SUCHPROBLEME UND ALPHABETISCHE CODES

Größe: px
Ab Seite anzeigen:

Download "SUCHPROBLEME UND ALPHABETISCHE CODES"

Transkript

1 SUCHPROBLEME UND ALPHABETISCHE CODES Der Problematik der alphabetische Codes liege Suchprobleme zugrude, dere Lösug dem iformatiostheoretische Problem der Fidug eies (optimale) alphabetische Codes gleich ist. Der alphabetische Code ist eie Form des Präfixcodes, d.h. ebe der Präfixeigeschaft, dass kei Codewort Afag eies Adere ist, wird er zusätzlich eier spezielle Ordug gerecht. Daher hadelt es sich hierbei um Suchprobleme, bei dee icht mehr alle Tests mit bestimmter Azahl vo Ergebisse zugelasse sid, d.h. weil der Suchbereich X vollstädig geordet ist, sid ur Tests, die dieser Ordug verträglich sid, zugelasse. Betrachte wir zuächst zwei solche Suchprobleme.. Suchproblem Die Ölpipelie Eie Ölpipelie bestehe aus Segmete. Am erste Segmet werde pro Sekude m Liter Öl eigepumpt. Komme am letzte Segmet icht m Liter a, so muss die Pipelie defekt sei. Ei Test der Durchflussmege vom k - te zum (k+) - te Segmet liefert als Ergebis die Iformatio, ob der Defekt im vordere oder hitere Teil der Pipelie zu fide ist. (biärer Test) Sei X = { } der Suchbereich; = Azahl der Segmete, wobei x X = x tes Segmet der Pipelie. Eie Messug zwische dem k te ud dem (k+) - te Segmet ist da dem biärem Test t k = t {k+.} gleichwertig (t k (x) = x > k). Das Iteresse der Defektfidug mit möglichst weige Messuge ist äquivalet dem Problem eie optimale alphabetische Code zu bestimme. 2. Suchproblem Datespeicherug I Computersysteme sid Date häufig uter bestimmte Stichwörter gespeichert. Sei die Azahl verschiedeer, alphabetisch geordeter Stichworte W W, i welche Date gespeichert sid. Utersucht werde soll, ob uter eiem gegebee Wort W Date gespeischert sid, ud ggf. dere Auslesug. Es wird vorausgesetzt, dass der Computer jedes der gespeicherte W i mit dem gesuchte W vergleiche ka, ud des Weitere uterscheide ka, ob W = W i, W alphabetisch vor bzw. hiter W i liegt. Falls W =W i so war die Suche erfolgreich, falls W zwische zwei gespeicherte Eiträge W j ud W j+, oder W vor W bzw. hiter W so verlief die Suche erfolglos. Sei X = {x.x } {y 0.y } der Suchbereich. x i bedeutet W=W i y j ( j -) bedeutet W liegt zwische W j ud W j+ y 0 bedeutet W liegt vor W ; y bedeutet W liegt hiter W

2 Dies impliziert folgede Ordug auf de Suchbereich X: y 0 <x <y <x 2 <y 2 <.<x <y. Der Vergleich der Wörter wird durch de Test t i beschriebe: z X: t i (z) = 0 z < x i t i (z) = z = x i t i (z) = 2 z > x i. Ei W mit möglichst weig Vergleiche zu fide ist äquivalet dem Problem der Miimierug der Koste eies Suchbaumes. Jees Problem ist allgemeier als das Pipelieproblem. Für de Fall, das alle Stichwörter W i die gleiche a-priori-wahrscheilichkeit 0 habe, so ist Problem 2 gleich dem Problem. Im Weitere beschäftige wir us mit Suchproblem. Gegebe sei ei Suchbereich X = {.} i atürlicher Weise geordet (,2,3,4,5,.). Zugelasse sid alle Tests, die damit verträglich sid. Situatio: Suchbereich X ; x X t k (x) = 0 t k (x) = 2 3 k t k = t {k+. } t k (x) = x > k Biärer Test a der Stelle k bezieht sich auf die Elemete der Mege {k+ } ud liefert:, falls x {k+ } 0, falls x {k+ }. Ziel ist die Miimierug der Suchdauer zur Idetifizierug des gesuchte Objekts. Methode zur Erreichug dieses Ziels sid hier so geate ichtsequetielle ud sequetielle Strategie.

3 Nichtsequetielle Strategie Eie ichtsequetielle Strategie ist dadurch gekezeichet, dass sie zuvor gewoee Iformatioe bei der Auswahl des folgede Tests icht berücksichtigt. Es gilt: Falls t i t i m eie erfolgreiche ichtsequetielle Strategie ist, muss für x { -}: (t i (x) t i m (x)) (t i (x +)... t i m (x +)) sei. d.h. für zwei verschiedee zu suchede Objekte liefert die ichtsequetielle Strategie auch zwei verschiedee Ergebisse. Speziell gilt: t i j (x) t i j (x + ) we i j = x. Bsp.: x = i j = x = (zu suchedes Objekt) (ei spezieller Test der Strategie) t i j (x) = t () = 0, weil x > k ( > ) falsch ist t i j (x+) = t (2) =, weil x > k (2 > ) richtig ist. Weil eie ichtsequetielle Strategie, wie bereits obe beschriebe, die Ergebisse eies Tests, zur Ermittlug des ächste Tests icht berücksichtigt, ka es vorkomme, das ei darauf folgeder Test, sich wiederum auf eie Teil des Bereichs des vorherige Tests bezieht. Da ei gesuchtes Objekt als idetifiziert gilt, we die betrachtete Mege ur och ei Elemet beihaltet hat dies zur Folge, dass eie ichtsequetielle Strategie alle Tests t k ( k -) ethalte muss um mit Sicherheit das gesuchte Objekt zu idetifiziere. Da ist die ichtsequetielle Strategie s = (t t - ) erfolgreich. Sequetielle Strategie Eie sequetielle Strategie ist dadurch gekezeichet, dass sie zuvor gewoee Iformatioe bei der Auswahl des folgede Tests berücksichtigt. We alle biäre Test zugelasse sid, braucht eie sequetielle Strategie für sichere Erfolg, im ugüstigste Fall midestes log2 Tests. (Im Folgede sei log2 gleich log ) Da bei diesem Suchproblem icht alle biäre Tests zugelasse sid, ist icht damit zu reche, mit weiger Tests auszukomme. Es lässt sich jedoch zeige, dass log Tests auch ausreiched sid.

