LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen.

Größe: px
Ab Seite anzeigen:

Download "LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen."

Transkript

1 Zusätze zum Gelben Rechenbuch LU-Zerlegung Peter Furlan Verlag Martina Furlan Inhaltsverzeichnis Definitionen 2 (Allgemeine) LU-Zerlegung 2 3 Vereinfachte LU-Zerlegung 3 4 Lösung eines linearen Gleichungssystems mit LU-Zerlegung. 4 5 Beispiele 5 6 Kurzschreibweisen 7 7 LU-Zerlegung mit Ansätzen Definitionen Die LU-Zerlegung oder LR-Zerlegung ist die Zerlegung einer quadratischen Matrix A in ein Produt A = PLU. Dabei ist L eine untere Dreiecsmatrix mit Einsen auf der Diagonale und U eine obere Dreiecsmatrix. Ist A nicht singulär, besteht die Diagonale von U aus Zahlen ungleich Null. P ist eine Permutationsmatrix, die aus der Einheitsmatrix durch Vertauschen von Spalten entsteht. Das bedeutet, dass P in jeder Zeile und Spalte genau eine Eins enthält und ansonsten aus Nullen besteht. Besondere Eigenschaft von P: es ist P = P. Bezeichnungen: LU bedeutet lower-upper, LR bedeutet lins-rechts. Reguläre Matrizen önnen stets als P LU-Produt geschrieben werden. In manchen Fällen ist die P-Matrix (die durch Pivotierung u.a. für bessere numerische Stabilität sorgt), nicht nötig oder erwünscht. Dann entsteht die vereinfachte LU-Zerlegung von A als A = LU.

2 2 (Allgemeine) LU-Zerlegung In diesem Rechenverfahren werden Matrizen folgender Form benutzt: L und ˆL haben diese Form u u, u, u +, u n, Û = (u ij). U hat dieselbe Gestalt. Start: P = L = E n, U = A. 2 Für jedes von bis n werden die folgenden Schritte durchgeführt: Zeilen vertauschen l Dieser Schritt ist nötig, falls U an der Position (,) eine Null enthält. Man ann auch an dieser Stelle pivotieren, und die Zeile mit derjenigen Zeile l darunter vertauschen, die in der Spalte das betragsgrößte Element enthält. Û ist U mit den Zeilen und l > vertauscht ˆL ist L, wobei die ersten Elemente der Zeilen und l vertauscht sind (für = ist hier nichts zu tun) P ist P wobei die Spalten und l vertauscht sind. l l P P L ˆL U Û Wird dieser Schritt übersprungen, wird einfach P := P, ˆL := L und Û := U gesetzt. 2 Eliminationsschritt In diesem Schritt werden Vielfache der Zeile zu den Zeilen darunter addiert. 2

3 l α l sei der Quotient der Einträge u l und u in Û, also α l = u l u. Dann entsteht U aus Û, indem das α l -fache der Zeile zu den Zeilen l mit l > addiert wird. Das ist genau das, was man beim Gauß-Algorithmus tut, um unterhalb des Diagonalelements u Nullen zu erzeugen. L ist ˆL mit Einträgen α l in Zeile l der Spalte. l v v, v, v +, v l, v n, +α l Zeile Übergang in ˆL Übergang in Û l v v, v, v +, -α l l v n, Wird in Û an der Position (l,) eine Null erzeugt, wird in ˆL an der Position (l,) das Negative von α l eingesetzt. 3 Mit P := P n, L := L n und U := U n ist die Zerlegung A = PLU erreicht. An jeder beliebigen Stelle ann eine Probe gemacht werden: Stets muss P L U = A und P ˆL Û = A sein. Bei dieser Variante der LU-Zerlegung hat die L-Matrix stets Einträge vom Betrag leiner als eins. 3 Vereinfachte LU-Zerlegung Die vereinfachte LU-Zerlegung nimmmt in L und U dieselben Umformungen wie oben im Eliminationsschritt vor. Die P-Matrix fällt ebenso weg wie der Schritt mit den Zeilenvertauschungen. 3

4 Beispiel : Zerlegung von A = Wieder werden beide Matrizen in eine große geschrieben. [L U ] = [L U ] = Die erste Zeile wird mit 2 multipliziert zur zweiten und mit multipliziert zur dritten addiert. Daher wird in L an in Spalte in der zweiten Zeile eine 2 und in der dritten eine eingetragen. Die zweite Zeile wird mit multipliziert zur dritten addiert. Daher wird in L = L 2 in Spalte 2 in der dritten Zeile eine eingetragen. Damit ist die LU-Zerlegung von A = LU mit L = L 2 und U = U 2 erbracht. Beispiel 2: Zerlegung von A = [ ] Dieses Beispiel zeigt, dass die vereinfachte LU-Zerlegung nicht immer möglich ist, da man ohne Zeilenvertauschungen eine Null in der unteren linen Ece von A = L erzeugen ann. Die allgemeine Zerlegung ist extrem einfach: es ist P = A und L = U = E 2. 4 Lösung eines linearen Gleichungssystems mit LU-Zerlegung. Zur Lösung von A x = b nimmt man folgende Schritte vor: Bestimme die LU-Zerlegung von A: A = PLU 2 Löse P z = b durch z = P b 3 Löse L y = z reursiv, beginnend mit y. 4 Löse U x = y reursiv, beginnend mit x n. Bei der vereinfachten LU-Zerlegung ist P = E, 2 fällt weg und es ist z = b. 4

