SUCHPROBLEME UND ALPHABETISCHE CODES

Größe: px
Ab Seite anzeigen:

Download "SUCHPROBLEME UND ALPHABETISCHE CODES"

Transkript

1 SUCHPROBLEME UND ALPHABETISCHE CODES Der Problematik der alphabetische Codes liege Suchprobleme zugrude, dere Lösug dem iformatiostheoretische Problem der Fidug eies (optimale) alphabetische Codes gleich ist. Der alphabetische Code ist eie Form des Präfixcodes, d.h. ebe der Präfixeigeschaft, dass kei Codewort Afag eies Adere ist, wird er zusätzlich eier spezielle Ordug gerecht. Daher hadelt es sich hierbei um Suchprobleme, bei dee icht mehr alle Tests mit bestimmter Azahl vo Ergebisse zugelasse sid, d.h. weil der Suchbereich X vollstädig geordet ist, sid ur Tests, die dieser Ordug verträglich sid, zugelasse. Betrachte wir zuächst zwei solche Suchprobleme.. Suchproblem Die Ölpipelie Eie Ölpipelie bestehe aus Segmete. Am erste Segmet werde pro Sekude m Liter Öl eigepumpt. Komme am letzte Segmet icht m Liter a, so muss die Pipelie defekt sei. Ei Test der Durchflussmege vom k - te zum (k+) - te Segmet liefert als Ergebis die Iformatio, ob der Defekt im vordere oder hitere Teil der Pipelie zu fide ist. (biärer Test) Sei X = { } der Suchbereich; = Azahl der Segmete, wobei x X = x tes Segmet der Pipelie. Eie Messug zwische dem k te ud dem (k+) - te Segmet ist da dem biärem Test t k = t {k+.} gleichwertig (t k (x) = x > k). Das Iteresse der Defektfidug mit möglichst weige Messuge ist äquivalet dem Problem eie optimale alphabetische Code zu bestimme. 2. Suchproblem Datespeicherug I Computersysteme sid Date häufig uter bestimmte Stichwörter gespeichert. Sei die Azahl verschiedeer, alphabetisch geordeter Stichworte W W, i welche Date gespeichert sid. Utersucht werde soll, ob uter eiem gegebee Wort W Date gespeischert sid, ud ggf. dere Auslesug. Es wird vorausgesetzt, dass der Computer jedes der gespeicherte W i mit dem gesuchte W vergleiche ka, ud des Weitere uterscheide ka, ob W = W i, W alphabetisch vor bzw. hiter W i liegt. Falls W =W i so war die Suche erfolgreich, falls W zwische zwei gespeicherte Eiträge W j ud W j+, oder W vor W bzw. hiter W so verlief die Suche erfolglos. Sei X = {x.x } {y 0.y } der Suchbereich. x i bedeutet W=W i y j ( j -) bedeutet W liegt zwische W j ud W j+ y 0 bedeutet W liegt vor W ; y bedeutet W liegt hiter W

2 Dies impliziert folgede Ordug auf de Suchbereich X: y 0 <x <y <x 2 <y 2 <.<x <y. Der Vergleich der Wörter wird durch de Test t i beschriebe: z X: t i (z) = 0 z < x i t i (z) = z = x i t i (z) = 2 z > x i. Ei W mit möglichst weig Vergleiche zu fide ist äquivalet dem Problem der Miimierug der Koste eies Suchbaumes. Jees Problem ist allgemeier als das Pipelieproblem. Für de Fall, das alle Stichwörter W i die gleiche a-priori-wahrscheilichkeit 0 habe, so ist Problem 2 gleich dem Problem. Im Weitere beschäftige wir us mit Suchproblem. Gegebe sei ei Suchbereich X = {.} i atürlicher Weise geordet (,2,3,4,5,.). Zugelasse sid alle Tests, die damit verträglich sid. Situatio: Suchbereich X ; x X t k (x) = 0 t k (x) = 2 3 k t k = t {k+. } t k (x) = x > k Biärer Test a der Stelle k bezieht sich auf die Elemete der Mege {k+ } ud liefert:, falls x {k+ } 0, falls x {k+ }. Ziel ist die Miimierug der Suchdauer zur Idetifizierug des gesuchte Objekts. Methode zur Erreichug dieses Ziels sid hier so geate ichtsequetielle ud sequetielle Strategie.

3 Nichtsequetielle Strategie Eie ichtsequetielle Strategie ist dadurch gekezeichet, dass sie zuvor gewoee Iformatioe bei der Auswahl des folgede Tests icht berücksichtigt. Es gilt: Falls t i t i m eie erfolgreiche ichtsequetielle Strategie ist, muss für x { -}: (t i (x) t i m (x)) (t i (x +)... t i m (x +)) sei. d.h. für zwei verschiedee zu suchede Objekte liefert die ichtsequetielle Strategie auch zwei verschiedee Ergebisse. Speziell gilt: t i j (x) t i j (x + ) we i j = x. Bsp.: x = i j = x = (zu suchedes Objekt) (ei spezieller Test der Strategie) t i j (x) = t () = 0, weil x > k ( > ) falsch ist t i j (x+) = t (2) =, weil x > k (2 > ) richtig ist. Weil eie ichtsequetielle Strategie, wie bereits obe beschriebe, die Ergebisse eies Tests, zur Ermittlug des ächste Tests icht berücksichtigt, ka es vorkomme, das ei darauf folgeder Test, sich wiederum auf eie Teil des Bereichs des vorherige Tests bezieht. Da ei gesuchtes Objekt als idetifiziert gilt, we die betrachtete Mege ur och ei Elemet beihaltet hat dies zur Folge, dass eie ichtsequetielle Strategie alle Tests t k ( k -) ethalte muss um mit Sicherheit das gesuchte Objekt zu idetifiziere. Da ist die ichtsequetielle Strategie s = (t t - ) erfolgreich. Sequetielle Strategie Eie sequetielle Strategie ist dadurch gekezeichet, dass sie zuvor gewoee Iformatioe bei der Auswahl des folgede Tests berücksichtigt. We alle biäre Test zugelasse sid, braucht eie sequetielle Strategie für sichere Erfolg, im ugüstigste Fall midestes log2 Tests. (Im Folgede sei log2 gleich log ) Da bei diesem Suchproblem icht alle biäre Tests zugelasse sid, ist icht damit zu reche, mit weiger Tests auszukomme. Es lässt sich jedoch zeige, dass log Tests auch ausreiched sid.

