode M2 für de Lotpastendepots),0 3-sgma ,89,33 4-sgma 32 26,7,5 6-sgma 3,4 55,29 (Motorola),67 5 sgma 0,28 2,37 De klasssche Berechnung der Fähgketskoeffzenten (M) funktonert be der Gesamtbeschrebung der geometrschen Montagequaltät nur telwese und lefert nsbesondere für das Zel, klenste Fehlerquoten zu errechen, stark fehlerhafte Ergebnsse!

30 Schlussfolgerungen De Betrachtung des Druckprozesses st nur en klener Bausten n der gesamten Prozesses! En Tel der Zufallsgrößen des gesamten betrachteten Prozesses überlagert sch ncht durch ene unabhängge Addton! Addton der Streuungen unzulässg! Effekte aus Verdrehungen snd auch m Bestückprozess vorhanden bret auslaufende Vertelungen auch her! Ene effektve Gesamtüberlagerung aller bzw. partell ausgewählter Tele des Prozesses st nur über ene Monte-Carlo-Smulaton möglch!

31 Bestmmung der Gesamtfähgket durch Smulaton Wesentlche Enflüsse auf de geometrsche Montagequaltät Leterplatte Schablonen Komponenten Lotpastendrucker Bestücker Alle Enflüsse müssen mt Daten gefüllt werden! Zwe Gruppen Geometredaten: Prozessdaten: Bauelementegrößen, Padbreten, Strukturgrößen, Bestückgenaugketen, Druckgenaugketen, Genaugketen der Leterplatte

32 Enge Smulatonsergebnsse Abhänggket der Genaugket von gedruckten Depots von der Genaugket (Standardabwechung) des Verdrehwnkels Substrat-Maske) Leterplattengröße 400*300 mm sx, sy sx sy s Θ n /000

33 Enge Smulatonsergebnsse Prozessfähgket bem Drucken (020) 2,5 Cpk 2,5 0,5 SO75 SO40 Schlussfolgerung: Max. Standardabwechung der Verdrehung 0, s Θ n /000

34 Enge Smulatonsergebnsse Ermttlung der Endqualtät n Abhänggket der Leterplatten- und Schablonenqualtät (Genaugket der Strukturlagen),6,5,4 Cpk,3,2, 0,9 0,8 0, Standardabwechung LP/Maske Pn-Pad Depot-Pad Pn-Depot

35 Analysen gedrucktes Volumen/Schchtdcke Randbedngungen der Tests: Konstrukton enes Testboards mt >0000 Strukturen verschedenster Art (Chps, TO, QFP, BGA, ) Druck des Testboards unter defnerten Bedngungen (unmttelbar hnterenander, mt Rengungen, mt verschedenen Wartezeten) Vermessung (AOI) der gedruckten Boards; Ermttlung von relatven Volumen, bedruckter Fläche und Höhe der Strukturen Statstsche Auswertung mt ener Varanzanalyse

36 Bespelabhänggketen- Paste Abhänggket Volumen - Chp-Typ be Paste Abhänggket gedrucktes Volumen Orenterung Paste Volumen% Volumen% Chp-Typ Abhänggket Volumen - Drucksystem Paste H V Orenterung Abhänggket Volumen fortlaufende Drucknummer Volumen% Volumen% System System 2 System 3 System 4 Drucksystem Drucknummer

37 Wechselwrkungen Pasten Wechselwrkungen Drucksystem- Paste Paste Paste Paste 2 Volumen% System System 2 System 3 System 4 Drucksystem Volumen% Wechselwrkungen Paste - fortlaufende Drucknummer Paste Paste Paste Drucknummer

38 Verglech Volumen/Fläche/Schchtdcke Abhänggket Volumen - Chp-Typ be Paste Abhänggketen Chp-Typ-gedruckte Fläche Paste Volumen% Area% Chp-Typ Chp-Typ Abhänggketen Chp-Typ - Schchtdcke Paste Heght Chp-Typ

39 Auswrkung von Rengungen Volumen% Analyse Volumen und Wrkung der Rengung Drucksystem System System 2 System 3 System 4 2 Druck nach Rengung

40 Auswrkungen von Wartezeten und Rengungen Volumen% Analyse von Rengung und Wartezeten Paste Druck nach Rengung 2 3 Indrucke 0 mn 0 mn 20 mn 40 mn 60 mn Druckzyklus Verwertung: Gezelte Änderung der Öffnungen der Schablonen Optmerung des Druckregmes (Rengung; Reakton auf Stllstandszeten)

41 Velen Dank für Ihre Aufmerksamket!

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

Ionenselektive Elektroden (Potentiometrie)

