ARBEITSUNTERLAGEN ZUR VORLESUNG UND ÜBUNG AN DER UNIVERSITÄT DES SAARLANDES LINEARE OPTIMIERUNG

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "ARBEITSUNTERLAGEN ZUR VORLESUNG UND ÜBUNG AN DER UNIVERSITÄT DES SAARLANDES LINEARE OPTIMIERUNG"

Transkript

1 ¾ REITSUNTERLGEN ZUR VORLESUNG UND ÜUNG N DER UNIVERSITÄT DES SRLNDES LINERE OPTIMIERUNG IM SS

2 Lineare Optimierung (SS ). ufgabe (Graphische Lineare Optimierung) Nach einem anstrengenden Semester steht der wohlverdiente Urlaub an und es gilt, den Koffer zu packen. Mitnehmen wollen Sie, wie jeder andere Student ier und Kondome. illig-weg bietet zwar den günstigsten Flug, doch dürfen sie nur einen Koffer mitnehmen. Dieser bietet 8PE Raum. Päckchen Kondome nimmt, genau wie Six-Pack, PE in nspruch. Zudem ist das Gewicht auf kg beschränkt, wobei der Koffer selbst 4kg wiegt. Päckchen. Kondome hat ein Gewicht von.5kg, ein Six-Pack hingegen von kg. Zum Einkaufen der beiden rtikel stehen Ihnen 4 Euro zur Verfügung. Päckchen Kondome kostet 6 Euro, Six-Pack Euro. Sie gehen davon aus, dass ihnen ein Päckchen Kondome,5mal so viel Spaß bieten wird, wie ein Six-Pack Maximieren Sie ihren Urlaubsspaß, und lösen Sie die ufgabe graphisch!!!. ufgabe (Lineare Programme) Formulieren Sie die folgenden Optimierungsprobleme als lineare Programme. Wandeln Sie dabei Ungleichungen mittels Schlupfvariablen in Gleichungen um! a) Ein etrieb hat die Möglichkeit, zwei Werkstücke W und W zu produzieren, wozu er seine nicht voll ausgelasteten Drehbänke, Fräs- und Hobelmaschinen ausnutzen kann. In der folgenden Tabelle sind die freie Maschinenkapazität, der Gewinn und die earbeitungszeit für ein Werkstück W i angegeben. Stellen Sie das lineare Programm zur Gewinnmaximierung auf. Maschinenzeit in Minuten Maschinenkapazität für ein Werkstück der rt in Minuten W W Drehen 5 5 Fräsen 5 Hobeln 5 Gewinn in GE b) Eine Schaffabrik stellt aus Wolle, Gras und Schuhcreme schwarze und weiße Schafe her. Ein weißes Schaf enthält 3 WE Wolle, ein schwarzes WE. ufgrund eines Knebelvertrages mit der städtischen Schafscherervereinigung ist die Fabrik verpflichtet, mindestens 4 WE Wolle zu einem Preis von 5 GE/WE zu kaufen. Der Grasbedarf beträgt GrE pro schwarzem Schaf und GrE pro weißem Schaf. Eine Einheit Gras kostet.5 GE, wobei insgesamt 4 Graseinheiten zur Verfügung stehen. Schließlich wird für jedes schwarze Schaf Schuhcreme im Wert von GE benötigt. Da der esitzer der Schaffabrik auch esitzer der Schuhcremefabrik ist, will er mindestens Schafe schwarz einfärben. Sowohl weiße, als auch schwarze Schafe lassen sich für GE in beliebiger Menge absetzen. Gehen Sie davon aus, dass zwar ruchteile von Schafen aber keine negativen Schafe produziert werden können. Stellen Sie das lineare Programm auf, das i) den Gewinn maximiert ii) die produzierte Menge an Schafen maximiert iii) die Menge an schwarzen Schafen maximiert c K. Schindler SS

3 Lineare Optimierung (SS ) c) Eine Transportfirma ist beauftragt worden eine Ware von m Stellen (Quellen) zu n Zielen (Senken) zu befördern. n der i-ten Quelle (i {,..., m}) gibt es a i Wareneinheiten (WE) und es müssen mindestens b j WE zum j-ten Ziel (j {,..., n}) transportiert werden. Der uftraggeber ist bereit, c ij GE pro WE für den Transport von Quelle i zum Ziel j zu zahlen. Formulieren Sie das lineare Programm, das die Einnahmen der Firma maximiert. d) Ein Zulieferbetrieb der utomobilindustrie hat den uftrag bekommen, 5 Teile gleicher rt anzufertigen. Für die Herstellung eines dieser Teile werden drei lechplatten der Größe (, 3m, 7m) und zwei lechplatten der Größe (, 4m, 6m) benötigt. Der etrieb muss dazu die Platten aus lechtafeln der Größen I (m m) und II (, 6m, 5m) ausstanzen. Folgende Möglichkeiten sind technisch realisierbar: Tafeltyp / ausgestanzte Platten bfall [m ] Möglichkeit I/ 4,6 I/ 3,3 I/3,3 I/4 3,8 II/ 4,6 II/ II/3 3,8 Die resultierenden sieben Schnittmuster haben folgendes ussehen: I/ I/ I/3 I/4 II/ II/ II/3 Erstellen Sie ein lineares Programm, wenn bei der geplanten Produktion möglichst wenig bfall anfallen soll. 3. ufgabe ( ) ( ) ( ) ( ) 3 4 Seien x :=, x :=, x 3 := und x 3 4 :=. Skizzieren Sie folgende Mengen! a) KH ( {x, x } ), KH ( {x, x, x 3 } ) b) {x 4 } + KH ( {x, x, x 3 } ) c) KH ( {x, x } ) + KK ( {x 3 } ) c K. Schindler SS 3

