Maschinelles Lernen in der Bioinformatik

Größe: px
Ab Seite anzeigen:

Download "Maschinelles Lernen in der Bioinformatik"

Transkript

1 Maschinelles Lernen in der Bioinformatik Spezialvorlesung Modul (Fortgeschrittene Methoden in der Bioinformatik) VL 2 HMM und (S)CFG Jana Hertel Professur für Bioinformatik Institut für Informatik Universität Leipzig Maschinelles Lernen in der Bioinformatik 1/16

2 Inhaltsverzeichnis 1 Definition(en) 2 Anwendungsbeispiele 3 Profile HMM 4 Learning Co-Varianz Maschinelles Lernen in der Bioinformatik 2/16

3 Definition(en) 1 HMM - Hidden Markov Model.. stochastisches Modell zur Modellierung eines Systems durch eine Markov-Kette mit unbeobachteten Zuständen Zustände der Markov-Kette sind verborgen jedem Zustand sind beobachtbare Ausgangssymbole (Emissionen) zugeordnet Emissionen treten abhängig vom Zustand mit best. Wahrscheinlichkeit auf Sequenz von Zuständen ist nicht eindeutig durch Beobachtung bestimmt! muss probabilistisch abgeleitet werden. anhand der beobachteten Sequenz von Emissionen wahrscheinlichkeitstheoretische Aussagen über verborgene Zustände Einsatzgebiete: Sprach- und Schrifterkennung, Spamfilter, Phsychologie, etc. Maschinelles Lernen in der Bioinformatik 3/16

4 Definition(en) Was ist ein HMM? Markov-Kette: Serie von Zuständen, die mit Hilfe von Übergangswahrscheinlichkeiten auftreten (stochast. Prozess) Ziel: Angabe von Wahrscheinlichkeiten zukünftiger Ereignisse anhand bengrenzter Vorgeschichte Prognose bei Kenntnis der gesamten Vorgeschichte Hidden Markov Model:.. endliches Modell, beschreibt Serie von Beobachtungen durch einen versteckten stochastischen Prozess P(s i s i 1) i+1 i P(s s ) s i 1 s i s i+1 P(e i 1 s i 1 ) P(e i 1 s) i P(e i s i) P(e i s i) e i 1 e i e i+1 Ein HMM ist ein Modell, welches Sequenzen generieren kann Maschinelles Lernen in der Bioinformatik 4/16

5 Definition(en) Und nun formal: Ein HMM µ = (X, A, Y, B, π) ist gegeben durch: X Menge aller Zustände (Alphabet) A Übergangsmatrix der Zustände aus X Y Menge aller Emissionen (Beobachtungen) B Beobachtungsmatrix, mit b ij = P(y j Y x i X ) π Anfangswahrscheinlichkeitsverteilung, mit π(i) ist Wk, das x i Startzustand ist Ein HMM ist zeitinvariant wenn die Wk aus A und B sich mit der Zeit nicht ändern. Unterliegende Markov-Ketten sind meist 1. Ordnung. Maschinelles Lernen in der Bioinformatik 5/16

6 Anwendungsbeispiele Spracherkennung 2 Anwendung - Spracherkennung Zustände: Phoneme Emissionen: Ketten von Lauten lets go tu the part te potty party patty p ar te Jede Soundsequenz kann mit best. Wk von einem Modell generiert werden. Ein Sprachmodell besteht aus Wk für die Lauterzeugung und für Lautübergänge Maschinelles Lernen in der Bioinformatik 6/16

7 Anwendungsbeispiele Bioinformatik Anwendung - Bioinformatik Sequenz-Alignment Proteinmodellierung Zustände: Spalten des Alignments Aminosäuren Emissionen: Ancestrale Sequenz Primärstruktur Maschinelles Lernen in der Bioinformatik 7/16

8 Anwendungsbeispiele Bioinformatik Anwendung - Bioinformatik Zustände: Emissionen: Sequenz-Alignment Spalten des Alignments Ancestrale Sequenz Consensus Sequenz einer Menge von Sequenzen lässt sich auch mit regulären Ausdrücken beschreiben: A C A A T G T C A A C T A T C A C A C - - A G C A G A A T C A C C G - - A T C RegExpr: [AT][CG][AC][ACTG]*A[TG][GC] keine Aussage über Qualität jeder Ableitbaren Sequenz möglich: z.bsp. TGCCC-AGG (sehr unwahrscheinlich) und ACAC ATC (Consensus) sind beide ableitbar Maschinelles Lernen in der Bioinformatik 8/16

9 Anwendungsbeispiele Bioinformatik Ableitung eines HMM vom Sequenzalignment profile HMM Maschinelles Lernen in der Bioinformatik 9/16

10 Anwendungsbeispiele Bioinformatik Wahrscheinlichkeiten vs. log-odds Scores P(ACACATC) = Sequenz Wk 100 Log odds Consensus ACAC--ATC Öriginal ACA---ATG andere TCAACTATC ACAC--AGC AGA---ATC exceptional TGCT--AGG L(S) = log P(S) = log P(S) L log L with L... Length(S) log-odds Scores können addiert werden numerisch einfacher zu lösen, als mit Wk.en. Die Wk.en können durch potenzieren einfach zurückgewonnen werden. Maschinelles Lernen in der Bioinformatik 10/16

11 Profile HMM 3 Profile HMM Multiples Sequenz Alignment (MSA) position-specific scoring system match modelliert Verteilung aller möglichen Residuen einer Spalte (jede Spalte ein match Zustand) insert erlaubt Einfügen eines o. mehrerer Residuen zw. aktueller und nächster Spalte delete erlaubt Löschen des Consensus Residues Parameter match Additive log-odds Scores: L(x) = log P(x) f x insert Affine gap Kosten: a + b(l 1) a... Score des 1. Residues b... Score für jedes weitere Residue der Insertion der Länge l Zustandswechsel: log t MI, log t II, log t IM a = log t MI + log t IM, b = log t II Maschinelles Lernen in der Bioinformatik 11/16