Ionenselektive Elektroden (Potentiometrie) III.4.1 Ionenselektve Elektroden (otentometre) Zelstellung des Versuches Ionenselektve Elektroden gestatten ene verhältnsmäßg enfache und schnelle Bestmmung von Ionenkonzentratonen n verschedenen Meden,

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

Gruppe. Lineare Block-Codes

Gruppe. Lineare Block-Codes Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung

Mehr

FORMELSAMMLUNG STATISTIK (I)

FORMELSAMMLUNG STATISTIK (I) Statst I / B. Zegler Formelsammlng FORMELSAMMLUG STATISTIK (I) Statstsche Formeln, Defntonen nd Erläterngen A a X n qaltatves Mermal Mermalsasprägng qanttatves Mermal Mermalswert Anzahl der statstschen

Mehr

Statistik und Wahrscheinlichkeit

Statistik und Wahrscheinlichkeit Regeln der Wahrschenlchketsrechnung tatstk und Wahrschenlchket Regeln der Wahrschenlchketsrechnung Relatve Häufgket n nt := Eregnsalgebra Eregnsraum oder scheres Eregns und n := 00 Wahrschenlchket Eregnsse

Mehr

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07 Auswertung von Umfragen und Expermenten Umgang mt Statstken n Maturaarbeten Realserung der Auswertung mt Excel 07 3.Auflage Dese Broschüre hlft bem Verfassen und Betreuen von Maturaarbeten. De 3.Auflage

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 5 Mehrdmensonale Zufallsvarablen Be velen Problemstellungen st ene solerte Betrachtung enzelnen

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

Nernstscher Verteilungssatz

Nernstscher Verteilungssatz Insttut für Physkalsche Cheme Grundpraktkum 7. NERNSTSCHER VERTEILUNGSSATZ Stand 03/11/2006 Nernstscher Vertelungssatz 1. Versuchsplatz Komponenten: - Schedetrchter - Büretten - Rührer - Bechergläser 2.

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem

Mehr

SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT

SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT Smulaton von Hybrdfahrzeugantreben mt optmerter Synchronmaschne 1 SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT OPTIMIERTER SYNCHRONMASCHINE H. Wöhl-Bruhn 1 EINLEITUNG Ene Velzahl von Untersuchungen hat sch

Mehr

EAU SWH l$,0, wohngebäude

EAU SWH l$,0, wohngebäude EAU SWH l$,0, wohngebäude gemäß den $$ 6 ff, Energeensparverordnung (EnEV) :,:: Gültsbs: 09208 Gebäude Gebäudetyp Altbau Mehrfamlenhaus Adresse Hardstraße 3 33, 40629 Düsseldorf Gebäudetel Baujahr Gebäude

Mehr

Teil 2: Statistische Versuchsplanung

Teil 2: Statistische Versuchsplanung Tel : Statstsche Versuchsplanung 4. Enführung n de stat. Versuchsplanung 4. Arten statstscher Versuchspläne - Faktorelle Versuchspläne. Ordnung k und k- - Zentral zusammengesetzte Versuchspläne - Mschungspläne

Mehr

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm):

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm): Aufgabe 1 (4 + 2 + 3 Punkte) Bem Wegen von 0 Respaketen ergaben sch folgende Gewchte X(n Gramm): 1 2 3 4 K = (x u, x o ] (98,99] (99, 1000] (1000,100] (100,1020] n 1 20 10 a) Erstellen Se das Hstogramm.

Mehr

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale 3. De Kennzechnung von Patkeln 3..1 Patkelmekmale De Kennzechnung von Patkeln efolgt duch bestmmte, an dem Patkel mess bae und deses endeutg beschebende physka lsche Gößen (z.b. Masse, Volumen, chaaktestsche

Mehr

Entscheidungsprobleme der Marktforschung (1)

Entscheidungsprobleme der Marktforschung (1) Prof. Dr. Danel Baer. Enführung 2. Informatonsbedarf 3. Datengewnnung 2. Informatonsbedarf Entschedungsprobleme der () Informatonsbedarf Art Qualtät Menge Informatonsbeschaffung Methodk Umfang Häufgket

Mehr

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2 ETH Arbetsgruppe Radocheme Radochemsches Praktkum P 06 Enführung n de Statstk INHALTSVERZEICHNIS Sete 1. Zählung von radoaktven Zerfällen und Statstk 2 2. Mttelwert und Varanz 2 3. Momente ener Vertelung

Mehr

50. Internationales Wissenschaftliches Kolloquium. Maschinenbau von Makro bis Nano / Mechanical Engineering from Macro to Nano.