4 Lineare Optimierung (SS ) 4. ufgabe Sei V := {f : Ê Ê f ist eine Funktion}. a) Welche der angegebenen Mengen U i sind Untervektorräume von V? U := {f V f konstant } U := {f V f stetig } U 3 := {f V f()=} U 4 := {f V f()=} U 5 := {f V f()>5} b) erechnen Sie U U i, U +U i für i= und i=4 5. ufgabe a) Sei U Untervektorraum eines Vektorraums V. erechnen Sie U + U, U U und λ U (λ Ê). Seien v, v, v 3 Vektoren aus V. Wann gilt LH ( {v, v, v 3 } ) =LH ( {v, v } )? b) Welche der folgenden Mengen sind Unterräume bzw. affine Unterräume des Ê 3 (egründung!)? erechnen Sie, falls ein Untervektorraum vorliegt, dessen Dimension. i) M := {(x, x, x 3 ) t Ê 3 3 } x i = i= ii) M := { (x, x, x 3 ) t Ê 3 x x +x 3 = } iii) M 3 := { (x, x, x 3 ) t Ê 3 x x +x 3 = } c) Gegeben sei die Menge U := {x Ê 3 x x = }. i) Zeigen Sie, dass U ein Untervektorraum des Ê 3 ist. ii) estimmen Sie dim(u) und geben Sie eine asis von U an. (egründung!) d) Es sei V := Ê der Raum der reellen ( )-Matrizen. U sei der von den Matrizen ( 5 4 ), ( 5 ), ( ), ( 7 5 erzeugte Untervektorraum. erechnen Sie eine asis und die Dimension von U. e) Zeigen Sie, dass die Elementarpolynome p, p, p,... mit p j (x):=x j eine asis des Vektorraums der Polynome bilden. n V := {f : Ê Ê f(x) = a j x j, n Æ, a j Ê} j= ). c K. Schindler SS 4

5 Lineare Optimierung (SS ) 6. ufgabe Die Teilmengen K i (i=,..., 5) des Ê seien definiert durch K := { } (x, y) Ê x y x K := { (x, y) Ê x x y x } K := { (x, y) Ê y } K 3 := { (x, y) Ê (x, y) x y x } K 4 := { (x, y) Ê (x, y) x y x } K 5 := K 3 K 4 K 6 := Ê \K 3 a) Untersuchen Sie die Mengen K i (i=,..., 6) auf Konvexität. b) Untersuchen Sie, ob K i (i=,..., 6) ein Kegel ist und geben Sie ggf. ein Erzeugendensystem an. c) Untersuchen Sie, ob K i (i=,..., 6) ein affiner Unterraum ist. 7. ufgabe Sei Ä ein affiner Unterraum eines Vektorraumes V. Zeigen Sie folgende ussagen! a) Ä ist genau dann ein Unterraum von V, wenn Ä gilt. b) Ist b ein Vektor aus Ä, so ist U := Ä {b} ein Unterraum von V. c) Es existiert ein Vektor b V und ein Untervektorraum U V mit Ä = {b} + U. 8. ufgabe a) Zeigen Sie, dass die Vektoren x :=, x :=, x 3 :=. eine asis des Ê 3 bilden. Stellen Sie den Vektor x := mit Hilfe dieser asis dar. b) V sei der Vektorraum der Polynome (siehe auch ufgabe 5e). Geben Sie eine asis der folgenden Unterräume an! i) LH{x +x+, x +x+3, x +x } ii) LH{x, x +x+, 3x +4x+, x +x, 73x 7, π, x +, x 7 +x 5 } c) Zeigen Sie, dass die Funktionen e x, e x und e 3x im Vektorraum aller Funktionen von Ê nach Ê linear unabhängig sind. c K. Schindler SS 5

