LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen."

Transkript

1 Zusätze zum Gelben Rechenbuch LU-Zerlegung Peter Furlan Verlag Martina Furlan Inhaltsverzeichnis Definitionen 2 (Allgemeine) LU-Zerlegung 2 3 Vereinfachte LU-Zerlegung 3 4 Lösung eines linearen Gleichungssystems mit LU-Zerlegung. 4 5 Beispiele 5 6 Kurzschreibweisen 7 7 LU-Zerlegung mit Ansätzen Definitionen Die LU-Zerlegung oder LR-Zerlegung ist die Zerlegung einer quadratischen Matrix A in ein Produt A = PLU. Dabei ist L eine untere Dreiecsmatrix mit Einsen auf der Diagonale und U eine obere Dreiecsmatrix. Ist A nicht singulär, besteht die Diagonale von U aus Zahlen ungleich Null. P ist eine Permutationsmatrix, die aus der Einheitsmatrix durch Vertauschen von Spalten entsteht. Das bedeutet, dass P in jeder Zeile und Spalte genau eine Eins enthält und ansonsten aus Nullen besteht. Besondere Eigenschaft von P: es ist P = P. Bezeichnungen: LU bedeutet lower-upper, LR bedeutet lins-rechts. Reguläre Matrizen önnen stets als P LU-Produt geschrieben werden. In manchen Fällen ist die P-Matrix (die durch Pivotierung u.a. für bessere numerische Stabilität sorgt), nicht nötig oder erwünscht. Dann entsteht die vereinfachte LU-Zerlegung von A als A = LU.

2 2 (Allgemeine) LU-Zerlegung In diesem Rechenverfahren werden Matrizen folgender Form benutzt: L und ˆL haben diese Form u u, u, u +, u n, Û = (u ij). U hat dieselbe Gestalt. Start: P = L = E n, U = A. 2 Für jedes von bis n werden die folgenden Schritte durchgeführt: Zeilen vertauschen l Dieser Schritt ist nötig, falls U an der Position (,) eine Null enthält. Man ann auch an dieser Stelle pivotieren, und die Zeile mit derjenigen Zeile l darunter vertauschen, die in der Spalte das betragsgrößte Element enthält. Û ist U mit den Zeilen und l > vertauscht ˆL ist L, wobei die ersten Elemente der Zeilen und l vertauscht sind (für = ist hier nichts zu tun) P ist P wobei die Spalten und l vertauscht sind. l l P P L ˆL U Û Wird dieser Schritt übersprungen, wird einfach P := P, ˆL := L und Û := U gesetzt. 2 Eliminationsschritt In diesem Schritt werden Vielfache der Zeile zu den Zeilen darunter addiert. 2

3 l α l sei der Quotient der Einträge u l und u in Û, also α l = u l u. Dann entsteht U aus Û, indem das α l -fache der Zeile zu den Zeilen l mit l > addiert wird. Das ist genau das, was man beim Gauß-Algorithmus tut, um unterhalb des Diagonalelements u Nullen zu erzeugen. L ist ˆL mit Einträgen α l in Zeile l der Spalte. l v v, v, v +, v l, v n, +α l Zeile Übergang in ˆL Übergang in Û l v v, v, v +, -α l l v n, Wird in Û an der Position (l,) eine Null erzeugt, wird in ˆL an der Position (l,) das Negative von α l eingesetzt. 3 Mit P := P n, L := L n und U := U n ist die Zerlegung A = PLU erreicht. An jeder beliebigen Stelle ann eine Probe gemacht werden: Stets muss P L U = A und P ˆL Û = A sein. Bei dieser Variante der LU-Zerlegung hat die L-Matrix stets Einträge vom Betrag leiner als eins. 3 Vereinfachte LU-Zerlegung Die vereinfachte LU-Zerlegung nimmmt in L und U dieselben Umformungen wie oben im Eliminationsschritt vor. Die P-Matrix fällt ebenso weg wie der Schritt mit den Zeilenvertauschungen. 3

4 Beispiel : Zerlegung von A = Wieder werden beide Matrizen in eine große geschrieben. [L U ] = [L U ] = Die erste Zeile wird mit 2 multipliziert zur zweiten und mit multipliziert zur dritten addiert. Daher wird in L an in Spalte in der zweiten Zeile eine 2 und in der dritten eine eingetragen. Die zweite Zeile wird mit multipliziert zur dritten addiert. Daher wird in L = L 2 in Spalte 2 in der dritten Zeile eine eingetragen. Damit ist die LU-Zerlegung von A = LU mit L = L 2 und U = U 2 erbracht. Beispiel 2: Zerlegung von A = [ ] Dieses Beispiel zeigt, dass die vereinfachte LU-Zerlegung nicht immer möglich ist, da man ohne Zeilenvertauschungen eine Null in der unteren linen Ece von A = L erzeugen ann. Die allgemeine Zerlegung ist extrem einfach: es ist P = A und L = U = E 2. 4 Lösung eines linearen Gleichungssystems mit LU-Zerlegung. Zur Lösung von A x = b nimmt man folgende Schritte vor: Bestimme die LU-Zerlegung von A: A = PLU 2 Löse P z = b durch z = P b 3 Löse L y = z reursiv, beginnend mit y. 4 Löse U x = y reursiv, beginnend mit x n. Bei der vereinfachten LU-Zerlegung ist P = E, 2 fällt weg und es ist z = b. 4