5 5 Beispiele Beispiel : LU-Zerlegung von A = Die drei Matrizen werden in einer großen Matrix zusammengefasst: [P L U ] = [E E A] = = Pivotierung: Das betragsgrößte Element der ersten Spalte von U ist die 2 in der dritten Zeile. Die erste und dritte Zeile in U werden vertauscht. Dann ändert sich in L nichts und in P werden die erste und dritte Spalte vertauscht. [P ˆL Û] = 2 Elimination. Die erste Zeile wird (i) mit / 4 multipliziert und zur 2. Zeile addiert (ii) mit / 2 multipliziert und zur 3. Zeile addiert Daher werden in ˆL folgende Werte eingetragen: (i) / 4 an Position (2,) (ii) / 2 an Position (3,) [P L U ] = / / = 2 Pivotierung. In der zweiten Spalte wird das betragsgrößte Element der zweiten bis vierten Zeile gesucht. Dies ist die 2. Daher werden in U zweite 5

6 und vierte Zeile vertauscht. In P vertauschen sich die zweite und vierte Spalte, in L die Anfänge der zweiten bis vierten Zeile bis zur Position = [P 2 ˆL Û] = 2 8 / / Elimination Die zweite Zeile wird (i) mit / 4 multipliziert und zur 3. Zeile addiert (ii) mit / 2 multipliziert und zur 4. Zeile addiert Daher werden in ˆL folgende Werte eingetragen: (i) / 4 an Position (3,2) (ii) / 2 an Position (4,2) [P 2 L 2 U 2 ] = / 2 / 4 / 4 / = 3 Pivotierung: In U 2 werden die dritte und vierte Zeile vertauscht, in P 2 dritte und vierte Spalte. In L 2 werden die ersten beiden Einträge(bis zur Spalte = 2) der dritten und vierten Zeile vertauscht. [P 3 ˆL 3 Û3] = / 4 / / 2 / 4 2 Im Eliminationsschritt wird in Û3 die mit / 4 multiplizierte dritte Zeile zur vierten addiert. Entsprechend wird in ˆL 3 an der Position (4,3) der Wert / 4 eingetragen. [P 3 L 3 U 3 ] = / 4 / / 2 / 4 / 4 8 Damit ist die LU-Zerlegung von A erbracht: es ist A = PLU = P 3 L 3 U 3 mit 6

7 P = L = / 4 / 2 und U = / 2 / 4 / 4 8 Beispiel 2: A x = b mit A = und b = Die LU-Zerlegung von A ist bereits im vorigen Beispiel vorgenommen worden. 2 Die Lösungvon P z = b ist 8 z = P b = 4 8 = y 8 3 Löse L y = z, also y 2 / 4 / 2 y 3 = 8 4. / 2 / 4 / 4 Zeilenweise ergibt sich von oben y = 8, y 2 = 8, 2 4+y 3 = 4 y 3 = 6 und y 4 = y 4 = 8 4 Löse U x = y, also y 4 x x 2 x 3 x 4 8 = Zeilenweise ergibt sich von unten 8x 4 = 8 x 4 =, 4x = 6 x 3 = 2, 2x 2 8 = 8 x 2 = und 2x 8+4 = 8 x =. Damit ist die Lösung x = 2 6 Kurzschreibweisen. Da bei der LU-Zerlegung viel geschrieben wird, bieten sich beim Rechnen von Hand Abürzungen an: 7

8 Die Spalten der P-Matrix bestehen aus den anonischen Einheitsvetoren. Bei der weiteren Berechnung wird nicht P, sondern P = P benötigt, die mit der rechten Seite des Gleichungssystems multipliziert werden. Statt der P-Matrix werden nur rechts von U die Indizes der (Zeilen)-Einheitsvetoren in P in der Form notiert: [ e ] d.h. werden in U die Spalten und l vertauscht, werden rechts davon in der P -Kurzschreibweise die Einträge an den Stellen und l vertauscht. b Die Spalte 3 4 bedeutet zum Beispiel, dass für b = b 2 b 3 das Produt 2 b 4 P b zu b b 3 b 4 b 2 wird. ergibt; d.h. in P b werden die Elemente von b so angeordnet, wie es die Abürzungszahlen für P angeben. 2 Die L- und U-Matrizen werden in einer einzigen Matrix notiert. Die Einträge von L werden in U an der Stelle notiert, an denen eine Null erzeugt worden ist. Dazu wird der Teil der Matrix, der zu L gehört, durch eine Linie abgetrennt. Bei einem Pivotierungsschritt werden dann die gesamten Zeilen der Matrix samt dem rechts danebenstehenden Vetor mit den P-Informationen vertauscht. 3 Wer noch fauler ist, ann folgendes machen: Wenn mit der -ten Zeile der Gaußschritt zur Erzeugung von L und U durchgeführt wurde, wird diese Zeile sowohl in L wie auch in U nie mehr verändert und braucht nicht erneut aufgeschrieben zu werden. Solche Zeilen werden durch ein mariert und erst am Schluß eingesammelt. Beispiel : Beispiel in Kurzschreibweise Ausgangssituation: [P L U ] = [E E A] : Pivotierung: Vertausche Zeilen und 3 [P ˆL Û] :

