Übungen zur Modernen Theoretischen Physik I SS 14

Größe: px
Ab Seite anzeigen:

Download "Übungen zur Modernen Theoretischen Physik I SS 14"

Transkript

1 Karlsruher Institut für Technologie Übungen zur Modernen Theoretischen Physik I SS 4 Institut für Theoretische Festkörperphysik Prof. Dr. Gerd Schön Blatt 8 Andreas Heimes, Dr. Andreas Poenicke Besprechung Teilchen im Magnetfeld - Landau-Niveaus Punkte Ein Teilchen mit der Ladung q befinde sich in einem homogenen Magnetfeld B Bê z. Eine geschickte Wahl des Vektorpotentials A ist in diesem Fall durch die Landau-Eichung mit A Bxê y gegeben. Wir nehmen an, dass das Teilchen wie in einem -dimensionalen Elektronengas auf die xy-ebene eingeschränkt ist. Damit lautet der Hamilton-Operator des Problems Ĥ ˆP qa ˆP m m x + ˆPy qbx. In der Aufgabe sollen nun die Eigenfunktionen und Eigenenergien des Problems gefunden werden. a [0.5 Punkte] Es soll ausgenutzt werden, das gilt [Ĥ, ˆP y ] 0 um einen geeigneten Ansatz für die Wellenfunktion ψx, y zu machen: Da ˆp y mit dem Hamilton-Operator vertauscht, d.h. Eigenfunktionen des Impulsoperators ˆP y auch Eigenfunktionen des Hamilton-Operators sind, drängt sich der Separationsansatz auf. ψx, y e ipyy/ χx b [ Punkt] Setzt man nun diesen Ansatz in die Schrödingergleichung ein, und verwendet gleich ˆP y e ipyy/ p y e ipyy/ erhält man ˆP m x + p y qbx χx Eχx. Mit der Substitution x x py qb x x 0 sieht man nun deutlich, dass man das Problem auf die Schrödingergleichung des harmonischen Oszillators zurückgeführt hat: [ d m d x + m qb m x ] χ x Eχ x 4 c [0.5 Punkt] Die Kenntnis der Lösung des harmonischen Oszillators soll nun genutzt werden um die Eigenenergien und -funktionen des Hamilton-Operators zu finden. Die Eigenenergien des harmonischen Oszillators mit Ĥ m P x + m ω X sind durch E n n + ω gegeben. Entsprechend sind die Eigenenergien hier E n n + ω c mit ω c qb m. 5 Die charakteristische Frequenz ω c des Problems ist also die klassische Zyklotronfrequenz. Die Eigenfunktionen des harmonischen Oszillators sind ψ n x mω 4 mω π n n! H n xe und für das Teilchen im Magnetfeld ergibt sich damit ψ n x, y x π 4 l n n! H x0 [ n exp x x0 l l Im letzten Ausdruck haben wir mit der magnetischen Länge l Längenskala des Problems eingeführt. mω x, 6 ] e ipyy/ mit x 0 p y qb. 7 qb zusätzlich die charakteristische

2 . Harmonischer Oszillator Punkte Der Hamilton-Operator des harmonischen Oszillators wird durch die Auf- und Absteigeoperatoren â und â geschrieben als Ĥ ω â â +. 8 Zum Zeitpunkt t 0 sei der Zustand ψt gegeben durch ψ wobei 0 der Grundzustand und der erste angeregte Zustand ist. Die Zeitentwicklung des Zustands ist durch ψt Ût 0 mit dem Zeitentwickungsoperator Û exp i Ĥt gegeben. a [0,5 Punkt] Berechnen Sie den Zustand ψt für t > 0. Die Zustände 0 und sind Eigenzustände des Hamilton-Operators Ĥ ωâ â + /: ψt Ĥ 0 ω Ĥ n 0 ω 0 und Ĥ ω 0 n 0 und Ĥ n ω n Ût ψ0 Ût 0 + Ût n0 i Ĥt/ n 0 + n! n0 e iωt/ 0 + e iωt/ i Ĥt/ n n! b [0,5 Punkte] Berechnen Sie ˆX t ψt ˆX ψt mit ˆX â mω + â. ψt â ψt 0 â â e iωt + â 0 e iωt + â e iωt + e +iωt + eiωt und ψt â ψt ψt â ψt e iωt damit ˆX t e iωt + e iωt cosωt 4 mω mω analog ˆP mω e iωt e iωt mω t i sinωt 5 c [0,5 Punkte] Berechnen Sie die Korrelationsfunktion ˆX H t ˆX H 0. Hinweis: Benutzen Sie dazu das Heisenberg-Bild. ˆX H t ˆX H 0 ψ0 e iĥt/ ˆXe iĥt/ ˆX ψ0 0 + e iĥt/ ˆXe iĥt/ ˆX 0 + e iωt/ 0 + e â iωt/ + â e iĥt/ â + â 0 + mω e iωt/ + e iωt/ + e iωt/ 0 e iĥt/ e iωt + e iωt + e iωt e iωt + e iωt + e iωt cosωt + e iωt mω