5 5 Beispiele Beispiel : LU-Zerlegung von A = Die drei Matrizen werden in einer großen Matrix zusammengefasst: [P L U ] = [E E A] = = Pivotierung: Das betragsgrößte Element der ersten Spalte von U ist die 2 in der dritten Zeile. Die erste und dritte Zeile in U werden vertauscht. Dann ändert sich in L nichts und in P werden die erste und dritte Spalte vertauscht. [P ˆL Û] = 2 Elimination. Die erste Zeile wird (i) mit / 4 multipliziert und zur 2. Zeile addiert (ii) mit / 2 multipliziert und zur 3. Zeile addiert Daher werden in ˆL folgende Werte eingetragen: (i) / 4 an Position (2,) (ii) / 2 an Position (3,) [P L U ] = / / = 2 Pivotierung. In der zweiten Spalte wird das betragsgrößte Element der zweiten bis vierten Zeile gesucht. Dies ist die 2. Daher werden in U zweite 5

6 und vierte Zeile vertauscht. In P vertauschen sich die zweite und vierte Spalte, in L die Anfänge der zweiten bis vierten Zeile bis zur Position = [P 2 ˆL Û] = 2 8 / / Elimination Die zweite Zeile wird (i) mit / 4 multipliziert und zur 3. Zeile addiert (ii) mit / 2 multipliziert und zur 4. Zeile addiert Daher werden in ˆL folgende Werte eingetragen: (i) / 4 an Position (3,2) (ii) / 2 an Position (4,2) [P 2 L 2 U 2 ] = / 2 / 4 / 4 / = 3 Pivotierung: In U 2 werden die dritte und vierte Zeile vertauscht, in P 2 dritte und vierte Spalte. In L 2 werden die ersten beiden Einträge(bis zur Spalte = 2) der dritten und vierten Zeile vertauscht. [P 3 ˆL 3 Û3] = / 4 / / 2 / 4 2 Im Eliminationsschritt wird in Û3 die mit / 4 multiplizierte dritte Zeile zur vierten addiert. Entsprechend wird in ˆL 3 an der Position (4,3) der Wert / 4 eingetragen. [P 3 L 3 U 3 ] = / 4 / / 2 / 4 / 4 8 Damit ist die LU-Zerlegung von A erbracht: es ist A = PLU = P 3 L 3 U 3 mit 6

7 P = L = / 4 / 2 und U = / 2 / 4 / 4 8 Beispiel 2: A x = b mit A = und b = Die LU-Zerlegung von A ist bereits im vorigen Beispiel vorgenommen worden. 2 Die Lösungvon P z = b ist 8 z = P b = 4 8 = y 8 3 Löse L y = z, also y 2 / 4 / 2 y 3 = 8 4. / 2 / 4 / 4 Zeilenweise ergibt sich von oben y = 8, y 2 = 8, 2 4+y 3 = 4 y 3 = 6 und y 4 = y 4 = 8 4 Löse U x = y, also y 4 x x 2 x 3 x 4 8 = Zeilenweise ergibt sich von unten 8x 4 = 8 x 4 =, 4x = 6 x 3 = 2, 2x 2 8 = 8 x 2 = und 2x 8+4 = 8 x =. Damit ist die Lösung x = 2 6 Kurzschreibweisen. Da bei der LU-Zerlegung viel geschrieben wird, bieten sich beim Rechnen von Hand Abürzungen an: 7

8 Die Spalten der P-Matrix bestehen aus den anonischen Einheitsvetoren. Bei der weiteren Berechnung wird nicht P, sondern P = P benötigt, die mit der rechten Seite des Gleichungssystems multipliziert werden. Statt der P-Matrix werden nur rechts von U die Indizes der (Zeilen)-Einheitsvetoren in P in der Form notiert: [ e ] d.h. werden in U die Spalten und l vertauscht, werden rechts davon in der P -Kurzschreibweise die Einträge an den Stellen und l vertauscht. b Die Spalte 3 4 bedeutet zum Beispiel, dass für b = b 2 b 3 das Produt 2 b 4 P b zu b b 3 b 4 b 2 wird. ergibt; d.h. in P b werden die Elemente von b so angeordnet, wie es die Abürzungszahlen für P angeben. 2 Die L- und U-Matrizen werden in einer einzigen Matrix notiert. Die Einträge von L werden in U an der Stelle notiert, an denen eine Null erzeugt worden ist. Dazu wird der Teil der Matrix, der zu L gehört, durch eine Linie abgetrennt. Bei einem Pivotierungsschritt werden dann die gesamten Zeilen der Matrix samt dem rechts danebenstehenden Vetor mit den P-Informationen vertauscht. 3 Wer noch fauler ist, ann folgendes machen: Wenn mit der -ten Zeile der Gaußschritt zur Erzeugung von L und U durchgeführt wurde, wird diese Zeile sowohl in L wie auch in U nie mehr verändert und braucht nicht erneut aufgeschrieben zu werden. Solche Zeilen werden durch ein mariert und erst am Schluß eingesammelt. Beispiel : Beispiel in Kurzschreibweise Ausgangssituation: [P L U ] = [E E A] : Pivotierung: Vertausche Zeilen und 3 [P ˆL Û] :