6 Lineare Optimierung (SS ) 9. ufgabe a) Sei T : V W eine lineare bbildung zwischen den Vektorräumen V und W. Zeigen Sie, dass die Mengen Kern(T ) := { v V T (v)= }, ild(t ) := { T (v) v V } Unterräume von V bzw. W sind und dass T genau dann injektiv ist, wenn Kern(T )={} gilt. b) Für n Æ bezeichne V n die Menge aller Polynome mit einem Grad kleiner gleich n. Zeigen. ufgabe Sie, dass V n ein Unterraum von V und die bbildung D : V n V n mit D(p) := p linear ist. Untersuchen Sie D auf Injektivität und Surjektivität. erechnen Sie Kern(D) und ild(d). c) E bezeichne den Untervektorraum LH{e x, e x, e 3x } im Raum aller Funktionen von Ê nach Ê. D : E E bezeichne wie vorher den bleitungsoperator. Untersuchen Sie D auf Injektivität und Surjektivität. erechnen Sie Kern(D) und ild(d). a) Unter welcher Voraussetzung können für zwei Matrizen, die Produkte und gebildet werden? b) estimmen Sie Matrizen, mit. c) estimmen Sie Matrizen, mit = = d) Welche Eigenschaft müssen die Spaltenvektoren einer (N N)-Matrix erfüllen, damit gilt t = ½ e) Invertieren Sie die Matrizen M := und N :=.. ufgabe Gegeben seien die Vektoren a = 3, a = b, a 3 =, a 4 = a) Für welche b Ê sind a und a linear abhängig? b) Für welche b Ê sind a und a orthogonal? c) Zeigen Sie, dass a, a 3 und a 4 linear unabhängig sind., a 5 = π 7 5, a 6 = d) erechnen Sie den Rang der Matrix M, deren Spalten aus den Vektoren a, a 3 und a 4 bestehen. (, e) Liegt a 5 in LH{a, a 3, a 4 }? erechnen Sie die Orthogonalräume LH{a, a 3, a 4 }) {a, a 3, a 4 } sowie deren Dimension. f) erechnen Sie den Orthogonalraum von {a 6 } und dessen Dimension. Liegt a 5 in {a 6 }?. c K. Schindler SS 6

7 Lineare Optimierung (SS ). ufgabe (Lineare Gleichungssysteme) Gegeben sei das Gleichungssystem: x + x 3 = λx + λx + x 3 = 4 3x + x + λx 3 = 4 a) Für welche Werte λ Ê ist das Gleichungssystem eindeutig lösbar? b) Für welche Werte λ existieren unendlich viele Lösungen? c) Für welche Werte λ existieren keine Lösungen? 3. ufgabe Gegeben seien die Matrizen = und die Vektoren 3 4 v = (,, 3, 4, 5) t, v = (,, 3, 4) t., = ( 3 a) estimmen Sie den Rang der Matrizen,. ) b) Zerlegen Sie für i=, die Matrix i in einen asis- bzw. Nichtbasisanteil und geben Sie für v i die resultierende Zerlegung in asis- bzw. Nichtbasisanteil an. c) Lösen Sie das Gleichungssystem i x = b i für b = (,, 3) t bzw. b = (, ) t mit Hilfe der Zerlegung aus Teil b). 4. ufgabe Gegeben seien die (4 7)-Matrix bzw. der Spaltenvektor b durch := a) Ist die Matrix entschlüsselt? bzw. b := b) Ist das Gleichungssystem x = b lösbar? c) Geben Sie eine asismatrix und eine Nichtbasismatrix N für an. Wie lauten in diesem Fall die Menge der asis bzw. Nichtbasisindizes I und I N (zur Notation siehe Satz 5.7)? d) erechnen Sie mit Ihrer Zerlegung aus Teil c) die zugehörige asislösung und Fundamentalbasis des Gleichungssystems x = b.. c K. Schindler SS 7

8 Lineare Optimierung (SS ) 5. ufgabe Gegeben seien die Matrix := 3 3 und der Vektor b := (,, )t. a) erechnen Sie ein zu x = b äquivalentes Gleichungssystem (r) x = b (r) mit einer entschlüsselten Matrix (r). b) Geben Sie für das Gleichungssystem (r) x = b (r) eine asislösung und sämtliche Fundamentallösungen an. c) Geben Sie die Lösungsmenge des Gleichungssystems x = b an. 6. ufgabe (Lineare Gleichungssysteme, Inverse von Matrizen) a) estimmen Sie alle Lösungen x = (x,..., x 7 ) t Ê 7 der Gleichung x + x + 3x 3 + 4x 4 + 5x 5 + 6x 6 + 7x 7 =. b) erechnen Sie die Lösungsmenge Ä = { x Ê x + x = 3 }. c) erechnen Sie die Inverse der Matrix M :=. 7. ufgabe Der Zulässigkeitsbereich X eines (LP) sei gegeben durch die Ungleichungen 3x + y 4 x + y 4 x + y 6 3x + y 8 y x, y a) Stellen Sie das Ungleichungssystem durch Einführung von Schlupfvariablen als Gleichungssystem in der Form x = b dar und begründen Sie mit dieser Darstellung, dass der Punkt (, 5) eine Ecke von X ist. b) Pivotieren Sie zuerst nach dem Element a 5, und dann nach dem Element a, der Matrix, um zu einer entschlüsselten Matrix zu gelangen. Wählen Sie die Einheitsvektoren als asismatrix und zeigen Sie, dass die zugehörige asislösung eine Ecke von X liefert. c) Pivotieren Sie nun sukzessive nach allen Elementen der letzten Spalte (Pivotspalte) und bestimmen Sie die zugehörige asislösung, indem Sie jeweils die Einheitsmatrix als asismatrix wählen. Liefern die Lösungen immer Ecken von X? Warum ist es nicht sinnvoll nach negativen Dies vermeidet den FuNf. c K. Schindler SS 8