12 Profile HMM Profile HMM in HMMER Software Abbildung: Eddy 1998, Profile Hidden Markov models Suche in Datenbanken Geg. 1 Sequenz, gehört diese zu einer bestimmten Familie? Sequenz Alignments Gibt es bestimmte Regionen in einer Sequenz? Maschinelles Lernen in der Bioinformatik 12/16

13 Profile HMM Profile HMM Libraries Bisher: Finde best. homologe Sequenz in DB, benutze ein HMM Nun: Geg. eine Sequenz, enthält sie 1 o. mehr bekannte Domains? aligniere geg. Sequenz mit einer Menge (Library) von profile HMMs. Generierung von profile HMM Libraries: große Anzahl an MSA versch. Domains benötigt DB annotierter MSA und vorgefertigter profile HMM (z.bsp. Pfam und PROSITE DB für Proteindomains) HMM zur Erkennung von Strukturen: Scores aus Strukurdaten (2D/3D) trainiere Modelle (Libraries) an bekannten Strukturdomains erkenne strukturierte Elemente in neuen Sequenzen Maschinelles Lernen in der Bioinformatik 13/16

14 Learning Co-Varianz Co-Varianz 4 Learning Co-Varianz Detection of ncrnas.. ncrnas Funktionalität hauptsächl. abhängig von Sekundärstruktur: Veränderungen der Sequenz können fatale Folgen in der Sek.str. haben Bestimmte Motife in Sek.str. benötigen bestimmte Anordnung der Basen in Prim.str. starke Co-Varianz von Primärstr. und Sekundärstr. Maschinelles Lernen in der Bioinformatik 14/16

15 Learning Co-Varianz (S)CFG (S)CFG - (stochastic) context free grammar G = (N, T, P, S) S N... Startsymbol N, T... diskunkte Alphabete von Nichtterminal- und Terminalsymbolen P = N (N T )... Produktionsregeln Erweiterung auf SCFG durch Zuordnung einer Auftrittswahrscheinlichkeit zu jeder Regel aus P: p : P R Wahrscheinlichkeitsverteilung auf der Menge der von der Grammatik erzeugten Wörter. Maschinelles Lernen in der Bioinformatik 15/16

16 Learning Co-Varianz (S)CFG CM - covariance model.. spezielle Erweiterung einer SCFG designed für die Modellierung einer RNA consensus Sequenz und Struktur Kombination von Struktur und Sequenz: Positions-spezif. Scores (log-odds scores) der 4 mögl. Residuen an ungepaarten Positionen der 16 mögl. Basenpaaren an gepaarten Positonen, Insertionen u. Deletionen CMs können verwendet werden um homologe RNA gene in DBen zu finden neue Sequenz-Struktur basierte MSA zu erstellen implementiert in dem Softwarepacket Infernal Maschinelles Lernen in der Bioinformatik 16/16

Statistische Verfahren:

Statistische Verfahren: Statistische Verfahren: Hidden-Markov-Modelle für Multiples Alignment Stochastic Context-Free Grammars (SCFGs) für RNA-Multiples Alignment Übersicht 1 1. Hidden-Markov-Models (HMM) für Multiples Alignment

Mehr

Algorithmische Bioinformatik

Algorithmische Bioinformatik Algorithmische Bioinformatik Hidden-Markov-Modelle Viterbi - Algorithmus Ulf Leser Wissensmanagement in der Bioinformatik Inhalt der Vorlesung Hidden Markov Modelle Baum, L. E. and Petrie, T. (1966). "Statistical

Mehr

Multiple Alignments. Vorlesung Einführung in die Angewandte Bioinformatik Prof. Dr. Sven Rahmann. Webseite zur Vorlesung

Multiple Alignments. Vorlesung Einführung in die Angewandte Bioinformatik Prof. Dr. Sven Rahmann. Webseite zur Vorlesung Multiple Alignments Vorlesung Einführung in die Angewandte Bioinformatik Prof. Dr. Sven Rahmann Webseite zur Vorlesung http://bioinfo.wikidot.com/ Sprechstunde Mo 16-17 in OH14, R214 Sven.Rahmann -at-

Mehr

Bioinformatik. Lokale Alignierung Gapkosten. Silke Trißl / Ulf Leser Wissensmanagement in der. Bioinformatik

Bioinformatik. Lokale Alignierung Gapkosten. Silke Trißl / Ulf Leser Wissensmanagement in der. Bioinformatik Bioinformatik Lokale Alignierung Gapkosten Silke Trißl / Ulf Leser Wissensmanagement in der Bioinformatik Inhalt dieser Vorlesung Ähnlichkeit Lokales und globales Alignment Gapped Alignment Silke Trißl:

Mehr

InterPro & SP-ML. Syntax und Verwendung der Beschreibungssprache XML Ausarbeitung im Seminar XML in der Bioinformatik.

InterPro & SP-ML. Syntax und Verwendung der Beschreibungssprache XML Ausarbeitung im Seminar XML in der Bioinformatik. InterPro & SP-ML Syntax und Verwendung der Beschreibungssprache XML Ausarbeitung im Seminar XML in der Bioinformatik Stefan Albaum 18. Dezember 2002 Inhaltsverzeichnis 1 SPTr-XML 2 1.1 SWISS-PROT...........................

Mehr

Aufabe 7: Baum-Welch Algorithmus

Aufabe 7: Baum-Welch Algorithmus Effiziente Algorithmen VU Ausarbeitung Aufabe 7: Baum-Welch Algorithmus Florian Fest, Matr. Nr.0125496 baskit@generationfun.at Claudia Hermann, Matr. Nr.0125532 e0125532@stud4.tuwien.ac.at Matteo Savio,

Mehr

W-Rechnung und Statistik für Ingenieure Übung 11

W-Rechnung und Statistik für Ingenieure Übung 11 W-Rechnung und Statistik für Ingenieure Übung 11 Christoph Kustosz (kustosz@statistik.tu-dortmund.de) Mathematikgebäude Raum 715 Christoph Kustosz (kustosz@statistik.tu-dortmund.de) W-Rechnung und Statistik

Mehr

2.11 Kontextfreie Grammatiken und Parsebäume

2.11 Kontextfreie Grammatiken und Parsebäume 2.11 Kontextfreie Grammatiken und Parsebäume Beispiel: Beispiel (Teil 3): Beweis für L(G) L: Alle Strings aus L der Länge 0 und 2 sind auch in L(G). Als Induktionsannahme gehen wir davon aus, dass alle

Mehr

Was ist ein Compiler?