9 Eliminationsschritt: Addiere das / 4 -fache der ersten Zeile zur zweiten und das / 2 -fache zur dritten (und das -fache zur vierten) [P L U ] : / / Pivotierung: vertausche Zeilen 2 und 4 [P 2 ˆL Û] : / / Elimination: Addiere das / 4 -fache der zweiten Zeile zur dritten und das / 2 - fache zur vierten [P 2 L 2 U 2 ] = / 2 / 4 / 4 / Pivotierung: vertausche Zeilen 3 und 4: [P 3 ˆL 3 Û3] : / 4 / / 2 / Elimination: Addiere das / 4 -fache der dritten Zeile zur vierten: [P 3 L 3 U 3 ] = / 4 / / 2 / 4 / 4 8 Daraus setzt man wie oben U und L zusammen, indem man für L den Teil unter der Trennlinie in eine Einheitsmatrix opiert und für U diesen Teil auf Null setzt: L = / 4 / 2 und U = / 2 / 4 / Der Vetor neben dem Gleichungssystem gibt an, an welchen Positionen die Zeilen von P eine Eins enthalten: die erste an der dritten, die zweite an der vierten, die dritte an der ersten und die vierte an der zweiten Position. 9

10 P braucht allerdings nicht explizit berechnet zu werden. In z = P b erhält man b b 3 8 b = b 2 b 3 = 4 8 also z = b 4 b 2 = 8 4 b 4 8 und weiter geht es wie oben. 7 LU-Zerlegung mit Ansätzen Wichtige Eigenschaft: Das Produt einer (, )-Bandmatrix L und einer (, l)- Bandmatrix U ist eine (, l)-bandmatrix. Das lässt sich dadurch ausnutzen, dass man die LU-Zerlegung von Bandmatrizen durch einen Ansatz zu ermitteln versucht. Dieses Verfahren bestimmt eine LU-Zerlegung ohne Pivotierung. Man macht einen Ansatz für L als (, )-Bandmatrix mit einer Diagonale von Einsen und U als (, l)-bandmatrix. 2 Die erste Zeile des Produts wird ausgewertet. Das ergibt Bedingungen für die erste Zeile von U. Die erste Spalte ergibt Bedingungen für die erste Spalte von L. 3 Reursiv werden die restlichen Produte der -ten Zeile und Spalte des Produts ausgewertet. Zusammen mit den bereits bestimmten Elementen von L und U erhält man die fehlenden Elemente der -ten Zeile von U und der -ten Spalte von L 2 / Beispiel : A = 2/ / / 5 6 b Eine (, l)-bandmatrix ist eine Matrix, in der neben der Diagonalen nur Ele- Bandmatrix mente von Null verschieden sein önnen, die höchstens Zeilen unter oder l Zeilen über der Diagonalen liegen. Eine (, )-Bandmatrix ist eine Diagonalmatrix, eine (, )-Bandmatrix wird Tridiagonalmatrix genannt. Tridiagonalmatrix Da A eine Tridiagonalmatrix ist, ist der Ansatz A = LU mit u u 2 l 2 L = l 32 l 43 und U = u 22 u 23 u 33 u 34 u 44 u 45 l 54 u 55

11 2 Nun werden die Produte der ersten Zeile und Spalte ausgewertet, die nicht von vornherein Null sind: u u 2 u 22 u 23 u 33 u 34 u 44 u 45 u 55 l 2 l 32 l 43 l 54 2 / 2 Daraus ergibt sich: u = u = und u 2 = 2 u 2 = 2 und dann mit dem schon gefundenen Wert von u : l 2 u = / 2 l 2 = / 2. 3 Dasselbe mit der zweiten Zeile und Spalte: 2 u 22 u 23 u 33 u 34 u 44 u 45 u 55 / 2 l 32 l 43 l / 3 Wie oben ist: 2 / 2 + u 22 = 3 u 22 = 2 und u 23 = 3 u 23 = 3 und dann mit dem schon gefundenen Wert von u 22 : l 32 u 22 = 2/3 l 32 = / 3. 4 Dritte Zeile und Spalte:

12 / 2 / 3 l 43 l u 33 u 34 u 44 u 45 u / 4 Genauso: / 3 3+ u 33 = 4 u 33 = 3 und u 34 = 4 u 34 = 4, und dann mit dem schon gefundenen Wert von u 33 : l 43 u 33 = 3 / 4 l 43 = / 4. 5 Vierte und fünfte Zeile und Spalte: u 44 u 45 u 55 / 2 / 3 / 4 l / 5 6 Vierte Zeile und Spalte: / 4 4+ u 44 = 5 u 44 = 4 und u 45 = 5 u 34 = 4, und dann mit dem schon gefundenen Wert von u 44 : l 54 u 44 = 4 / 5 l 54 = / 5. Schließlich ist in der unteren rechten Ece l 54 u 45 +u 55 = / 5 5+u 55 = 6 u 55 = 5. Damit ist A = LU mit 2 /2 L = /3 /4 und U = /5 5 2

1 Lineare Gleichungssysteme

1 Lineare Gleichungssysteme MLAN1 1 LINEARE GLEICHUNGSSYSTEME 1 Literatur: K Nipp/D Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4 Auflage, 1998, oder neuer 1 Lineare Gleichungssysteme Zu den grundlegenden

Mehr

Kapitel 15. Lösung linearer Gleichungssysteme

Kapitel 15. Lösung linearer Gleichungssysteme Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren

Mehr

Rückwärts-Einsetzen. Bei einem linearen Gleichungssystem in oberer Dreiecksform, nacheinander bestimmt werden: r n,n x n = b n. = x n = b n /r n,n

Rückwärts-Einsetzen. Bei einem linearen Gleichungssystem in oberer Dreiecksform, nacheinander bestimmt werden: r n,n x n = b n. = x n = b n /r n,n Rückwärts-Einsetzen Bei einem linearen Gleichungssystem in oberer Dreiecksform, r 1,1 r 1,n x 1 b 1..... =., } 0 {{ r n,n } x n b n R mit det R = r 1,1 r n,n 0 können die Unbekannten x n,..., x 1 nacheinander