4 Situatio: Suchbereich X; x X t k (x) = 0 t k (x) = 2 3 k Je achdem, wie der Test t k (x) ausfällt, ermittelt die sequetielle Strategie, de eigegrezte Suchbereich, bzw. de Parameter k für de folgede Test. Liefert t k (x) = 0, so ist bekat, dass das gesuchte Objekt icht i {k+ }, soder i { k} liege muss. Folglich geügt es ur och de Bereich { k} zu betrachte. Es hadelt sich um das Prizip der biäre Suche. Nach eiige Tests weiß ma das x A ist, wobei A X ist. Zu Begi war A = X. Aufgrud des Testaufbaus hat A stets die Gestalt A = {i+ j} (0 i j ). Es folgt der i+ j ächste Test t k mit k = 2. Das heißt das k ist das (relativ) mittlere Elemet vo A. Nach diesem Test weiß ma ob x A = {i+ k} oder x A = {k j} ist. Da sowohl A A als auch A hat, erreicht ma ach spätestes log 2 Tests, dass A eielemetig ist, d.h. x ist idetifiziert. Folgeder Satz ist u bewiese: Es sei X = { }. Die Mege aller zugelassee Tests bestehe aus de biäre Tests t k (0 k ) : t k (x) = x > k. Falls die Aufgabe dari besteht, die maximale Suchdauer zu miimiere, so beötigt die beste ichtsequetielle Strategie -, die beste sequetielle Strategie ie mehr als log Tests. Sequetielle Strategie sid bei dieser Art vo Suchprobleme viel scheller erfolgreich, als die beste ichtsequetielle Strategie. Gute ud optimale alphabetische Codes Gegebe sei u eie a-priori -Verteilug der Wahrscheilichkeite p = (p() p()). Auf der Mege X soll eie sequetielle Strategie miimaler erwarteter Suchdauer gefude werde. Es gilt: Die Ergebisfolge eier erfolgreiche sequetielle Strategie bilde eie Präfixcode.

5 Diese Aussage behält auch hier ihre Richtigkeit, da die Mege der Tests ud Strategie lediglich eigeschräkt wurde. Aufgrud der ordugserhaltede Struktur der zugelassee Tests hat der aus de Ergebisfolge gebildete Präfixcode eie besodere Struktur. Seie e(x) = (e(x) e L(x) (x)) ud e(y) = (e (y) e L(y) (y)) die Ergebisfolge für zwei verschiedee Objekte x, y X, wobei x < y ist. L(a) ist die Läge der Ergebisfolge Objekt a. Aus der Präfixeigeschaft folgt, dass j = mi { i mi[l(x),l(y)] : e i (x) e i (y)} wohldefiiert ist. (j ist diejeige Bitstelle i e(x) ud e(y), wo sich die Beide das erste Mal uterscheide) Die erste j Tests sid bei der Suche ach x ud y gleich. Sei u t k der j - te Test. Dies besagt, we e j (x) e j (y) ud x < y ist, muss y {k+ } ud x {k+ } sei. Demetspreched ist e j (x) = 0 ud e j (y) =. Im Alphabet {0,} mit 0 als erstem Buchstabe ist da das Wort e(x) alphabetisch vor e(y). Ei Alphabetischer Code wird daher wie folgt defiiert: Ei Präfixcode für Nachrichte heißt alphabetisch, we für k < l c(k) alphabetisch vor c(l) steht, d.h. j = mi {i : c i (k) c i (l)} => c j (k) < c j (l). Die Eigeschafte lasse sich i eiem Satz zusammefasse: i) Für jede sequetielle, erfolgreiche Suchstrategie bilde die Ergebisfolge eie alphabetische Code. ii) iii) Zu jedem alphabetische Code c gibt es eie sequetielle erfolgreiche Strategie, dere Ergebisfolge gleich de Codewörter vo c sid. Ist die a-priori-wahrscheilichkeit der i - te Nachricht gleich der a-priori- Wahrscheilichkeit des i - te Objekts, da ist die erwartete Suchdauer eier optimale sequetielle Strategie gleich der erwartete Codewortläge eies optimale alphabetische Codes Auf eie Beweis dieser Aussage wird aus Grüde der Komplexität verzichtet. Stattdesse widme wir us eier adere Problemstellug i diesem Zusammehag, ämlich der Frage: Zu welche L() L(), die Läge L(i) hat?, existiert ei alphabetischer Code, so dass das i - te Codewort

6 Da alphabetische Codes isbesodere Präfixcodes sid, müsse sie ebefalls der Ugleichug vo Kraft geüge d.h.: Li () 2. Falls die Folge L() L() mooto wachsed ist, so ist diese Form der Ugleichug auch hireichede Bedigug für die Existez eies alphabetische Codes mit jee Codewortläge. Im Allgemeie ist diese Bedigug jedoch icht hireiched. Ei Beispiel: Sei f beliebig ud weiterhi L() = f, L(2) = ud L(3) = f, so dass obige Ugleichug och erfüllt wäre. Zu diese gegebee Codewortläge existiert kei alphabetischer Code, da das zweite Codewort etweder 0 oder sei müsste, um der Lägeforderug gerecht zu werde. Dies wiederum hätte zur Folge, dass a) bei c(2) = 0 kei erstes Codewort c() existiert, welches alphabetisch vor c(2) liegt; c(2) wäre Präfix vo c() b) bei c(2) = kei drittes Codewort c(3) existiert, das alphabetisch hiter c(2) liegt, ohe das c(2) Präfix vo c(3) wäre. Wie uschwer zu erkee ist, spielt es im Gegesatz zu eifache Präfixcodes beim alphabetische Code ei wesetliche Rolle, a welcher Stelle ei lägemäßig kurzes bzw. das kürzeste Codewort steht. Mathematisch ergibt 3 L() i f 2 = 22.Für ei f, ist daher gezeigt, dass ei Ergebis 2 > 2 icht die Existez eies alphabetische Codes mit Codewortläge L() L() impliziert. Ei Ergebis der Ugleichug vo Kraft liefert jedoch eie hireichede Bedigug für 2 die Existez eies alphabetische Codes mit de Codewortläge L() L(). Betrachte wir hierzu eie biäre Wurzelbaum der Tiefe Lmax = max{l(i): ( i )}. Bei der Kostruktio eies Präfixcodes besetzt das i - te Codewort die 2 Lmax-L(i) am weiteste liks liegede freie Edpukte. Hier beötige wir u die doppelte Mege vo Edpukte. L() i Zu beweise ist also folgeder Satz: Falls 2 ist, existiert ei alphabetischer Code, 2 bei dem das i - te Codewort die Läge L(i) hat.

7 Lmax L() i Lmax Aus obiger Vorraussetzug (doppelte Mege vo Edpukte) folgt: 2 2 2, d.h. die Edpukte, die Azahl vo Edpukte, die ei Codewort besetzt ist maximal so groß wie die Azahl der Edpukte (Blätter) des Wurzelbaumes. Der Beweis für diese Aussage folgt durch de Beweis der folgede Aussage: Für alle i { } existiert ei alphabetischer Code mit Codewortläge L()...L(i), so dass jeder Edpukt im biäre Wurzelbaum der Läge Lmax, der Nachfolger eies Codewortes ist, das zu de am weiteste likst stehede 2 2 Lmax L() i Edpukte gehört. Das erste Codewort (erste Nachricht) bestehe aus L() Nulle. Folglich ist die Aussage für i = richtig. Setze wir weiterhi voraus, dass die Aussage für i < j bewiese sei. Es bleibt zu zeige, dass die Aussage auch für i = j stimmt. Sei c() c(j-) der bereits existierede alphabetische Code. j Lmax L( m) Lmax Lmax L( j) Da ist, sid die am weiteste rechts liegede m= max ( ) 22 L L j Edpukte och frei. Mit adere Worte: Die Azahl der durch die Codewörter c() c(j-) bisher besetze Edpukte ist höchstes so groß wie die Gesamtazahl der Edpukte des Wurzelbaums, verrigert um die Azahl vo Edpukte, die das j - te Codewort besetze wird. We daher u rechts im W-Baum och Plätze frei sid, ka das Codewort c(j-) icht ur aus Eise bestehe ud auch icht mit L(j) Eise begie. Dies gibt us die Möglichkeit ei k mit k = max{ r mi[ L(j-), L(j) ] : c r (j-) = 0}zu defiiere. K ist diejeige Bitstelle im (j-) - te Codewort, die am weiteste rechts im Bitstrig steht ud eie Null ist. Für alle Stelle m zwische ud k- ist c m (j) = c m (j-) defiiert. Für die Stelle m = k ist c m (j) = defiiert. Für alle Stelle m zwische k+ ud L(j) ist c m (j) = 0 defiiert. max ( ) Der Code bleibt alphabetisch ud ei Präfixcode. c(j) hat u wiederum 2 L L j Edpukte max ( ) als Nachfolger. Es reicht aus zu zeige, dass icht mehr als 2 L L j Edpukte zwische c(j-) ud c(j) liege. Sei d = (d d Lmax ) ei solcher Edpukt. (Pfadagabe im Baum) Vo der erste bis zur (k-)- te Stelle besitzt d das gleiche Aussehe wie c(j-) ud c(j). Wäre d k = müsste alle weitere Stelle vo (k+) bis zu L(j) übereistimmed mit c(j) gleich 0 sei, damit d liks vo c(j) liegt. Damit ist d ei Nachfolger vo c(j). Also muss d k = 0 sei. d muss rechts vo c(j-) liege. Folglich sid alle Stelle vo k+ bis zu h ( h = mi[l(j-), L(j)] ) vo d gleich diese Stelle im Codewort c(j-). We u h die Läge des Codewortes c(j-) gewese ist, so ist d damit ei Nachfolger vo c(j-) ud kei Edpukt liegt zwische c(j-) ud c(j). Falls h die Läge vo c(j) gewese max ( ) ist, so liege L(j) Stelle vo d fest. Für die restliche Positioe gibt es ur 2 L L j Möglichkeite. q.e.d.