3 . Eigenschaften des Drehimpulsoperators Punkte Der Vektoroperator Ĵ mit Ĵx, Ĵ y und Ĵz definiert einen Drehimpulsoperator, wenn die folgenden Vertauschungsrelation erfüllt sind: [Ĵx, Ĵy] i Ĵz, [Ĵy, Ĵz] i Ĵx, und [ Ĵ z, Ĵx] i Ĵy 7 Neben den einzelnen Komponenten des Drehimpulsoperators Ĵx/y/z werden häufig auch die folgenden Operatoren benötigt: Ĵ Ĵ x + Ĵ y + Ĵ z, Ĵ + Ĵx + iĵy, und Ĵ Ĵx iĵy. 8 Verwenden Sie die genannten Relationen bzw. Definitionen um die nachfolgenden Zusammenhänge zu zeigen: a [ Punkt] ] ] ] [Ĵz, Ĵ+ [Ĵz, Ĵx + i [Ĵz, Ĵy i Ĵ y + Ĵx Ĵ+ 9 ] ] ] [Ĵz, Ĵ [Ĵz, Ĵx i [Ĵz, Ĵy i Ĵ y Ĵx Ĵ 0 ] ] ] ] ] [Ĵ+, Ĵ [Ĵx, Ĵx + i [Ĵy, Ĵx i [Ĵx, Ĵy [Ĵy, Ĵy Ĵ z b [ Punkt] [Ĵ ], [Ĵ ] Ĵz, [Ĵ ] Ĵ+, Ĵ 0. [Ĵ ] [, Ĵz Jx ˆ ] ] [ ], Ĵ z + [Ĵy, Ĵ z Jx Jx ˆ, }{{ Ĵz } Analog zeigt man, dass [ Ĵ, Ĵx] [Ĵ, Ĵy] 0. i Ĵy + [ ] ] Jx ˆ, }{{ Ĵz Ĵ x + J y [Ĵy, }}{{ Ĵz } i Ĵy i Ĵx + Aus der Linearität des Kommutators folgt damit direkt [ Ĵ, Ĵ±] [Ĵ, Ĵx ± iĵy] 0. c [ Punkt] [Ĵy, Ĵz] Ĵ y 0. i Ĵx Ĵ + Ĵ Ĵ x + Ĵ y + J z Ĵ Ĵ z + Ĵz Ĵ Ĵ + Ĵ x + Ĵ y J z Ĵ Ĵ z Ĵz 4 Ĵ Ĵ+ Ĵ + Ĵ Ĵ+ + Ĵ z 5 Ĵ + Ĵ Ĵx + iĵyĵx iĵy Ĵ x + iĵyĵx ĴxĴy + Ĵ y Ĵ x + Ĵ y i [ Ĵ x, Ĵy] Ĵ x + Ĵ y + Ĵz 6 Ĵ Ĵ + Ĵx iĵyĵx + iĵy Ĵ x + iĵxĵy ĴyĴx + Ĵ y Ĵ x + Ĵ y + i [ Ĵ x, Ĵy] Ĵ x + Ĵ y J z 7 Durch Addition der beiden Terme 6 und 7 erhält man direkt Ĵ + Ĵ + Ĵ Ĵ+ Ĵ x + Ĵ y Ĵ Ĵ z Bahndrehimpuls Der Bahndrehimpuls-Operator ist durch ˆL ˆLx, ˆL y, ˆL z ˆR ˆP gegeben. In Kugelkoordinaten Punkte x r sin θ cos φ, y r sin θ sin φ, z r cos θ mit r r x + y + z ist der Gradient gegeben durch mit r,θ,φ ê r r + ê θ r θ + ê φ r sin θ φ, 9 ê r sin θ cos φ ê x + sin θ sin φ ê y + cos θ ê z ê θ cos θ cos φ ê x + cos θ sin φ ê y sin θ ê z 0 ê φ sin φ ê x + cos φ ê y.