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

7 Die Determinante einer Matrix

7 Die Determinante einer Matrix 7 Die Determinante einer Matrix ( ) a11 a Die Determinante einer 2 2 Matrix A = 12 ist erklärt als a 21 a 22 det A := a 11 a 22 a 12 a 21 Es ist S 2 = { id, τ}, τ = (1, 2) und sign (id) = 1, sign (τ) =

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

Leitfaden Lineare Algebra: Determinanten

Leitfaden Lineare Algebra: Determinanten Leitfaden Lineare Algebra: Determinanten Die symmetrische Gruppe S n. Eine Permutation σ der Menge S ist eine bijektive Abbildung σ : S S. Ist S eine endliche Menge, so reicht es zu verlangen, dass σ injektiv

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

Numerisches Programmieren

Numerisches Programmieren Technische Universität München SS 2012 Institut für Informatik Prof Dr Thomas Huckle Dipl-Inf Christoph Riesinger Dipl-Math Alexander Breuer Dipl-Math Dipl-Inf Jürgen Bräckle Dr-Ing Markus Kowarschik Numerisches

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen 3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange

Mehr

Vorlesung 12 22. bzw. 23. Januar 2014. Determinanten 1. Cramersche Regel

Vorlesung 12 22. bzw. 23. Januar 2014. Determinanten 1. Cramersche Regel Vorlesung 2 22 bzw 23 Januar 204 Lineares Gleichungssystem a a 2 b b 2 = F a a 2 a 3 b b 2 b 3 c c 2 c 3 = V V =< a, b c > c b a b a F V Seite 70 a x + a 2 x 2 + a 3 x 3 b = 0 < a x + a 2 x 2 + a 3 x 3

Mehr

4 Vorlesung: 21.11. 2005 Matrix und Determinante

4 Vorlesung: 21.11. 2005 Matrix und Determinante 4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer

Mehr

a i j (B + C ) j k = n (a i j b j k + a i j b j k ) =

a i j (B + C ) j k = n (a i j b j k + a i j b j k ) = Lösungen Lineare Algebra für Physiker, Serie 2 Abgabe am 25.10.2007 1. Es seien A K m n, B,C K n p und D K p q gegeben. 9 P (a) Beweisen Sie das Distributivgesetz A(B + C ) = A B + AC. (b) Beweisen Sie

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema:

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema: Matrizen Betrachten wir das nachfolgende Rechteckschema: a 12 a 1(m 1 a 1m a n1 a n2 a n(m 1 a nm Ein solches Schema nennt man (n m-matrix, da es aus n Zeilen und m Spalten besteht Jeder einzelne Eintrag

Mehr

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:

Mehr

Kommentiertes Beispiel für das Gaußsche Eliminationsverfahren

Kommentiertes Beispiel für das Gaußsche Eliminationsverfahren Kommentiertes Beispiel für das Gaußsche Eliminationsverfahren oder: Wie rechnet eigentlich der TI 84, wenn lineare Gleichungssysteme gelöst werden? Hier wird an einem Beispiel das Gaußsche Verfahren zum

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte Mathematik I Matrizen In diesem Kapitel werden wir lernen was Matrizen sind und wie man mit Matrizen rechnet. Matrizen ermöglichen eine kompakte Darstellungsform vieler mathematischer Strukturen. Zum Darstellung

Mehr

Lineare Gleichungssysteme I (Matrixgleichungen)

Lineare Gleichungssysteme I (Matrixgleichungen) Lineare Gleichungssysteme I (Matrigleichungen) Eine lineare Gleichung mit einer Variable hat bei Zahlen a, b, die Form a b. Falls hierbei der Kehrwert von a gebildet werden darf (a 0), kann eindeutig aufgelöst

Mehr

MLAN1 1 MATRIZEN 1 0 = A T =

MLAN1 1 MATRIZEN 1 0 = A T = MLAN1 1 MATRIZEN 1 1 Matrizen Eine m n Matrix ein rechteckiges Zahlenschema a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n a m1 a m2 a m3 amn mit m Zeilen und n Spalten bestehend aus m n Zahlen Die Matrixelemente

Mehr

4. Übungsblatt zur Mathematik II für Inf, WInf

4. Übungsblatt zur Mathematik II für Inf, WInf Fachbereich Mathematik Prof Dr Streicher Dr Sergiy Nesenenko Pavol Safarik SS 010 11 15 Mai 4 Übungsblatt zur Mathematik II für Inf, WInf Gruppenübung Aufgabe G13 (Basistransformation) ( ) 15 05 Die lineare

Mehr

In allen Fällen spielt die 'Determinante' einer Matrix eine zentrale Rolle.