8 Weiterhi ka mit Hilfe des vorhergehede Satzes (uter Zuhilfeahme des oiseless - codig - theorems) bewiese werde, dass für eie a - priori - Verteilug p = (p() p()), ( i: p(i) > 0) auf X Folgedes gilt: Sei A mi (p) die miimale Erwartete Suchdauer eier Strategie ud alle Tests t 0 bis t zugelasse. Uter obige Vorraussetzuge ist da: H(p) A mi (p) < H(p)+2. Ausgehed vo der Iformatio, dass ei gesuchtes Objekt sich i der Mege {i j} befidet, veräder wir u eie Strategie. Wir werde diese Mege uter Beachtug der Wahrscheilichkeite teile. Der folgede Test t k wird so gewählt, dass p(i k) p(k+ j) miimal ist. Auch we ma ituitiv glaubt, diese Strategie sei optimal, ist sie es icht. Diese Defiitio eier Strategie ist jedoch ützlich für weiterführede Utersuche useres Suchproblems. Über diverse Eigeschafte, Lemmata der Etropiefuktio ud Iduktiosbeweise, die de hier gewählte Rahme sprege würde, lässt sich die obere Schrake für alphabetische Codes gerigfügig verbesser ud folglich auch das oiseless - codig - theorem ud zeitliche Eigeschafte der Strategie. Falls die a - priori - Verteilug sogar die Gleichverteilug p ist, ergibt sich letztedlich für eie miimale erwartete Suchdauer eier Strategie: A mi (p) = L mi (p) = log log 2 +. Verfahre zur Kostruktio optimaler Strategie beziehe sich auf die Kostruktio vo biäre Bäume. Der beste Algorithmus beötigt O( 2 ) Recheschritte. Für das hier behadelte eifachere Suchproblem existiert ei Algorithmus der lediglich O( log ) Recheschritte braucht. Dieser fasst ählich dem Algorithmus vo Huffma zwei Nachrichte zu eier Neue zusamme, wobei diese icht ubedigt beachbart sei müsse. Jee Nachrichte sid aber i eiem adere Sie miteiader verbude. Der etstehede Code ist logischerweise kei alphabetischer Code, aber es gibt keie alphabetische desse erwartete Codewortläge kleier wäre. Vertauscht ma Codewortteile, ohe die Codewortläge zu veräder, erhält ma de optimale alphabetische Code. Quelle: R. Ahlswede ud I. Wegeer, Suchprobleme, Teuber.

Aufgaben und Lösungen der Probeklausur zur Analysis I

Aufgaben und Lösungen der Probeklausur zur Analysis I Fachbereich Mathematik AG 5: Fuktioalaalysis Prof. Dr. K.-H. Neeb Dipl.-Math. Rafael Dahme Dipl.-Math. Stefa Wager ATECHNISCHE UNIVERSITÄT DARMSTADT SS 007 19. Jui 007 Aufgabe ud Lösuge der Probeklausur

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n,

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n, f : a P UNIVERSIÄ DES SAARLANDES FACHRICHUNG 6. MAHEMAIK Prof. Dr. Rolad Speicher M.Sc. obias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 202 Musterlösug zu Blatt Aufgabe. Zeige Sie durch Abwadlug

Mehr

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist.

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist. Erfüllbarkeit, Uerfüllbarkeit, Allgemeigültigkeit Defiitio Eie Belegug β ist passed zu eiem Boolesche Term t, falls β für alle atomare Terme i t defiiert ist. (Wird ab jetzt ageomme.) Ist β(t) = true,

Mehr

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst.

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst. Krytologie: Krytograhie ud Krytoaalyse Krytologie ist die Wisseschaft, die sich mit dem Ver- ud Etschlüssel vo Iformatioe befasst. Beisiel Iteretkommuikatio: Versiegel (Itegrität der Nachricht) Sigiere

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Rolad Speicher M.Sc. Tobias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 01 Musterlösug zu Blatt 0 Aufgabe 1. Käpt Schwarzbart,

Mehr

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen:

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen: 61 6.2 Grudlage der mathematische Statistik 6.2.1 Eiführug i die mathematische Statistik I der mathematische Statistik behadel wir Masseerscheiuge. Wir habe es deshalb im Regelfall mit eier große Zahl

Mehr

AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3

AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3 INHALTSVERZEICHNIS AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2 Datefluß ud Programmablauf 2 Vorbedigug 3 Nachbedigug 3 Schleifeivariate 3 KONSTRUKTION 4 ALTERNATIVE ENTWURFSMÖGLICHKEITEN 5 EFFEKTIVE

Mehr

Statistik I/Empirie I

Statistik I/Empirie I Vor zwei Jahre wurde ermittelt, dass Elter im Durchschitt 96 Euro für die Nachhilfe ihrer schulpflichtige Kider ausgebe. I eier eue Umfrage uter 900 repräsetativ ausgewählte Elter wurde u erhobe, dass

Mehr

Qualitätskennzahlen für IT-Verfahren in der öffentlichen Verwaltung Lösungsansätze zur Beschreibung von Metriken nach V-Modell XT

Qualitätskennzahlen für IT-Verfahren in der öffentlichen Verwaltung Lösungsansätze zur Beschreibung von Metriken nach V-Modell XT Qualitätskezahle für IT-Verfahre i der öffetliche Verwaltug Lösugsasätze zur Vo Stefa Bregezer Der Autor arbeitet im Bereich Softwaretest ud beschäftigt sich als Qualitätsbeauftragter mit Theme zu Qualitätssicherug