4 a [ Punkt] Zeigen Sie, dass der Drehimpulsoperator in Kugelkoordinaten die Form hat: Es gilt ˆL x i sin φ θ cos φ tan θ φ Der Drehimpulsoperator ist nun gegeben durch, ˆLy cos φ i θ sin φ tan θ φ und ˆL z i φ. ê r ê θ ê φ, ê θ ê φ ê r und ê φ ê r ê θ. i ˆL ˆr rê r ê r r + ê θ r θ + ê φ r sin θ φ ê φ θ ê θ sin θ φ cos φ cos θ sin φ φ êx + sin φ cos θ cos φ θ sin φ cos φ tan θ φ φ êy + φ ê z sin θ sin θ êx + cos φ θ sin φ tan θ φ êy + φ ê z b [ Punkt] Der Zustand eines Teilchens sei nun durch die Wellenfunktion ψr x + y + zne r /α 4 mit N, α R beschrieben. Zeigen Sie, dass ψr eine Eigenfunktion von ˆL ist, also und bestimmen Sie den Wert von l. Zuerst schreiben wir die Wellenfunktion 4 in Kugelkoordinaten ˆL ψr ll + ψr, 5 ψr, θ, φ r sin θ cos φ + r sin θ sin φ + r cos θne r /α sin θ cos φ + sin θ sin φ + cos θfr, 6 wobei der radiale Teil in fr rne r /α faktorisiert wurde, da die Drehimpulsoperatoren nicht auf r wirken. Nun wenden wir ˆL auf die Wellenfunktion an ˆL ψr, θ, φ θ + sin θ φ + sin θ cos φ + sin θ sin φ + cos θfr 7 tan θ θ und berechnen nacheinander die Ableitungen und tanθ sin θ cos φ + sin θ sin φ + cos θ sin θ cos φ + sin θ sin φ + cos θ 8 θ sin θ sin θ cos φ + sin θ sin φ + cos θ φ sin sin θ cos φ + sin θ sin φ θ cosφ + sin φ sin θ cos φ + sin θ sin φ + cos θ cos θ cos φ + cos θ sin φ sin θ θ tanθ cos θ 9 cos φ + sin φ cos θ 40 kombinieren wir die Terme ˆL ψr, θ, φ sin θ cos φ + sin θ sin φ + cos θ + cos θ cos φ + sin φ + cos θ fr sin θ cos φ + sin θ sin φ + cos θ fr ψr, θ, φ damit ist ψr, θ, φ eine Eigenfunktion mit dem Eigenwert ll+, womit man l direkt ablesen kann. 4

5 c [ Punkt] Drücken Sie nun die Wellenfunktion 4 durch eine Superposition geeigneter Kugelflächenfunktionen aus. Welche Werte können für die z-komponente ˆL z des Bahndrehimpuls gemessen werden. Mit welcher Wahrscheinlichkeit werden diese gemessen? Die Kugelflächenfunktionen sind vollständig und orthogonal. Die Koeffizienten könnten also durch Projekt auf diese Zustände gefunden werden. Da wir jedoch schon wissen, dass l gilt, kann der Zustand nur durch eine Superposition der Funktionen Yl m θ, φ ausgedrückt werden. Wir benötigen also nur die drei Kugelflächenfunktionen Y 0 θ, φ 4π cosθ, Y θ, φ 8π eiφ und Y θ, φ 8π e iφ. 4 und finden die Koeffizienten durch Vergleich mit 6. π ψr, θ, φ π i c Y θ, φ + Y θ, φ π + i Y θ, φ Y θ, φ 4π + Y 0 θ, φ π π θ, φ + 4 Y 0 θ, φ + + i Y θ, φ fr Y c 0 } {{ } c fr 4 In einer Messung von ˆL z können die Werte m mit m, 0, gefunden werden. Wir haben die Wellenfunktion nicht normiert, d.h. fr ist also nur bis auf einen konstanten Faktor N bekannt. Bei der Berechnung der Messwahrscheinlichkeiten der verschiedenen Drehimpulswerte fällt fr jedoch raus P m P m 0 P m + c c + c 0 + c 44 c 0 c + c 0 + c 45 c c + c 0 + c 46 c π i 4π, c 0 4 π und c π + i 4π 47 und somit c + c 0 + c 6 4π. Für die Messwahrscheinlichkeiten ergeben sich damit die Werte P m 6 P m 0 P m