In allen Fällen spielt die 'Determinante' einer Matrix eine zentrale Rolle. Nachschlag:Transposition von Matrizen Sei Explizit: Def: "Transponierte v. A": (tausche Zeilen mit Spalten d.h., spiegle in der Diagonale) m Reihen, n Spalten n Reihen, m Spalten z.b. m=2,n=3: Eigenschaft:

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Musterlösungen zur Linearen Algebra II Blatt 5

Musterlösungen zur Linearen Algebra II Blatt 5 Musterlösungen zur Linearen Algebra II Blatt 5 Aufgabe. Man betrachte die Matrix A := über dem Körper R und über dem Körper F und bestimme jeweils die Jordan- Normalform. Beweis. Das charakteristische

Mehr

a 21 a 22 a 21 a 22 = a 11a 22 a 21 a 12. Nun zur Denition und Berechnung von n n-determinanten: ( ) a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 A =

a 21 a 22 a 21 a 22 = a 11a 22 a 21 a 12. Nun zur Denition und Berechnung von n n-determinanten: ( ) a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 A = 3 Determinanten Man bestimmt Determinanten nur von quadratischen Matrizen Wir werden die Berechnung von Determinanten rekursiv durchfuhren, dh wir denieren wie man eine 2 2-Determinante berechnet und fuhren

Mehr

Lineare Gleichungssystem

Lineare Gleichungssystem Lineare Gleichungssystem 8. Juli 07 Inhaltsverzeichnis Einleitung Der Gauß-Algorithmus 4 3 Lösbarkeit von Gleichungssystemen 6 Einleitung Wir haben uns bisher hauptsächlich mit dem Finden von Nullstellen

Mehr

Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14.

Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14. Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination Vorlesung Computergestützte Mathematik zur Linearen Algebra Lehrstuhl für Angewandte Mathematik Wintersemester 2009/0 4. Januar 200 Instabilitäten

Mehr

Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok

Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok Kurs über Lineare Gleichungssysteme PD Dr. Karin Halupczok Mathematisches Institut Albert-Ludwigs-Universität Freiburg http://home.mathematik.unifreiburg.de/halupczok/diverses.html karin.halupczok@math.uni-freiburg.de

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

5.2 Rechnen mit Matrizen

5.2 Rechnen mit Matrizen 52 Rechnen mit Matrizen 52 Rechnen mit Matrizen 97 Für Matrizen desselben Typs ist eine Addition erklärt, und zwar durch Addition jeweils entsprechender Einträge Sind genauer A = (a ij ) und B = (b ij

Mehr

1 Matrizenrechnung zweiter Teil

1 Matrizenrechnung zweiter Teil MLAN1 1 Literatur: K. Nipp/D. Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4. Auflage, 1998, oder neuer. 1 Matrizenrechnung zweiter Teil 1.1 Transponieren einer Matrix Wir betrachten

Mehr

1.9 Eigenwerte und Eigenvektoren

1.9 Eigenwerte und Eigenvektoren .9. EIGENWERTE UND EIGENVEKTOREN 0.9 Eigenwerte und Eigenvektoren Alles in diesem Abschnitt bezieht sich auf quadratische reelle oder komplexe n n-matrizen. Statt E n (n n-einheitsmatrix) wird kurz E geschrieben..

Mehr

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q:

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q: Lineare Algebra D-MATH, HS 214 Prof Richard Pink Serie 5 1 [Aufgabe] Invertieren Sie folgende Matrizen über Q: 1 a) 1 1 1 1 1 2 1 1 1 b) 1 2 1 1 1 1 2 1 1 1 1 2 1 2 3 1 c) 1 3 3 2 2 1 5 3 1 2 6 1 [Lösung]

Mehr

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie

Mehr

Kapitel 4. Determinante. Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24

Kapitel 4. Determinante. Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24 Kapitel 4 Determinante Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24 Was ist eine Determinante? Wir wollen messen, ob n Vektoren im R n linear abhängig sind bzw. wie weit sie davon entfernt

Mehr

Lineare Gleichungssysteme und Gauß'scher Algorithmus

Lineare Gleichungssysteme und Gauß'scher Algorithmus Zurück Letzter Update 7... Lineare Gleichungssysteme und Gauß'scher Algorithmus In der Mathematik bezeichnet man mit Matrix ein rechteckiges Schema, in dem Zahlen oder Funktionen angeordnet werden. Hier

Mehr

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Inhaltsverzeichnis Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Auf dieser Seite werden Matrizen und Vektoren fett gedruckt, um sie von Zahlen zu unterscheiden. Betrachtet wird das

Mehr

6.2 Rechnen mit Matrizen

6.2 Rechnen mit Matrizen 62 Rechnen mit Matrizen 62 Rechnen mit Matrizen 103 Für Matrizen desselben Typs ist eine Addition erklärt, und zwar durch Addition jeweils entsprechender Einträge Sind genauer A = (a ij ) und B = (b ij

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V

Mehr

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw.

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw. Kapitel 5 Lineare Algebra 5 Lineare Gleichungssysteme und Matrizen Man begegnet Systemen von linearen Gleichungen in sehr vielen verschiedenen Zusammenhängen, etwa bei Mischungsverhältnissen von Substanzen

Mehr

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer. Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Matrizenrechnung 2 11 Matrixbegri 2 12 Spezielle Matrizen 3 13 Rechnen

Mehr

Das Lösen linearer Gleichungssysteme

Das Lösen linearer Gleichungssysteme Das Lösen linearer Gleichungssysteme Lineare Gleichungen Die Gleichung a 1 x 1 + a 2 x 2 +... + a n x n = b ist eine lineare Gleichung in den n Variablen x 1, x 2,..., x n. Die Zahlen a 1, a 2,..., a n

Mehr

Betragsgleichungen und die Methode der Fallunterscheidungen

Betragsgleichungen und die Methode der Fallunterscheidungen mathe online Skripten http://www.mathe-online.at/skripten/ Betragsgleichungen und die Methode der Fallunterscheidungen Franz Embacher Fakultät für Mathematik der Universität Wien E-mail: franz.embacher@univie.ac.at