9 Lineare Optimierung (SS ) Elementen der Pivotspalte zu pivotieren, um zu einer anderen Ecke zu gelangen? Versuchen Sie eine Regel aufzustellen, um in einer Pivotspalte das (positive) Element zu finden, das zu einer neuen Ecke führt. Dividieren Sie hierzu erst jede Zeile durch das positive Element der Pivotspalte und konzentrieren sich auf die Inhomogenität! d) erechnen Sie nun mit der in Teil c) hergeleiteten Regel alle Ecken von X und skizzieren Sie X damit. 8. ufgabe (Punkte, Ecken, Kegelerzeugende) Gegeben sei der Zulässigkeitsbereich X = {x Ê 7 x = b, x } durch = Geben Sie für jeden der folgenden Vektoren x := 3, x := 3 5, b =, x 3 :=., x 4 := 4 5 6, x 5 := an, ob er i) Punkt ii) Eckpunkt iii) Kegelerzeugende von X ist. 3 3, x 6 := 3 9. ufgabe (Eckpunkte, Simplexalgorithmus) estimmen Sie alle Eckpunkte der folgenden Ungleichungssysteme mit Hilfe des Simplexalgorithmus. Untersuchen Sie, ob ausgeartete Ecken existieren und ob der Zulässigkeitsbereich beschränkt ist. Geben Sie im Fall der Unbeschränktheit die Kegelerzeugenden an. Starten Sie in beiden Fällen im Eckpunkt (x, x ) = (, ). a) x + x 7 x + 3x 9 x + x 3 x 5 x 4 x, x b) 3x + x x + x x 3x 3 x, x. ufgabe (Simplexalgorithmus) Ermitteln Sie die Lösungsmenge der folgenden linearen Optimierungsaufgaben mit Hilfe des Simplexalgorithmus und veranschaulichen Sie sich das Ergebnis mittels einer Graphik. erechnen und lösen Sie eines der Probleme in dualer Form. c K. Schindler SS 9

10 Lineare Optimierung (SS ) a) Z := x + 3x max bzw. Z := x 3x + 5 max u.d.n. x + x 5 x + 3x = 6 x + 6x 9 x, x b) Z := 3x + x max bzw. Z := x + x max bzw. Z 3 := 4x + 6x max u.d.n. x + 3x 6 x + 6x 3 x, x c) Z := 3x x max u.d.n. x 3x 7 x 3x 5 x + x = x, x d) Z := 5x + x min u.d.n. 3x + x 9 x + x 5 x + 8x 8 x, x. ufgabe (Simplextableau) estimmen Sie (egründung!) anhand der folgenden Simplextableaus jeweils die optimale Lösungsmenge X und den jeweils optimalen Zielfunktionswert Z des zugehörigen linearen Maximierungsproblems (a, b, c, d Ê). a) Z a b) Z b c K. Schindler SS

11 Lineare Optimierung (SS ) c) Z c d) Z d ufgabe (Zweiphasenverfahren) Verifizieren Sie den eweis des Zweiphasenverfahrens (Satz 7.4) im Skript. 3. ufgabe (Zweiphasenverfahren) Untersuchen Sie mit Hilfe des Zweiphasenverfahrens, ob der Zulässigkeitsbereich X={x Ê n + x=b} nicht leer ist und berechnen Sie ggf. eine nicht ausgeartete zulässige asislösung. a) = 3, b = b) = 5 3 3, b = 4. ufgabe (Parametrische lineare Optimierung) estimmen Sie den optimalen Zielfunktionswert Z und die optimale Lösungsmenge X des zum folgenden Simplextableau gehörenden linearen Maximierungsproblems in bhängigkeit vom Parameter t Ê und skizzieren Sie die Funktion Z (t). t c K. Schindler SS

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

Lineare Optimierung Ergänzungskurs

Lineare Optimierung Ergänzungskurs Lineare Optimierung Ergänzungskurs Wintersemester 2015/16 Julia Lange, M.Sc. Literatur Werner, F.; Sotskov, Y.N. (2006): Mathematics of Economics and Business; Routledge; London Bemerkungen Diese Unterlagen

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

Kapitel 15. Lösung linearer Gleichungssysteme

Kapitel 15. Lösung linearer Gleichungssysteme Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren

Mehr

2 Die Darstellung linearer Abbildungen durch Matrizen

2 Die Darstellung linearer Abbildungen durch Matrizen 2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 25): Lineare Algebra und analytische Geometrie 2 2. (Frühjahr 29, Thema 3, Aufgabe 3) Gegeben sei die reelle 3 3 Matrix 4 2 A = 2 7 2 R 3 3. 2 2 a)

Mehr

Prüfung Lineare Algebra , B := ( ), C := 1 1 0

Prüfung Lineare Algebra , B := ( ), C := 1 1 0 1. Es seien 1 0 2 0 0 1 3 0 A :=, B := ( 1 2 3 4 ), C := 1 1 0 0 1 0. 0 0 0 1 0 0 1 0 0 0 0 Welche der folgenden Aussagen ist richtig? A. A und C haben Stufenform, B nicht. B. A und B haben Stufenform,

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

Mathematik I für Wirtschaftswissenschaftler

Mathematik I für Wirtschaftswissenschaftler 1 Mathematik I für Wirtschaftswissenschaftler Lösungsvorschläge zur Klausur am 01.08.2003. Bitte unbedingt beachten: a) Verlangt und gewertet werden alle vier gestellten Aufgaben. Alle Aufgaben sind gleichwertig.