Theoretische Physik II Quantenmechanik

Theoretische Physik II Quantenmechanik Michael Czopnik Bielefeld, 11. Juli 014 Fakultät für Physik, Universität Bielefeld Theoretische Physik II Quantenmechanik Sommersemester 014 Lösung zur Probeklausur Aufgabe 1: (a Geben Sie die zeitabhängige

Mehr

Theoretische Physik II: Quantenmechanik

Theoretische Physik II: Quantenmechanik Theoretische Physik II: Quantenmechanik Hans-Werner Hammer Marcel Schmidt (mschmidt@theorie.ikp.physik.tu-darmstadt.de) Wintersemester 2016/17 Probeklausur 12./13. Januar 2017 Name: Matrikelnummer: Studiengang:

Mehr

9 Translationen und Rotationen

9 Translationen und Rotationen 9 Translationen und Rotationen Übungen, die nach Richtigkeit korrigiert werden: Aufgabe 91: Drehungen Der quantenmechanische Rotationsoperator ˆR η,e dreht einen Zustand ψ um den Winkel η um die Achse

Mehr

Nachklausur: Quantentheorie I, WS 07/08

Nachklausur: Quantentheorie I, WS 07/08 Nachklausur: Quantentheorie I, WS 7/8 Prof. Dr. R. Friedrich Aufgabe : [ P.] Betrachten Sie die Bewegung eines Teilchens im konstanten Magnetfeld B = [,, b] a)[p.] Zeigen Sie, dass ein zugehöriges Vektorpotential

Mehr

Die Bewegungsgleichungen eines geladenen Teilchens im externen elektromagnetischen Feld sind bekannt d dt m v = e E + e [

Die Bewegungsgleichungen eines geladenen Teilchens im externen elektromagnetischen Feld sind bekannt d dt m v = e E + e [ Vorlesung 4 Teilchen im externen Elektromagnetischen Feld Die Bewegungsgleichungen eines geladenen Teilchens im externen elektromagnetischen Feld sind bekannt d dt m v = e E + e v B c ]. 1) Das elektrische

Mehr

Im Folgenden finden Sie den Text der am geschriebenen Theorie D-Klausur, sowie Lösungen zu den einzelnen Aufgaben. Diese Lösungen sind

Im Folgenden finden Sie den Text der am geschriebenen Theorie D-Klausur, sowie Lösungen zu den einzelnen Aufgaben. Diese Lösungen sind Im Folgenden finden Sie den Text der am 28.7.2010 geschriebenen Theorie D-Klausur, sowie Lösungen zu den einzelnen Aufgaben. Diese Lösungen sind unter Umständen nicht vollständig oder perfekt, und sie

Mehr

(a) Warum spielen die Welleneigenschaften bei einem fahrenden PKW (m = 1t, v = 100km/h) keine Rolle?

(a) Warum spielen die Welleneigenschaften bei einem fahrenden PKW (m = 1t, v = 100km/h) keine Rolle? FK Ex 4-07/09/2015 1 Quickies (a) Warum spielen die Welleneigenschaften bei einem fahrenden PKW (m = 1t, v = 100km/h) keine Rolle? (b) Wie groß ist die Energie von Lichtquanten mit einer Wellenlänge von

Mehr

Ferienkurs Quantenmechanik

Ferienkurs Quantenmechanik Ferienkurs Quantenmechanik Drehimpulse und Schördingergleichung in 3D 4.0.0 Mathias Kammerlocher Inhaltsverzeichnis Wichtige Kommutatoren Drehimpuls. Drehungen..................................... Drehimpulsalgebra...............................