Was ist ein Compiler? Was ist ein Compiler? Was ist ein Compiler und worum geht es? Wie ist ein Compiler aufgebaut? Warum beschäftigen wir uns mit Compilerbau? Wie ist die Veranstaltung organisiert? Was interessiert Sie besonders?

Mehr

Parsing-EinfŸhrung Ð 1

Parsing-EinfŸhrung Ð 1 Parsing-EinfŸhrung bersicht Falsifizierbarkeit, oder: Sind Grammatiken wissenschaftlich? Grammatik, Formalismus Kontextfreie Grammatiken Ableitungen Ziel Verstehen der linguistischen Motivation Intuitives

Mehr

Formale Sprachen, reguläre und kontextfreie Grammatiken

Formale Sprachen, reguläre und kontextfreie Grammatiken Formale Sprachen, reguläre und kontextfreie Grammatiken Alphabet A: endliche Menge von Zeichen Wort über A: endliche Folge von Zeichen aus A A : volle Sprache über A: Menge der A-Worte formale Sprache

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 6. Formale Sprachen und Grammatiken Malte Helmert Gabriele Röger Universität Basel 17. März 2014 Einführung Beispiel: Aussagenlogische Formeln Aus dem Logikteil: Definition (Syntax

Mehr

Hidden Markov Models

Hidden Markov Models Hidden Markov Models Kursfolien Karin Haenelt 09.05002 1 Letzte Änderung 18.07002 Hidden Markov Models Besondere Form eines probabilistischen endlichen Automaten Weit verbreitet in der statistischen Sprachverarbeitung

Mehr

Algorithmische Anwendungen WS 2005/2006

Algorithmische Anwendungen WS 2005/2006 Algorithmische Anwendungen WS 2005/2006 Sequenzalignment Gruppe F_lila_Ala0506 Allal Kharaz Yassine ELassad Inhaltsverzeichnis 1 Problemstellungen...................................... 3 1.1 Rechtschreibkorrektur...............................

Mehr

Hidden Markov Models und DNA-Sequenzen

Hidden Markov Models und DNA-Sequenzen Hidden Markov Models und DNA-Sequenzen Joana Grah Seminar: Mathematische Biologie Sommersemester 2012 Betreuung: Prof. Dr. Matthias Löwe, Dr. Felipe Torres Institut für Mathematische Statistik 28. Juni

Mehr

1. Der Begriff Informatik 2. Syntax und Semantik von Programmiersprachen. I.2. I.2. Grundlagen von von Programmiersprachen.

1. Der Begriff Informatik 2. Syntax und Semantik von Programmiersprachen. I.2. I.2. Grundlagen von von Programmiersprachen. 1. Der Begriff Informatik 2. Syntax und Semantik von Programmiersprachen I.2. I.2. Grundlagen von von Programmiersprachen. - 1 - 1. Der Begriff Informatik "Informatik" = Kunstwort aus Information und Mathematik

Mehr

Formale Sprachen und Grammatiken

Formale Sprachen und Grammatiken Formale Sprachen und Grammatiken Jede Sprache besitzt die Aspekte Semantik (Bedeutung) und Syntax (formaler Aufbau). Die zulässige und korrekte Form der Wörter und Sätze einer Sprache wird durch die Syntax

Mehr

Modellierung biologischer. Christian Maidorfer Thomas Zwifl (Seminar aus Informatik)

Modellierung biologischer. Christian Maidorfer Thomas Zwifl (Seminar aus Informatik) Modellierung biologischer Prozesse Christian Maidorfer Thomas Zwifl (Seminar aus Informatik) Überblick Einführung Arten von Modellen Die stochastische Pi-Maschine Warum Modelle Die Biologie konzentriert

Mehr

Alphabet, formale Sprache

Alphabet, formale Sprache n Alphabet Alphabet, formale Sprache l nichtleere endliche Menge von Zeichen ( Buchstaben, Symbole) n Wort über einem Alphabet l endliche Folge von Buchstaben, die auch leer sein kann ( ε leere Wort) l

Mehr

Schleswig-Holstein 2011. Kernfach Mathematik

Schleswig-Holstein 2011. Kernfach Mathematik Aufgabe 6: Stochastik Vorbemerkung: Führen Sie stets geeignete Zufallsvariablen und Namen für Ereignisse ein. Machen Sie auch Angaben über die Verteilung der jeweiligen Zufallsvariablen. Eine repräsentative

Mehr

Sprachen/Grammatiken eine Wiederholung

Sprachen/Grammatiken eine Wiederholung Sprachen/Grammatiken eine Wiederholung Was sind reguläre Sprachen? Eigenschaften regulärer Sprachen Sprachen Begriffe Symbol: unzerlegbare Grundzeichen Alphabet: endliche Menge von Symbolen Zeichenreihe:

Mehr

FIDeS: Frühwarn und Intrusion Detection System auf der Basis von kombinierten Methoden der KI

FIDeS: Frühwarn und Intrusion Detection System auf der Basis von kombinierten Methoden der KI FIDeS: Frühwarn und Intrusion Detection System auf der Basis von kombinierten Methoden der KI Workshop Informationssicherheit Carsten Elfers 06.11.2009 System Qualität und Informationssicherheit Rahmenbedingungen

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Tutorium 27 29..24 FAKULTÄT FÜR INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Definition

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Tutorium 4 26..25 INSTITUT FÜR THEORETISCHE INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

MOL.504 Analyse von DNA- und Proteinsequenzen. Modul 2 BLAST-Sequenzsuche und Sequenzvergleiche

MOL.504 Analyse von DNA- und Proteinsequenzen. Modul 2 BLAST-Sequenzsuche und Sequenzvergleiche MOL.504 Analyse von DNA- und Proteinsequenzen Modul 2 BLAST-Sequenzsuche und Sequenzvergleiche Summary Modul 1 - Datenbanken Wo finde ich die DNA Sequenz meines Zielgens? Wie erhalte ich Info aus der DNA-Datenbank

Mehr

Mathematische Grundlagen III

Mathematische Grundlagen III Mathematische Grundlagen III Informationstheorie Prof Dr. Matthew Crocker Universität des Saarlandes 22. Juni 205 Matthew Crocker (UdS) Mathe III 22. Juni 205 / 43 Informationstheorie Entropie (H) Wie

Mehr

Elementare statistische Methoden

Elementare statistische Methoden Elementare statistische Methoden Vorlesung Computerlinguistische Techniken Alexander Koller 28. November 2014 CL-Techniken: Ziele Ziel 1: Wie kann man die Struktur sprachlicher Ausdrücke berechnen? Ziel

Mehr

Copyright 2014 Delta Software Technology GmbH. All Rights reserved.