Mehr

Zusammenfassung Wirtschaftsinformatik Stefan Käßmann

Zusammenfassung Wirtschaftsinformatik Stefan Käßmann I. Iformatio ud Nachricht 1. Iformatio ud Nachricht - Nachricht (Sytax), Sigale, Zeiche - Iformatio (Sematik), bit - Rausche 2. digitale Nachrichte - digitale Sigale (Sigalparameter aus edlicher Zeichevorrat)

Mehr

Kapitel 4: Stationäre Prozesse

Kapitel 4: Stationäre Prozesse Kapitel 4: Statioäre Prozesse M. Scheutzow Jauary 6, 2010 4.1 Maßerhaltede Trasformatioe I diesem Kapitel führe wir zuächst de Begriff der maßerhaltede Trasformatio auf eiem Wahrscheilichkeitsraum ei ud

Mehr

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen Testumfag für die Ermittlug ud Agabe vo Fehlerrate i biometrische Systeme Peter Uruh SRC Security Research & Cosultig GmbH peter.uruh@src-gmbh.de Eileitug Biometrische Systeme werde durch zwei wichtige

Mehr

2. Diophantische Gleichungen

2. Diophantische Gleichungen 2. Diophatische Gleichuge [Teschl05, S. 91f] 2.1. Was ist eie diophatische Gleichug ud wozu braucht ma sie? Def D2-1: Eie diophatische Gleichug ist eie Polyomfuktio i x,y,z,, bei der als Lösuge ur gaze

Mehr

Kapitel 6: Statistische Qualitätskontrolle

Kapitel 6: Statistische Qualitätskontrolle Kapitel 6: Statistische Qualitätskotrolle 6. Allgemeies Für die Qualitätskotrolle i eiem Uterehme (produzieredes Gewerbe, Diestleistugsuterehme, ) gibt es verschiedee Möglichkeite. Statistische Prozesskotrolle

Mehr

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft Wisseschaftliches Arbeite Studiegag Eergiewirtschaft - Auswerte vo Date - Prof. Dr. Ulrich Hah WS 01/013 icht umerische Date Tet-Date: Datebak: Name, Eigeschafte, Matri-Tabelleform Spalte: übliche Aordug:

Mehr

15.4 Diskrete Zufallsvariablen

15.4 Diskrete Zufallsvariablen .4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet

Mehr

Stochastik für WiWi - Klausurvorbereitung

Stochastik für WiWi - Klausurvorbereitung Dr. Markus Kuze WS 2013/14 Dipl.-Math. Stefa Roth 11.02.2014 Stochastik für WiWi - Klausurvorbereitug Gesetz der totale Wahrscheilichkeit ud Satz vo Bayes (Ω, F, P) Wahrscheilichkeitsraum, E 1,..., E F

Mehr

Informatik II Dynamische Programmierung

Informatik II Dynamische Programmierung lausthal Iformatik II Dyamische Programmierug. Zachma lausthal Uiversity, ermay zach@i.tu-clausthal.de Zweite Techik für de Algorithmeetwurf Zum Name: "Dyamische " hat ichts mit "Dyamik" zu tu, soder mit

Mehr

Zahlenfolgen, Grenzwerte und Zahlenreihen

Zahlenfolgen, Grenzwerte und Zahlenreihen KAPITEL 5 Zahlefolge, Grezwerte ud Zahlereihe. Folge Defiitio 5.. Uter eier Folge reeller Zahle (oder eier reelle Zahlefolge) versteht ma eie auf N 0 erlarte reellwertige Futio, die jedem N 0 ei a R zuordet:

Mehr

Grundgesamtheitsanaylsen und Stichproben. Betrachtungen zur Stichprobenfindung

Grundgesamtheitsanaylsen und Stichproben. Betrachtungen zur Stichprobenfindung MaMaEuSch Maagemet Mathematics for Europea Schools http://www.mathematik.uikl.de/ mamaeusch Grudgesamtheitsaaylse ud Stichprobe. Betrachtuge zur Stichprobefidug Paula Lagares Justo Puerto 1 MaMaEuSch 2

Mehr

Innerbetriebliche Leistungsverrechnung

Innerbetriebliche Leistungsverrechnung Ierbetriebliche Leistugsverrechug I der Kostestellerechug bzw. im Betriebsabrechugsboge (BAB ist ach der Erfassug der primäre Kostestellekoste das Ziel, die sekudäre Kostestellekoste, also die Koste der

Mehr

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt 2.4.5 Gauss-Test ud t-test für verbudee Stichprobe 2.4.5.8 Zum Begriff der verbudee Stichprobe Verbudee Stichprobe: Vergleich zweier Merkmale X ud Y, die jetzt a deselbe Persoe erhobe werde. Vorsicht:

Mehr

Gliederung. Value-at-Risk

Gliederung. Value-at-Risk Value-at-Risk Dr. Richard Herra Nürberg, 4. Noveber 26 IVS-Foru Gliederug Modell Beispiel aus der betriebliche Altersversorgug Verteilug des Gesatschades Value-at-Risk ud Tail Value-at-Risk Risikobeurteilug

Mehr

2. Gleichwertige Lösungen

2. Gleichwertige Lösungen 8. Gleichwertige Lösuge Für die Lösug jeder lösbare Aufgabe gibt es eie uedliche Azahl vo (abstrakte ud kokrete) Algorithme. Das folgede Problem illustriert, dass eie Aufgabe eifacher oder kompliziert,

Mehr

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I Uiversität des Saarlades Fakultät für Mathematik ud Iformatik Witersemester 2003/04 Prof. Dr. Joachim Weickert Dr. Marti Welk Dr. Berhard Burgeth Lösuge der Aufgabe zur Vorbereitug auf die Klausur Mathematik

Mehr

Versuch 13/1 NEWTONSCHE INTERFERENZRINGE Blatt 1 NEWTONSCHE INTERFERENZRINGE

Versuch 13/1 NEWTONSCHE INTERFERENZRINGE Blatt 1 NEWTONSCHE INTERFERENZRINGE Versuch 3/ NEWTONSCHE INTERFERENZRINGE Blatt NEWTONSCHE INTERFERENZRINGE Die Oberfläche vo Lise hat im allgemeie Kugelgestalt. Zur Messug des Krümmugsradius diet das Sphärometer. Bei sehr flacher Krümmug

Mehr

Wahrscheinlichkeit & Statistik

Wahrscheinlichkeit & Statistik Wahrscheilichkeit & Statistik created by Versio: 3. Jui 005 www.matheachhilfe.ch ifo@matheachhilfe.ch 079 703 7 08 Mege als Sprache der Wahrscheilichkeitsrechug, Begriffe, Grudregel Ereigisraum: Ω Ω Mege

Mehr

Gruppe 108: Janina Bär Christian Hörr Robert Rex

Gruppe 108: Janina Bär Christian Hörr Robert Rex TEHNIHE UNIVEITÄT HEMNITZ FAULTÄT FÜ INFOMATI Hardwarepraktikum im W /3 Versuch 3 equetielle ysteme I Gruppe 8: aia Bär hristia Hörr obert ex hemitz, 7. November Hardwarepraktikum equetielle ysteme I Aufgabe

Mehr

Folgen und Reihen Glege 03/01

Folgen und Reihen Glege 03/01 Folge ud Reihe Glege 03/0 I diesem Script werde folgede Theme behadelt: Folge (Eiführug)... Arithmetische Folge... Geometrische Folge...3 Mootoie...4 Kovergez...5 Grezwert...6 Schrake...7 Arithmetische