4 Situatio: Suchbereich X; x X t k (x) = 0 t k (x) = 2 3 k Je achdem, wie der Test t k (x) ausfällt, ermittelt die sequetielle Strategie, de eigegrezte Suchbereich, bzw. de Parameter k für de folgede Test. Liefert t k (x) = 0, so ist bekat, dass das gesuchte Objekt icht i {k+ }, soder i { k} liege muss. Folglich geügt es ur och de Bereich { k} zu betrachte. Es hadelt sich um das Prizip der biäre Suche. Nach eiige Tests weiß ma das x A ist, wobei A X ist. Zu Begi war A = X. Aufgrud des Testaufbaus hat A stets die Gestalt A = {i+ j} (0 i j ). Es folgt der i+ j ächste Test t k mit k = 2. Das heißt das k ist das (relativ) mittlere Elemet vo A. Nach diesem Test weiß ma ob x A = {i+ k} oder x A = {k j} ist. Da sowohl A A als auch A hat, erreicht ma ach spätestes log 2 Tests, dass A eielemetig ist, d.h. x ist idetifiziert. Folgeder Satz ist u bewiese: Es sei X = { }. Die Mege aller zugelassee Tests bestehe aus de biäre Tests t k (0 k ) : t k (x) = x > k. Falls die Aufgabe dari besteht, die maximale Suchdauer zu miimiere, so beötigt die beste ichtsequetielle Strategie -, die beste sequetielle Strategie ie mehr als log Tests. Sequetielle Strategie sid bei dieser Art vo Suchprobleme viel scheller erfolgreich, als die beste ichtsequetielle Strategie. Gute ud optimale alphabetische Codes Gegebe sei u eie a-priori -Verteilug der Wahrscheilichkeite p = (p() p()). Auf der Mege X soll eie sequetielle Strategie miimaler erwarteter Suchdauer gefude werde. Es gilt: Die Ergebisfolge eier erfolgreiche sequetielle Strategie bilde eie Präfixcode.

5 Diese Aussage behält auch hier ihre Richtigkeit, da die Mege der Tests ud Strategie lediglich eigeschräkt wurde. Aufgrud der ordugserhaltede Struktur der zugelassee Tests hat der aus de Ergebisfolge gebildete Präfixcode eie besodere Struktur. Seie e(x) = (e(x) e L(x) (x)) ud e(y) = (e (y) e L(y) (y)) die Ergebisfolge für zwei verschiedee Objekte x, y X, wobei x < y ist. L(a) ist die Läge der Ergebisfolge Objekt a. Aus der Präfixeigeschaft folgt, dass j = mi { i mi[l(x),l(y)] : e i (x) e i (y)} wohldefiiert ist. (j ist diejeige Bitstelle i e(x) ud e(y), wo sich die Beide das erste Mal uterscheide) Die erste j Tests sid bei der Suche ach x ud y gleich. Sei u t k der j - te Test. Dies besagt, we e j (x) e j (y) ud x < y ist, muss y {k+ } ud x {k+ } sei. Demetspreched ist e j (x) = 0 ud e j (y) =. Im Alphabet {0,} mit 0 als erstem Buchstabe ist da das Wort e(x) alphabetisch vor e(y). Ei Alphabetischer Code wird daher wie folgt defiiert: Ei Präfixcode für Nachrichte heißt alphabetisch, we für k < l c(k) alphabetisch vor c(l) steht, d.h. j = mi {i : c i (k) c i (l)} => c j (k) < c j (l). Die Eigeschafte lasse sich i eiem Satz zusammefasse: i) Für jede sequetielle, erfolgreiche Suchstrategie bilde die Ergebisfolge eie alphabetische Code. ii) iii) Zu jedem alphabetische Code c gibt es eie sequetielle erfolgreiche Strategie, dere Ergebisfolge gleich de Codewörter vo c sid. Ist die a-priori-wahrscheilichkeit der i - te Nachricht gleich der a-priori- Wahrscheilichkeit des i - te Objekts, da ist die erwartete Suchdauer eier optimale sequetielle Strategie gleich der erwartete Codewortläge eies optimale alphabetische Codes Auf eie Beweis dieser Aussage wird aus Grüde der Komplexität verzichtet. Stattdesse widme wir us eier adere Problemstellug i diesem Zusammehag, ämlich der Frage: Zu welche L() L(), die Läge L(i) hat?, existiert ei alphabetischer Code, so dass das i - te Codewort

6 Da alphabetische Codes isbesodere Präfixcodes sid, müsse sie ebefalls der Ugleichug vo Kraft geüge d.h.: Li () 2. Falls die Folge L() L() mooto wachsed ist, so ist diese Form der Ugleichug auch hireichede Bedigug für die Existez eies alphabetische Codes mit jee Codewortläge. Im Allgemeie ist diese Bedigug jedoch icht hireiched. Ei Beispiel: Sei f beliebig ud weiterhi L() = f, L(2) = ud L(3) = f, so dass obige Ugleichug och erfüllt wäre. Zu diese gegebee Codewortläge existiert kei alphabetischer Code, da das zweite Codewort etweder 0 oder sei müsste, um der Lägeforderug gerecht zu werde. Dies wiederum hätte zur Folge, dass a) bei c(2) = 0 kei erstes Codewort c() existiert, welches alphabetisch vor c(2) liegt; c(2) wäre Präfix vo c() b) bei c(2) = kei drittes Codewort c(3) existiert, das alphabetisch hiter c(2) liegt, ohe das c(2) Präfix vo c(3) wäre. Wie uschwer zu erkee ist, spielt es im Gegesatz zu eifache Präfixcodes beim alphabetische Code ei wesetliche Rolle, a welcher Stelle ei lägemäßig kurzes bzw. das kürzeste Codewort steht. Mathematisch ergibt 3 L() i f 2 = 22.Für ei f, ist daher gezeigt, dass ei Ergebis 2 > 2 icht die Existez eies alphabetische Codes mit Codewortläge L() L() impliziert. Ei Ergebis der Ugleichug vo Kraft liefert jedoch eie hireichede Bedigug für 2 die Existez eies alphabetische Codes mit de Codewortläge L() L(). Betrachte wir hierzu eie biäre Wurzelbaum der Tiefe Lmax = max{l(i): ( i )}. Bei der Kostruktio eies Präfixcodes besetzt das i - te Codewort die 2 Lmax-L(i) am weiteste liks liegede freie Edpukte. Hier beötige wir u die doppelte Mege vo Edpukte. L() i Zu beweise ist also folgeder Satz: Falls 2 ist, existiert ei alphabetischer Code, 2 bei dem das i - te Codewort die Läge L(i) hat.