50. Internationales Wissenschaftliches Kolloquium. Maschinenbau von Makro bis Nano / Mechanical Engineering from Macro to Nano. 5. Internatonales Wssenschaftlches Kolloquum September, 19-23, 25 Maschnenbau von Makro bs Nano / Mechancal Engneerng from Macro to Nano Proceedngs Fakultät für Maschnenbau / Faculty of Mechancal Engneerng

Mehr

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

H I HEIZUNG I 1 GRUNDLAGEN 1.1 ANFORDERUNGEN. 1 GRUNDLAGEN 1.1 Anforderungen H 5

H I HEIZUNG I 1 GRUNDLAGEN 1.1 ANFORDERUNGEN. 1 GRUNDLAGEN 1.1 Anforderungen H 5 1 GRUNDLAGEN 1.1 Anforderungen 1.1.1 Raumklma und Behaglchket Snn der Wärmeversorgung von Gebäuden st es, de Raumtemperatur n der kälteren Jahreszet, das snd n unseren Breten etwa 250 bs 0 Tage m Jahr,

Mehr

Messtechnik/Qualitätssicherung

Messtechnik/Qualitätssicherung Name, Vorname Matrkel-Nr. Studenzentrum Studengang Wrtschaftsngeneurwesen Fach Messtechnk/Qualtätsscherung Art der Lestung Prüfungslestung Klausur-Knz. WI-MQS-P 08053 Datum 3.05.008 Hnwes zur Rückgabe

Mehr

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny eseproben aus dem Buch "n mt en zur Elektrotechnk" Franzs Verlag, 85586 Pong ISBN 978--77-4046-8 Autor des Buches: eonhard Stny Autor deser eseprobe: eonhard Stny 005/08, alle echte vorbehalten. De Formaterung

Mehr

6 Wandtafeln. 6.3 Berechnung der Kräfte und des Schubflusses auf Wandtafeln. 6.3.1 Allgemeines

6 Wandtafeln. 6.3 Berechnung der Kräfte und des Schubflusses auf Wandtafeln. 6.3.1 Allgemeines 6 Wandtafeln 6.3 Berechnung der Kräfte und des Schubflusses auf Wandtafeln 6.3.1 Allgemenes Be der Berechnung der auf de enzelnen Wandtafeln entfallenden Horzontalkräfte wrd ene starre Deckenschebe angenommen.

Mehr

Nomenklatur - Übersicht

Nomenklatur - Übersicht Nomenklatur - Überscht Name der synthetschen Varable Wert der synthetschen Varable durch synth. Varable erklärte Gesamt- Streuung durch synth. Varable erkl. Streuung der enzelnen Varablen Korrelaton zwschen

Mehr

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt -

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt - Flußnetzwerke - Strukturbldung n der natürlchen Umwelt - Volkhard Nordmeer, Claus Zeger und Hans Joachm Schlchtng Unverstät - Gesamthochschule Essen Das wohl bekannteste und größte exsterende natürlche

Mehr

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t + " I ) = 0 $ " I

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t +  I ) = 0 $  I Wechselstrom Dr. F. Raemy Wechselspannung und Wechselstrom können stets we folgt dargestellt werden : U t = U 0 cos (! t + " U ) ; I ( t) = I 0 cos (! t + " I ) Wderstand m Wechselstromkres Phasenverschebung:!"

Mehr

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung: Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab

Mehr

Messen kleiner Größen

Messen kleiner Größen Messen klener Größen Negungssensoren Elektronsche Negungssensoren Flüssgketsssteme Pendelssteme Sesmsche Ssteme btstung ener Gsblse btstung ener Flüssgkets -oberfläche Vertklpendel Horzontl -pendel Beschleungungsmesser;

Mehr

Der Erweiterungsfaktor k

Der Erweiterungsfaktor k Der Erweterungsfaktor k Wahl des rchtgen Faktors S. Meke, PTB-Berln, 8.40 Inhalt: 1. Was macht der k-faktor? 2. Welche Parameter legen den Wert des k-faktors fest? 3. Wo trtt der k-faktor auf? 4. Zusammenhang

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

1 = Gl.(12.7) Der Vergleich mit Gl. (12.3) zeigt, dass für die laminare Rohrströmung die Rohrreibungszahl

1 = Gl.(12.7) Der Vergleich mit Gl. (12.3) zeigt, dass für die laminare Rohrströmung die Rohrreibungszahl 0. STRÖMUNG INKOMPRESSIBLER FLUIDE IN ROHRLEITUNGEN Enführung Vorlesung Strömungslehre Prof. Dr.-Ing. Chrstan Olver Pascheret C. O. Pascheret Insttute of Flud Mechancs and Acoustcs olver.pascheret@tu-berln.de

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

Methoden der innerbetrieblichen Leistungsverrechnung

Methoden der innerbetrieblichen Leistungsverrechnung Methoden der nnerbetreblchen Lestungsverrechnung In der nnerbetreblchen Lestungsverrechnung werden de Gemenosten der Hlfsostenstellen auf de Hauptostenstellen übertragen. Grundlage dafür snd de von den

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematk - Sommer 2016 Prof Dr Matthas Lesch, Regula Krapf Lösungen Übungsblatt 3 Aufgabe 9 (10 Punkte) Das Horner-Schema st ene Methode zum Auswerten enes Polynoms n a0 x an der Stelle s

Mehr

UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Professor Dr. Dr.-Ing. habil. H. Müller-Steinhagen P R A K T I K U M.

UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Professor Dr. Dr.-Ing. habil. H. Müller-Steinhagen P R A K T I K U M. UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Professor Dr. Dr.-Ing. habl. H. Müller-Stenhagen P R A K T I K U M Versuch 9 Lestungsmessung an enem Wärmeübertrager m Glech- und Gegenstrombetreb

Mehr

Standortplanung. Positionierung von einem Notfallhubschrauber in Südtirol. Feuerwehrhaus Zentrallagerpositionierung

Standortplanung. Positionierung von einem Notfallhubschrauber in Südtirol. Feuerwehrhaus Zentrallagerpositionierung Standortplanung Postonerung von enem Notfallhubschrauber n Südtrol Postonerung von enem Feuerwehrhaus Zentrallagerpostonerung 1 2 Postonerung von enem Notfallhubschrauber n Südtrol Zu bekannten Ensatzorten

Mehr

Netzwerkstrukturen. Entfernung in Kilometer:

Netzwerkstrukturen. Entfernung in Kilometer: Netzwerkstrukturen 1) Nehmen wr an, n enem Neubaugebet soll für 10.000 Haushalte en Telefonnetz nstallert werden. Herzu muss von jedem Haushalt en Kabel zur nächstgelegenen Vermttlungsstelle gezogen werden.

Mehr

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com.

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com. Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, sultanow@gmal.com Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener

Mehr

Free Riding in Joint Audits A Game-Theoretic Analysis

Free Riding in Joint Audits A Game-Theoretic Analysis . wp Wssenschatsorum, Wen,8. Aprl 04 Free Rdng n Jont Audts A Game-Theoretc Analyss Erch Pummerer (erch.pummerer@ubk.ac.at) Marcel Steller (marcel.steller@ubk.ac.at) Insttut ür Rechnungswesen, Steuerlehre

Mehr

Die Schnittstellenmatrix Autor: Jürgen P. Bläsing

Die Schnittstellenmatrix Autor: Jürgen P. Bläsing QUALITY-APPs Applkatonen für das Qaltätsmanagement Prozessmanagement De Schnttstellenmatrx Ator: Jürgen P. Bläsng Schnttstellen (Übergangsstellen, Verbndngsstellen) n betreblchen Prozessen ergeben sch

Mehr

Für wen ist dieses Buch? Was ist dieses Buch? Besonderheiten. Neu in dieser Auflage

Für wen ist dieses Buch? Was ist dieses Buch? Besonderheiten. Neu in dieser Auflage Für wen st deses Bch? Das Taschenbch der Elektrotechnk rchtet sch an Stdentnnen nd Stdenten an nverstäten nd Fachhochschlen n den Berechen Elektrotechnk Nachrchtentechnk Technsche Informatk allgemene Ingenerwssenschaften

Mehr

Streuungs-, Schiefe und Wölbungsmaße

Streuungs-, Schiefe und Wölbungsmaße aptel IV Streuungs-, Schefe und Wölbungsmaße B... Lagemaße von äufgketsvertelungen geben allen weng Auskunft über ene äufgketsvertelung. Se beschreben zwar en Zentrum deser Vertelung, geben aber kenen

Mehr

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung Fallstude 4 Qualtätsregelkarten (SPC) und Versuchsplanung Abgabe: Lösen Se de Aufgabe 1 aus Abschntt I und ene der beden Aufgaben aus Abschntt II! Aufgabentext und Lösungen schrftlch bs zum 31.10.2012

Mehr

Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik)

Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik) Kredtpunkte-Klausur zur Lehrveranstaltung Projektmanagement (nkl. Netzplantechnk) Themensteller: Unv.-Prof. Dr. St. Zelewsk m Haupttermn des Wntersemesters 010/11 Btte kreuzen Se das gewählte Thema an:

Mehr

Institut für Technische Chemie Technische Universität Clausthal

Institut für Technische Chemie Technische Universität Clausthal Insttut für Technsche Cheme Technsche Unverstät Clusthl Technsch-chemsches Prktkum TCB Versuch: Wärmeübertrgung: Doppelrohrwärmeustuscher m Glechstrom- und Gegenstrombetreb Enletung ür de Auslegung von

Mehr

Keynesianisches Totalmodell

Keynesianisches Totalmodell Keynesansches Totalmodell : S-LM-Modell mt Geldund Kaptalmarkt S LM : Gütermarkt : roduktonsfunkton : rbetsmarkt * : Nomallohnfestsetzung s () W0 * W/ (W/)* * d () d (W/) = (,K) Fskalpoltk m Totalmodell

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

Dynamisches Programmieren

Dynamisches Programmieren Marco Thomas - IOI 99 -. Treffen n Bonn - Dynamsches Programmeren - Unverstät Potsdam - 8.02.999 Dynamsches Programmeren 957 R. Bellmann: Dynamc Programmng für math. Optmerungsprobleme Methode für Probleme,.