9 Eliminationsschritt: Addiere das / 4 -fache der ersten Zeile zur zweiten und das / 2 -fache zur dritten (und das -fache zur vierten) [P L U ] : / / Pivotierung: vertausche Zeilen 2 und 4 [P 2 ˆL Û] : / / Elimination: Addiere das / 4 -fache der zweiten Zeile zur dritten und das / 2 - fache zur vierten [P 2 L 2 U 2 ] = / 2 / 4 / 4 / Pivotierung: vertausche Zeilen 3 und 4: [P 3 ˆL 3 Û3] : / 4 / / 2 / Elimination: Addiere das / 4 -fache der dritten Zeile zur vierten: [P 3 L 3 U 3 ] = / 4 / / 2 / 4 / 4 8 Daraus setzt man wie oben U und L zusammen, indem man für L den Teil unter der Trennlinie in eine Einheitsmatrix opiert und für U diesen Teil auf Null setzt: L = / 4 / 2 und U = / 2 / 4 / Der Vetor neben dem Gleichungssystem gibt an, an welchen Positionen die Zeilen von P eine Eins enthalten: die erste an der dritten, die zweite an der vierten, die dritte an der ersten und die vierte an der zweiten Position. 9

10 P braucht allerdings nicht explizit berechnet zu werden. In z = P b erhält man b b 3 8 b = b 2 b 3 = 4 8 also z = b 4 b 2 = 8 4 b 4 8 und weiter geht es wie oben. 7 LU-Zerlegung mit Ansätzen Wichtige Eigenschaft: Das Produt einer (, )-Bandmatrix L und einer (, l)- Bandmatrix U ist eine (, l)-bandmatrix. Das lässt sich dadurch ausnutzen, dass man die LU-Zerlegung von Bandmatrizen durch einen Ansatz zu ermitteln versucht. Dieses Verfahren bestimmt eine LU-Zerlegung ohne Pivotierung. Man macht einen Ansatz für L als (, )-Bandmatrix mit einer Diagonale von Einsen und U als (, l)-bandmatrix. 2 Die erste Zeile des Produts wird ausgewertet. Das ergibt Bedingungen für die erste Zeile von U. Die erste Spalte ergibt Bedingungen für die erste Spalte von L. 3 Reursiv werden die restlichen Produte der -ten Zeile und Spalte des Produts ausgewertet. Zusammen mit den bereits bestimmten Elementen von L und U erhält man die fehlenden Elemente der -ten Zeile von U und der -ten Spalte von L 2 / Beispiel : A = 2/ / / 5 6 b Eine (, l)-bandmatrix ist eine Matrix, in der neben der Diagonalen nur Ele- Bandmatrix mente von Null verschieden sein önnen, die höchstens Zeilen unter oder l Zeilen über der Diagonalen liegen. Eine (, )-Bandmatrix ist eine Diagonalmatrix, eine (, )-Bandmatrix wird Tridiagonalmatrix genannt. Tridiagonalmatrix Da A eine Tridiagonalmatrix ist, ist der Ansatz A = LU mit u u 2 l 2 L = l 32 l 43 und U = u 22 u 23 u 33 u 34 u 44 u 45 l 54 u 55

11 2 Nun werden die Produte der ersten Zeile und Spalte ausgewertet, die nicht von vornherein Null sind: u u 2 u 22 u 23 u 33 u 34 u 44 u 45 u 55 l 2 l 32 l 43 l 54 2 / 2 Daraus ergibt sich: u = u = und u 2 = 2 u 2 = 2 und dann mit dem schon gefundenen Wert von u : l 2 u = / 2 l 2 = / 2. 3 Dasselbe mit der zweiten Zeile und Spalte: 2 u 22 u 23 u 33 u 34 u 44 u 45 u 55 / 2 l 32 l 43 l / 3 Wie oben ist: 2 / 2 + u 22 = 3 u 22 = 2 und u 23 = 3 u 23 = 3 und dann mit dem schon gefundenen Wert von u 22 : l 32 u 22 = 2/3 l 32 = / 3. 4 Dritte Zeile und Spalte:

12 / 2 / 3 l 43 l u 33 u 34 u 44 u 45 u / 4 Genauso: / 3 3+ u 33 = 4 u 33 = 3 und u 34 = 4 u 34 = 4, und dann mit dem schon gefundenen Wert von u 33 : l 43 u 33 = 3 / 4 l 43 = / 4. 5 Vierte und fünfte Zeile und Spalte: u 44 u 45 u 55 / 2 / 3 / 4 l / 5 6 Vierte Zeile und Spalte: / 4 4+ u 44 = 5 u 44 = 4 und u 45 = 5 u 34 = 4, und dann mit dem schon gefundenen Wert von u 44 : l 54 u 44 = 4 / 5 l 54 = / 5. Schließlich ist in der unteren rechten Ece l 54 u 45 +u 55 = / 5 5+u 55 = 6 u 55 = 5. Damit ist A = LU mit 2 /2 L = /3 /4 und U = /5 5 2

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

Kapitel 15. Lösung linearer Gleichungssysteme

Kapitel 15. Lösung linearer Gleichungssysteme Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

Musterlösungen zur Linearen Algebra II Blatt 5

Musterlösungen zur Linearen Algebra II Blatt 5 Musterlösungen zur Linearen Algebra II Blatt 5 Aufgabe. Man betrachte die Matrix A := über dem Körper R und über dem Körper F und bestimme jeweils die Jordan- Normalform. Beweis. Das charakteristische

Mehr

7 Die Determinante einer Matrix

7 Die Determinante einer Matrix 7 Die Determinante einer Matrix ( ) a11 a Die Determinante einer 2 2 Matrix A = 12 ist erklärt als a 21 a 22 det A := a 11 a 22 a 12 a 21 Es ist S 2 = { id, τ}, τ = (1, 2) und sign (id) = 1, sign (τ) =

Mehr

Die Größe von Flächen vergleichen

Die Größe von Flächen vergleichen Vertiefen 1 Die Größe von Flächen vergleichen zu Aufgabe 1 Schulbuch, Seite 182 1 Wer hat am meisten Platz? Ordne die Figuren nach ihrem Flächeninhalt. Begründe deine Reihenfolge. 1 2 3 4 zu Aufgabe 2