7 Lmax L() i Lmax Aus obiger Vorraussetzug (doppelte Mege vo Edpukte) folgt: 2 2 2, d.h. die Edpukte, die Azahl vo Edpukte, die ei Codewort besetzt ist maximal so groß wie die Azahl der Edpukte (Blätter) des Wurzelbaumes. Der Beweis für diese Aussage folgt durch de Beweis der folgede Aussage: Für alle i { } existiert ei alphabetischer Code mit Codewortläge L()...L(i), so dass jeder Edpukt im biäre Wurzelbaum der Läge Lmax, der Nachfolger eies Codewortes ist, das zu de am weiteste likst stehede 2 2 Lmax L() i Edpukte gehört. Das erste Codewort (erste Nachricht) bestehe aus L() Nulle. Folglich ist die Aussage für i = richtig. Setze wir weiterhi voraus, dass die Aussage für i < j bewiese sei. Es bleibt zu zeige, dass die Aussage auch für i = j stimmt. Sei c() c(j-) der bereits existierede alphabetische Code. j Lmax L( m) Lmax Lmax L( j) Da ist, sid die am weiteste rechts liegede m= max ( ) 22 L L j Edpukte och frei. Mit adere Worte: Die Azahl der durch die Codewörter c() c(j-) bisher besetze Edpukte ist höchstes so groß wie die Gesamtazahl der Edpukte des Wurzelbaums, verrigert um die Azahl vo Edpukte, die das j - te Codewort besetze wird. We daher u rechts im W-Baum och Plätze frei sid, ka das Codewort c(j-) icht ur aus Eise bestehe ud auch icht mit L(j) Eise begie. Dies gibt us die Möglichkeit ei k mit k = max{ r mi[ L(j-), L(j) ] : c r (j-) = 0}zu defiiere. K ist diejeige Bitstelle im (j-) - te Codewort, die am weiteste rechts im Bitstrig steht ud eie Null ist. Für alle Stelle m zwische ud k- ist c m (j) = c m (j-) defiiert. Für die Stelle m = k ist c m (j) = defiiert. Für alle Stelle m zwische k+ ud L(j) ist c m (j) = 0 defiiert. max ( ) Der Code bleibt alphabetisch ud ei Präfixcode. c(j) hat u wiederum 2 L L j Edpukte max ( ) als Nachfolger. Es reicht aus zu zeige, dass icht mehr als 2 L L j Edpukte zwische c(j-) ud c(j) liege. Sei d = (d d Lmax ) ei solcher Edpukt. (Pfadagabe im Baum) Vo der erste bis zur (k-)- te Stelle besitzt d das gleiche Aussehe wie c(j-) ud c(j). Wäre d k = müsste alle weitere Stelle vo (k+) bis zu L(j) übereistimmed mit c(j) gleich 0 sei, damit d liks vo c(j) liegt. Damit ist d ei Nachfolger vo c(j). Also muss d k = 0 sei. d muss rechts vo c(j-) liege. Folglich sid alle Stelle vo k+ bis zu h ( h = mi[l(j-), L(j)] ) vo d gleich diese Stelle im Codewort c(j-). We u h die Läge des Codewortes c(j-) gewese ist, so ist d damit ei Nachfolger vo c(j-) ud kei Edpukt liegt zwische c(j-) ud c(j). Falls h die Läge vo c(j) gewese max ( ) ist, so liege L(j) Stelle vo d fest. Für die restliche Positioe gibt es ur 2 L L j Möglichkeite. q.e.d.

8 Weiterhi ka mit Hilfe des vorhergehede Satzes (uter Zuhilfeahme des oiseless - codig - theorems) bewiese werde, dass für eie a - priori - Verteilug p = (p() p()), ( i: p(i) > 0) auf X Folgedes gilt: Sei A mi (p) die miimale Erwartete Suchdauer eier Strategie ud alle Tests t 0 bis t zugelasse. Uter obige Vorraussetzuge ist da: H(p) A mi (p) < H(p)+2. Ausgehed vo der Iformatio, dass ei gesuchtes Objekt sich i der Mege {i j} befidet, veräder wir u eie Strategie. Wir werde diese Mege uter Beachtug der Wahrscheilichkeite teile. Der folgede Test t k wird so gewählt, dass p(i k) p(k+ j) miimal ist. Auch we ma ituitiv glaubt, diese Strategie sei optimal, ist sie es icht. Diese Defiitio eier Strategie ist jedoch ützlich für weiterführede Utersuche useres Suchproblems. Über diverse Eigeschafte, Lemmata der Etropiefuktio ud Iduktiosbeweise, die de hier gewählte Rahme sprege würde, lässt sich die obere Schrake für alphabetische Codes gerigfügig verbesser ud folglich auch das oiseless - codig - theorem ud zeitliche Eigeschafte der Strategie. Falls die a - priori - Verteilug sogar die Gleichverteilug p ist, ergibt sich letztedlich für eie miimale erwartete Suchdauer eier Strategie: A mi (p) = L mi (p) = log log 2 +. Verfahre zur Kostruktio optimaler Strategie beziehe sich auf die Kostruktio vo biäre Bäume. Der beste Algorithmus beötigt O( 2 ) Recheschritte. Für das hier behadelte eifachere Suchproblem existiert ei Algorithmus der lediglich O( log ) Recheschritte braucht. Dieser fasst ählich dem Algorithmus vo Huffma zwei Nachrichte zu eier Neue zusamme, wobei diese icht ubedigt beachbart sei müsse. Jee Nachrichte sid aber i eiem adere Sie miteiader verbude. Der etstehede Code ist logischerweise kei alphabetischer Code, aber es gibt keie alphabetische desse erwartete Codewortläge kleier wäre. Vertauscht ma Codewortteile, ohe die Codewortläge zu veräder, erhält ma de optimale alphabetische Code. Quelle: R. Ahlswede ud I. Wegeer, Suchprobleme, Teuber.

Aufgaben und Lösungen der Probeklausur zur Analysis I

Aufgaben und Lösungen der Probeklausur zur Analysis I Fachbereich Mathematik AG 5: Fuktioalaalysis Prof. Dr. K.-H. Neeb Dipl.-Math. Rafael Dahme Dipl.-Math. Stefa Wager ATECHNISCHE UNIVERSITÄT DARMSTADT SS 007 19. Jui 007 Aufgabe ud Lösuge der Probeklausur

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Rolad Speicher M.Sc. Tobias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 01 Musterlösug zu Blatt 0 Aufgabe 1. Käpt Schwarzbart,

Mehr

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst.

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst. Krytologie: Krytograhie ud Krytoaalyse Krytologie ist die Wisseschaft, die sich mit dem Ver- ud Etschlüssel vo Iformatioe befasst. Beisiel Iteretkommuikatio: Versiegel (Itegrität der Nachricht) Sigiere

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n,

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n, f : a P UNIVERSIÄ DES SAARLANDES FACHRICHUNG 6. MAHEMAIK Prof. Dr. Rolad Speicher M.Sc. obias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 202 Musterlösug zu Blatt Aufgabe. Zeige Sie durch Abwadlug

Mehr

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist.

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist. Erfüllbarkeit, Uerfüllbarkeit, Allgemeigültigkeit Defiitio Eie Belegug β ist passed zu eiem Boolesche Term t, falls β für alle atomare Terme i t defiiert ist. (Wird ab jetzt ageomme.) Ist β(t) = true,

Mehr

Folgen und Reihen. 23. Mai 2002

Folgen und Reihen. 23. Mai 2002 Folge ud Reihe Reé Müller 23. Mai 2002 Ihaltsverzeichis 1 Folge 2 1.1 Defiitio ud Darstellug eier reelle Zahlefolge.................. 2 1.1.1 Rekursive Defiitio eier Folge......................... 3 1.2

Mehr

Analysis ZAHLENFOLGEN Teil 4 : Monotonie

Analysis ZAHLENFOLGEN Teil 4 : Monotonie Aalysis ZAHLENFOLGEN Teil 4 : Mootoie Datei Nr. 40051 Friedrich Buckel Juli 005 Iteretbibliothek für Schulmathematik Ihalt 1 Eiführugsbeispiele 1 Mootoie bei arithmetische Folge Defiitioe 3 3 Welche Beweistechik