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

Einbau-/Betriebsanleitung Stahl-PE-Übergang Typ PESS / Typ PESVS Originalbetriebsanleitung Für künftige Verwendung aufbewahren!

Einbau-/Betriebsanleitung Stahl-PE-Übergang Typ PESS / Typ PESVS Originalbetriebsanleitung Für künftige Verwendung aufbewahren! Franz Schuck GmbH Enbau-/Betrebsanletung Stahl-PE-Übergang Typ PESS / Typ PESVS Orgnalbetrebsanletung Für künftge Verwendung aufbewahren! Enletung Dese Anletung st für das Beden-, Instandhaltungs- und

Mehr

Verkehrstechnik. Straßenbau

Verkehrstechnik. Straßenbau st messbar. smanagement Hlfsmttel Arbetsscherhet Fazt Verkehrstechnk Straßenbau IVU Semnar Mobltät, Verkehrsscherhet, Umwelt (04/06) Dpl. Ing. Sandra Voß st messbar. smanagement Hlfsmttel Arbetsscherhet

Mehr

VERGLEICH EINER EXPERIMENTELLEN UND SIMULATIONSBASIERTEN SENSITIVITÄTSANALYSE EINER ADAPTIVEN ÖLWANNE

VERGLEICH EINER EXPERIMENTELLEN UND SIMULATIONSBASIERTEN SENSITIVITÄTSANALYSE EINER ADAPTIVEN ÖLWANNE VERGLEICH EINER EXPERIMENTELLEN UND SIMULATIONSBASIERTEN SENSITIVITÄTSANALYSE EINER ADAPTIVEN ÖLWANNE Y. L*, S-O. Han*, T. Pfeffer** *) Fachgebet Systemzuverlässgket und Maschnenakustk, TU Darmstadt **)

Mehr

Managed Care und Pflegearrangements

Managed Care und Pflegearrangements Managed Care und Pflegearrangements 1. Wrtschaftswssenschaftlches Forum Essen Jürgen Zerth/Anka Rechert IDC Fürth/Neuendettelsau I. Ökonome der Langzetpflege II. Untersuchungsgegenstand: Sachwalterrollen

Mehr

Spiele und Codes. Rafael Mechtel

Spiele und Codes. Rafael Mechtel Spele und Codes Rafael Mechtel Koderungstheore Worum es geht Über enen Kanal werden Informatonen Übertragen. De Informatonen werden dabe n Worte über enem Alphabet Q übertragen, d.h. als Tupel w = (w,,

Mehr

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden. Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve

Mehr

Physikalisches Praktikum PAP 1 für Physiker (B.Sc.) September 2010

Physikalisches Praktikum PAP 1 für Physiker (B.Sc.) September 2010 Physkalsches Praktkum PAP 1 für Physker (B.Sc.) September 010 (Kurze) Enführung n de Grundlagen der Fehlerrechnung oder besser: Bestmmung von Messunscherheten Step nsde, lades & gentlemen, sad the museum

Mehr

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum Abgabe: Aufgabentext und Lösungen schrftlch bs zum 15. 6. 2012 I. Thema: Zehen mt und ohne Zurücklegen Lesen Se sch zunächst folgenden Text durch! Wr haben bsher Stchprobenzehungen aus Grundgesamtheten

Mehr

Lineare Optimierung Dualität

Lineare Optimierung Dualität Kaptel Lneare Optmerung Dualtät D.. : (Dualtät ) Folgende Aufgaben der lnearen Optmerung heßen symmetrsch dual zuenander: und { z = c x Ax b x } max, 0 { Z b A c } mn =, 0. Folgende Aufgaben der lnearen

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen Übungsklausur Wahrschenlchket und Regresson De Lösungen. Welche der folgenden Aussagen treffen auf en Zufallsexperment zu? a) En Zufallsexperment st en emprsches Phänomen, das n stochastschen Modellen

Mehr

18. Dynamisches Programmieren

18. Dynamisches Programmieren 8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus

Mehr

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6 Praktkum Physkalsche Cheme I (C-2) Versuch Nr. 6 Konduktometrsche Ttratonen von Säuren und Basen sowe Fällungsttratonen Praktkumsaufgaben 1. Ttreren Se konduktometrsch Schwefelsäure mt Natronlauge und

Mehr

Analytische Chemie. LD Handblätter Chemie. Bestimmung der chemischen Zusammensetzung. mittels Röntgenfluoreszenz C3.6.5.2

Analytische Chemie. LD Handblätter Chemie. Bestimmung der chemischen Zusammensetzung. mittels Röntgenfluoreszenz C3.6.5.2 SW-214-3 Analytsche Cheme Angewandte Analytk Materalanalytk LD andblätter Cheme Bestmmung der chemschen Zusammensetzung ener Messngprobe mttels Röntgenfluoreszenz Versuchszele Mt enem Röntgengerät arbeten.