Copyright 2014 Delta Software Technology GmbH. All Rights reserved. Karlsruhe, 21. Mai 2014 Softwareentwicklung - Modellgetrieben und trotzdem agil Daniela Schilling Delta Software Technology GmbH The Perfect Way to Better Software Modellgetriebene Entwicklung Garant für

Mehr

Theoretische Grundlagen der Informatik WS 09/10

Theoretische Grundlagen der Informatik WS 09/10 Theoretische Grundlagen der Informatik WS 09/10 - Tutorium 6 - Michael Kirsten und Kai Wallisch Sitzung 13 02.02.2010 Inhaltsverzeichnis 1 Formeln zur Berechnung Aufgabe 1 2 Hamming-Distanz Aufgabe 2 3

Mehr

Fallstudie: Schadenshäufigkeiten bei Kfz-Versicherungen

Fallstudie: Schadenshäufigkeiten bei Kfz-Versicherungen Fallstudie: Schadenshäufigkeiten bei Kfz-Versicherungen Stefan Lang 12 Oktober 2005 WS 05/06 Datensatzbeschreibung (1) Daten Versicherungsdaten für Belgien ca 160000 Beobachtungen Ziel Analyse der Risikostruktur

Mehr

Entwicklung von Visualisierungskomponenten

Entwicklung von Visualisierungskomponenten Entwicklung von Visualisierungskomponenten Das Assistenzsystem proknows, das am Fraunhofer Institut in Lemgo entwickelt wird, ermöglicht neben der Durchführung verschiedener Assistenzfunktionen wie der

Mehr

Theoretische Informatik I

Theoretische Informatik I Theoretische Informatik I Einheit 2.4 Grammatiken 1. Arbeitsweise 2. Klassifizierung 3. Beziehung zu Automaten Beschreibungsformen für Sprachen Mathematische Mengennotation Prädikate beschreiben Eigenschaften

Mehr

3 Bioinformatik I, Einführung, Grundlagen

3 Bioinformatik I, Einführung, Grundlagen Universität des Saarlandes FR 6.2 Informatik Prof. Dr. Hans-Peter Lenhof I Wichtige Themen aus der Vorlesung Bioinformatik I WS 2009/2010 Hinweis: Dies ist eine stichpunktartige Liste der wichtigen Themen

Mehr

Bioinformatik. Substitutionsmatrizen BLAST. Ulf Leser Wissensmanagement in der. Bioinformatik

Bioinformatik. Substitutionsmatrizen BLAST. Ulf Leser Wissensmanagement in der. Bioinformatik Bioinformatik Substitutionsmatrizen BLAST Ulf Leser Wissensmanagement in der Bioinformatik Inhalt dieser Vorlesung Substitutionsmatrizen: PAM und BLOSSUM Suche in Datenbanken: Basic Local Alignment Search

Mehr

Part-Of-Speech-Tagging mit Viterbi Algorithmus

Part-Of-Speech-Tagging mit Viterbi Algorithmus Part-Of-Speech-Tagging mit Viterbi Algorithmus HS Endliche Automaten Inna Nickel, Julia Konstantinova 19.07.2010 1 / 21 Gliederung 1 Motivation 2 Theoretische Grundlagen Hidden Markov Model Viterbi Algorithmus

Mehr

Motivation. Formale Grundlagen der Informatik 1 Kapitel 5 Kontextfreie Sprachen. Informales Beispiel. Informales Beispiel.

Motivation. Formale Grundlagen der Informatik 1 Kapitel 5 Kontextfreie Sprachen. Informales Beispiel. Informales Beispiel. Kontextfreie Kontextfreie Motivation Formale rundlagen der Informatik 1 Kapitel 5 Kontextfreie Sprachen Bisher hatten wir Automaten, die Wörter akzeptieren Frank Heitmann heitmann@informatik.uni-hamburg.de

Mehr

Der Viterbi-Algorithmus.

Der Viterbi-Algorithmus. Der Viterbi-Algorithmus. Eine Erläuterung der formalen Spezifikation am Beispiel des Part-of-Speech Tagging. Kursskript Karin Haenelt, 9..7 (.5.) Einleitung In diesem Skript wird der Viterbi-Algorithmus

Mehr

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r )

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r ) Definition B : Menge der binären Bäume, rekursiv definiert durch die Regeln: ist ein binärer Baum sind t l, t r binäre Bäume, so ist auch t =, t l, t r ein binärer Baum nur das, was durch die beiden vorigen

Mehr

Programmiersprachen und Übersetzer

Programmiersprachen und Übersetzer Programmiersprachen und Übersetzer Sommersemester 2010 19. April 2010 Theoretische Grundlagen Problem Wie kann man eine unendliche Menge von (syntaktisch) korrekten Programmen definieren? Lösung Wie auch

Mehr

Algorithmische Bioinformatik

Algorithmische Bioinformatik Algorithmische Bioinformatik Multiple Sequence Alignment Sum-of-pairs Score Center-Star Score Ulf Leser Wissensmanagement in der Bioinformatik Inhalt dieser Vorlesung Multiples Sequenzalignment Sum-Of-Pair