Mehr

AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3

AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3 INHALTSVERZEICHNIS AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2 Datefluß ud Programmablauf 2 Vorbedigug 3 Nachbedigug 3 Schleifeivariate 3 KONSTRUKTION 4 ALTERNATIVE ENTWURFSMÖGLICHKEITEN 5 EFFEKTIVE

Mehr

Dritter Zirkelbrief: Ungleichungen

Dritter Zirkelbrief: Ungleichungen Matheschülerzirkel Uiversität Augsburg Schuljahr 014/015 Dritter Zirkelbrief: Ugleichuge Ihaltsverzeichis 1 Grudlage vo Ugleichuge 1 Löse vo Ugleichuge 3 3 Mittel 4 4 Mittelugleichuge 5 5 Umordugsugleichug

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VMa Schuljahr 6/7 Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 5 Für Experte 7 Defiitioe ud Beispiele

Mehr

4 Konvergenz von Folgen

4 Konvergenz von Folgen 4 Kovergez vo Folge Defiitio 4.. Sei M eie Mege. Ist 0 Z ud für jedes Z mit 0 ei a M gegebe, so et ma die Abbildug { Z; 0 } M, a eie Folge i M. Abkürzed schreibt ma für eie solche Abbildug auch a ) 0 oder

Mehr

7.2 Grundlagen der Wahrscheinlichkeitsrechnung

7.2 Grundlagen der Wahrscheinlichkeitsrechnung 7.2 Grudlage der Wahrscheilichkeitsrechug Ei Ereigis heißt i Bezug auf eie Satz vo Bediguge zufällig, we es bei der Realisierug dieses Satzes eitrete ka, aber icht ubedigt eitrete muss. Def. 7.2.: Ei Experimet

Mehr

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen:

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen: 61 6.2 Grudlage der mathematische Statistik 6.2.1 Eiführug i die mathematische Statistik I der mathematische Statistik behadel wir Masseerscheiuge. Wir habe es deshalb im Regelfall mit eier große Zahl

Mehr

Statistik I/Empirie I

Statistik I/Empirie I Vor zwei Jahre wurde ermittelt, dass Elter im Durchschitt 96 Euro für die Nachhilfe ihrer schulpflichtige Kider ausgebe. I eier eue Umfrage uter 900 repräsetativ ausgewählte Elter wurde u erhobe, dass

Mehr

Kapitel 4: Stationäre Prozesse

Kapitel 4: Stationäre Prozesse Kapitel 4: Statioäre Prozesse M. Scheutzow Jauary 6, 2010 4.1 Maßerhaltede Trasformatioe I diesem Kapitel führe wir zuächst de Begriff der maßerhaltede Trasformatio auf eiem Wahrscheilichkeitsraum ei ud

Mehr

Qualitätskennzahlen für IT-Verfahren in der öffentlichen Verwaltung Lösungsansätze zur Beschreibung von Metriken nach V-Modell XT

Qualitätskennzahlen für IT-Verfahren in der öffentlichen Verwaltung Lösungsansätze zur Beschreibung von Metriken nach V-Modell XT Qualitätskezahle für IT-Verfahre i der öffetliche Verwaltug Lösugsasätze zur Vo Stefa Bregezer Der Autor arbeitet im Bereich Softwaretest ud beschäftigt sich als Qualitätsbeauftragter mit Theme zu Qualitätssicherug

Mehr

2. Diophantische Gleichungen

2. Diophantische Gleichungen 2. Diophatische Gleichuge [Teschl05, S. 91f] 2.1. Was ist eie diophatische Gleichug ud wozu braucht ma sie? Def D2-1: Eie diophatische Gleichug ist eie Polyomfuktio i x,y,z,, bei der als Lösuge ur gaze

Mehr

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen Testumfag für die Ermittlug ud Agabe vo Fehlerrate i biometrische Systeme Peter Uruh SRC Security Research & Cosultig GmbH peter.uruh@src-gmbh.de Eileitug Biometrische Systeme werde durch zwei wichtige

Mehr

15.4 Diskrete Zufallsvariablen

15.4 Diskrete Zufallsvariablen .4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet

Mehr

Stochastik für WiWi - Klausurvorbereitung

Stochastik für WiWi - Klausurvorbereitung Dr. Markus Kuze WS 2013/14 Dipl.-Math. Stefa Roth 11.02.2014 Stochastik für WiWi - Klausurvorbereitug Gesetz der totale Wahrscheilichkeit ud Satz vo Bayes (Ω, F, P) Wahrscheilichkeitsraum, E 1,..., E F

Mehr

Vorkurs Mathematik für Informatiker Folgen

Vorkurs Mathematik für Informatiker Folgen Vorkurs Mathematik ür Iormatiker -- 8 Folge -- 11.10.2015 1 Folge: Deiitio Eie (uedliche) Folge im herkömmliche Sie etsteht durch Hitereiaderschreibe vo Zahle 1,2,3,4,5, Dabei ist die Reiheolge wichtig,

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft Wisseschaftliches Arbeite Studiegag Eergiewirtschaft - Auswerte vo Date - Prof. Dr. Ulrich Hah WS 01/013 icht umerische Date Tet-Date: Datebak: Name, Eigeschafte, Matri-Tabelleform Spalte: übliche Aordug:

Mehr

Innerbetriebliche Leistungsverrechnung

Innerbetriebliche Leistungsverrechnung Ierbetriebliche Leistugsverrechug I der Kostestellerechug bzw. im Betriebsabrechugsboge (BAB ist ach der Erfassug der primäre Kostestellekoste das Ziel, die sekudäre Kostestellekoste, also die Koste der

Mehr

Zusammenfassung Wirtschaftsinformatik Stefan Käßmann

Zusammenfassung Wirtschaftsinformatik Stefan Käßmann I. Iformatio ud Nachricht 1. Iformatio ud Nachricht - Nachricht (Sytax), Sigale, Zeiche - Iformatio (Sematik), bit - Rausche 2. digitale Nachrichte - digitale Sigale (Sigalparameter aus edlicher Zeichevorrat)

Mehr

KAPITEL 2. Zahlenfolgen

KAPITEL 2. Zahlenfolgen KAPITEL Zahlefolge. Kovergete Zahlefolge...................... 35. Grezwertbestimmug....................... 38.3 Grezwertbestimmug durch Abschätzug............. 4.4 Mootoe Folge..........................