Mehr

Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares

Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares 4 6 Fachgebiet Regelugstechik Leiter: Prof. Dr.-Ig. Joha Reger Kleies Matrix-ABC 1 Eleetares Eie ( )-Matrix ist eie rechteckige Aordug vo reelle oder koplexe Zahle a ij (auch Skalare geat) ud besteht aus

Mehr

Mathematischer Vorkurs zum Studium der Physik

Mathematischer Vorkurs zum Studium der Physik Uiversität Heidelberg Mathematischer Vorkurs zum Studium der Physik Übuge Aufgabe zu Kapitel 1 (aus: K. Hefft Mathematischer Vorkurs zum Studium der Physik, sowie Ergäzuge) Aufgabe 1.1: SI-Eiheite: a)

Mehr

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008 Stochasti ud ihre Didati Refereti: Iris Wiler 10.11.2008 Aufgabe: Führe Sie i der Seudarstufe II die Biomialoeffiziete als ombiatorisches Azahlproblem ei. Erarbeite Sie mit de Schülerie ud Schüler mithilfe

Mehr

Übungsblatt 1 zur Vorlesung Angewandte Stochastik

Übungsblatt 1 zur Vorlesung Angewandte Stochastik Dr Christoph Luchsiger Übugsblatt 1 zur Vorlesug Agewadte Stochastik Repetitio WT Herausgabe des Übugsblattes: Woche 9, Abgabe der Lösuge: Woche 1 (bis Freitag, 1615 Uhr), Rückgabe ud Besprechug: Woche

Mehr

1 Analysis T1 Übungsblatt 1

1 Analysis T1 Übungsblatt 1 Aalysis T Übugsblatt A eier Weggabelug i der Wüste lebe zwei Brüder, die vollkomme gleich aussehe, zwische dee es aber eie gewaltige Uterschied gibt: Der eie sagt immer die Wahrheit, der adere lügt immer.

Mehr

Das Rätsel mit der Balkenwaage

Das Rätsel mit der Balkenwaage Das Rätsel mit der Balkewaage Mathematische Abhadlug über ei Iformatiosproblem 6. Juli 998:. Fassug 6. Jauar 999: 2. Fassug 24. Jui 2005: Überarbeitug Marti Abbühl, Thu, CH balkewaage@abbuehl.et 0. Ihalt

Mehr

... a ik) i=1...m, k=1...n A = = ( a mn

... a ik) i=1...m, k=1...n A = = ( a mn Zurück Stad: 4..6 Reche mit Matrize I der Mathematik bezeichet ma mit Matrix im Allgemeie ei rechteckiges Zahleschema. I der allgemeie Darstellug habe die Zahle zwei Idizes, de erste für die Zeileummer,

Mehr

Nennenswertes zur Stetigkeit

Nennenswertes zur Stetigkeit Neeswertes zur Stetigkeit.) Puktweise Stetigkeit: Vo Floria Modler Defiitio der pukteweise Stetigkeit: Eie Fuktio f : D R ist geau da i x D stetig, we gilt: ε > δ >, so dass f ( x) f ( x ) < ε x D mit

Mehr

Lektion II Grundlagen der Kryptologie

Lektion II Grundlagen der Kryptologie Lektio II Grudlage der Kryptologie Klassische Algorithme Ihalt Lektio II Grudbegriffe Kryptologie Kryptographische Systeme Traspositioschiffre Substitutioschiffre Kryptoaalyse Übuge Vorlesug Datesicherheit

Mehr

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable Allgemeie Lösuge der -dimesioale Laplace-Gleichug ud ihre komplexe Variable Dr. rer. at. Kuag-lai Chao Göttige, de 4. Jauar 01 Abstract Geeral solutios of the -dimesioal Laplace equatio ad its complex

Mehr

Wahrscheinlichkeit und Statistik

Wahrscheinlichkeit und Statistik ETH Zürich HS 2015 Prof. Dr. P. Embrechts Wahrscheilichkeit ud Statistik D-INFK Lösuge Serie 2 Lösug 2-1. (a Wir bereche P [W c B] auf zwei Arte: (a Wir betrachte folgede Tabelle: Azahl W W c B 14 6 B

Mehr

5 Bernoulli-Kette. 5.1 Bernoulli-Experiment. Jakob Bernoulli 1654-1705 Schweizer Mathematiker und Physiker. 5.1.1 Einleitung

5 Bernoulli-Kette. 5.1 Bernoulli-Experiment. Jakob Bernoulli 1654-1705 Schweizer Mathematiker und Physiker. 5.1.1 Einleitung Seite vo 7 5 Beroulli-Kette Jakob Beroulli 654-705 Schweizer Mathematiker ud Physiker 5. Beroulli-Exerimet 5.. Eileitug Oft iteressiert ma sich bei Zufallsexerimete icht für die eizele Ergebisse, soder

Mehr

3. Tilgungsrechnung. 3.1. Tilgungsarten

3. Tilgungsrechnung. 3.1. Tilgungsarten schreier@math.tu-freiberg.de 03731) 39 2261 3. Tilgugsrechug Die Tilgugsrechug beschäftigt sich mit der Rückzahlug vo Kredite, Darlehe ud Hypotheke. Dabei erwartet der Gläubiger, daß der Schulder seie

Mehr

AVANTI Neuerungen. Inhalt. I. Neuerungen Version 16. 1. Pin Funktion. 2. Status für Nachtragspositionen. 3. DBD Baupreise EFB

AVANTI Neuerungen. Inhalt. I. Neuerungen Version 16. 1. Pin Funktion. 2. Status für Nachtragspositionen. 3. DBD Baupreise EFB Neueruge Software Techologie GmbH 67433 Neustadt / Weistraße Ihalt I. Neueruge Versio 16 3 1. Pi Fuktio 3 2. Status für Nachtragspositioe 5 3. DBD Baupreise EFB 6 4. Programm Eistiegs Assistet 8 5. Voreistellugs-Assistet

Mehr

Lernhilfe in Form eines ebooks

Lernhilfe in Form eines ebooks Ziseszisrechug Lerhilfe i Form eies ebooks apitel Thema Seite 1 Vorwort ud Eiführug 2 2 Theorie der Ziseszisrechug 5 3 Beispiele ud Beispielrechuge 12 4 Testaufgabe mit Lösuge 18 Zis-Ziseszis.de 212 Seite

Mehr

Aufgaben zur vollständigen Induktion

Aufgaben zur vollständigen Induktion c 7 by Raier Müller - Aufgabe zur vollstädige Idutio We ichts aderes agegebe ist, da gelte die Behauptuge für IN {; ; ;...}. A) Teilbareit: ) ist gerade (d.h. durch teilbar). ) ist durch teilbar. ) ist

Mehr

Nachklausur - Analysis 1 - Lösungen

Nachklausur - Analysis 1 - Lösungen Prof. Dr. László Székelyhidi Aalysis I, WS 212 Nachklausur - Aalysis 1 - Lösuge Aufgabe 1 (Folge ud Grezwerte). (i) (1 Pukt) Gebe Sie die Defiitio des Häufugspuktes eier reelle Zahlefolge (a ) N. Lösug:

Mehr

Kunde. Kontobewegung

Kunde. Kontobewegung Techische Uiversität Müche WS 2003/04, Fakultät für Iformatik Datebaksysteme I Prof. R. Bayer, Ph.D. Lösugsblatt 4 Dipl.-Iform. Michael Bauer Dr. Gabi Höflig 17.11. 2003 Abbildug E/R ach relatioal - Beispiel:

Mehr

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD.