Mehr

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

Lineare Gleichungssysteme I (Matrixgleichungen)

Lineare Gleichungssysteme I (Matrixgleichungen) Lineare Gleichungssysteme I (Matrigleichungen) Eine lineare Gleichung mit einer Variable hat bei Zahlen a, b, die Form a b. Falls hierbei der Kehrwert von a gebildet werden darf (a 0), kann eindeutig aufgelöst

Mehr

Repetitionsaufgaben Wurzelgleichungen

Repetitionsaufgaben Wurzelgleichungen Repetitionsaufgaben Wurzelgleichungen Inhaltsverzeichnis A) Vorbemerkungen B) Lernziele C) Theorie mit Aufgaben D) Aufgaben mit Musterlösungen 4 A) Vorbemerkungen Bitte beachten Sie: Bei Wurzelgleichungen

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Zwei Gleichungen mit zwei Unbekannten Es kommt häufig vor, dass man nicht mit einer Variablen alleine auskommt, um ein Problem zu lösen. Das folgende Beispiel soll dies verdeutlichen

Mehr

3. LINEARE GLEICHUNGSSYSTEME

3. LINEARE GLEICHUNGSSYSTEME 176 3. LINEARE GLEICHUNGSSYSTEME 90 Vitamin-C-Gehalt verschiedener Säfte 18,0 mg 35,0 mg 12,5 mg 1. a) 100 ml + 50 ml + 50 ml = 41,75 mg 100 ml 100 ml 100 ml b) : Menge an Kirschsaft in ml y: Menge an

Mehr

Quadratische Gleichungen

Quadratische Gleichungen Quadratische Gleichungen Aufgabe: Versuche eine Lösung zu den folgenden Zahlenrätseln zu finden:.) Verdoppelt man das Quadrat einer Zahl und addiert, so erhält man 00..) Addiert man zum Quadrat einer Zahl

Mehr

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1 B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,

Mehr

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Leistungskurs Mathematik

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Leistungskurs Mathematik Abitur 8 II. Insektenpopulation LA/AG In den Tropen legen die Weibchen einer in Deutschland unbekannten Insektenpopulation jedes Jahr kurz vor Beginn der Regenzeit jeweils 9 Eier und sterben bald darauf.

Mehr

4 Vorlesung: 21.11. 2005 Matrix und Determinante

4 Vorlesung: 21.11. 2005 Matrix und Determinante 4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

Tipp III: Leiten Sie eine immer direkt anwendbare Formel her zur Berechnung der sogenannten "bedingten Wahrscheinlichkeit".

Tipp III: Leiten Sie eine immer direkt anwendbare Formel her zur Berechnung der sogenannten bedingten Wahrscheinlichkeit. Mathematik- Unterrichts- Einheiten- Datei e. V. Klasse 9 12 04/2015 Diabetes-Test Infos: www.mued.de Blutspenden werden auf Diabetes untersucht, das mit 8 % in der Bevölkerung verbreitet ist. Dabei werden

Mehr

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!. 040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

Lösung. Prüfungsteil 1: Aufgabe 1

Lösung. Prüfungsteil 1: Aufgabe 1 Zentrale Prüfung 01 Lösung Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Ministeriums für Schule und Weiterbildung des Landes. Prüfungsteil 1: Aufgabe 1 a)

Mehr

Zeichen bei Zahlen entschlüsseln

Zeichen bei Zahlen entschlüsseln Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Outlook. sysplus.ch outlook - mail-grundlagen Seite 1/8. Mail-Grundlagen. Posteingang

Outlook. sysplus.ch outlook - mail-grundlagen Seite 1/8. Mail-Grundlagen. Posteingang sysplus.ch outlook - mail-grundlagen Seite 1/8 Outlook Mail-Grundlagen Posteingang Es gibt verschiedene Möglichkeiten, um zum Posteingang zu gelangen. Man kann links im Outlook-Fenster auf die Schaltfläche

Mehr

Approximation durch Taylorpolynome

Approximation durch Taylorpolynome TU Berlin Fakultät II - Mathematik und Naturwissenschaften Sekretariat MA 4-1 Straße des 17. Juni 10623 Berlin Hochschultag Approximation durch Taylorpolynome Im Rahmen der Schülerinnen- und Schüler-Uni

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen

Mehr

Professionelle Seminare im Bereich MS-Office

Professionelle Seminare im Bereich MS-Office Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion

Mehr

Prozentrechnung. Wir können nun eine Formel für die Berechnung des Prozentwertes aufstellen:

Prozentrechnung. Wir können nun eine Formel für die Berechnung des Prozentwertes aufstellen: Prozentrechnung Wir beginnen mit einem Beisiel: Nehmen wir mal an, ein Handy kostet 200 und es gibt 5% Rabatt (Preisnachlass), wie groß ist dann der Rabatt in Euro und wie viel kostet dann das Handy? Wenn

Mehr

Erstellen einer Collage. Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu])

Erstellen einer Collage. Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu]) 3.7 Erstellen einer Collage Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu]) Dann Größe des Dokuments festlegen beispielsweise A4 (weitere

Mehr

MORE Profile. Pass- und Lizenzverwaltungssystem. Stand: 19.02.2014 MORE Projects GmbH

MORE Profile. Pass- und Lizenzverwaltungssystem. Stand: 19.02.2014 MORE Projects GmbH MORE Profile Pass- und Lizenzverwaltungssystem erstellt von: Thorsten Schumann erreichbar unter: thorsten.schumann@more-projects.de Stand: MORE Projects GmbH Einführung Die in More Profile integrierte