Mehr

Informatik II Dynamische Programmierung

Informatik II Dynamische Programmierung lausthal Iformatik II Dyamische Programmierug. Zachma lausthal Uiversity, ermay zach@i.tu-clausthal.de Zweite Techik für de Algorithmeetwurf Zum Name: "Dyamische " hat ichts mit "Dyamik" zu tu, soder mit

Mehr

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008 Stochasti ud ihre Didati Refereti: Iris Wiler 10.11.2008 Aufgabe: Führe Sie i der Seudarstufe II die Biomialoeffiziete als ombiatorisches Azahlproblem ei. Erarbeite Sie mit de Schülerie ud Schüler mithilfe

Mehr

Gruppe 108: Janina Bär Christian Hörr Robert Rex

Gruppe 108: Janina Bär Christian Hörr Robert Rex TEHNIHE UNIVEITÄT HEMNITZ FAULTÄT FÜ INFOMATI Hardwarepraktikum im W /3 Versuch 3 equetielle ysteme I Gruppe 8: aia Bär hristia Hörr obert ex hemitz, 7. November Hardwarepraktikum equetielle ysteme I Aufgabe

Mehr

Grundgesamtheitsanaylsen und Stichproben. Betrachtungen zur Stichprobenfindung

Grundgesamtheitsanaylsen und Stichproben. Betrachtungen zur Stichprobenfindung MaMaEuSch Maagemet Mathematics for Europea Schools http://www.mathematik.uikl.de/ mamaeusch Grudgesamtheitsaaylse ud Stichprobe. Betrachtuge zur Stichprobefidug Paula Lagares Justo Puerto 1 MaMaEuSch 2

Mehr

Zahlenfolgen, Grenzwerte und Zahlenreihen

Zahlenfolgen, Grenzwerte und Zahlenreihen KAPITEL 5 Zahlefolge, Grezwerte ud Zahlereihe. Folge Defiitio 5.. Uter eier Folge reeller Zahle (oder eier reelle Zahlefolge) versteht ma eie auf N 0 erlarte reellwertige Futio, die jedem N 0 ei a R zuordet:

Mehr

Methoden: Heron-Verfahren, Erweiterung von Differenzen von Quadratwurzeln

Methoden: Heron-Verfahren, Erweiterung von Differenzen von Quadratwurzeln 6 Kovergete Folge Lerziele: Kozepte: Grezwertbegriff bei Folge, Wachstumsgeschwidigkeit vo Folge Resultat: Mootoe beschräkte Folge sid koverget. Methode: Hero-Verfahre, Erweiterug vo Differeze vo Quadratwurzel

Mehr

Kapitel 6: Statistische Qualitätskontrolle

Kapitel 6: Statistische Qualitätskontrolle Kapitel 6: Statistische Qualitätskotrolle 6. Allgemeies Für die Qualitätskotrolle i eiem Uterehme (produzieredes Gewerbe, Diestleistugsuterehme, ) gibt es verschiedee Möglichkeite. Statistische Prozesskotrolle

Mehr

Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares

Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares 4 6 Fachgebiet Regelugstechik Leiter: Prof. Dr.-Ig. Joha Reger Kleies Matrix-ABC 1 Eleetares Eie ( )-Matrix ist eie rechteckige Aordug vo reelle oder koplexe Zahle a ij (auch Skalare geat) ud besteht aus

Mehr

Determinante und Resultante Azadeh Pasandi

Determinante und Resultante Azadeh Pasandi Determiate ud Resultate 07.01.2009 Azadeh Pasadi Defiitio ud Grudeigeschafte: sei U, V, W ud Vektor-Raum über Körper F ud beachte eie Abbildug f ( u,v ) vo kartesische Produkt: f: U x V W Diese Abbildug

Mehr

Zusammenfassung: Gleichungen und Ungleichungen

Zusammenfassung: Gleichungen und Ungleichungen LGÖ Ks VMa Schuljahr 6/7 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Eperte 8 Polyomgleichuge ud -ugleichuge

Mehr

Gliederung. Value-at-Risk

Gliederung. Value-at-Risk Value-at-Risk Dr. Richard Herra Nürberg, 4. Noveber 26 IVS-Foru Gliederug Modell Beispiel aus der betriebliche Altersversorgug Verteilug des Gesatschades Value-at-Risk ud Tail Value-at-Risk Risikobeurteilug

Mehr

18 2 Zeichen, Zahlen & Induktion *

18 2 Zeichen, Zahlen & Induktion * 18 2 Zeiche, Zahle & Idutio * Ma macht sich z.b. sofort lar, dass das abgeschlossee Itervall [ 3, 4] die Eigeschafte if[ 3, 4] 3 mi[ 3, 4] ud sup[ 3, 4]4max[ 3, 4] besitzt, währed das offee Itervall 3,

Mehr

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt 2.4.5 Gauss-Test ud t-test für verbudee Stichprobe 2.4.5.8 Zum Begriff der verbudee Stichprobe Verbudee Stichprobe: Vergleich zweier Merkmale X ud Y, die jetzt a deselbe Persoe erhobe werde. Vorsicht:

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker II (Sommersemester 004) Aufgabe 7. Ubeschräktes

Mehr

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I Uiversität des Saarlades Fakultät für Mathematik ud Iformatik Witersemester 2003/04 Prof. Dr. Joachim Weickert Dr. Marti Welk Dr. Berhard Burgeth Lösuge der Aufgabe zur Vorbereitug auf die Klausur Mathematik

Mehr

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung 6. Übugsblatt Aufgabe mit Lösuge + Selbsttest-Auflösug Aufgabe 6: Utersuche Sie die Folge, dere Glieder ute für N agegebe sid, auf Beschräktheit, Mootoie ud Kovergez bzw. Beschräktheit, Mootoie ud Kovergez

Mehr

Versuch 13/1 NEWTONSCHE INTERFERENZRINGE Blatt 1 NEWTONSCHE INTERFERENZRINGE

Versuch 13/1 NEWTONSCHE INTERFERENZRINGE Blatt 1 NEWTONSCHE INTERFERENZRINGE Versuch 3/ NEWTONSCHE INTERFERENZRINGE Blatt NEWTONSCHE INTERFERENZRINGE Die Oberfläche vo Lise hat im allgemeie Kugelgestalt. Zur Messug des Krümmugsradius diet das Sphärometer. Bei sehr flacher Krümmug

Mehr

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10. 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.000, 1 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Defiitio: Eie

Mehr

... a ik) i=1...m, k=1...n A = = ( a mn

... a ik) i=1...m, k=1...n A = = ( a mn Zurück Stad: 4..6 Reche mit Matrize I der Mathematik bezeichet ma mit Matrix im Allgemeie ei rechteckiges Zahleschema. I der allgemeie Darstellug habe die Zahle zwei Idizes, de erste für die Zeileummer,

Mehr

Kapitel 9: Schätzungen

Kapitel 9: Schätzungen - 73 (Kapitel 9: chätzuge) Kapitel 9: chätzuge Betrachte wir folgedes 9. Beispiel : I eiem Krakehaus wurde Date über Zwilligsgeburte gesammelt. Bei vo 48 Paare hatte die beide Zwillige verschiedees Geschlecht.