Mehr

10 Quantenmechanik in 3 Dimensionen

10 Quantenmechanik in 3 Dimensionen Skript zur 2. Vorlesung Quantenmechanik, Freitag den 27. Mai, 20. 0 Quantenmechanik in 3 Dimensionen 0. Freies Teilchen Die Operatoren H = ˆp 2 /2m, p x, p y, p z sind alle unter einander vertauschbar:

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Robert Binder (rbinder@theochem.uni-frankfurt.de) Madhava Niraghatam (niraghatam@chemie.uni-frankfurt.de)

Mehr

Ferienkurs Quantenmechanik - Probeklausur

Ferienkurs Quantenmechanik - Probeklausur Seite Ferienkurs Quantenmechanik - Sommersemester 5 Fabian Jerzembeck und Sebastian Steinbeiÿer Fakultät für Physik Technische Universität München Aufgabe FRAGEN ( BE): a) Wie lautet die zeitabhängige

Mehr

Ferienkurs Quantenmechanik - Aufgaben. Drehimpuls und Spin. Sommersemester Drehimpuls. Drehimpuls und Spin (Theoretische Physik III)

Ferienkurs Quantenmechanik - Aufgaben. Drehimpuls und Spin. Sommersemester Drehimpuls. Drehimpuls und Spin (Theoretische Physik III) 10. September 014 Seite 1 Ferienkurs Quantenmechanik - Aufgaben Sommersemester 014 Fabian Jerzembeck und Christian Kathan Fakultät für Physik Technische Universität München 10. September 014 Drehimpuls

Mehr

Harmonischer Oszillator und 3d-Schrödingergleichung

Harmonischer Oszillator und 3d-Schrödingergleichung Harmonischer Oszillator und d-schrödingergleichung Tutoren: Jinming Lu, Konrad Schönleber 7.02.09 D-Harmonischer Oszillator Für die Entwicklung der Quantenmechanik spielte der harmonische Oszillator eine

Mehr

Nach der Drehung des Systems ist der neue Zustandsvektor

Nach der Drehung des Systems ist der neue Zustandsvektor Vorlesung 1 Die allgemeine Theorie des Drehimpulses Eine Drehung des Quantensystems beschreibt man mit Hilfe des Drehimpulsoperators. Um den Drehimpulsoperator zu konstruieren, betrachten wir einen Vektor

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Robert Binder (rbinder@theochem.uni-frankfurt.de) Jan von Cosel (janvoncosel@gmx.de) Haleh

Mehr

Quantenmechanik Ferienkurs: Drehimpuls, Schrödingergleichung in Kugelkoordinaten und Spin

Quantenmechanik Ferienkurs: Drehimpuls, Schrödingergleichung in Kugelkoordinaten und Spin Quantenmechanik Ferienkurs: Drehimpuls, Schrödingergleichung in Kugelkoordinaten und Spin Lukas Neumeier August 3, 010 Inhaltsverzeichnis 1 Drehimpulsoperator 1 1.1 Drehimpulsalgebra...............................

Mehr

5 Der quantenmechanische Hilbertraum

5 Der quantenmechanische Hilbertraum 5 Der quantenmechanische Hilbertraum 5.1 Die Wellenfunktion eines Teilchens Der Bewegungs- Zustand eines Teilchens Elektrons zu einem Zeitpunkt t, in der klassischen Mechanik das Wertepaar r,p von Ort

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Robert Binder (rbinder@theochem.uni-frankfurt.de) Jan von Cosel (janvoncosel@gmx.de) Haleh

Mehr

Grundlagen und Formalismus

Grundlagen und Formalismus Seite 1 Ferienkurs Quantenmechanik - Aufgaben Sommersemester 2014 Fabian Jerzembeck und Christian Kathan Fakultät für Physik Technische Universität München Grundlagen und Formalismus Aufgabe 1 (*) Betrachte

Mehr

15 Zeitabhängige Störungstheorie

15 Zeitabhängige Störungstheorie Sript zur. Vorlesung Quantenmechani Freitag den 8. Juli 11. 15 Zeitabhängige Störungstheorie 15.1 Übergangswahrscheinlicheit Betrachten wir nun den abstraten Fall eines Teilchens mit Hamilton Operator

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Robert Binder (rbinder@theochem.uni-frankfurt.de) Madhava Niraghatam (niraghatam@chemie.uni-frankfurt.de)

Mehr

UNIVERSITÄT LEIPZIG INSTITUT FÜR THEORETISCHE PHYSIK

UNIVERSITÄT LEIPZIG INSTITUT FÜR THEORETISCHE PHYSIK UNIVERSITÄT LEIPZIG INSTITUT FÜR THEORETISCHE PHYSIK Quantenmechanik II Übungsblatt 10 Solutions 7. Wenn die zeitabhängige Störung periodisch in der Zeit ist, V = αx cos(ωt), mit einer Zahl α und einem