Mehr

Übungen zur Vorlesung Lineare Algebra

Übungen zur Vorlesung Lineare Algebra Übungen zur Vorlesung Lineare Algebra Institut für Reine Mathematik WS 2009/10 & SS 2010 Kapitel 1. Vektorräume Was ist ein Vektorraum? Sei X und K ein Körper. Wie macht man Abb (X, K) zu einem K -Vektorraum?

Mehr

Lineare Algebra und analytische Geometrie II (Unterrichtsfach)

Lineare Algebra und analytische Geometrie II (Unterrichtsfach) MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Prof. Dr. D. Rost SS 0 Blatt.06.0 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie II (Unterrichtsfach) Abgabe: Dienstag, 0. Juli 0, bis 4:00

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

Fall 3: Mehrere Kapazitätsengpässe

Fall 3: Mehrere Kapazitätsengpässe Fall 3: Mehrere Kapazitätsengpässe ei Vorliegen mehrerer Engpässe ist zunächst zu prüfen, ob ein Engpass die anderen Engpässe dominiert. Ist dies der Fall, reduziert sich das Optimierungsproblem auf den

Mehr

Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen

Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen 1. Bestimmen Sie für die folgenden Funktionen zunächst die kritischen Stellen und entscheiden

Mehr

Prüfung EM1 28. Jänner 2008 A :=

Prüfung EM1 28. Jänner 2008 A := 1. Die Menge der Eigenwerte der Matrix ist Prüfung EM1 28. Jänner 2008 A := ( 0 1 ) 0 1 A. {1, 0} B. { 1} C. {0} D. {0, 1, 1} E. {0, 1} 2. Es seien V ein n-dimensionaler reeller Vektorraum, ein Skalarprodukt

Mehr

Übungsaufgaben LAAG I. für Lehramtsstudenten GS, MS, BS

Übungsaufgaben LAAG I. für Lehramtsstudenten GS, MS, BS Doz.Dr. Norbert Koksch TU DRESDEN Fachrichtung Mathematik, Institut für Analysis Übungsaufgaben LAAG I für Lehramtsstudenten GS, MS, BS Logik: Übungsaufgabe 1. Begründen Sie, ob es sich um eine Aussage

Mehr

Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 2. Vorlesung

Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 2. Vorlesung Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 2. Vorlesung Rainer Hufnagel / Laura Wahrig 2006 Diese Woche LO - Rechnerische Lösung - Simplex- Algorithmus LO - Auswertung des

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine Vektorräume (Teschl/Teschl 9 Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen: Eine

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Typische Prüfungsfragen Die folgenden Fragen dienen lediglich der Orientierung und müssen nicht den tatsächlichen Prüfungsfragen entsprechen. Auch Erkenntnisse aus den

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Zeigen Sie, dass der einzige Gruppenhomomorphismus von (G, ) nach (Z 5, +) die Abbildung Φ : G Z 5

Zeigen Sie, dass der einzige Gruppenhomomorphismus von (G, ) nach (Z 5, +) die Abbildung Φ : G Z 5 Aufgabe I (4 Punkte) Es sei G : {e, g, g, g } eine 4-elementige Gruppe mit neutralem Element e Die Verknüpfung auf G werde mit bezeichnet Außerdem seien in G folgende Gleichungen erfüllt: g g g und g g

Mehr

Übungen zur Linearen Algebra 1 Probeklausur Musterlösung: Aufgabe A

Übungen zur Linearen Algebra 1 Probeklausur Musterlösung: Aufgabe A Musterlösung: Aufgabe A Wir betrachten die Matrix A = 1 4 1 1 3 1 4 5 2 M(3 3, Q) und die dazugehörige Abbildung f : Q 3 Q 3 ; v A v. Für j = 1, 2, 3 bezeichne v j Q 3 die j-te Spalte von A. Teilaufgabe

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Dipl.-Math. Marie Hielscher Mathematik für Betriebswirte I Wintersemester 2014/2015

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Dipl.-Math. Marie Hielscher Mathematik für Betriebswirte I Wintersemester 2014/2015 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume

Mehr

Produktionsplanung und Lineare Optimierung im Rahmen des Projekts Mathematik und Ökonomie 12./13. November 2003 in Düsseldorf.