Mehr

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $ Mathematik für Iformatiker B, SS 202 Doerstag 4.6 $Id: reihe.tex,v.9 202/06/4 3:59:06 hk Exp $ 7 Reihe 7.4 Kovergezkriterie für Reihe 7.4. Alterierede Reihe Wir hatte gesehe das die harmoische Reihe divergiert,

Mehr

Übungsblatt 1 zur Vorlesung Angewandte Stochastik

Übungsblatt 1 zur Vorlesung Angewandte Stochastik Dr Christoph Luchsiger Übugsblatt 1 zur Vorlesug Agewadte Stochastik Repetitio WT Herausgabe des Übugsblattes: Woche 9, Abgabe der Lösuge: Woche 1 (bis Freitag, 1615 Uhr), Rückgabe ud Besprechug: Woche

Mehr

Tutorium Mathematik I, M Lösungen

Tutorium Mathematik I, M Lösungen Tutorium Mathematik I, M Lösuge 16. November 2012 *Aufgabe 1. Ma utersuche die folgede Reihe auf Kovergez (a) ( 1) (1 ) (b) ( ) 2 +1 (c) (!) 3 10 (3)! (d) (e) (f) 2 +3 3 2 +1 3 ( 2 +1) 2 + 3 ( 2 +3) (g)

Mehr

1 Analysis T1 Übungsblatt 1

1 Analysis T1 Übungsblatt 1 Aalysis T Übugsblatt A eier Weggabelug i der Wüste lebe zwei Brüder, die vollkomme gleich aussehe, zwische dee es aber eie gewaltige Uterschied gibt: Der eie sagt immer die Wahrheit, der adere lügt immer.

Mehr

Folgen und Reihen Glege 03/01

Folgen und Reihen Glege 03/01 Folge ud Reihe Glege 03/0 I diesem Script werde folgede Theme behadelt: Folge (Eiführug)... Arithmetische Folge... Geometrische Folge...3 Mootoie...4 Kovergez...5 Grezwert...6 Schrake...7 Arithmetische

Mehr

Zahlenfolgen und Konvergenzkriterien

Zahlenfolgen und Konvergenzkriterien www.mathematik-etz.de Copyright, Page of 7 Zahlefolge ud Kovergezkriterie Defiitio: (Zahle-Folge, Grezwert) Eie Folge ist eie Abbildug der atürliche Zahle i die Mege A. Es ist also im Fall A: ; f: mit

Mehr

mit (a 1 ) (0,0,,0). Dann ist die Menge,,a n,a 2 eine endliche Menge und besitzt ein grösstes Element ggt(a 1

mit (a 1 ) (0,0,,0). Dann ist die Menge,,a n,a 2 eine endliche Menge und besitzt ein grösstes Element ggt(a 1 Kapitel 1: Reste, Teiler, Vielfache Defiitio Es sei a 0. Die Zahl b 0 ist ei Teiler vo a, we es ei u 0 gibt, sodass ub= a. Ist b ei Teiler vo a, so ist a ei Vielfaches vo b. Bezeichug b a für b ist Teiler

Mehr

Wahrscheinlichkeit & Statistik

Wahrscheinlichkeit & Statistik Wahrscheilichkeit & Statistik created by Versio: 3. Jui 005 www.matheachhilfe.ch ifo@matheachhilfe.ch 079 703 7 08 Mege als Sprache der Wahrscheilichkeitsrechug, Begriffe, Grudregel Ereigisraum: Ω Ω Mege

Mehr

2. Gleichwertige Lösungen

2. Gleichwertige Lösungen 8. Gleichwertige Lösuge Für die Lösug jeder lösbare Aufgabe gibt es eie uedliche Azahl vo (abstrakte ud kokrete) Algorithme. Das folgede Problem illustriert, dass eie Aufgabe eifacher oder kompliziert,

Mehr

Nachklausur - Analysis 1 - Lösungen

Nachklausur - Analysis 1 - Lösungen Prof. Dr. László Székelyhidi Aalysis I, WS 212 Nachklausur - Aalysis 1 - Lösuge Aufgabe 1 (Folge ud Grezwerte). (i) (1 Pukt) Gebe Sie die Defiitio des Häufugspuktes eier reelle Zahlefolge (a ) N. Lösug:

Mehr

Reihen Arithmetische Reihen Geometrische Reihen. Datei Nr (Neu bearbeitet und erweitert) Juni Friedrich W. Buckel

Reihen Arithmetische Reihen Geometrische Reihen. Datei Nr (Neu bearbeitet und erweitert) Juni Friedrich W. Buckel Zahlefolge Teil 3 Reihe Reihe Arithmetische Reihe Geometrische Reihe Datei Nr. 4003 (Neu bearbeitet ud erweitert) Jui 005 Friedrich W. Buckel Iteretbibliothek für Schulmathematik Ihalt Defiitio eier Reihe

Mehr

Fundamentale Prinzipien der Kombinatorik und elementare Abzählkoeffizienten Wolfram Koepf

Fundamentale Prinzipien der Kombinatorik und elementare Abzählkoeffizienten Wolfram Koepf Fudametale Prizipie der Kombiatori ud elemetare Abzähloeffiziete Wolfram Koepf Die abzählede Kombiatori beschäftigt sich vor allem mit der Auswahl eier Teilmege, die ma häufig eie Stichprobe et (aus Wahrscheilicheitsrechug

Mehr

2 Konvergenz von Folgen

2 Konvergenz von Folgen Kovergez vo Folge. Eifache Eigeschafte Defiitio.. Eie Abbildug A : N C heißt Folge. Ma schreibt a statt A) für N ud a ) oder a ) statt A. We a R N, so heißt a ) reelle Folge. Defiitio.. Seie a ) eie Folge

Mehr

1 Aussagenlogik und vollständige Induktion

1 Aussagenlogik und vollständige Induktion Dr. Siegfried Echterhoff Aalysis 1 Vorlesug WS 08 09 1 Aussagelogi ud vollstädige Idutio Die Mathemati basiert auf eier Reihe vo Axiome, d.h. auf mathematische Aussage, die als (offesichtlich? wahr ageomme

Mehr

Lektion II Grundlagen der Kryptologie

Lektion II Grundlagen der Kryptologie Lektio II Grudlage der Kryptologie Klassische Algorithme Ihalt Lektio II Grudbegriffe Kryptologie Kryptographische Systeme Traspositioschiffre Substitutioschiffre Kryptoaalyse Übuge Vorlesug Datesicherheit

Mehr

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man:

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man: Gleichmäßige Kovergez Wir betrachte im Folgede Abbilduge f : M N, wobei M eie Mege ud N ei metrischer Raum ist. Isbesodere iteressiere ud Folge f vo solche Abbilduge. Eie solche Folge bestimmt für jedes

Mehr

Das Rätsel mit der Balkenwaage

Das Rätsel mit der Balkenwaage Das Rätsel mit der Balkewaage Mathematische Abhadlug über ei Iformatiosproblem 6. Juli 998:. Fassug 6. Jauar 999: 2. Fassug 24. Jui 2005: Überarbeitug Marti Abbühl, Thu, CH balkewaage@abbuehl.et 0. Ihalt

Mehr

Mathematischer Vorkurs zum Studium der Physik

Mathematischer Vorkurs zum Studium der Physik Uiversität Heidelberg Mathematischer Vorkurs zum Studium der Physik Übuge Aufgabe zu Kapitel 1 (aus: K. Hefft Mathematischer Vorkurs zum Studium der Physik, sowie Ergäzuge) Aufgabe 1.1: SI-Eiheite: a)

Mehr

5 Bernoulli-Kette. 5.1 Bernoulli-Experiment. Jakob Bernoulli 1654-1705 Schweizer Mathematiker und Physiker. 5.1.1 Einleitung