Mehr

Übungen zur Modernen Theoretischen Physik I SS 14. (a) (1 Punkt) Zunächst schauen wir uns die Zeitableitung der Wahrscheinlichkeitsdichte

Übungen zur Modernen Theoretischen Physik I SS 14. (a) (1 Punkt) Zunächst schauen wir uns die Zeitableitung der Wahrscheinlichkeitsdichte Karlsruher Institut für Technologie Institut für Theoretische Festkörperphysik Übungen zur Modernen Theoretischen Physik I SS 14 Prof. Dr. Gerd Schön Lösungen zu Blatt 2 Andreas Heimes, Dr. Andreas Poenicke

Mehr

6 Der Harmonische Oszillator

6 Der Harmonische Oszillator 6 Der Harmonische Oszillator Ein Teilchen der Masse m bewege sich auf der x-achse unter dem Einfluß der Rückstellkraft Fx = mω x. 186 Die Kreisfrequenz ω bzw. die Federkonstante k := mω ist neben der Masse

Mehr

Bewegung im elektromagnetischen Feld

Bewegung im elektromagnetischen Feld Kapitel 6 Bewegung im elektromagnetischen Feld 6. Hamilton Operator und Schrödinger Gleichung Felder E und B. Aus der Elektrodynamik ist bekannt, dass in einem elektrischen Feld E(r) und einem Magnetfeld

Mehr

Physik IV - Schriftliche Sessionsprüfung Sommer 2009

Physik IV - Schriftliche Sessionsprüfung Sommer 2009 Physik IV - Schriftliche Sessionsprüfung Sommer 2009 9:00 11:00, Samstag, 8. August 2009, HG F1 & HG F3 Bitte zur Kenntnis nehmen: Es befinden sich insgesamt SECHS Aufgaben auf VIER SEITEN. Es können insgesamt

Mehr

12 Translation und Rotation

12 Translation und Rotation Skript zur 17. Vorlesung Quantenmechanik, Freitag den 17. Juni, 2011. 12 Translation und Rotation 12.1 Translation (Verschiebung) Verschiebungdesquantenmechanischen SystemsumeineStreckea, ψ ψ (oderäquivalent:

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Konstantin Falahati (k.falahati@yahoo.com) Jan von Cosel (jvcosel@theochem.uni-frankfurt.de)

Mehr

j +L z k i, j, k :Einheitsvektoren in x,y,z-richtung Die einzelnen Komponenten lassen sich gemäß folgender Determinante berechnen:

j +L z k i, j, k :Einheitsvektoren in x,y,z-richtung Die einzelnen Komponenten lassen sich gemäß folgender Determinante berechnen: 68 10 Starrer Rotator 10.6 Drehimpuls L Der Drehimpuls spielt sowohl beim Starren Rotator als auch beim Wasserstoffatom eine zentrale Rolle. Seine Eigenschaften sollen daher gesondert betrachtet werden.

Mehr

Symmetrietransformationen

Symmetrietransformationen Kapitel 6 Symmetrietransformationen Besonders wichtig, nicht nur in der Quantenmechanik, sind zeitliche und räumliche Verschiebungen sowie Drehungen. Man bezeichnet sie auch als Symmetrietransformationen,

Mehr

Ferienkurs Quantenmechanik. Zeitabhängige Schrödingergleichung und der harmonische Oszillator

Ferienkurs Quantenmechanik. Zeitabhängige Schrödingergleichung und der harmonische Oszillator Seite 1 Ferienkurs Quantenmechanik Sommersemester 015 Fabian Jerzembeck und Sebastian Steinbeisser Fakultät für Physik Technische Universität München Zeitabhängige Schrödingergleichung und der harmonische

Mehr

Übungen zu Moderne Theoretischen Physik III SS Maxwell-Boltzmann-Gas: großkanonisches Ensemble (5+5+5=15 Punkte, schriftlich)

Übungen zu Moderne Theoretischen Physik III SS Maxwell-Boltzmann-Gas: großkanonisches Ensemble (5+5+5=15 Punkte, schriftlich) Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zu Moderne Theoretischen Physik III SS 016 Prof. Dr. A. Shnirman Blatt 6 PD Dr. B. Narozhny, P. Schad Lösungsvorschlag