Produktionsplanung und Lineare Optimierung im Rahmen des Projekts Mathematik und Ökonomie 12./13. November 2003 in Düsseldorf. Übungsaufgaben Aufgabe 1a Medikamentenmischung Ein Pharmaziehersteller möchte ein neues Medikament auf den Markt bringen. Das Medikament kann aus vier verschiedenen Komponenten (K1 K4) zusammengestellt

Mehr

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist. Matrizennorm Es seien r,s N Mit M r,s (R bezeichnen wir die Menge der reellen r s- Matrizen (also der linearen Abbildungen R s R r, und setze M s (R := M s,s (R (also die Menge der linearen Abbildungen

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra 1 WS 26/7 en Blatt 4 13.11.26 Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

Mehr

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie

Mehr

Klausur zur Vorlesung Lineare Algebra und Geometrie I

Klausur zur Vorlesung Lineare Algebra und Geometrie I Klausur zur Vorlesung Lineare Algebra und Geometrie I Ruhr-Universität Bochum Prof. Dr. Peter Eichelsbacher 3. April 2007, 9.00-13.00 Uhr, 240 Minuten Name und Geburtsdatum: Matrikelnummer: Hinweise: Überprüfen

Mehr

11. Primfaktorzerlegungen

11. Primfaktorzerlegungen 78 Andreas Gathmann 11 Primfaktorzerlegungen Euch ist sicher aus der Schule bekannt, dass sich jede positive ganze Zahl a als Produkt a = p 1 p n von Primzahlen schreiben lässt, und dass diese Darstellung

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 18. April 2016 Übersicht über die Methoden Seien v 1,..., v r Vektoren in K n. 1. Um zu prüfen, ob die Vektoren v 1,...,

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V

Mehr

Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag

Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr E Schörner WS / Blatt 6 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag Wir verwenden das Unterraumkriterium,

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow INHALT Eigenwerte und Eigenvektoren. asiswechsel.2 Eigenwertgleichung 2.3 Diagonalisierbarkeit 5.4 Trigonalisierung 8.5 Zusatzmaterial 8 Aufgaben 9

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

Erinnerung/Zusammenfassung zu Abbildungsmatrizen

Erinnerung/Zusammenfassung zu Abbildungsmatrizen Erinnerung/Zusammenfassung zu Abbildungsmatrizen Thomas Coutandin (cthomas@student.ethz.ch) 7. November 2 Abbildungsmatrizen Im Folgenden betrachten wir stets endlich dimensionale K-Vektorräume (K irgend

Mehr

4 Vorlesung: 21.11. 2005 Matrix und Determinante

4 Vorlesung: 21.11. 2005 Matrix und Determinante 4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 5. April 2018 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

Aufgabe 1. Die ganzen Zahlen Z sind ein R-Vektorraum bezüglich der gewöhnlichen Multiplikation in R.

Aufgabe 1. Die ganzen Zahlen Z sind ein R-Vektorraum bezüglich der gewöhnlichen Multiplikation in R. Aufgabe Die ganzen Zahlen Z sind ein Q-Vektorraum bezüglich der gewöhnlichen Multiplikation in Q. Die reellen Zahlen R sind ein Q-Vektorraum bezüglich der gewöhnlichen Multiplikation in R. Die komplexen

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 5/6): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

3. Übungsblatt zur Lineare Algebra I für Physiker

3. Übungsblatt zur Lineare Algebra I für Physiker Fachbereich Mathematik Prof. Dr. Mirjam Dür Dipl. Math. Stefan Bundfuss. Übungsblatt zur Lineare Algebra I für Physiker WS 5/6 6. Dezember 5 Gruppenübung Aufgabe G (Basis und Erzeugendensystem) Betrachte

Mehr

Lineare Gleichungssysteme I (Matrixgleichungen)

Lineare Gleichungssysteme I (Matrixgleichungen) Lineare Gleichungssysteme I (Matrigleichungen) Eine lineare Gleichung mit einer Variable hat bei Zahlen a, b, die Form a b. Falls hierbei der Kehrwert von a gebildet werden darf (a 0), kann eindeutig aufgelöst

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel V SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

Lösungsskizze zur Hauptklausur Lineare Algebra I

Lösungsskizze zur Hauptklausur Lineare Algebra I Lösungsskizze zur Hauptklausur Lineare Algebra I Aufgabe Seien V und W zwei K-Vektorräume für einen Körper K. a) Wann heißt eine Abbildung f : V W linear? b) Wann heißt eine Abbildung f : V W injektiv?

Mehr

Vektorräume und Rang einer Matrix

Vektorräume und Rang einer Matrix Universität Basel Wirtschaftswissenschaftliches Zentrum Vektorräume und Rang einer Matrix Dr. Thomas Zehrt Inhalt:. Lineare Unabhängigkeit 2. Vektorräume und Basen 3. Basen von R n 4. Der Rang und Rangbestimmung

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

Musterlösung zur Klausur Lineare Algebra I

Musterlösung zur Klausur Lineare Algebra I Musterlösung zur Klausur Lineare Algebra I Aufgabe Version A 5 Punkte: Welche der folgenden Aussagen sind wahr bzw. falsch? Setzen Sie in jeder Zeile genau ein Kreuz. Für jede korrekte Antwort erhalten

Mehr

(1) In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt.

(1) In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt. () In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt. a) Es seien A und B beliebige n n-matrizen mit Einträgen in einem Körper K.

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 4. April 2016 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen.