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

4 Digitale Filter und Bildoperationen

4 Digitale Filter und Bildoperationen Dgtale Flter und Bldoperatonen 51 4 Dgtale Flter und Bldoperatonen Blder welche durch ene Kamera augenommen wurden snd otmals ncht drekt ür ene nacholgende Bldanalyse geegnet. Gründe daür snd bespelswese

Mehr

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar.

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar. . Nullstellensuche Enes der ältesten numerschen Probleme stellt de Bestmmung der Nullstellen ener Funkton = dar. =c +c =c +c +c =Σc =c - sn 3 Für ene Gerade st das Problem trval, de Wurzel ener quadratschen

Mehr

Bildverarbeitung Herbstsemester 2012. Bildspeicherung

Bildverarbeitung Herbstsemester 2012. Bildspeicherung Bldverarbetung Herbstsemester 2012 Bldspecherung 1 Inhalt Bldformate n der Überscht Coderung m Überblck Huffman-Coderung Datenredukton m Überblck Unterabtastung Skalare Quantserung 2 Lernzele De wchtgsten

Mehr

1 BWL 4 Tutorium V vom 15.05.02

1 BWL 4 Tutorium V vom 15.05.02 1 BWL 4 Tutorum V vom 15.05.02 1.1 Der Tlgungsfaktor Der Tlgungsfaktor st der Kehrwert des Endwertfaktors (EWF). EW F (n; ) = (1 + )n 1 T F (n; ) = 1 BWL 4 TUTORIUM V VOM 15.05.02 (1 ) n 1 Mt dem Tlgungsfaktor(TF)

Mehr

Die hierzu formulierte Nullhypothese H lautet: X wird durch die Verteilungsdichtefunktion h(x)

Die hierzu formulierte Nullhypothese H lautet: X wird durch die Verteilungsdichtefunktion h(x) ZZ Lösung zu Aufgabe : Ch²-Test Häufg wrd be der Bearbetung statstscher Daten ene bestmmte Vertelung vorausgesetzt. Um zu überprüfen ob de Daten tatsächlch der Vertelung entsprechen, wrd en durchgeführt.

Mehr

Grundgedanke der Regressionsanalyse

Grundgedanke der Regressionsanalyse Grundgedanke der Regressonsanalse Bsher wurden durch Koeffzenten de Stärke von Zusammenhängen beschreben Mt der Regressonsrechnung können für ntervallskalerte Varablen darüber hnaus Modelle geschätzt werden

Mehr

1 - Prüfungsvorbereitungsseminar

1 - Prüfungsvorbereitungsseminar 1 - Prüfungsvorberetungssemnar Kaptel 1 Grundlagen der Buchführung Inventur Inventar Blanz Inventur st de Tätgket des mengenmäßgen Erfassens und Bewertens aller Vermögenstele und Schulden zu enem bestmmten

Mehr

Operations Research II (Netzplantechnik und Projektmanagement)

Operations Research II (Netzplantechnik und Projektmanagement) Operatons Research II (Netzplantechnk und Projektmanagement). Aprl Frank Köller,, Hans-Jörg von Mettenhem & Mchael H. Bretner.. # // ::: Gute Vorlesung:-) Danke! Feedback.. # Netzplantechnk: Überblck Wchtges

Mehr

Schneller. Kompakter. Leistungsfähiger. Kleine, universelle Schwenkeinheit SRU-mini

Schneller. Kompakter. Leistungsfähiger. Kleine, universelle Schwenkeinheit SRU-mini SRU-mn Pneumatsch Schwenkenheten Mnaturschwenkenhet Schneller. Kompakter. Lestungsfähger. Klene, unverselle Schwenkenhet SRU-mn Lechte und schnelle Mnaturschwenkenhet mt velfältgen Optonen we Fluddurchführung,

Mehr

In der beschreibenden Statistik werden Daten erhoben, aufbereitet und analysiert. Beispiel einer Datenerhebung mit Begriffserklärungen (Vokabel)

In der beschreibenden Statistik werden Daten erhoben, aufbereitet und analysiert. Beispiel einer Datenerhebung mit Begriffserklärungen (Vokabel) Rudolf Brnkmann http://brnkmann-du.de Sete.. Datenerhebung, Datenaufberetung und Darstellung. In der beschrebenden Statstk werden Daten erhoben, aufberetet und analysert. Bespel ener Datenerhebung mt Begrffserklärungen

Mehr

1.1. Problemstellung und Zielsetzung

1.1. Problemstellung und Zielsetzung 1 1. Enführung Auf de Frage nach dem geegneten Zetpunkt für de Enführung ener radkal neuen Technologe oder von nnovatven Produkten mt deser Technologe, schent de Antwort offenschtlch: so schnell we möglch.