Mehr

Vorhersagealgorithmen Strukturelle Bioinformatik WS15/16

Vorhersagealgorithmen Strukturelle Bioinformatik WS15/16 Vorhersagealgorithmen Strukturelle Bioinformatik WS15/16 Dr. Stefan Simm, 02.12.2015 simm@bio.uni-frankfurt.de RNA-Sekundärstrukturen werden durch Interaktionen zwischen komplementären Nucleotid-Paaren

Mehr

Bachelorarbeit. Informatik. Entwicklung einer Veranschaulichung von Hidden Markov Modellen zur Unterstützung der Lehre

Bachelorarbeit. Informatik. Entwicklung einer Veranschaulichung von Hidden Markov Modellen zur Unterstützung der Lehre Bachelorarbeit Informatik Entwicklung einer Veranschaulichung von Hidden Markov Modellen zur Unterstützung der Lehre Eingereicht von Chris Jacobs Matrikel Nr.: 184239 Datum: 8. Mai 2012 Eidesstattliche

Mehr

Quelle: www.omekinteractive.com. Ganzkörper- Gestensteuerung. Mit 3-D Sensor (z.b. MS Kinect, ASUS Xtion) Zwischenpräsentation 21.05.

Quelle: www.omekinteractive.com. Ganzkörper- Gestensteuerung. Mit 3-D Sensor (z.b. MS Kinect, ASUS Xtion) Zwischenpräsentation 21.05. Quelle: www.omekinteractive.com Ganzkörper- 1 Gestensteuerung Mit 3-D Sensor (z.b. MS Kinect, ASUS Xtion) Zwischenpräsentation 2 Gliederung Motivation Wozu braucht man eine Gestensteuerung? Aktuelle Anwendungen

Mehr

Grammatik Prüfung möglich, ob eine Zeichenfolge zur Sprache gehört oder nicht

Grammatik Prüfung möglich, ob eine Zeichenfolge zur Sprache gehört oder nicht Zusammenhang: Formale Sprache Grammatik Formale Sprache kann durch Grammatik beschrieben werden. Zur Sprache L = L(G) gehören nur diejenigen Kombinationen der Zeichen des Eingabealphabets, die durch die

Mehr

Grundlagen der Monte Carlo Simulation

Grundlagen der Monte Carlo Simulation Grundlagen der Monte Carlo Simulation 10. Dezember 2003 Peter Hofmann Inhaltsverzeichnis 1 Monte Carlo Simulation.................... 2 1.1 Problemstellung.................... 2 1.2 Lösung durch Monte

Mehr

2.7 Der Shannon-Fano-Elias Code

2.7 Der Shannon-Fano-Elias Code 2.7 Der Shannon-Fano-Elias Code Die Huffman-Codierung ist ein asymptotisch optimales Verfahren. Wir haben auch gesehen, dass sich die Huffman-Codierung gut berechnen und dann auch gut decodieren lassen.

Mehr

BLAST. Ausarbeitung zum Proseminar Vortag von Nicolás Fusseder am 24.10.02

BLAST. Ausarbeitung zum Proseminar Vortag von Nicolás Fusseder am 24.10.02 BLAST Ausarbeitung zum Proseminar Vortag von Nicolás Fusseder am 24.10.02 BLAST (Basic Local Alignment Search Tool) hat seit seiner Veröffentlichung, von Altschul et al. im Jahre 1990, an großer Relevanz

Mehr

Peter M. Schneider. Zum Stand der Entwicklung und Anwendung probabilistischer Software für f r die Interpretation von komplexen DNA-Mischspuren

Peter M. Schneider. Zum Stand der Entwicklung und Anwendung probabilistischer Software für f r die Interpretation von komplexen DNA-Mischspuren Zum Stand der Entwicklung und Anwendung probabilistischer Software für f r die Interpretation von komplexen DNA-Mischspuren Peter M. Schneider 35. Spurenworkshop Complex Mixtures Komplexe Mischungen Mixture

Mehr

4. 4. Algorithmen und Datenstrukturen in deskriptiven Programmiersprachen

4. 4. Algorithmen und Datenstrukturen in deskriptiven Programmiersprachen Kapitel Kapitel 4 Deskriptive Programmierung SS 2008 4. 4. Algorithmen und Datenstrukturen in in deskriptiven Programmiersprachen Deskriptive Programmierung 1 Sprachverarbeitung in in Prolog Prolog Prolog

Mehr

Evolution & Genetik (Beispiel Hämoglobin) Prof. Dr. Antje Krause FH Bingen 06721 / 409 253 akrause@fh-bingen.de

Evolution & Genetik (Beispiel Hämoglobin) Prof. Dr. Antje Krause FH Bingen 06721 / 409 253 akrause@fh-bingen.de Evolution & Genetik (Beispiel Hämoglobin) Prof. Dr. Antje Krause FH Bingen 06721 / 409 253 akrause@fh-bingen.de DNA (Desoxyribonukleinsäure) 5 3 CGATGTACATCG GCTACATGTAGC 3 5 Doppelhelix Basen: Adenin,

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 8: kontextfreie Grammatiken Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2009/2010 1/37 Überblick Kontextfreie Grammatiken

Mehr

Zentrum für Bioinformatik. Übung 4: Revision. Beispielfragen zur Klausur im Modul Angewandte Bioinformatik (erste Semesterhälfte)

Zentrum für Bioinformatik. Übung 4: Revision. Beispielfragen zur Klausur im Modul Angewandte Bioinformatik (erste Semesterhälfte) Andrew Torda Björn Hansen Iryna Bondarenko Zentrum für Bioinformatik Übung zur Vorlesung Angewandte Bioinformatik Sommersemester 2014 20./23.06.2014 Übung 4: Revision Beispielfragen zur Klausur im Modul

Mehr

Primärstruktur. Wintersemester 2011/12. Peter Güntert

Primärstruktur. Wintersemester 2011/12. Peter Güntert Primärstruktur Wintersemester 2011/12 Peter Güntert Primärstruktur Beziehung Sequenz Struktur Proteinsequenzen, Sequenzdatenbanken Sequenzvergleich (sequence alignment) Sequenzidentität, Sequenzhomologie