Mehr

Klassische Theoretische Physik III (Elektrodynamik)

Klassische Theoretische Physik III (Elektrodynamik) WiSe 7/8 Klassische Theoretische Physik III Elektrodynamik Vorlesung: Prof. Dr. D. Zeppenfeld Übung: Dr. M. Sekulla Übungsblatt 3 Ausgabe: Fr,..7 Abgabe: Fr, 7..7 Besprechung: Mi,..7 Aufgabe 8: Prolate

Mehr

Darstellungstheorie I

Darstellungstheorie I Darstellungstheorie I Vortrag im Rahmen des Proseminars: Gruppentheorie und Quantenmechanik von Prof. Dr. Jan Louis und Dr. Robert Richter Universität Hamburg Jan Oliver Rieger 8. November 2012 1 1 Grundlegende

Mehr

Erklärungen zur Vorlesung TC I

Erklärungen zur Vorlesung TC I Erklärungen zur Vorlesung TC I Sebastian Lenz Institut für Physikalische und Theoretische Chemie Goethe Universität 19. Mai 2011 Inhalt 1 Grundlagen 2 Operatoren in kartesischen Koordinaten 3 Operatoren

Mehr

1 Drehimpuls. 1.1 Motivation für die Definition des Drehimpulses. 1.2 Algebraische Eigenschaften des Drehimpulses

1 Drehimpuls. 1.1 Motivation für die Definition des Drehimpulses. 1.2 Algebraische Eigenschaften des Drehimpulses 1 Drehimpuls Wir werden im folgenden dreidimensionale Probleme der Quantenmechanik behandeln. Ein wichtiger Begriff dabei ist der Drehimpuls. Wir werden zuerst die Definition des quantenmechanischen Drehimpulses

Mehr

Der harmonische Oszillator anhand eines Potentials

Der harmonische Oszillator anhand eines Potentials Quantenmechanikvorlesung, Prof. Lang, SS04 Der harmonische Oszillator anhand eines Potentials Christine Krasser - Tanja Sinkovic - Sibylle Gratt - Stefan Schausberger - Klaus Passler Einleitung In der

Mehr

Ferienkurs Quantenmechanik Sommer 2009

Ferienkurs Quantenmechanik Sommer 2009 Physikdepartment Technische Universität München Sebastian Konopka Blatt 3 Ferienkurs Quantenmechanik Sommer 2009 Quantenmechanik in drei Dimensionen, Drehimpuls und Spin 1 Drehimpulse und Drehimpulsalgebra

Mehr

Themenschwerpunkt A. Mechanik

Themenschwerpunkt A. Mechanik Frühjahr 010 Einzelprüfungsnummer: 64013 Seite: 1 Themenschwerpunkt A Mechanik Perle auf rotierendem, kreisförmigem Draht Eine Perle der Masse m kann sich reibungsfrei auf einem kreisförmigen Draht bewegen.

Mehr

Klassische Theoretische Physik III (Elektrodynamik)

Klassische Theoretische Physik III (Elektrodynamik) WiSe 017/18 Klassische Theoretische Physik III (Elektrodynamik Vorlesung: Prof. Dr. D. Zeppenfeld Übung: Dr. M. Sekulla Übungsblatt 10 Ausgabe: Fr, 1.01.18 Abgabe: Fr, 19.01.17 Besprechung: Mi, 4.01.18

Mehr

Quantentheorie für Nanoingenieure Klausur Lösung

Quantentheorie für Nanoingenieure Klausur Lösung 07. April 011 PD Dr. H. Kohler Quantentheorie für Nanoingenieure Klausur Lösung K1. Ja Nein Fragen (8P) Jede richtige Antwort liefert einen Punkt, jede falsche Antwort liefert einen Minuspunkt. Eine nicht

Mehr

7 Diracs Bracket-Notation

7 Diracs Bracket-Notation 7 Diracs Bracket-Notation 71 Entwicklungen nach Eigenfunktionen 711 Oszillator-Eigenfunktionen Die Oszillator-Eigenfunktionen Φ n (x), Φ n (x) = N n H ( x) n e x 2 /2a 2, N n = a 1 2 n n! πa (n = 0, 1,

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Topic: Helium-Atom Vorlesung: Mo 10h-12h, Do9h-10h Übungen: Do 8h-9h Web site: http://www.theochem.uni-frankfurt.de/tc1

Mehr

Vertiefende Theoretische Chemie Übungen

Vertiefende Theoretische Chemie Übungen Universität eipzig Studiengang Chemie (Bachelor) Sommersemester 5 Vertiefende Theoretische Chemie Übungen Inhaltsverzeichnis Teilchen im Kasten. Translation: Teilchen im Kasten............................................