Mehr

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben

Mehr

Erstellen von x-y-diagrammen in OpenOffice.calc

Erstellen von x-y-diagrammen in OpenOffice.calc Erstellen von x-y-diagrammen in OpenOffice.calc In dieser kleinen Anleitung geht es nur darum, aus einer bestehenden Tabelle ein x-y-diagramm zu erzeugen. D.h. es müssen in der Tabelle mindestens zwei

Mehr

Zahlenwinkel: Forscherkarte 1. alleine. Zahlenwinkel: Forschertipp 1

Zahlenwinkel: Forscherkarte 1. alleine. Zahlenwinkel: Forschertipp 1 Zahlenwinkel: Forscherkarte 1 alleine Tipp 1 Lege die Ziffern von 1 bis 9 so in den Zahlenwinkel, dass jeder Arm des Zahlenwinkels zusammengezählt das gleiche Ergebnis ergibt! Finde möglichst viele verschiedene

Mehr

Bericht zur Prüfung im Oktober 2003 über Mathematik der Lebensversicherung (Grundwissen)

Bericht zur Prüfung im Oktober 2003 über Mathematik der Lebensversicherung (Grundwissen) Bericht zur Prüfung im Oktober 2003 über Mathematik der Lebensversicherung Grundwissen) Jürgen Strobel Köln) und Hans-Jochen Bartels Mannheim) Am 04.10.2003 wurde in Köln die zehnte Prüfung über Mathematik

Mehr

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in

Mehr

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und

Mehr

Einführung in. Logische Schaltungen

Einführung in. Logische Schaltungen Einführung in Logische Schaltungen 1/7 Inhaltsverzeichnis 1. Einführung 1. Was sind logische Schaltungen 2. Grundlegende Elemente 3. Weitere Elemente 4. Beispiel einer logischen Schaltung 2. Notation von

Mehr

Handbuch Fischertechnik-Einzelteiltabelle V3.7.3

Handbuch Fischertechnik-Einzelteiltabelle V3.7.3 Handbuch Fischertechnik-Einzelteiltabelle V3.7.3 von Markus Mack Stand: Samstag, 17. April 2004 Inhaltsverzeichnis 1. Systemvorraussetzungen...3 2. Installation und Start...3 3. Anpassen der Tabelle...3

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHISCHE UIVERSITÄT MÜCHE Zentrum Mathematik PRF. R.R. JÜRGE RICHTER-GEBERT, VAESSA KRUMMECK, MICHAEL PRÄHFER Höhere Mathematik für Informatiker I (Wintersemester 003/004) Aufgabenblatt 1 (4. ktober 003)

Mehr

Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten!

Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten! Mathefritz 5 Terme und Gleichungen Meine Mathe-Seite im Internet kostenlose Matheaufgaben, Skripte, Mathebücher Lernspiele, Lerntipps, Quiz und noch viel mehr http:// www.mathefritz.de Seite 1 Copyright

Mehr

V 2 B, C, D Drinks. Möglicher Lösungsweg a) Gleichungssystem: 300x + 400 y = 520 300x + 500y = 597,5 2x3 Matrix: Energydrink 0,7 Mineralwasser 0,775,

V 2 B, C, D Drinks. Möglicher Lösungsweg a) Gleichungssystem: 300x + 400 y = 520 300x + 500y = 597,5 2x3 Matrix: Energydrink 0,7 Mineralwasser 0,775, Aufgabenpool für angewandte Mathematik / 1. Jahrgang V B, C, D Drinks Ein gastronomischer Betrieb kauft 300 Dosen Energydrinks (0,3 l) und 400 Liter Flaschen Mineralwasser und zahlt dafür 50, Euro. Einen

Mehr

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt

Mehr

1 Lineare Gleichungssysteme

1 Lineare Gleichungssysteme MLAN1 1 LINEARE GLEICHUNGSSYSTEME 1 Literatur: K Nipp/D Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4 Auflage, 1998, oder neuer 1 Lineare Gleichungssysteme Zu den grundlegenden

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Mag. Christian Gürtler Programmierung Grundlagen der Informatik 2011 Inhaltsverzeichnis I. Allgemeines 3 1. Zahlensysteme 4 1.1. ganze Zahlen...................................... 4 1.1.1. Umrechnungen.................................

Mehr

Widerrufsbelehrung der Free-Linked GmbH. Stand: Juni 2014

Widerrufsbelehrung der Free-Linked GmbH. Stand: Juni 2014 Widerrufsbelehrung der Stand: Juni 2014 www.free-linked.de www.buddy-watcher.de Inhaltsverzeichnis Widerrufsbelehrung Verträge für die Lieferung von Waren... 3 Muster-Widerrufsformular... 5 2 Widerrufsbelehrung

Mehr

Grundlagen der Theoretischen Informatik, SoSe 2008

Grundlagen der Theoretischen Informatik, SoSe 2008 1. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 2 Zustandsdiagramme (6 Punkte, wird korrigiert)

Mehr

LANGFRISTIGE HAUSAUFGABE (LINEARE GLEICHUNGSSYSTEME)

LANGFRISTIGE HAUSAUFGABE (LINEARE GLEICHUNGSSYSTEME) LANGFRISTIGE HAUSAUFGABE (LINEARE GLEICHUNGSSYSTEME) Aufgabe 1: Tanzkurs ( * ) Zu einem Tanzkurs erscheinen dreimal so viele Mädchen wie Jungen. Nachdem 15 Mädchen gegangen sind, sind noch doppelt so viele