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen. Zusätze zum Gelben Rechenbuch LU-Zerlegung Peter Furlan Verlag Martina Furlan Inhaltsverzeichnis Definitionen 2 (Allgemeine) LU-Zerlegung 2 3 Vereinfachte LU-Zerlegung 3 4 Lösung eines linearen Gleichungssystems

Mehr

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht Seite 1 Definitionen affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht ähnliche Matrizen Matrizen, die das gleiche charakteristische Polynom haben

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 29.11.2013 Alexander Lytchak 1 / 13 Wiederholung Der Rang einer linearen Abbildung ist gleich dem Spaltenrang der darstellenden

Mehr

Das inhomogene System. A x = b

Das inhomogene System. A x = b Ein homogenes lineares Gleichungssystem A x = 0 mit m Gleichungen und n Unbestimmten hat immer mindestens die Lösung 0. Ist r der Rang von A, so hat das System n r Freiheitsgrade. Insbesondere gilt: Ist

Mehr

Lösungen Serie 6 (Vektorräume, Skalarprodukt)

Lösungen Serie 6 (Vektorräume, Skalarprodukt) Fachhochschule Nordwestschweiz (FHNW Hochschule für Technik Institut für Geistes- und Naturwissenschaft Lösungen Serie 6 (Vektorräume, Skalarprodukt Dozent: Roger Burkhardt Klasse: Studiengang ST Büro:

Mehr

Serie 8: Online-Test

Serie 8: Online-Test D-MAVT Lineare Algebra I HS 017 Prof Dr N Hungerbühler Serie 8: Online-Test Einsendeschluss: Freitag, der 4 November um 14:00 Uhr Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen

Mehr

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A 133 e 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 2. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 Schritte des

Mehr

LANGFRISTIGE HAUSAUFGABE (LINEARE GLEICHUNGSSYSTEME)

LANGFRISTIGE HAUSAUFGABE (LINEARE GLEICHUNGSSYSTEME) LANGFRISTIGE HAUSAUFGABE (LINEARE GLEICHUNGSSYSTEME) Aufgabe 1: Tanzkurs ( * ) Zu einem Tanzkurs erscheinen dreimal so viele Mädchen wie Jungen. Nachdem 15 Mädchen gegangen sind, sind noch doppelt so viele

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 25 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 8 Aufgabe 8 Basen für Bild und Kern Gegeben sind die beiden 2 Matrizen:

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

Universität Bonn, Institut für Angewandte Mathematik. WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW

Universität Bonn, Institut für Angewandte Mathematik. WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW Universität Bonn, Institut für Angewandte Mathematik Dr. Antje Kiesel WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW 08.03.2013 Matrikelnummer Platz Name Vorname 1 2 3 4 5 6

Mehr

Frohe Weihnachten und ein gutes neues Jahr!

Frohe Weihnachten und ein gutes neues Jahr! Frohe Weihnachten und ein gutes neues Jahr! Die mit dem Stern * gekennzeichneten Übungen sind nicht verpflichtend, aber sie liefern zusätzliche Punkte. Unten wird immer mit I das reelle Intervall [0, 1]

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHISCHE UIVERSITÄT MÜCHE Zentrum Mathematik PRF. R.R. JÜRGE RICHTER-GEBERT, VAESSA KRUMMECK, MICHAEL PRÄHFER Höhere Mathematik für Informatiker I (Wintersemester 003/004) Aufgabenblatt 1 (4. ktober 003)

Mehr

AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW

AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW Lineare Gleichungssysteme Lösen Sie folgende Gleichungssysteme über R: a) x + x + x = 6x + x + x = 4 x x x = x 7x x = 7 x x = b) x + x 4x + x 4 = 9 x + 9x x x

Mehr

9 Lineare Gleichungssysteme

9 Lineare Gleichungssysteme 9 Lineare Gleichungssysteme Eine der häufigsten mathematischen Aufgaben ist die Lösung linearer Gleichungssysteme In diesem Abschnitt beschäftigen wir uns zunächst mit Lösbarkeitsbedingungen und mit der

Mehr

Lösungen Serie 6 (Vektorräume, Skalarprodukt)

Lösungen Serie 6 (Vektorräume, Skalarprodukt) Name: Seite: 1 Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Lösungen Serie 6 (Vektorräume, Skalarprodukt) Dozent: R. Burkhardt Büro: 4.613 Klasse: 1. Studienjahr Semester: 1 Datum: HS 28/9

Mehr

Serie 8: Fakultativer Online-Test

Serie 8: Fakultativer Online-Test Prof Norbert Hungerbühler Lineare Algebra I Serie 8: Fakultativer Online-Test ETH Zürich - D-MAVT HS 215 1 Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen Die Nachbesprechung

Mehr

3. Grundlagen der Linearen Programmierung

3. Grundlagen der Linearen Programmierung 3. Grundlagen der linearen Programmierung Inhalt 3. Grundlagen der Linearen Programmierung Lineares Programm Grafische Lösung linearer Programme Normalform Geometrie linearer Programme Basislösungen Operations

Mehr

Ausgewählte Lösungen zu den Übungsblättern 4-5

Ausgewählte Lösungen zu den Übungsblättern 4-5 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Ausgewählte en zu den Übungsblättern -5 Aufgabe, Lineare Unabhängigkeit