Mehr

Beschreibende Statistik Mittelwert

Beschreibende Statistik Mittelwert Beschrebende Statstk Mttelwert Unter dem arthmetschen Mttel (Mttelwert) x von n Zahlen verstehen wr: x = n = x = n (x +x +...+x n ) Desen Mttelwert untersuchen wr etwas genauer.. Zege für n = 3: (x x )

Mehr

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz): LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete

Mehr

Bewertung von Zinsswaps mittels Mehrkurvenbootstrapping

Bewertung von Zinsswaps mittels Mehrkurvenbootstrapping Bewertung von Znsswaps mttels Mehrkurvenbootstrappng OIS-Marktstandard gewnnt m Rahmen des EMIR-Portfoloabglechs an Bedeutung 1. Enletung De Bewertungsmethodk von Znsswaps hat sch gewandelt. Bs vor der

Mehr

Berechnung der Messunsicherheit nach GUM Kurzfassung in 20 min

Berechnung der Messunsicherheit nach GUM Kurzfassung in 20 min Berechnung der Messunscherhet nach GUM Kurzfassung n 0 mn MU der Stephan Meke PTB-Insttut Berln Gegenstand Defnton (verkürzt) VIM (Wörterb. d. Metrologe) Bespele / Anmerkungen Größe Größenwert Messwert

Mehr

Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte: Itemschwierigkeit P i

Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte: Itemschwierigkeit P i Itemanalyse und Itemkennwerte De Methoden der Analyse der Itemegenschaften st ncht m engeren Snne Bestandtel der Klassschen Testtheore Im Rahmen ener auf der KTT baserenden Testkonstrukton und -revson

Mehr

Einführung in die Finanzmathematik

Einführung in die Finanzmathematik 1 Themen Enführung n de Fnanzmathematk 1. Znsen- und Znsesznsrechnung 2. Rentenrechnung 3. Schuldentlgung 2 Defntonen Kaptal Betrag n ener bestmmten Währungsenhet, der zu enem gegebenen Zetpunkt fällg

Mehr

ω 0 = Protokoll zu Versuch E6: Elektrische Resonanz

ω 0 = Protokoll zu Versuch E6: Elektrische Resonanz Protokoll zu Versuch E6: Elektrsche esonanz. Enletung En Schwngkres st ene elektrsche Schaltung, de aus Kapaztät, Induktvtät und ohmschen Wderstand besteht. Stmmt de Frequenz der anregenden Wechselspannung

Mehr

Versuch C2: Monte-Carlo Simulationen eines Ferromagneten im Rahmen des Ising-Modells

Versuch C2: Monte-Carlo Simulationen eines Ferromagneten im Rahmen des Ising-Modells Versuch C2: Monte-Carlo Smulatonen enes Ferromagneten m Rahmen des Isng-Modells 15. November 2010 1 Zelstellung Es glt de Temperatur des Phasenüberganges zwschen dem ferro- und paramagnetschen Verhalten

Mehr

4.6 Das Pumping-Lemma für reguläre Sprachen:

4.6 Das Pumping-Lemma für reguläre Sprachen: Theoretsche Informatk 1 Vorlesungsskrpt vom Fretag, 30 Jun 000 Index: Erstellt von: (Matrkelnummer: 70899) Sete : 46 Das Pumpng-Lemma für reguläre Sprachen 1 Satz W 1 Zugrundelegende Idee des Pumpng-Lemma

Mehr

Spule, Induktivität und Gegeninduktivität

Spule, Induktivität und Gegeninduktivität .7. Sple, ndktvtät nd Gegenndktvtät Bldqelle: Doglas C. Gancol, Physk, Pearson-Stdm, 006 - das Magnetfeld Glechnamge Pole enes Magneten stoßen enander ab; nglechnamge Pole zehen sch gegensetg an. Wenn

Mehr

Auslegung eines Extrusionswerkzeugs

Auslegung eines Extrusionswerkzeugs Prof. Dr.-Ing Torsten Kes: S Laustz Skrt Auslegung enes Extrusonswerkzeugs Engangsbemerkung: Das Skrt versteht sch als Ergänzung zur Vorlesung und st ncht als Ersatz für de ersönlche Anwesenhet der Studerenden