Mehr

Bruchrechnung Wir teilen gerecht auf

Bruchrechnung Wir teilen gerecht auf Bruchrechnung Wir teilen gerecht auf Minipizzen auf Personen. Bruchrechnung Wir teilen gerecht auf Minipizzen auf Personen. : (+) : + Wir teilen einen Teil Eine halbe Minipizza auf Personen. :? Wir teilen

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

Das sogenannte Beamen ist auch in EEP möglich ohne das Zusatzprogramm Beamer. Zwar etwas umständlicher aber es funktioniert

Das sogenannte Beamen ist auch in EEP möglich ohne das Zusatzprogramm Beamer. Zwar etwas umständlicher aber es funktioniert Beamen in EEP Das sogenannte Beamen ist auch in EEP möglich ohne das Zusatzprogramm Beamer. Zwar etwas umständlicher aber es funktioniert Zuerst musst du dir 2 Programme besorgen und zwar: Albert, das

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie

Mehr

Geld wechseln kann als Visualisierung des Zehnerübergangs dienen. Die Zwischengrössen (CHF 2.-, 5.-, 20.-, 50.-) weglassen.

Geld wechseln kann als Visualisierung des Zehnerübergangs dienen. Die Zwischengrössen (CHF 2.-, 5.-, 20.-, 50.-) weglassen. E2 Rechnungen verstehen plus minus Verständnisaufbau Geld wechseln Geld wechseln kann als Visualisierung des Zehnerübergangs dienen. Die Zwischengrössen (CHF 2.-, 5.-, 20.-, 50.-) weglassen. Ich bezahle

Mehr

Berechnung der Erhöhung der Durchschnittsprämien

Berechnung der Erhöhung der Durchschnittsprämien Wolfram Fischer Berechnung der Erhöhung der Durchschnittsprämien Oktober 2004 1 Zusammenfassung Zur Berechnung der Durchschnittsprämien wird das gesamte gemeldete Prämienvolumen Zusammenfassung durch die

Mehr

1. Einführung 2. 2. Erstellung einer Teillieferung 2. 3. Erstellung einer Teilrechnung 6

1. Einführung 2. 2. Erstellung einer Teillieferung 2. 3. Erstellung einer Teilrechnung 6 Inhalt 1. Einführung 2 2. Erstellung einer Teillieferung 2 3. Erstellung einer Teilrechnung 6 4. Erstellung einer Sammellieferung/ Mehrere Aufträge zu einem Lieferschein zusammenfassen 11 5. Besonderheiten

Mehr

1 C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R

1 C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R L Ö S U N G E N Seite 7 n Wenn vier Menschen auf einem Quadratmeter stehen, dann hat jeder eine Fläche von 50 mal 50 Zentimeter

Mehr

Wachstum 2. Michael Dröttboom 1 LernWerkstatt-Selm.de

Wachstum 2. Michael Dröttboom 1 LernWerkstatt-Selm.de 1. Herr Meier bekommt nach 3 Jahren Geldanlage 25.000. Er hatte 22.500 angelegt. Wie hoch war der Zinssatz? 2. Herr Meiers Vorfahren haben bei der Gründung Roms (753. V. Chr.) 1 Sesterze auf die Bank gebracht

Mehr

RSA-Verschlüsselung. Verfahren zur Erzeugung der beiden Schlüssel:

RSA-Verschlüsselung. Verfahren zur Erzeugung der beiden Schlüssel: RSA-Verschlüsselung Das RSA-Verfahren ist ein asymmetrisches Verschlüsselungsverfahren, das nach seinen Erfindern Ronald Linn Rivest, Adi Shamir und Leonard Adlemann benannt ist. RSA verwendet ein Schlüsselpaar

Mehr

Klassenarbeit zu linearen Gleichungssystemen

Klassenarbeit zu linearen Gleichungssystemen Klassenarbeit zu linearen Gleichungssystemen Aufgabe : Bestimme die Lösungsmenge der Gleichungssysteme mit Hilfe des Additionsverfahrens: x + 4y = 8 5x y = x y = x y = Aufgabe : Bestimme die Lösungsmenge

Mehr

EINFACHES HAUSHALT- KASSABUCH

EINFACHES HAUSHALT- KASSABUCH EINFACHES HAUSHALT- KASSABUCH Arbeiten mit Excel Wir erstellen ein einfaches Kassabuch zur Führung einer Haushalts- oder Portokasse Roland Liebing, im November 2012 Eine einfache Haushalt-Buchhaltung (Kassabuch)

Mehr

Mathematik. UND/ODER Verknüpfung. Ungleichungen. Betrag. Intervall. Umgebung

Mathematik. UND/ODER Verknüpfung. Ungleichungen. Betrag. Intervall. Umgebung Mathematik UND/ODER Verknüpfung Ungleichungen Betrag Intervall Umgebung Stefan Gärtner 004 Gr Mathematik UND/ODER Seite UND Verknüpfung Kommentar Aussage Symbolform Die Aussagen Hans kann schwimmen p und

Mehr

Österreichische Trachtenjugend

Österreichische Trachtenjugend Vereinsdatenbank der österreichischen Trachtenjugend Diese Unterlage sollte eine Unterstützung für den ersten Einstieg sein. Erklärt wird die Bearbeitung der Vereinsdaten und der Daten der einzelnen Mitglieder.