5 Bernoulli-Kette. 5.1 Bernoulli-Experiment. Jakob Bernoulli 1654-1705 Schweizer Mathematiker und Physiker. 5.1.1 Einleitung Seite vo 7 5 Beroulli-Kette Jakob Beroulli 654-705 Schweizer Mathematiker ud Physiker 5. Beroulli-Exerimet 5.. Eileitug Oft iteressiert ma sich bei Zufallsexerimete icht für die eizele Ergebisse, soder

Mehr

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable Allgemeie Lösuge der -dimesioale Laplace-Gleichug ud ihre komplexe Variable Dr. rer. at. Kuag-lai Chao Göttige, de 4. Jauar 01 Abstract Geeral solutios of the -dimesioal Laplace equatio ad its complex

Mehr

Klausur 1 über Folgen

Klausur 1 über Folgen www.mathe-aufgabe.com Klausur über Folge Hiweis: Der GTR darf für alle Aufgabe eigesetzt werde. Aufgabe : Bestimme eie explizite ud eie rekursive Darstellug! a) für eie arithmetische Folge mit a = 6, ;

Mehr

Einige wichtige Ungleichungen

Einige wichtige Ungleichungen Eiige wichtige Ugleichuge Has-Gert Gräbe, Leipzig http://www.iformatik.ui-leipzig.de/~graebe 1. Februar 1997 Ziel dieser kurze Note ist es, eiige wichtige Ugleichuge, die i verschiedee Olympiadeaufgabe

Mehr

Wirksamkeit, Effizienz

Wirksamkeit, Effizienz 3 Parameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Wirksamkeit, Effiziez Defiitio 3.5 (Wirksamkeit, Effiziez Sei W eie parametrische Verteilugsaahme mit Parameterraum Θ. 1 Seie θ ud θ erwartugstreue

Mehr

Nennenswertes zur Stetigkeit

Nennenswertes zur Stetigkeit Neeswertes zur Stetigkeit.) Puktweise Stetigkeit: Vo Floria Modler Defiitio der pukteweise Stetigkeit: Eie Fuktio f : D R ist geau da i x D stetig, we gilt: ε > δ >, so dass f ( x) f ( x ) < ε x D mit

Mehr

4. Die Menge der Primzahlen. Bertrands Postulat

4. Die Menge der Primzahlen. Bertrands Postulat O. Forster: Eiführug i die Zahletheorie 4. Die Mege der Primzahle. Bertrads Postulat 4.1. Satz (Euklid. Es gibt uedlich viele Primzahle. Beweis. Wir zeige, dass es zu jeder edliche Mege p 1, p 2,..., p

Mehr

Wahrscheinlichkeit und Statistik

Wahrscheinlichkeit und Statistik ETH Zürich HS 2015 Prof. Dr. P. Embrechts Wahrscheilichkeit ud Statistik D-INFK Lösuge Serie 2 Lösug 2-1. (a Wir bereche P [W c B] auf zwei Arte: (a Wir betrachte folgede Tabelle: Azahl W W c B 14 6 B

Mehr

Universität Stuttgart Fachbereich Mathematik. 1 Lineare Abbildungen und Matrizen. 1.1 Um was geht es?

Universität Stuttgart Fachbereich Mathematik. 1 Lineare Abbildungen und Matrizen. 1.1 Um was geht es? Uiversität Stuttgart Fachbereich Mathematik Prof Dr C Hesse PD Dr P H Lesky Dipl Math D Zimmerma Msc J Köller FAQ 4 Höhere Mathematik 724 el, kyb, mecha, phys Lieare Abbilduge ud Matrize Um was geht es?

Mehr

Beispiel 4 (Die Urne zu Fall 4 mit Zurücklegen und ohne Beachten der Reihenfolge ) das Sitzplatzproblem (Kombinationen mit Wiederholung) Reihenfolge

Beispiel 4 (Die Urne zu Fall 4 mit Zurücklegen und ohne Beachten der Reihenfolge ) das Sitzplatzproblem (Kombinationen mit Wiederholung) Reihenfolge 1 Beispiel 4 (Die Ure zu Fall 4 mit Zurücklege ud ohe Beachte der Reihefolge ) das Sitzplatzproblem (Kombiatioe mit Wiederholug) 1. Übersicht Ziehugsmodus ohe Zurücklege des gezogee Loses mit Zurücklege

Mehr

3. Tilgungsrechnung. 3.1. Tilgungsarten

3. Tilgungsrechnung. 3.1. Tilgungsarten schreier@math.tu-freiberg.de 03731) 39 2261 3. Tilgugsrechug Die Tilgugsrechug beschäftigt sich mit der Rückzahlug vo Kredite, Darlehe ud Hypotheke. Dabei erwartet der Gläubiger, daß der Schulder seie

Mehr

Einführung in die Computerlinguistik Merkmalsstrukturen (Feature Structures)

Einführung in die Computerlinguistik Merkmalsstrukturen (Feature Structures) Eiführug i die Computerliguistik Merkmalsstrukture (Feature Structures) Laura Heirich-Heie-Uiversität Düsseldorf Sommersemester 2013 Eileitug (1) Die i CFGs verwedete Nichttermiale sid i der Regel icht

Mehr

24 Konvergente Teilfolgen und Cauchy-Kriterium

24 Konvergente Teilfolgen und Cauchy-Kriterium 120 IV. Uedliche Reihe ud Taylor-Formel 24 Kovergete Teilfolge ud Cauchy-Kriterium Lerziele: Kozepte: Teilfolge, Häufugswerte, Limes superior ud iferior, Cauchy-Folge Resultate: Satz vo Bolzao-Weierstraß,

Mehr

Aufgaben zur vollständigen Induktion

Aufgaben zur vollständigen Induktion c 7 by Raier Müller - Aufgabe zur vollstädige Idutio We ichts aderes agegebe ist, da gelte die Behauptuge für IN {; ; ;...}. A) Teilbareit: ) ist gerade (d.h. durch teilbar). ) ist durch teilbar. ) ist

Mehr

3 Das Pascalsche Dreieck

3 Das Pascalsche Dreieck Goldeer Schitt Fiboacci Pascalsches Dreiec 3 Das Pascalsche Dreiec 3. Hocey, Taxifahre ud das Pascalsche Dreiec Was hat es mit dem Hoceyschläger auf sich? Wie viele Möglicheite hat ei Taxifahrer i New

Mehr

Testen statistischer Hypothesen

Testen statistischer Hypothesen Kapitel 9 Teste statistischer Hypothese 9.1 Eiführug, Sigifiaztests Sigifiaztest für µ bei der ormalverteilug bei beatem σ = : X i seie uabhägig ud µ, ) verteilt, µ sei ubeat. Stelle eie Hypothese über

Mehr

Kunde. Kontobewegung

Kunde. Kontobewegung Techische Uiversität Müche WS 2003/04, Fakultät für Iformatik Datebaksysteme I Prof. R. Bayer, Ph.D. Lösugsblatt 4 Dipl.-Iform. Michael Bauer Dr. Gabi Höflig 17.11. 2003 Abbildug E/R ach relatioal - Beispiel:

Mehr

Reelle Folgen. Definition. Eine reelle Folge ist eine Abbildung f : N R. liefert ( 7 9, 37

Reelle Folgen. Definition. Eine reelle Folge ist eine Abbildung f : N R. liefert ( 7 9, 37 Reelle Folge Der Begriff der Folge ist ei grudlegeder Baustei der Aalysis, weil damit u.a. Grezprozesse defiiert werde köe. Er beschreibt de Sachverhalt eier Abfolge vo Elemete, wobei die Reihefolge bzw.