Mehr

Einführung Computerlinguistik. Konstituentensyntax II

Einführung Computerlinguistik. Konstituentensyntax II Einführung Computerlinguistik Konstituentensyntax II Hinrich Schütze & Robert Zangenfeind Centrum für Informations- und Sprachverarbeitung, LMU München 2013-11-18 Schütze & Zangenfeind: Konstituentensyntax

Mehr

Einführung in die Computerlinguistik

Einführung in die Computerlinguistik Einführung in die Computerlinguistik Syntax WS 2006/2007 Manfred Pinkal Einführung in die Computerlinguistik 2006/2007 M. Pinkal UdS 1 Morphologie und Syntax Gegenstand der Morphologie ist die Struktur

Mehr

BONUS MALUS SYSTEME UND MARKOV KETTEN

BONUS MALUS SYSTEME UND MARKOV KETTEN Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik, Institut für Mathematische Stochastik BONUS MALUS SYSTEME UND MARKOV KETTEN Klaus D. Schmidt Ringvorlesung TU Dresden Fakultät MN,

Mehr

Funktionale Programmierung mit Haskell

Funktionale Programmierung mit Haskell Funktionale Programmierung mit Haskell Prof. Dr. Hans J. Schneider Lehrstuhl für Programmiersprachen und Programmiermethodik Friedrich-Alexander-Universität Erlangen-Nürnberg Sommersemester 2011 I. Die

Mehr

Theorien für die Darstellung von Unsicherheit Ein Vergleich der Wahrscheinlichkeits-, Möglichkeits- und Dempster-Shafer Theorie

Theorien für die Darstellung von Unsicherheit Ein Vergleich der Wahrscheinlichkeits-, Möglichkeits- und Dempster-Shafer Theorie Theorien für die Darstellung von Unsicherheit Ein Vergleich der Wahrscheinlichkeits-, Möglichkeits- und Dempster-Shafer Theorie Johannes Leitner Inhalt I Modellierung von Unschärfe Unscharfe Mengen Unscharfe

Mehr

Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln.

Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln. Übungen zur Vorlesung Wirtschaftsstatistik Zufallsvariablen Aufgabe 4.1 Ein Unternehmen fertigt einen Teil der Produktion in seinem Werk in München und den anderen Teil in seinem Werk in Köln. Auf Grund

Mehr

Methoden zur Cluster - Analyse

Methoden zur Cluster - Analyse Kapitel 4 Spezialvorlesung Modul 10-202-2206 (Fortgeschrittene Methoden in der Bioinformatik) Jana Hertel Professur für Bioinformatik Institut für Informatik Universität Leipzig Machine learning in bioinformatics

Mehr

Einführung in die Computerlinguistik Formale Grammatiken rechtslineare und kontextfreie Grammatiken Kellerautomaten

Einführung in die Computerlinguistik Formale Grammatiken rechtslineare und kontextfreie Grammatiken Kellerautomaten Einführung in die Computerlinguistik Formale Grammatiken rechtslineare und kontextfreie Grammatiken Kellerautomaten Dozentin: Wiebke Petersen 13. Foliensatz Wiebke Petersen Einführung CL 1 Formale Grammatik

Mehr

7. Formale Sprachen und Grammatiken

7. Formale Sprachen und Grammatiken 7. Formale Sprachen und Grammatiken Computer verwenden zur Verarbeitung von Daten und Informationen künstliche, formale Sprachen (Maschinenspr., Assemblerspachen, Programmierspr., Datenbankspr., Wissensrepräsentationsspr.,...)

Mehr

1 Struktur von Biomolekülen

1 Struktur von Biomolekülen 1 Struktur von Biomolekülen Modul 10-202-2208 Bioinformatik von RNA- und Proteinstrukturen Jana Hertel Lehrstuhl Bioinformatik 8. April 2013 Jana Hertel (Lehrstuhl Bioinformatik) 1 Struktur von Biomolekülen

Mehr

Entwicklung eines Distanzmaßes zwischen Bildern über dem Modell der Fields of Visual Words

Entwicklung eines Distanzmaßes zwischen Bildern über dem Modell der Fields of Visual Words Entwicklung eines Distanzmaßes zwischen Bildern über dem Modell der Fields of Visual Words André Viergutz 1 Inhalt Einführung. Einordnung der Arbeit in die zugrunde liegenden Konzepte Das Modell der Fields

Mehr

Statistik I für Betriebswirte Vorlesung 5

Statistik I für Betriebswirte Vorlesung 5 Statistik I für Betriebswirte Vorlesung 5 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik 07. Mai 2015 PD Dr. Frank Heyde Statistik I für Betriebswirte Vorlesung 5 1 Klassische Wahrscheinlichkeitsdefinition

Mehr

Bioinformatik Statistik und Analyse mit R 22.05.2009-1 -

Bioinformatik Statistik und Analyse mit R 22.05.2009-1 - Bioinformatik Statistik und Analyse mit R 22.05.2009-1 - Definition: Bioinformatik Die Bioinformatik http://de.wikipedia.org/wiki/bioinformatik (englisch bioinformatics, auch computational biology) ist

Mehr

Multimedia Technologie II

Multimedia Technologie II Vorlesung / Übungen Multimedia Technologie II Prof. Dr. Michael Frank / Prof. Dr. Klaus Hering Sommersemester 2004 HTWK Leipzig, FB IMN Für die externe Vorhaltung der DTD werden sämtliche zwischen den

Mehr

Monte Carlo Simulationen

Monte Carlo Simulationen Monte Carlo Simulationen Erkenntnisse durch die Erschaffung einer virtuellen Welt Stefan Wunsch 31. Mai 2014 INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK (IEKP) KIT Universität des Landes Baden-Württemberg und

Mehr

Die wichtigsten Bioinformatikdatenbanken. SwissProt, PDB, Scop, CATH, FSSP, PROSITE, Pfam

Die wichtigsten Bioinformatikdatenbanken. SwissProt, PDB, Scop, CATH, FSSP, PROSITE, Pfam Die wichtigsten Bioinformatikdatenbanken SwissProt, PDB, Scop, CATH, FSSP, PROSITE, Pfam Übersicht Nucleotidsequenzen: GenBank, EMBL Proteindatenbank SwissProt Proteinstrukturen: Brookhavens PDB Proteinklassifizierung:

Mehr

Data Mining: Einige Grundlagen aus der Stochastik

Data Mining: Einige Grundlagen aus der Stochastik Data Mining: Einige Grundlagen aus der Stochastik Hagen Knaf Studiengang Angewandte Mathematik Hochschule RheinMain 21. Oktober 2015 Vorwort Das vorliegende Skript enthält eine Zusammenfassung verschiedener

Mehr

Theorie der Informatik. Theorie der Informatik. 6.1 Einführung. 6.2 Alphabete und formale Sprachen. 6.3 Grammatiken. 6.4 Chomsky-Hierarchie

Theorie der Informatik. Theorie der Informatik. 6.1 Einführung. 6.2 Alphabete und formale Sprachen. 6.3 Grammatiken. 6.4 Chomsky-Hierarchie Theorie der Informatik 17. März 2014 6. Formale Sprachen und Grammatiken Theorie der Informatik 6. Formale Sprachen und Grammatiken Malte Helmert Gabriele Röger Universität Basel 17. März 2014 6.1 Einführung

Mehr

Zufallsgrößen und Wahrscheinlichkeitsverteilungen

Zufallsgrößen und Wahrscheinlichkeitsverteilungen RS 24.2.2005 Zufallsgroessen_i.mcd 1) Zufallsgröße Zufallsgrößen und Wahrscheinlichkeitsverteilungen Zu jedem Zufallsexeriment gehört ein Ergebnisraum Ω. Die einzelnen Ergebnisse ω i können Buchstaben,

Mehr

Was ist Bioinformatik?

Was ist Bioinformatik? 9. Kurstag: Bioinformatik Der Begriff "Bioinformatik" wurde 1989 erstmals von D.R. Masys im JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY erwähnt. Was ist Bioinformatik? Die

Mehr

$ % + 0 sonst. " p für X =1 $

$ % + 0 sonst.  p für X =1 $ 31 617 Spezielle Verteilungen 6171 Bernoulli Verteilung Wir beschreiben zunächst drei diskrete Verteilungen und beginnen mit einem Zufallsexperiment, indem wir uns für das Eintreffen eines bestimmten Ereignisses

Mehr

Sequenz Alignment Teil 2

Sequenz Alignment Teil 2 Sequenz Alignment Teil 2 14.11.03 Vorlesung Bioinformatik 1 Molekulare Biotechnologie Dr. Rainer König Besonderen Dank an Mark van der Linden, Mechthilde Falkenhahn und der Husar Biocomputing Service Gruppe

Mehr

Modellbasierte Diagnosesysteme

Modellbasierte Diagnosesysteme Modellbasierte Diagnosesysteme Diagnose: Identifikation eines vorliegenden Fehlers (Krankheit) auf der Basis von Beobachtungen (Symptomen) und Hintergrundwissen über das System 2 Arten von Diagnosesystemen:

Mehr

16.3 Unterrichtsmaterialien

16.3 Unterrichtsmaterialien 16.3 Unterrichtsmterilien Vness D.l. Pfeiffer, Christine Glöggler, Stephnie Hhn und Sven Gembll Mteril 1: Alignieren von Nukleotidsequenzen für die Verwndtschftsnlyse Für eine Verwndtschftsnlyse vergleicht

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 27. Aussagenlogik: Logisches Schliessen und Resolution Malte Helmert Universität Basel 28. April 2014 Aussagenlogik: Überblick Kapitelüberblick Aussagenlogik: 26.

Mehr

Automaten und formale Sprachen Klausurvorbereitung

Automaten und formale Sprachen Klausurvorbereitung Automaten und formale Sprachen Klausurvorbereitung Rami Swailem Mathematik Naturwissenschaften und Informatik FH-Gießen-Friedberg Inhaltsverzeichnis 1 Definitionen 2 2 Altklausur Jäger 2006 8 1 1 Definitionen

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 15: Reguläre Ausdrücke und rechtslineare Grammatiken Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/25 Was kann man mit endlichen

Mehr

Mathematische Grundlagen der Informatik 2

Mathematische Grundlagen der Informatik 2 Zusammenfassung Math2I Mathematische Grundlagen der Informatik 2 Emanuel Duss emanuel.duss@gmail.com 12. April 2013 1 Zusammenfassung Math2I Mathematische Grundlagen der Informatik 2 Dieses Dokument basiert

Mehr

Grundlagen Theoretischer Informatik I SoSe 2011 in Trier. Henning Fernau Universität Trier fernau@uni-trier.de

Grundlagen Theoretischer Informatik I SoSe 2011 in Trier. Henning Fernau Universität Trier fernau@uni-trier.de Grundlagen Theoretischer Informatik I SoSe 2011 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Grundlagen Theoretischer Informatik I Gesamtübersicht Organisatorisches; Einführung Logik

Mehr

Grundlagen der Informatik II. Teil I: Formale Modelle der Informatik

Grundlagen der Informatik II. Teil I: Formale Modelle der Informatik Grundlagen der Informatik II Teil I: Formale Modelle der Informatik 1 Einführung GdInfoII 1-2 Ziele/Fragestellungen der Theoretischen Informatik 1. Einführung abstrakter Modelle für informationsverarbeitende

Mehr

Einführung in die Computerlinguistik

Einführung in die Computerlinguistik Einführung in die Computerlinguistik Syntax II WS 2008/2009 Manfred Pinkal Morphologie und Syntax Gegenstand der Morphologie ist die Struktur des Wortes: der Aufbau von Wörtern aus Morphemen, den kleinsten

Mehr

Algorithmik II. SS 2003 Prof. Dr. H. Stoyan Lehrstuhl für Informatik 8 ( Künstliche Intelligenz) Email: stoyan@informatik.uni-erlangen.