Mehr

Anleitung über den Umgang mit Schildern

Anleitung über den Umgang mit Schildern Anleitung über den Umgang mit Schildern -Vorwort -Wo bekommt man Schilder? -Wo und wie speichert man die Schilder? -Wie füge ich die Schilder in meinen Track ein? -Welche Bauteile kann man noch für Schilder

Mehr

W-Rechnung und Statistik für Ingenieure Übung 11

W-Rechnung und Statistik für Ingenieure Übung 11 W-Rechnung und Statistik für Ingenieure Übung 11 Christoph Kustosz (kustosz@statistik.tu-dortmund.de) Mathematikgebäude Raum 715 Christoph Kustosz (kustosz@statistik.tu-dortmund.de) W-Rechnung und Statistik

Mehr

Plotten von Linien ( nach Jack Bresenham, 1962 )

Plotten von Linien ( nach Jack Bresenham, 1962 ) Plotten von Linien ( nach Jack Bresenham, 1962 ) Ac Eine auf dem Bildschirm darzustellende Linie sieht treppenförmig aus, weil der Computer Linien aus einzelnen (meist quadratischen) Bildpunkten, Pixels

Mehr

Simplex-Umformung für Dummies

Simplex-Umformung für Dummies Simplex-Umformung für Dummies Enthält die Zielfunktion einen negativen Koeffizienten? NEIN Optimale Lösung bereits gefunden JA Finde die Optimale Lösung mit dem Simplex-Verfahren! Wähle die Spalte mit

Mehr

Stundenerfassung Version 1.8

Stundenerfassung Version 1.8 Stundenerfassung Version 1.8 Anleitung Überstunden Ein Modul der Plusversion 2008 netcadservice GmbH netcadservice GmbH Augustinerstraße 3 D-83395 Freilassing Dieses Programm ist urheberrechtlich geschützt.

Mehr

Rationale Zahlen. Weniger als Nichts? Ist Null nichts?

Rationale Zahlen. Weniger als Nichts? Ist Null nichts? Rationale Zahlen Weniger als Nichts? Ist Null nichts? Oft kann es sinnvoll sein, Werte anzugeben die kleiner sind als Null. Solche Werte werden mit negativen Zahlen beschrieben, die durch ein Minus als

Mehr

Übung zum Thema. Abmaße ablesen und Toleranzen berechnen

Übung zum Thema. Abmaße ablesen und Toleranzen berechnen Übung zum Thema Abmaße ablesen und Toleranzen berechnen Grundlage der Übung sind die Tabellen TB2-1 bis TB2-3 im Roloff/Matek Tabellenbuch Vorgehensweise: 1. Bestimmung der Grundtoleranz In TB2-1 stehen

Mehr

TYPO3 Tipps und Tricks

TYPO3 Tipps und Tricks TYPO3 Tipps und Tricks Seiten als Shortcut. Hiermit ist gemeint, dass eine Oberseite direkt auf eine tiefere Unterseite verlinkt. Dies kann bei Themen ohne gesonderte Übersichtsseite hilfreich sein. Zum

Mehr

Handbuch ECDL 2003 Modul 2: Computermanagement und Dateiverwaltung Der Task-Manager

Handbuch ECDL 2003 Modul 2: Computermanagement und Dateiverwaltung Der Task-Manager Handbuch ECDL 2003 Modul 2: Computermanagement und Dateiverwaltung Der Task-Manager Dateiname: ecdl2_03_05_documentation Speicherdatum: 22.11.2004 ECDL 2003 Modul 2 Computermanagement und Dateiverwaltung

Mehr

Webalizer HOWTO. Stand: 18.06.2012

Webalizer HOWTO. Stand: 18.06.2012 Webalizer HOWTO Stand: 18.06.2012 Copyright 2003 by manitu. Alle Rechte vorbehalten. Alle verwendeten Bezeichnungen dienen lediglich der Kennzeichnung und können z.t. eingetragene Warenzeichen sein, ohne

Mehr

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen 5.2. entenrechnung Definition: ente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren entenperiode = Zeitabstand zwischen zwei entenzahlungen Finanzmathematisch sind zwei

Mehr

Sowohl die Malstreifen als auch die Neperschen Streifen können auch in anderen Stellenwertsystemen verwendet werden.

Sowohl die Malstreifen als auch die Neperschen Streifen können auch in anderen Stellenwertsystemen verwendet werden. Multiplikation Die schriftliche Multiplikation ist etwas schwieriger als die Addition. Zum einen setzt sie das kleine Einmaleins voraus, zum anderen sind die Überträge, die zu merken sind und häufig in

Mehr

Auslisten von Artikeln anhand Artikelselektion

Auslisten von Artikeln anhand Artikelselektion HIW RENDITE Auslisten von Artikeln anhand Artikelselektion HIW GmbH Berblinger Str. 1 D-71254 Ditzingen Werner-von-Siemens-Str. 23 D-93413 Cham www.hiw24.de Hinweis: Alle Beiträge sind nach bestem Wissen

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

Stellen Sie bitte den Cursor in die Spalte B2 und rufen die Funktion Sverweis auf. Es öffnet sich folgendes Dialogfenster

Stellen Sie bitte den Cursor in die Spalte B2 und rufen die Funktion Sverweis auf. Es öffnet sich folgendes Dialogfenster Es gibt in Excel unter anderem die so genannten Suchfunktionen / Matrixfunktionen Damit können Sie Werte innerhalb eines bestimmten Bereichs suchen. Als Beispiel möchte ich die Funktion Sverweis zeigen.