Mehr

Lernhilfe in Form eines ebooks

Lernhilfe in Form eines ebooks Ziseszisrechug Lerhilfe i Form eies ebooks apitel Thema Seite 1 Vorwort ud Eiführug 2 2 Theorie der Ziseszisrechug 5 3 Beispiele ud Beispielrechuge 12 4 Testaufgabe mit Lösuge 18 Zis-Ziseszis.de 212 Seite

Mehr

Kapitel 6: Quadratisches Wachstum

Kapitel 6: Quadratisches Wachstum Kapitel 6: Quadratisches Wachstum Dr. Dakwart Vogel Ui Esse WS 009/10 1 Drei Beispiele Beispiel 1 Bremsweg eies PKW Bremsweg Auto.xls Ui Esse WS 009/10 Für user Modell des Bremsweges gilt a = a + d a =

Mehr

Lösungen zum Ferienkurs Analysis 1, Vorlesung 2 Wintersemester 2014/2015

Lösungen zum Ferienkurs Analysis 1, Vorlesung 2 Wintersemester 2014/2015 Lösuge zum Feriekurs Aalysis, Vorlesug Witersemester 04/05 Fabia Hafer, Thomas Baldauf I Richtig oder Falsch Sid folgede Aussage richtig oder falsch? Korrigiere bzw. ergäze Sie falsche Aussage. Gebe Sie

Mehr

Versicherungstechnik

Versicherungstechnik Operatios Research ud Wirtschaftsiformati Prof. Dr. P. Recht // Dipl.-Math. Rolf Wedt DOOR Versicherugstechi Übugsblatt 3 Abgabe bis zum Diestag, dem 03..205 um 0 Uhr im Kaste 9 Lösugsvorschlag: Vorbereituge

Mehr

ÜBUNGSBLATT 4 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS

ÜBUNGSBLATT 4 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS ÜBUNGSBLATT 4 LÖSUNGEN MAT/MAT3 ANALYSIS I HERBSTSEMESTER 00 PROF. DR. AMILLO DE LELLIS Aufgabe. Etscheide Sie für folgede Folge (wobei N \ {0}), ob diese koverget sid, ud bereche sie gegebeefalls ihre

Mehr

Methode der kleinsten Quadrate

Methode der kleinsten Quadrate Methode der kleiste Quadrate KAPITEL 5: REGRESSIONSRECHNUNG Die Methode der kleiste Quadrate (MklQ) ist ei Verfahre zur Apassug eier Fuktio a eie Puktwolke. Agewadt wird sie beispielsweise, um eie Gesetzmäßigkeit

Mehr

KAPITEL 8. Zahlenreihen. 8.1 Geometrische Reihe Konvergenzkriterien Absolut konvergente Reihen

KAPITEL 8. Zahlenreihen. 8.1 Geometrische Reihe Konvergenzkriterien Absolut konvergente Reihen KAPITEL 8 Zahlereihe 8. Geometrische Reihe................................. 53 8.2 Kovergezkriterie................................. 54 8.3 Absolut kovergete Reihe............................ 64 Lerziele

Mehr

Übungen zur Analysis I WS 2008/2009

Übungen zur Analysis I WS 2008/2009 Mathematisches Istitut der Uiversität Heidelberg Prof. Dr. E. Freitag /Thorste Heidersdorf Übuge zur Aalysis I WS 008/009 Blatt 3, Lösugshiweise Die folgede Hiweise sollte auf keie Fall als Musterlösuge

Mehr

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD.

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD. ZAHLENFOLGEN Eiführede Beispiele Arithmetische Folge Datei Nr. 400 SW Das komplette Mauskript befidet sich auf der Mathematik - CD Friedrich Buckel Februar 00 Iteratsgymasium Schloß Torgelow Ihalt Eiführede

Mehr

AVANTI Neuerungen. Inhalt. I. Neuerungen Version 16. 1. Pin Funktion. 2. Status für Nachtragspositionen. 3. DBD Baupreise EFB

AVANTI Neuerungen. Inhalt. I. Neuerungen Version 16. 1. Pin Funktion. 2. Status für Nachtragspositionen. 3. DBD Baupreise EFB Neueruge Software Techologie GmbH 67433 Neustadt / Weistraße Ihalt I. Neueruge Versio 16 3 1. Pi Fuktio 3 2. Status für Nachtragspositioe 5 3. DBD Baupreise EFB 6 4. Programm Eistiegs Assistet 8 5. Voreistellugs-Assistet

Mehr

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222 Korrekturrichtliie zur Studieleistug Wirtschaftsmathematik am..007 Betriebswirtschaft BB-WMT-S-07 Für die Bewertug ud Abgabe der Studieleistug sid folgede Hiweise verbidlich: Die Vergabe der Pukte ehme

Mehr

Langrange-Multiplikators und Hinreichende Bedingungen

Langrange-Multiplikators und Hinreichende Bedingungen Albert Ludwigs Uiversität Freiburg Abteilug Empirische Forschug ud Ökoometrie Mathematik für Wirtschaftswisseschaftler Dr. Sevtap Kestel Witer 008 10. November 008 14.-4 Lagrage-Multiplikators ud Hireichede

Mehr

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $ Mathematik für Iformatiker B, SS 0 Diestag 5.6 $Id: folge.tex,v. 0/06/05 ::8 hk Exp $ 6 Folge 6.4 Folge reeller Zahle I der letzte Sitzug habe wir de Begriff des Grezwerts eier Folge i eiem metrische Raum

Mehr

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39 Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle

Mehr

1 Vollständige Induktion

1 Vollständige Induktion 1 Vollstädige Idutio 1.1 Idutiosbeweise Das Beweisprizip der vollstädige Idutio ist eies der wichtigste Hilfsmittel der Mathemati icht ur der Aalysis. Es fidet Verwedug bei pratische alle Aussage, die

Mehr

Ein kleines Einmaleins über Mittelwertbildungen

Ein kleines Einmaleins über Mittelwertbildungen Vorlesugsergäzug zur Igeieurmathematik R.Brigola Ei kleies Eimaleis über Mittelwertbilduge Grudlage über arithmetische Mittel, geometrische Mittel, harmoische Mittel, quadratische Mittel ud das arithmetisch-geometrische

Mehr

Mengenbegriff und Mengendarstellung

Mengenbegriff und Mengendarstellung R. Brikma http://brikma-du.de Seite 1 05.10.008 Megebegriff ud Megedarstellug Eie Mege, ist die Zusammefassug bestimmter, wohluterschiedeer Objekte userer Aschauug ud useres Dekes welche Elemete der Mege

Mehr