Mehr

3. LINEARE GLEICHUNGSSYSTEME

3. LINEARE GLEICHUNGSSYSTEME 176 3. LINEARE GLEICHUNGSSYSTEME 90 Vitamin-C-Gehalt verschiedener Säfte 18,0 mg 35,0 mg 12,5 mg 1. a) 100 ml + 50 ml + 50 ml = 41,75 mg 100 ml 100 ml 100 ml b) : Menge an Kirschsaft in ml y: Menge an

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

3 Determinanten, Eigenwerte, Normalformen

3 Determinanten, Eigenwerte, Normalformen Determinanten, Eigenwerte, Normalformen.1 Determinanten Beispiel. Betrachte folgendes Parallelogramm in der Ebene R 2 : y (a + c, b + d) (c, d) (a, b) x Man rechnet leicht nach, dass die Fläche F dieses

Mehr

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR LR-Zerlegung bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR Definition 2.17 Unter einer LR-Zerlegung einer Matrix A R n n verstehen wir eine

Mehr

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Einführung in die Vektor- und Matrizenrechnung. Matrizen Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:

Mehr

Basistext Determinanten

Basistext Determinanten Basistext Determinanten Definition In der Linearen Algebra ist die Determinante eine Funktion die einer quadratischen Matrix eine Zahl zuordnet. Die Funktion wird mit det abgekürzt. Die runden Matrixklammern

Mehr

5 Lineare Gleichungssysteme und Determinanten

5 Lineare Gleichungssysteme und Determinanten 5 Lineare Gleichungssysteme und Determinanten 51 Lineare Gleichungssysteme Definition 51 Bei einem linearen Gleichungssystem (LGS) sind n Unbekannte x 1, x 2,, x n so zu bestimmen, dass ein System von

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Corinne Schenka Vorkurs Mathematik WiSe 2012/13

Corinne Schenka Vorkurs Mathematik WiSe 2012/13 4. Lineare Gleichungssysteme Ein lineares Gleichungssystem ist ein System aus Gleichungen mit Unbekannten, die nur linear vorkommen. Dieses kann abkürzend auch in Matrizenschreibweise 1 notiert werden:

Mehr

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Leistungskurs Mathematik

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Leistungskurs Mathematik Abitur 8 II. Insektenpopulation LA/AG In den Tropen legen die Weibchen einer in Deutschland unbekannten Insektenpopulation jedes Jahr kurz vor Beginn der Regenzeit jeweils 9 Eier und sterben bald darauf.

Mehr

[Nächste Frage: wie wissen wir, ob Spaltenvektoren eine Basis bilden? Siehe L6.1] , enthält eine Basis v. V, nämlich und somit das ganze V.

[Nächste Frage: wie wissen wir, ob Spaltenvektoren eine Basis bilden? Siehe L6.1] , enthält eine Basis v. V, nämlich und somit das ganze V. Kriterien für Invertierbarkeit einer Matrix Eine lineare Abbildung falls und nur falls ist bijektiv, d.h. ihre Matrix ist invertierbar, (i) für jede Basis, die Bildvektoren auch eine Basis, bilden; (intuitiv

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

6 Lösungsverfahren für lineare Gleichungssysteme

6 Lösungsverfahren für lineare Gleichungssysteme 6 Lösungsverfahren für lineare Gleichungssysteme Jörn Loviscach Versionsstand:. März 04, :07 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.jl7h.de/videos.html

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Timo Stöcker Erstsemestereinführung Informatik TU Dortmund 22. März 2011 Heute Themen Lineare Gleichungssysteme Matrizen Timo Stöcker https://fsinfo.cs.tu-dortmund.de/studis/ese/vorkurse/mathe

Mehr

Lineare Gleichungssysteme: direkte Verfahren

Lineare Gleichungssysteme: direkte Verfahren Sechste Vorlesung, 24. April 2008, Inhalt Lineare Gleichungssysteme: direkte Verfahren Dreiecksmatrizen Gauß-Elimination LR-Zerlegung Anwendungen: Determinante, Inverse 1 Lösungsverfahren für lineare Gleichungssysteme

Mehr

A2.3 Lineare Gleichungssysteme

A2.3 Lineare Gleichungssysteme A2.3 Lineare Gleichungssysteme Schnittpunkte von Graphen Bereits weiter oben wurden die Schnittpunkte von Funktionsgraphen mit den Koordinatenachsen besprochen. Wenn sich zwei Geraden schneiden, dann müssen

Mehr

6 Lösung linearer Gleichungssysteme I: LR-Zerlegung und Verwandte

6 Lösung linearer Gleichungssysteme I: LR-Zerlegung und Verwandte Numerik I Version: 240608 40 6 Lösung linearer Gleichungssysteme I: LR-Zerlegung und Verwandte Die zwei wichtigsten Aufgaben der linearen Algebra: Lösung linearer Gleichungssysteme: Ax = b, wobei die n

Mehr

KAPITEL 3. Lineare Gleichungssysteme, direkte Lösungsverfahren

KAPITEL 3. Lineare Gleichungssysteme, direkte Lösungsverfahren KAPITEL 3. Lineare Gleichungssysteme, direkte Lösungsverfahren Beispiel 3.2. Gesucht u(x), das eine Differentialgleichung vom Typ u (x) + λ(x)u(x) = f(x), x [0,], mit den Randbedingungen u(0) = u() = 0

Mehr

5.2 Rechnen mit Matrizen

5.2 Rechnen mit Matrizen 52 Rechnen mit Matrizen 52 Rechnen mit Matrizen 95 Für Matrizen desselben Typs ist eine Addition erklärt, und zwar durch Addition jeweils entsprechender Einträge Sind genauer A = (a ij ) und B = (b ij