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD. ZAHLENFOLGEN Eiführede Beispiele Arithmetische Folge Datei Nr. 400 SW Das komplette Mauskript befidet sich auf der Mathematik - CD Friedrich Buckel Februar 00 Iteratsgymasium Schloß Torgelow Ihalt Eiführede

Mehr

elektr. und magnet. Feld A 7 (1)

elektr. und magnet. Feld A 7 (1) FachHochschule Lausitz Physikalisches Praktikum α- ud β-strahlug im elektr. ud maget. Feld A 7 Name: Matrikel: Datum: Ziel des Versuches Das Verhalte vo α- ud β-strahlug im elektrische ud magetische Feld

Mehr

Mengenbegriff und Mengendarstellung

Mengenbegriff und Mengendarstellung R. Brikma http://brikma-du.de Seite 1 05.10.008 Megebegriff ud Megedarstellug Eie Mege, ist die Zusammefassug bestimmter, wohluterschiedeer Objekte userer Aschauug ud useres Dekes welche Elemete der Mege

Mehr

Kapitel 6: Quadratisches Wachstum

Kapitel 6: Quadratisches Wachstum Kapitel 6: Quadratisches Wachstum Dr. Dakwart Vogel Ui Esse WS 009/10 1 Drei Beispiele Beispiel 1 Bremsweg eies PKW Bremsweg Auto.xls Ui Esse WS 009/10 Für user Modell des Bremsweges gilt a = a + d a =

Mehr

Versicherungstechnik

Versicherungstechnik Operatios Research ud Wirtschaftsiformati Prof. Dr. P. Recht // Dipl.-Math. Rolf Wedt DOOR Versicherugstechi Übugsblatt 3 Abgabe bis zum Diestag, dem 03..205 um 0 Uhr im Kaste 9 Lösugsvorschlag: Vorbereituge

Mehr

IWW Studienprogramm. Vertiefungsstudium. Modul XI: Volkswirtschaftslehre. Lösungshinweise zur 1. Musterklausur

IWW Studienprogramm. Vertiefungsstudium. Modul XI: Volkswirtschaftslehre. Lösungshinweise zur 1. Musterklausur Istitut für Wirtschaftswisseschaftliche Forschug ud Weiterbildug GmbH Istitut a der FerUiversität i Hage IWW Studieprogramm Vertiefugsstudium Modul XI: Volkswirtschaftslehre Lösugshiweise zur 1. Musterklausur

Mehr

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39 Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle

Mehr

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222 Korrekturrichtliie zur Studieleistug Wirtschaftsmathematik am..007 Betriebswirtschaft BB-WMT-S-07 Für die Bewertug ud Abgabe der Studieleistug sid folgede Hiweise verbidlich: Die Vergabe der Pukte ehme

Mehr

Physikalische Grundlagen: Strahlengang durch optische Systeme

Physikalische Grundlagen: Strahlengang durch optische Systeme ieser Text ist ür iteressierte Leser gedacht, die sich über die klausur-relevate, physiologische Grudlage hiaus mit der Optik des Auges beschätige wolle! Physikalische Grudlage: Strahlegag durch optische

Mehr

Transformator. n Windungen

Transformator. n Windungen echische iversität Dresde stitut für Ker- ud eilchephysik R. Schwierz V/5/29 Grudpraktikum Physik Versuch R rasformator rasformatore werde i viele ereiche der Elektrotechik ud Elektroik eigesetzt. Für

Mehr

Page-Rank: Markov-Ketten als Grundlage für Suchmaschinen im Internet

Page-Rank: Markov-Ketten als Grundlage für Suchmaschinen im Internet Humboldt-Uiversität zu Berli Istitut für Iformatik Logik i der Iformatik Prof. Dr. Nicole Schweikardt Page-Rak: Markov-Kette als Grudlage für Suchmaschie im Iteret Skript zum gleichamige Kapitel der im

Mehr

Byzantinische Einigung im Full-Information-Modell in O(log n) Runden

Byzantinische Einigung im Full-Information-Modell in O(log n) Runden Byzatiische Eiigug im Full-Iformatio-Modell i O(log ) Rude Martia Hüllma Uiversität Paderbor (martiah@upb.de) Zusammefassug. Byzatiische Eiigug stellt ei grudlegedes Problem im Bereich verteilter Systeme

Mehr

Musterlösung zu Übungsblatt 2

Musterlösung zu Übungsblatt 2 Prof. R. Padharipade J. Schmitt C. Schießl Fuktioetheorie 25. September 15 HS 2015 Musterlösug zu Übugsblatt 2 Aufgabe 1. Reelle Fuktioe g : R R stelle wir us üblicherweise als Graphe {(x, g(x)} R R vor.

Mehr

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert.

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert. Prof. Dr. H. Rommelfager: Etscheidugstheorie, Kaitel 3 7 3. Etscheidug bei Risiko (subjektive oder objektive) Eitrittswahrscheilichkeite für das Eitrete der mögliche Umweltzustäde köe vom Etscheidugsträger

Mehr

Ein kleines Einmaleins über Mittelwertbildungen

Ein kleines Einmaleins über Mittelwertbildungen Vorlesugsergäzug zur Igeieurmathematik R.Brigola Ei kleies Eimaleis über Mittelwertbilduge Grudlage über arithmetische Mittel, geometrische Mittel, harmoische Mittel, quadratische Mittel ud das arithmetisch-geometrische

Mehr

Beurteilung des Businessplans zur Tragfähigkeitsbescheinigung

Beurteilung des Businessplans zur Tragfähigkeitsbescheinigung Fachkudige Stellugahme Beurteilug des Busiessplas zur Tragfähigkeitsbescheiigug Name Datum Has Musterma 7. Oktober 2015 Wilfried Orth Grüdugsberatug Stadort Würzburg: Stadort Stuttgart: Waldleite 9a Möhriger

Mehr

Leitfaden zu den Zertifikate-Indizes. Discount-Index Outperformance-Index Bonus-Index Kapitalschutz-Index Aktienanleihen-Index

Leitfaden zu den Zertifikate-Indizes. Discount-Index Outperformance-Index Bonus-Index Kapitalschutz-Index Aktienanleihen-Index Leitfade zu de Zertifikate-Idizes Discout-Idex Outerformace-Idex Bous-Idex Kaitalschutz-Idex Aktiealeihe-Idex Fassug vom 22.02.2011 Versiosübersicht Versios- ID 1.00 1.10 1.20 1.30 Datum 28.02.2009 28.04.2009

Mehr

IWW Studienprogramm. Aufbaustudium. Gründungscontrolling. Lösungshinweise zur 3. Musterklausur

IWW Studienprogramm. Aufbaustudium. Gründungscontrolling. Lösungshinweise zur 3. Musterklausur Istitut für Wirtschaftswisseschaftliche Forschug ud Weiterbildug GmbH Istitut a der FerUiversität i Hage IWW Studieprogramm Aufbaustudium Grüdugscotrollig Lösugshiweise zur 3. Musterklausur Lösugshiweise

Mehr

In Abhängigkeit vom Zeitpunkt des Auftretens wird ein Rezidiv als platinsensibel

In Abhängigkeit vom Zeitpunkt des Auftretens wird ein Rezidiv als platinsensibel GYNÄKOLOGISCHE ONKOLOGIE Die Qualität der Rezidivtherapie beim Ovarialkarziom i Deutschlad Eie Qualitätssicherugserhebug im Rahme des Aktiosprogramms der AGO Kommissio OVAR (QS-OVAR) A. du Bois, J. Rocho