Mehr

a b Q = b a 0 ) existiert ein Element p Q, so dass gilt: q 1 q 2 = 2 b 1 b 2 a 1 b 2 a 2 b 1 a 1 a 2 b 1 b 2 a 1 b 2 a 2 b 1 a b p = 1 det(q) C 2 2,

a b Q = b a 0 ) existiert ein Element p Q, so dass gilt: q 1 q 2 = 2 b 1 b 2 a 1 b 2 a 2 b 1 a 1 a 2 b 1 b 2 a 1 b 2 a 2 b 1 a b p = 1 det(q) C 2 2, Aufgabe I Es sei Q die folgende Teilmenge von C 2 2 : { ( ) a b Q a, b C b a Hier bezeichnet der Querstrich die komplexe Konjugation Zeigen Sie: (a) Mit den üblichen Verknüpfungen + und für Matrizen ist

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 205/6): Lineare Algebra und analytische Geometrie 3 3. (Herbst 997, Thema 3, Aufgabe ) Berechnen Sie die Determinante der reellen Matrix 0 2 0 2 2

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Matrizen und Vektoren, LGS, Gruppen, Vektorräume 1.1 Multiplikation von Matrizen Gegeben seien die Matrizen A := 1 1 2 0 5 1 8 7 Berechnen Sie alle möglichen

Mehr

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit 3 Lineare Algebra (Teil : Lineare Unabhängigkeit 3. Der Vektorraum R n Die Menge R n aller n-dimensionalen Spalten a reeller Zahlen a,..., a n R bildet bezüglich der Addition a b a + b a + b. +. :=. (53

Mehr

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und

Mehr

Schulmathematik: Lineare Algebra & Analytische Geometrie Kapitel 1: Gleichungen

Schulmathematik: Lineare Algebra & Analytische Geometrie Kapitel 1: Gleichungen Schulmathematik: Lineare Algebra & Analytische Geometrie Kapitel 1: Gleichungen MAC.05043UB/MAC.05041PH, VU im SS 2017 http://imsc.uni-graz.at/pfeier/2017s/linalg.html Christoph GRUBER, Florian KRUSE,

Mehr

Proseminar Lineare Algebra II, SS 11. Blatt

Proseminar Lineare Algebra II, SS 11. Blatt Blatt 1 1. Berechnen Sie die Determinante der Matrix 0 0 4 1 2 5 1 7 1 2 0 3 1 3 0 α. 2. Stellen Sie folgende Matrix als Produkt von Elementarmatrizen dar: 1 3 1 4 2 5 1 3 0 4 3 1. 3 1 5 2 3. Seien n 2

Mehr

Euklidische und unitäre Vektorräume

Euklidische und unitäre Vektorräume Euklidische und unitäre Vektorräume In allgemeinen Vektorräumen gibt es keine Möglichkeit der Längenmessung von Vektoren und der Winkelmessung zwischen zwei Vektoren. Dafür ist eine zusätzliche Struktur

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

Lineare Algebra Weihnachtszettel

Lineare Algebra Weihnachtszettel Lineare Algebra Weihnachtszettel 4..008 Die Aufgaben auf diesem Zettel sind zum Üben während der Weihnachtspause gedacht, sie dienen der freiwilligen Selbstkontrolle. Die Aufgaben müssen nicht bearbeitet

Mehr

Übungen zur Linearen Optimierung Sommersemester 2011. Übungsblatt 1

Übungen zur Linearen Optimierung Sommersemester 2011. Übungsblatt 1 Universität Heidelberg Interdisziplinäres Zentrum für Wissenschaftliches Rechnen Graduiertenschule HGS MathComp Dr. Stefan Körkel Magdalena Gottfried Übungen zur Linearen Optimierung Sommersemester 2011

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

Aufgaben zur Vorlesung: Lineare Algebra und analytische Geometrie I

Aufgaben zur Vorlesung: Lineare Algebra und analytische Geometrie I Institut für Mathematik Blatt Prof. Dr. B. Martin, H. Süß Abgabe: 0.4. Aufgaben zur Vorlesung: Lineare Algebra und analytische Geometrie I Aufgabe : 2 Punkte Stellen Sie die Gleichung der Ebene auf, in

Mehr

4.1. Vektorräume und lineare Abbildungen

4.1. Vektorräume und lineare Abbildungen 4.1. Vektorräume und lineare Abbildungen Mengen von Abbildungen Für beliebige Mengen X und Y bezeichnet Y X die Menge aller Abbildungen von X nach Y (Reihenfolge beachten!) Die Bezeichnungsweise erklärt

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Wintersemester 2014/15 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax

Mehr

Gleichungen - Aufgabenstellung und Lösungsstrategien

Gleichungen - Aufgabenstellung und Lösungsstrategien Gleichungen - Aufgabenstellung und Lösungsstrategien Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Österreich. Franz.Pauer@uibk.ac.at 18. Juli 2006 1 Einleitung

Mehr

A Matrix-Algebra. A.1 Definition und elementare Operationen

A Matrix-Algebra. A.1 Definition und elementare Operationen A Matrix-Algebra In diesem Anhang geben wir eine kompakte Einführung in die Matrizenrechnung bzw Matrix-Algebra Eine leicht lesbare Einführung mit sehr vielen Beispielen bietet die Einführung in die Moderne

Mehr