Algorithmik II. SS 2003 Prof. Dr. H. Stoyan Lehrstuhl für Informatik 8 ( Künstliche Intelligenz) Email: stoyan@informatik.uni-erlangen. Algorithmik II SS 2003 Prof. Dr. H. Stoyan Lehrstuhl für Informatik 8 ( Künstliche Intelligenz) Email: stoyan@informatik.uni-erlangen.de Homepage der Vorlesung Vorbemerkungen I http://www8.informatik.uni-erlangen.de/immd8

Mehr

Automatisches Lernen von Regeln zur quellseitigen Umordnung

Automatisches Lernen von Regeln zur quellseitigen Umordnung Automatisches Lernen von Regeln zur quellseitigen Umordnung E I N A N S AT Z V O N D M I T R I Y G E N Z E L Duwaraka Murugadas Fortgeschrittene Methoden der statistischen maschinellen Übersetzung (Miriam

Mehr

Künstliche Intelligenz Unsicherheit. Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln

Künstliche Intelligenz Unsicherheit. Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Künstliche Intelligenz Unsicherheit Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Rückblick Agent in der Wumpuswelt konnte Entscheidungen

Mehr

Technische Universität Hamburg-Harburg

Technische Universität Hamburg-Harburg Technische Universität Hamburg-Harburg Informatik für Maschinenbau-Ingenieure II Schriftliche Prüfung Allgemeine Hinweise 1. Diese Prüfungsunterlagen enthalten 8 Aufgaben auf 6 nummerierten Seiten und

Mehr

3 Sicherheit von Kryptosystemen

3 Sicherheit von Kryptosystemen 3 Sicherheit von Kryptosystemen 43 3 Sicherheit von Kryptosystemen 3.1 Informationstheoretische Sicherheit Claude E. Shannon untersuchte die Sicherheit kryptographischer Systeme auf informationstheoretischer

Mehr

effektives Verfahren ~ Algorithmus (Al Chwarismi) Regelsystem, Methode, Rezept, Gebrauchsanleitung Programm (griech. προγραφω, vor-schreiben)

effektives Verfahren ~ Algorithmus (Al Chwarismi) Regelsystem, Methode, Rezept, Gebrauchsanleitung Programm (griech. προγραφω, vor-schreiben) effektive Verfahren Ein Verfahren ist effektiv, wenn es für jeden Fall, der in einem zuvor abgegrenzten Bereich von eindeutigen Unterscheidungen auftreten kann, eine eindeutige und ausführbare Handlungsanweisung

Mehr

Grammatiken. Einführung

Grammatiken. Einführung Einführung Beispiel: Die arithmetischen Ausdrücke über der Variablen a und den Operationen + und können wie folgt definiert werden: a, a + a und a a sind arithmetische Ausdrücke Wenn A und B arithmetische

Mehr

Silca Software ERKLÄRUNG. February 2013 Copyright Silca S.p.A. V.2.0

Silca Software ERKLÄRUNG. February 2013 Copyright Silca S.p.A. V.2.0 ERKLÄRUNG Was ist eine KARTE? KARTE oder Gesamtheit der Parameter hinsichtlich Abstände, Frästiefe, Fräsbasis, Winkel, Bezug, Spannbacke, Fräser ( insgesamt etwa 250 Parameter für jede Schlüsselachse )

Mehr

Google s PageRank. Eine Anwendung von Matrizen und Markovketten. Vortrag im Rahmen der Lehrerfortbildung an der TU Clausthal 23.

Google s PageRank. Eine Anwendung von Matrizen und Markovketten. Vortrag im Rahmen der Lehrerfortbildung an der TU Clausthal 23. Google s PageRank Eine Anwendung von Matrizen und Markovketten Vortrag im Rahmen der Lehrerfortbildung an der TU Clausthal 23. September 2009 Dr. Werner Sandmann Institut für Mathematik Technische Universität

Mehr

Praktikum Maschinelle Übersetzung Language Model

Praktikum Maschinelle Übersetzung Language Model Praktikum Maschinelle Übersetzung Language Model Um die Aufgaben auszuführen, können Sie ihre Daten in folgendem Verzeichnis speichern: /project/smtstud/ss10/systems/username/ Wir werden verschiedene Sprachmodelle

Mehr

Vorlesung Theoretische Informatik

Vorlesung Theoretische Informatik Vorlesung Theoretische Informatik Automaten und Formale Sprachen Hochschule Reutlingen Fakultät für Informatik Masterstudiengang Wirtschaftsinformatik überarbeitet von F. Laux (Stand: 09.06.2010) Sommersemester

Mehr

Programmieren I. Formale Sprachen. www.kit.edu. Institut für Angewandte Informatik

Programmieren I. Formale Sprachen. www.kit.edu. Institut für Angewandte Informatik Programmieren I Formale Sprachen KIT Universität des Landes Baden-Württemberg und nationales Großforschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Formale Sprachen: Allgemeines Sprachen werden

Mehr

Software Entwicklung in der Wissenschaft

Software Entwicklung in der Wissenschaft Software Entwicklung in der Wissenschaft Ein Dialog zwischen Theorie und Praxis einiger Softwaretechnikelemente anhand eines Interviews Webadresse, E-Mail oder sonstige Referenz Seite 1/30 07.10.2015 Gliederung

Mehr

Guideline. Integration von Google Analytics. in advertzoom

Guideline. Integration von Google Analytics. in advertzoom Guideline Integration von Google Analytics in advertzoom advertzoom GmbH advertzoom GmbH Stand November 2012 Seite [1] Inhalt 1 KPI aus Google Analytics übernehmen... 3 2 Grundlegende Funktionsweise...

Mehr

RapidMiner als Werkzeug für die textorientierten Geisteswissenschaften Katharina Morik

RapidMiner als Werkzeug für die textorientierten Geisteswissenschaften Katharina Morik technische universität RapidMiner als Werkzeug für die textorientierten Geisteswissenschaften Katharina Morik Name Autor Ort und Datum Informatik: Linguistik: Methoden + Verfahren Forschungsfragen, Anforderungen

Mehr

Bioinformatik Für Biophysiker

Bioinformatik Für Biophysiker Bioinformatik Für Biophysiker Sommersemester 2009 Silke Trißl / Ulf Leser Wissensmanagement in der Bioinformatik Wissensmanagement in der Bioinformatik Schwerpunkte Algorithmen der Bioinformatik Management

Mehr