Mehr

15.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit

15.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit 5.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit Einführendes Beispiel ( Erhöhung der Sicherheit bei Flugreisen ) Die statistische Wahrscheinlichkeit, dass während eines Fluges ein Sprengsatz an Bord

Mehr

Wir machen neue Politik für Baden-Württemberg

Wir machen neue Politik für Baden-Württemberg Wir machen neue Politik für Baden-Württemberg Am 27. März 2011 haben die Menschen in Baden-Württemberg gewählt. Sie wollten eine andere Politik als vorher. Die Menschen haben die GRÜNEN und die SPD in

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V

Mehr

Das Mathematik-Abitur im Saarland

Das Mathematik-Abitur im Saarland Informationen zum Abitur Das Mathematik-Abitur im Saarland Sie können Mathematik im Abitur entweder als grundlegenden Kurs (G-Kurs) oder als erhöhten Kurs (E-Kurs) wählen. Die Bearbeitungszeit für die

Mehr

Sonderrundschreiben. Arbeitshilfe zu den Pflichtangaben in Immobilienanzeigen bei alten Energieausweisen

Sonderrundschreiben. Arbeitshilfe zu den Pflichtangaben in Immobilienanzeigen bei alten Energieausweisen Sonderrundschreiben Arbeitshilfe zu den Pflichtangaben in Immobilienanzeigen bei alten Energieausweisen Sonnenstraße 11-80331 München Telefon 089 / 5404133-0 - Fax 089 / 5404133-55 info@haus-und-grund-bayern.de

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

6.2 Scan-Konvertierung (Scan Conversion)

6.2 Scan-Konvertierung (Scan Conversion) 6.2 Scan-Konvertierung (Scan Conversion) Scan-Konvertierung ist die Rasterung von einfachen Objekten (Geraden, Kreisen, Kurven). Als Ausgabemedium dient meist der Bildschirm, der aus einem Pixelraster

Mehr

5. Bildauflösung ICT-Komp 10

5. Bildauflösung ICT-Komp 10 5. Bildauflösung ICT-Komp 10 Was sind dpi? Das Maß für die Bildauflösung eines Bildes sind dpi. Jeder spricht davon, aber oft weiß man gar nicht genau was das ist. Die Bezeichnung "dpi" ist ein Maß, mit

Mehr

1 topologisches Sortieren

1 topologisches Sortieren Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung

Mehr

Korrigenda Handbuch der Bewertung

Korrigenda Handbuch der Bewertung Korrigenda Handbuch der Bewertung Kapitel 3 Abschnitt 3.5 Seite(n) 104-109 Titel Der Terminvertrag: Ein Beispiel für den Einsatz von Future Values Änderungen In den Beispielen 21 und 22 ist der Halbjahressatz

Mehr

Media Teil III. Begriffe, Definitionen, Übungen

Media Teil III. Begriffe, Definitionen, Übungen Media Teil III. Begriffe, Definitionen, Übungen Kapitel 1 (Intermedia- Vergleich: Affinität) 1 Affinitätsbewertung als Mittel des Intermedia-Vergleichs Um die Streugenauigkeit eines Werbeträgers zu bestimmen,

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

Übungsaufgaben Tilgungsrechnung

Übungsaufgaben Tilgungsrechnung 1 Zusatzmaterialien zu Finanz- und Wirtschaftsmathematik im Unterricht, Band 1 Übungsaufgaben Tilgungsrechnung Überarbeitungsstand: 1.März 2016 Die grundlegenden Ideen der folgenden Aufgaben beruhen auf

Mehr

2. Im Admin Bereich drücken Sie bitte auf den roten Button Webseite bearbeiten, sodass Sie in den Bearbeitungsbereich Ihrer Homepage gelangen.

2. Im Admin Bereich drücken Sie bitte auf den roten Button Webseite bearbeiten, sodass Sie in den Bearbeitungsbereich Ihrer Homepage gelangen. Bildergalerie einfügen Wenn Sie eine Vielzahl an Bildern zu einem Thema auf Ihre Homepage stellen möchten, steht Ihnen bei Schmetterling Quadra das Modul Bildergalerie zur Verfügung. Ihre Kunden können

Mehr

Viele Bilder auf der FA-Homepage

Viele Bilder auf der FA-Homepage Viele Bilder auf der FA-Homepage Standardmäßig lassen sich auf einer FA-Homepage nur 2 Bilder mit zugehörigem Text unterbringen. Sollen es mehr Bilder sein, muss man diese als von einer im Internet

Mehr

Advoware mit VPN Zugriff lokaler Server / PC auf externe Datenbank

Advoware mit VPN Zugriff lokaler Server / PC auf externe Datenbank Advoware mit VPN Zugriff lokaler Server / PC auf externe Datenbank Die Entscheidung Advoware über VPN direkt auf dem lokalen PC / Netzwerk mit Zugriff auf die Datenbank des zentralen Servers am anderen

Mehr

PowerPoint: Text. Text

PowerPoint: Text. Text PowerPoint: Anders als in einem verarbeitungsprogramm steht in PowerPoint der Cursor nicht automatisch links oben auf einem Blatt in der ersten Zeile und wartet auf eingabe. kann hier vielmehr frei über

Mehr

Übungskomplex Felder (1) Eindimensionale Felder Mehrdimensionale Felder

Übungskomplex Felder (1) Eindimensionale Felder Mehrdimensionale Felder Übungskomplex Felder (1) Eindimensionale Felder Mehrdimensionale Felder Hinweise zur Übung Benötigter Vorlesungsstoff Ab diesem Übungskomplex wird die Kenntnis und praktische Beherrschung der Konzepte

Mehr

Bedienungsanleitung Rückabwicklungsrechner

Bedienungsanleitung Rückabwicklungsrechner 1 Eingaben Zelle C2 Auszahlungsbetrag Hier muss der erste Auszahlungsbetrag eingegeben werden. Weitere Auszahlungen siehe Weiter unten. Zelle C3 Zeitpunkt der Auszahlung Datum der ersten Auszahlung Zelle

Mehr