Mehr

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S Statistik mit Excel 2013 Peter Wies Theme-Special 1. Ausgabe, Februar 2014 W-EX2013S 3 Statistik mit Excel 2013 - Theme-Special 3 Statistische Maßzahle I diesem Kapitel erfahre Sie wie Sie Date klassifiziere

Mehr

Leitfaden zum. Bondm-Index

Leitfaden zum. Bondm-Index Leitfade zum Bodm-Idex Versio 1.0 vom 01. September 2011 1 Ihalt Eiführug 1 Parameter des Idex 1.1 Kürzel ud ISIN 1.2 Startwert 1.3 Verteilug 1.4 Preise ud Berechugsfrequez 1.5 Gewichtug 1.6 Idex-Komitee

Mehr

186.813 Algorithmen und Datenstrukturen 1 VU 6.0 1. Übungstest SS 2012 26. April 2012

186.813 Algorithmen und Datenstrukturen 1 VU 6.0 1. Übungstest SS 2012 26. April 2012 Techische Uiversität Wie Istitut für Computergraphik ud Algorithme Arbeitsbereich für Algorithme ud Datestrukture 186.813 Algorithme ud Datestrukture 1 VU 6.0 1. Übugstest SS 2012 26. April 2012 Mache

Mehr

Arithmetische und geometrische Folgen. Die wichtigsten Theorieteile. und ganz ausführliches Training. Datei Nr

Arithmetische und geometrische Folgen. Die wichtigsten Theorieteile. und ganz ausführliches Training. Datei Nr DEMO für ZAHLENFOLGEN Teil 2 Arithmetische ud geometrische Folge Die wichtigste Theorieteile ud gz ausführliches Traiig Datei Nr. 40012 Neu geschriebe ud sehr erweitert Std: 4. Februar 2010 INTERNETBIBLIOTHEK

Mehr

Finanzmathematische Formeln und Tabellen

Finanzmathematische Formeln und Tabellen Jui 2008 Dipl.-Betriebswirt Riccardo Fischer Fiazmathematische Formel ud Tabelle Arbeitshilfe für Ausbildug, Studium ud Prüfug im Fach Fiaz- ud Ivestitiosrechug Dieses Werk, eischließlich aller seier Teile,

Mehr

Versuch 1/1 POISSON STATISTIK Blatt 1 POISSON STATISTIK. 1. Vorbemerkung

Versuch 1/1 POISSON STATISTIK Blatt 1 POISSON STATISTIK. 1. Vorbemerkung Versuch 1/1 POISSON STATISTIK Blatt 1 POISSON STATISTIK Physikalische Prozesse, die eier statistische Gesetzmäßigkeit uterworfe sid, lasse sich mit eier Verteilugsfuktio beschreibe. Die Gauß-Verteilug

Mehr

x 2 + 2 m c Φ( r, t) = n q n (t) φ n ( r) (5) ( + k 2 n ) φ n ( r) = 0 (6a)

x 2 + 2 m c Φ( r, t) = n q n (t) φ n ( r) (5) ( + k 2 n ) φ n ( r) = 0 (6a) Quatisierug eies skalare Feldes Das Ziel ist eigetlich das elektromagetische Feld zu quatisiere, aber wie ma scho a de MAXWELLsche Gleichuge sehe ka, ist es zu kompliziert, um damit zu begie. Außerdem

Mehr

Behandlung von Messunsicherheiten (Fehlerrechnung)

Behandlung von Messunsicherheiten (Fehlerrechnung) Behadlug vo Messusicherheite (Fehlerrechug). Ermittlug vo Messusicherheite. Messug ud Messusicherheit Die Messug eier physikalische Größe erfolgt durch de Vergleich dieser Größe mit eier Bezugseiheit ach

Mehr

Gute Gastgeber für Allergiker. Leitfaden für den Umgang mit Allergenen in Gastronomie und Hotellerie

Gute Gastgeber für Allergiker. Leitfaden für den Umgang mit Allergenen in Gastronomie und Hotellerie Gute Gastgeber für Allergiker Leitfade für de Umgag mit Allergee i Gastroomie ud Hotellerie VORWORT Geuss trotz Allergie Am Abed i ei schöes Restaurat eikehre, sich ei gutes Gericht aus der Speisekarte

Mehr

1 Grenzwerte und Stetigkeit bei Funktionen mehrerer Variablen

1 Grenzwerte und Stetigkeit bei Funktionen mehrerer Variablen KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffma SS 204 6.04.204 Höhere Mathematik II für die Fachrichtug Iformatik. Saalübug (6.04.204) Grezwerte ud Stetigkeit

Mehr

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110 Name, Vorame Matrikel-Nr. Studiezetrum Studiegag Fach Art der Leistug Klausur-Kz. Betriebswirtschaft Wirtschaftsmathematik Studieleistug Datum 10.11.2001 BW-WMT-S12 011110 Verwede Sie ausschließlich das

Mehr

Die OÖGKK auf einen Klick Information und e-services für Unternehmen

Die OÖGKK auf einen Klick Information und e-services für Unternehmen PARTNERIN DER WIRTSCHAFT GEMEINSAM STARTEN IHR ERSTER MITARBEITER ERSTMALS DIENSTNEHMER ANMELDEN DIE E-SERVICES DER OÖGKK BEITRAGSGRUPPE ERMITTELN ELDA DAS ELEKTRONISCHE DATENAUSTAUSCHSYSTEM KRANKENSTANDSBESCHEINIGUNG

Mehr

Klasse: Platzziffer: Punkte: / Graph zu f

Klasse: Platzziffer: Punkte: / Graph zu f Pflichtteil Mathematik I Aufgabe P Name: Vorame: Klasse: Platzziffer: Pukte: / P.0 Gegebe ist die Fuktio f mit der Gleichug (siehe Zeichug). y x8 y,25 4 mit GI IRIR Graph zu f O x P. x 8 Die Pukte C (x,25

Mehr

Merge-Sort und Binäres Suchen

Merge-Sort und Binäres Suchen Merge-Sort ud Biäres Suche Ei Bericht vo Daiel Haeh Mediziische Iformatik, Prosemiar WS 05/06 Ihaltsverzeichis I. Eileitug 3 II. III. IV. i. Das Divide-ad-coquer -Verfahre Merge-Sort i. Eileitug ii. Fuktiosweise

Mehr

Aufgaben zur Analysis I

Aufgaben zur Analysis I Aufgabe zur Aalysis I Es werde folgede Theme behadelt:. Logik, Iduktio, Mege, Abbilduge 2. Supremum, Ifimum 3. Folge, Fuktioefolge 4. Reihe, Potezreihe 5. Mootoie ud Stetigkeit 6. Differetialrechug 7.

Mehr

Von der Augenlinse zur Auftragssteuerung: einige praktische Anwendungsbeispiele

Von der Augenlinse zur Auftragssteuerung: einige praktische Anwendungsbeispiele Vo der Augelise zur Auftragssteuerug: eiige praktische Awedugsbeispiele Prosemiar Evolutiosstrategie August 00 Roy Pappert Ihalt. Optimierug vo Strukture 3.. Optimierug vo Fachwerk 3.. Neuroales Netz 6.3.