Mehr

Lineare Gleichungssysteme und Matrizen

Lineare Gleichungssysteme und Matrizen Kapitel 11 Lineare Gleichungssysteme und Matrizen Ein lineares Gleichungssystem (lgs) mit m linearen Gleichungen in den n Unbekannten x 1, x 2,..., x n hat die Gestalt: Mit a 11 x 1 + a 12 x 2 + a 13 x

Mehr

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten Einheitsmatrix Die quadratische Einheitsmatrix I n M n,n ist definiert durch I n = 1 0 0 0 1 0 0 0 1 (Auf der Hauptdiagonalen stehen Einsen, außerhalb Nullen Durch Ausmultiplizieren sieht man I n A = A

Mehr

Numerik I. Universität zu Köln SS 2009 Mathematisches Institut Prof. Dr. C. Tischendorf Dr. M. Selva,

Numerik I. Universität zu Köln SS 2009 Mathematisches Institut Prof. Dr. C. Tischendorf Dr. M. Selva, Universität zu Köln SS 009 Mathematisches Institut Prof. Dr. C. Tischendorf Dr. M. Selva, mselva@math.uni-koeln.de Numerik I Musterlösung 1. praktische Aufgabe, Bandmatrizen Bei der Diskretisierung von

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

3 Matrizen und Lineare Gleichungssysteme

3 Matrizen und Lineare Gleichungssysteme 3 Matrizen und LGS Pink: Lineare Algebra HS 2014 Seite 38 3 Matrizen und Lineare Gleichungssysteme 3.1 Definitionen Sei K ein Körper, und seien m,n,l natürliche Zahlen. Definition: Eine Matrix mit m Zeilen

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

Matrix: Eine rechteckige Anordnung reeller Zahlen a ij (i = 1,..., n i ; j = 1,..., m) in Zeilen und Spalten. Die a ij heiÿen Elemente von A.

Matrix: Eine rechteckige Anordnung reeller Zahlen a ij (i = 1,..., n i ; j = 1,..., m) in Zeilen und Spalten. Die a ij heiÿen Elemente von A. Matrizenrechnung Matrix: Eine rechteckige Anordnung reeller Zahlen a ij i = 1,..., n i ; j = 1,..., m in Zeilen und Spalten. Die a ij heiÿen Elemente von A. a 11 a 12... a ij... a 1m a 21 a 22.........

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Ökonometrische Analyse

Ökonometrische Analyse Institut für Statistik und Ökonometrie, Freie Universität Berlin Ökonometrische Analyse Dieter Nautz, Gunda-Alexandra Detmers Rechenregeln für Matrizen Notation und Matrixeigenschaften: Eine Matrix A der

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

Approximation durch Taylorpolynome

Approximation durch Taylorpolynome TU Berlin Fakultät II - Mathematik und Naturwissenschaften Sekretariat MA 4-1 Straße des 17. Juni 10623 Berlin Hochschultag Approximation durch Taylorpolynome Im Rahmen der Schülerinnen- und Schüler-Uni

Mehr

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.2 Determinanten

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.2 Determinanten Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.2 Determinanten www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Numerisches Programmieren

Numerisches Programmieren Technische Universität München SoSe 213 Institut für Informatik Prof. Dr. Thomas Huckle Dipl.-Inf. Christoph Riesinger Dipl.-Math. Jürgen Bräckle Numerisches Programmieren 2. Programmieraufgabe: Lineare

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHISCHE UIVERSITÄT MÜCHE Zentrum Mathematik PRF. R.R. JÜRGE RICHTER-GEBERT, VAESSA KRUMMECK, MICHAEL PRÄHFER Höhere Mathematik für Informatiker I (Wintersemester 003/004) Aufgabenblatt 1 (4. ktober 003)

Mehr

10. Übung zur Linearen Algebra I -

10. Übung zur Linearen Algebra I - . Übung zur Linearen Algebra I - en Kommentare an Hannes.Klarner@FU-Berlin.de FU Berlin. WS 29-. Aufgabe 37 i Für welche α R besitzt das lineare Gleichungssystem 4 αx + αx 2 = 4x + α + 2x 2 = α genau eine,

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Lösungsvorschlag 8. Übungsblatt zur Vorlesung Finanzmathematik I Aufgabe Hedging Amerikanischer Optionen Wir sind in einem arbitragefreien

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

Allgemeines Gleichungssystem mit zwei Gleichungen und zwei Variablen. Der erste Index bezeichnet die Nummer der Zeile, der zweite die der Spalte.

Allgemeines Gleichungssystem mit zwei Gleichungen und zwei Variablen. Der erste Index bezeichnet die Nummer der Zeile, der zweite die der Spalte. Lineare Gleichungssysteme. Einleitung Lineare Gleichungssysteme sind in der Theorie und in den Anwendungen ein wichtiges Thema. Theoretisch werden sie in der Linearen Algebra untersucht. Die Numerische

Mehr

Matrizen und Determinanten, Aufgaben

Matrizen und Determinanten, Aufgaben Matrizen und Determinanten, Aufgaben Inhaltsverzeichnis 1 Multiplikation von Matrizen 1 11 Lösungen 3 2 Determinanten 6 21 Lösungen 7 3 Inverse Matrix 8 31 Lösungen 9 4 Matrizengleichungen 11 41 Lösungen

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof Dr H Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 12 Wege entstehen dadurch, dass man sie geht Franz Kafka Invertierbare Matrizen Definition 121 Es sei K ein