Mehr

1.1 Grundbegriffe und Grundgesetze 29

1.1 Grundbegriffe und Grundgesetze 29 1.1 Grundbegrffe und Grundgesetze 9 mt dem udrtschen Temperturkoeffzenten 0 (Enhet: K - ) T 1 d 0. (1.60) 0 dt T 93 K Betrchtet mn nun den elektrschen Wderstnd enes von enem homogenen elektrschen Feld

Mehr

Versicherungstechnischer Umgang mit Risiko

Versicherungstechnischer Umgang mit Risiko Verscherungstechnscher Umgang mt Rsko. Denstlestung Verscherung: Schadensdeckung von für de enzelne Person ncht tragbaren Schäden durch den fnanzellen Ausglech n der Zet und m Kollektv. Des st möglch über

Mehr

ERP Cloud Tutorial. E-Commerce ECM ERP SFA EDI. Backup. Preise erfassen. www.comarch-cloud.de

ERP Cloud Tutorial. E-Commerce ECM ERP SFA EDI. Backup. Preise erfassen. www.comarch-cloud.de ERP Cloud SFA ECM Backup E-Commerce ERP EDI Prese erfassen www.comarch-cloud.de Inhaltsverzechns 1 Zel des s 3 2 Enführung: Welche Arten von Presen gbt es? 3 3 Beschaffungsprese erfassen 3 3.1 Vordefnerte

Mehr

Einführung in die Robotik Selbstlokalisierung. Mohamed Oubbati Institut für Neuroinformatik. Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm.

Einführung in die Robotik Selbstlokalisierung. Mohamed Oubbati Institut für Neuroinformatik. Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm. Enführung n de Robotk Selbstlokalserung Mohamed Oubbat Insttut für Neuronformatk Tel.: (+49) 731 / 50 4153 mohamed.oubbat@un-ulm.de 08. 01. 013 Dr. Oubbat, Enführung n de Robotk (Neuronformatk, Un-Ulm)

Mehr

VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE

VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE Karl Rudolf KOCH Knut RIESMEIER In: WELSCH, Walter (Hrsg.) [1983]: Deformatonsanalysen 83 Geometrsche Analyse und Interpretaton von Deformatonen

Mehr

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb S N De amte Erschenng der magnetschen Feldlnen bezechnet man als magnetschen Flss. = V s = Wb Kraftflssdchte oder magnetsche ndkton B. B d da B = Wb/m = T Für homogene Magnetfelder, we se m nneren von

Mehr

Ich habe ein Beispiel ähnlich dem der Ansys-Issue [ansys_advantage_vol2_issue3.pdf] durchgeführt. Es stammt aus dem Dokument Rfatigue.pdf.

Ich habe ein Beispiel ähnlich dem der Ansys-Issue [ansys_advantage_vol2_issue3.pdf] durchgeführt. Es stammt aus dem Dokument Rfatigue.pdf. Ich habe en Bespel ähnlch dem der Ansys-Issue [ansys_advantage_vol_ssue3.pdf durchgeführt. Es stammt aus dem Dokument Rfatgue.pdf. Abbldung 1: Bespel aus Rfatgue.pdf 1. ch habe es manuell durchgerechnet

Mehr

4. Optische Resonatoren

4. Optische Resonatoren 4. Optsche Resonatoren 4.. Modenselekton Bs jetzt haben wr nur den enfachsten Resonatortyp, den Fabry-erot Laser besprochen. In Abb. 4.. snd nochal de wchtsten Eenschaften deses Lasertyps darestellt. a)

Mehr

Eva Hoppe Stand: 2000

Eva Hoppe Stand: 2000 CHECKLISTE ARBEITSSCHUTZ A. Rechtsgrundlagen der Arbetgeberpflchten Ist der Arbetgeber/de Behördenletung mt der Rechtssystematk und dem modernen Verständns des Arbetsschutzes vertraut? Duale Rechtssystematk

Mehr

Erwartungswert, Varianz, Standardabweichung

Erwartungswert, Varianz, Standardabweichung RS 24.2.2005 Erwartungswert_Varanz_.mcd 4) Erwartungswert Erwartungswert, Varanz, Standardabwechung Be jedem Glücksspel nteresseren den Speler vor allem de Gewnnchancen. 1. Bespel: Setzen auf 1. Dutzend

Mehr

18. Vorlesung Sommersemester

18. Vorlesung Sommersemester 8. Vorlesung Sommersemester Der Drehmpuls des starren Körpers Der Drehmpuls des starren Körpers st etwas komplzerter. Wenn weder de Wnkelgeschwndgket um de feste Rotatonsachse st, so wrd mt Hlfe des doppelten

Mehr