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Studiegag Betriebswirtschaft Fach Wirtschaftsmathematik Art der Leistug Studieleistug Klausur-Kz. BW-WMT-S1 040508 Datum 08.05.004 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich: Verwede

Mehr

Beschreibende Statistik Kenngrößen in der Übersicht (Ac)

Beschreibende Statistik Kenngrößen in der Übersicht (Ac) Beschreibede Statistik Kegröße i der Übersicht (Ac) Im folgede wird die Berechugsweise des TI 83 (sowie vo SPSS, s. ute) verwedet. Diese geht auf eie Festlegug vo Moore ud McCabe (00) zurück. I der Literatur

Mehr

Parameter von Häufigkeitsverteilungen

Parameter von Häufigkeitsverteilungen Kapitel 3 Parameter vo Häufigkeitsverteiluge 3. Mittelwerte Mo Der Modus (:= häufigster Wert, Abk.: Mo) ist der Merkmalswert mit der größte Häufigkeit, falls es eie solche gibt. Er sollte ur bei eigipflige

Mehr

Statistik I Februar 2005

Statistik I Februar 2005 Statistik I Februar 2005 Aufgabe 0 Pukte Ei Merkmal X mit de mögliche Auspräguge 0 ud, das im Folgede wie ei kardialskaliertes Merkmal behadelt werde ka, wird a Merkmalsträger beobachtet. Dabei bezeichet

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12 Mthemtisches Istitut der Uiversität Müche Prof. Dr. Peter Otte WiSe 203/4 Lösug 2 2.0.204 Aufgbe 2. [8 Pute] Übuge zur Alysis für Iformtier ud Sttistier Lösug zu Bltt 2 Für eie Teilmege Ω R, sei {, flls

Mehr

Geometrische Folgen. Auch Wachstumsfolgen Viele Aufgaben. Lösungen nur auf der Mathe-CD Hier nur Ausschnitte. Datei Nr

Geometrische Folgen. Auch Wachstumsfolgen Viele Aufgaben. Lösungen nur auf der Mathe-CD Hier nur Ausschnitte. Datei Nr ZAHLENFOLGEN Teil Geometrische Folge Auch Wachstumsfolge Viele Aufgabe Lösuge ur auf der Mathe-CD Hier ur Ausschitte Datei Nr. 00 Friedrich Buckel März 00 Iteretbibliothek für Schulmathematik 00 Geometrische

Mehr

1 = 1. 6 Induktionsannahme: Die Formal gelte für n = k. Induktionsschritt: Gültigkeit der Formel für k+1: 1 2 + 2 2 +... + k 2 + (k + 1) 2 = 2 = 6 = 6

1 = 1. 6 Induktionsannahme: Die Formal gelte für n = k. Induktionsschritt: Gültigkeit der Formel für k+1: 1 2 + 2 2 +... + k 2 + (k + 1) 2 = 2 = 6 = 6 65 Eric Müller Vollstädige Iduktio Nach GIUSEPPE PEANO (858-93) ka ma die Mege N der atürliche Zahle durch folgede Axiome defiiere []:. ist eie atürliche Zahl.. Zu jeder atürliche Zahl gibt es geau eie

Mehr

Der natürliche Werkstoff Holz - Statistische Betrachtungen zum uniaxialen Zugversuch am Beispiel von Furnier

Der natürliche Werkstoff Holz - Statistische Betrachtungen zum uniaxialen Zugversuch am Beispiel von Furnier Der atürliche Werkstoff Holz - Statistische Betrachtuge zum uiaxiale Zugversuch am Beispiel vo Furier B. Bellair, A. Dietzel, M. Zimmerma, Prof. Dr.-Ig. H. Raßbach Zusammefassug FH Schmalkalde, 98574 Schmalkalde,

Mehr

Prof. Dr. Roland Füss Statistik II SS 2008

Prof. Dr. Roland Füss Statistik II SS 2008 1. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug ergibt sich aus de Grezwertsätze. Grezwertsätze sid Aussage über eie Zufallsvariable für de Fall, dass die Azahl

Mehr

Mit Ideen begeistern. Mit Freude schenken.

Mit Ideen begeistern. Mit Freude schenken. Mehr Erfolg. I jeder Beziehug. Mit Idee begeister. Mit Freude scheke. Erfolgreiches Marketig mit Prämie, Werbemittel ud Uterehmesausstattuge. Wo Prämie ei System habe, hat Erfolg Methode. Die Wertschätzug

Mehr

Formelsammlung Mathematik

Formelsammlung Mathematik Formelsammlug Mathematik 1 Fiazmathematik 1.1 Reterechug Sei der Zissatz p%, der Zisfaktor q = 1 + p 100. Seie R die regelmäßig zu zahlede Rate, die Laufzeit. Edwert: Barwert: achschüssig R = R q 1 q 1

Mehr

2. Datenbankentwurf mittels. Entity-Relationship - Modell (ERM) 2.1. Entities. Definitionen:

2. Datenbankentwurf mittels. Entity-Relationship - Modell (ERM) 2.1. Entities. Definitionen: - 2 - - 22-2. Datebaketwurf mittels Etity-Relatioship - Modell (ERM) Ursprug: Che 976, heute viele Variate Bedeutug: grafisches Hilfsmittel zur sematische Modellierug der Diskurswelt (Awedugsgebiet) (d.h.

Mehr

Fehlerrechnung. 3. Genauigkeit von Meßergebnissen am Beispiel der Längenmessung

Fehlerrechnung. 3. Genauigkeit von Meßergebnissen am Beispiel der Längenmessung 1 Gie 11/000 Fehlerrechug 1. Physikalische Größe: Zahlewert ud Eiheit. Ursache vo Meßfehler 3. Geauigkeit vo Meßergebisse am Beispiel der Lägemessug 4. Messug eier kostate Größe ud Mittelwert 5. Messug

Mehr

Ihre Strategie ist falsch

Ihre Strategie ist falsch Praxis ud Aweduge Security i Idustrial Cotrol Systems (ICS) Ihre Strategie ist falsch Prof. Dr. Hartmut Pohl, Geschäftsführeder Gesellschafter softscheck GmbH, Köl Sicherheit i Idustriesteueruge wird zuehmed

Mehr

beck-shop.de 2. Online-Marketing

beck-shop.de 2. Online-Marketing beck-shop.de 2. Olie-Marketig aa) Dateschutzrechtliche Eiwilligug immer erforderlich Ohe Eiwilligug des Nutzers ist eie Erhebug persoebezogeer Date icht zulässig. Eie derartige Eiwilligug ka auch icht

Mehr

Anforderungsspezifikation in großen IT-Projekten

Anforderungsspezifikation in großen IT-Projekten Aforderugsspezifikatio i große IT-Projekte sd&m AG software desig & maagemet Carl-Wery-Str. 42 81739 Müche Telefo 089 63812-0 www.sdm.de A Compay of Dr. Adreas Birk Jahrestreffe der GI-Fachgruppe Requiremets

Mehr

AT AB., so bezeichnet man dies als innere Teilung von

AT AB., so bezeichnet man dies als innere Teilung von Teilverhältisse Aus der Geometrie der Dreiecke ket ma die Aussage, dass der Schwerpukt T eies Dreiecks die Seitehalbierede im Verhältis : teilt. Für die Strecke AT ud TM gilt gemäß der Abbildug AT : TM

Mehr