Mehr

1 Transponieren, Diagonal- und Dreiecksmatrizen

1 Transponieren, Diagonal- und Dreiecksmatrizen Technische Universität München Thomas Reifenberger Ferienkurs Lineare Algebra für Physiker Vorlesung Mittwoch WS 2008/09 1 Transponieren, Diagonal- und Dreiecksmatrizen Definition 11 Transponierte Matrix

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Zwei Gleichungen mit zwei Unbekannten Es kommt häufig vor, dass man nicht mit einer Variablen alleine auskommt, um ein Problem zu lösen. Das folgende Beispiel soll dies verdeutlichen

Mehr

Die Größe von Flächen vergleichen

Die Größe von Flächen vergleichen Vertiefen 1 Die Größe von Flächen vergleichen zu Aufgabe 1 Schulbuch, Seite 182 1 Wer hat am meisten Platz? Ordne die Figuren nach ihrem Flächeninhalt. Begründe deine Reihenfolge. 1 2 3 4 zu Aufgabe 2

Mehr

Bericht zur Prüfung im Oktober 2003 über Mathematik der Lebensversicherung (Grundwissen)

Bericht zur Prüfung im Oktober 2003 über Mathematik der Lebensversicherung (Grundwissen) Bericht zur Prüfung im Oktober 2003 über Mathematik der Lebensversicherung Grundwissen) Jürgen Strobel Köln) und Hans-Jochen Bartels Mannheim) Am 04.10.2003 wurde in Köln die zehnte Prüfung über Mathematik

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

Kapitel 5. LU Zerlegung. 5.1 L- und U-Matrizen

Kapitel 5. LU Zerlegung. 5.1 L- und U-Matrizen Kapitel 5 LU Zerlegung In vielen Fällen interessiert uns die inverse Matrix A 1 gar nicht. Stattdessen suchen wir die Lösung der Matrixgleichung Ax = b bzw. x = A 1 b 5.1) für einen oder wenige Vektoren

Mehr

Hilfsblätter Lineare Algebra

Hilfsblätter Lineare Algebra Hilfsblätter Lineare Algebra Sebastian Suchanek unter Mithilfe von Klaus Flittner Matthias Staab c 2002 by Sebastian Suchanek Printed with L A TEX Inhaltsverzeichnis 1 Vektoren 1 11 Norm 1 12 Addition,

Mehr

Inverse der Verwandtschaftsmatrix

Inverse der Verwandtschaftsmatrix Qualitas AG Inverse der Verwandtschaftsmatrix Peter von Rohr Qualitas AG Peter von Rohr Folien ZL I+II LFW C11 November 5, 2015 2 / 26 Inverse einer Matrix Definition Gegeben eine quadratische Matrix A

Mehr

V 2 B, C, D Drinks. Möglicher Lösungsweg a) Gleichungssystem: 300x + 400 y = 520 300x + 500y = 597,5 2x3 Matrix: Energydrink 0,7 Mineralwasser 0,775,

V 2 B, C, D Drinks. Möglicher Lösungsweg a) Gleichungssystem: 300x + 400 y = 520 300x + 500y = 597,5 2x3 Matrix: Energydrink 0,7 Mineralwasser 0,775, Aufgabenpool für angewandte Mathematik / 1. Jahrgang V B, C, D Drinks Ein gastronomischer Betrieb kauft 300 Dosen Energydrinks (0,3 l) und 400 Liter Flaschen Mineralwasser und zahlt dafür 50, Euro. Einen

Mehr

Die Determinante ist nur für beliebige quadratische Matrizen (n = m) definiert: a 11 a 12 a a 1n a 21 a 22. det. a nn.

Die Determinante ist nur für beliebige quadratische Matrizen (n = m) definiert: a 11 a 12 a a 1n a 21 a 22. det. a nn. Die Determinante ist nur für beliebige quadratische Matrizen (n = m) definiert: Definition 1.2 (Leibniz-Formel) Die Determinante einer n n-matrix ist a 11 a 12 a 13... a 1n a 11 a 12 a 13... a 1n a 21

Mehr

, c d. f + e + d. ae + bg a f + bh. ce + dg c f + dh

, c d. f + e + d. ae + bg a f + bh. ce + dg c f + dh Die Determinante Blockmatrizen Bemerkung: Für zwei 2 2-Matrizen gilt a b e f a b c d g h c d e g a b, c d f h a c b e + d a g, c f + ae + bg a f + bh ce + dg c f + dh b d h Sind die Einträge der obigen

Mehr

Repetition: Schreibweisen

Repetition: Schreibweisen : : Ausgeschrieben : Ausgeschrieben a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... =... a m1 x 1 + a m2 x 2 +... + a mn x n = b m : Ausgeschrieben a 11 x 1 + a 12

Mehr

(λ), t P j i = P j i. heißt symmetrisch, wenn t A = A und antisymmetrisch, wenn

(λ), t P j i = P j i. heißt symmetrisch, wenn t A = A und antisymmetrisch, wenn 3. 1 Transposition der Elementarmatrizen aus R n n. Für 1 i, j n und λ G(R) bzw. λ R gilt t S i (λ) S i (λ), t Q j i (λ) Qi j (λ), t P j i P j i. 3. 11 Definition. Eine Matrix A R n n t A A. heißt symmetrisch,

Mehr

Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya

Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya Inverse Matrix -E Ma Lubov Vassilevskaya Inverse Matrix Eine n-reihige, quadratische Matrix heißt regulär, wenn ihre Determinante einen von Null verschiedenen Wert besitzt. Anderenfalls heißt sie singulär.

Mehr