Mehr

Lösungen zur II. Klausur in Theorie D (Quantenmechanik I)

Lösungen zur II. Klausur in Theorie D (Quantenmechanik I) Lösungen zu II Klausu in Theoie D Quantenmechanik I) Aufgabe 1 Teil a) 15 P) Die Komponenten des Opeatos A genügen den gleichen Vetauschungselationen, wie die Komponenten des Dehimpulsopeatos J mit = 1)

Mehr

6.7 Delta-Funktion Potentialbarriere

6.7 Delta-Funktion Potentialbarriere Skript zur 9. Vorlesung Quantenmechanik, Montag den 6. Mai, 0. 6.7 Delta-Funktion Potentialbarriere Betrachten wir nun eine negative) δ-funktion Potentialbarriere mit dem Potential V) = v 0 δ a). V 0 a

Mehr

Seminar zur Theorie der Atome, Kerne und kondensierten Materie. Kohärente Zustände des harmonischen Oszillators. Thomas Biekötter

Seminar zur Theorie der Atome, Kerne und kondensierten Materie. Kohärente Zustände des harmonischen Oszillators. Thomas Biekötter Seminar zur Theorie der Atome, Kerne und kondensierten Materie Kohärente Zustände des harmonischen Oszillators Thomas Biekötter 16.11.011 QUANTENMECHANISCHER HARMONISCHER OSZILLATOR 1 Klassischer harmonischer

Mehr

Übungen zur Theoretischen Physik F SS 08. c γα c αγ = δ γ,γ γ γ = δ γ,γ

Übungen zur Theoretischen Physik F SS 08. c γα c αγ = δ γ,γ γ γ = δ γ,γ Universität Karlsruhe Institut für Theorie der Kondensierten Materie Übungen zur Theoretischen Physik F SS 08 Prof. Dr. P. Wölfle Musterlösung Dr. M. Greiter Blatt 7 1. Berechnung der Spur (1 Punkt) (i)

Mehr

r r : Abstand der Kerne

r r : Abstand der Kerne Skript zur 10. Vorlesung Quantenmechanik, Freitag den 0. Mai, 011. 7.6 Anwendung Kernschwingungen in einem zweiatomigen Molekül. V ( r ) r 0 V 0 h ω 1 h ω r r : Abstand der Kerne Für Schwingungen kleiner

Mehr

Themenschwerpunkt A. Mechanik

Themenschwerpunkt A. Mechanik Frühjahr 2011 Einzelprüfungsnummer: 64013 Seite: 1 Themenschwerpunkt A Mechanik Aufgabe 1: Stabile Kreisbahnen im Zentralpotential Ein Teilchen der Masse m bewegt sich im Raum unter dem Einfluss einer

Mehr

Ferienkurs Quantenmechanik. Schrödingergleichung und Potentialprobleme

Ferienkurs Quantenmechanik. Schrödingergleichung und Potentialprobleme Seite 1 Ferienkurs Quantenmechanik Sommersemester 014 Fabian Jerzembeck und Christian Kathan Fakultät für Physik Technische Universität München Schrödingergleichung und Potentialprobleme Die Quantenmechanik

Mehr

11.2 Störungstheorie für einen entarteten Energie-Eigenwert E (0)

11.2 Störungstheorie für einen entarteten Energie-Eigenwert E (0) Skript zur 6. Vorlesung Quantenmechanik, Freitag den. Juni,.. Störungstheorie für einen entarteten Energie-Eigenwert E () n Sei E n () eing-fachentartetet Eigenwert desoperatorsĥ undsei ψ nα, () α =,...,g

Mehr

Quantenmechanische Probleme in drei Raumdimensionen

Quantenmechanische Probleme in drei Raumdimensionen KAPITEL VI Quantenmechanische Probleme in drei Raumdimensionen VI. Dreidimensionaler Kastenpotential Der Vollständigkeit halber... VI. Teilchen in einem Zentralpotential In diesem Abschnitt werden die

Mehr

Darstellungstheorie. Vortag von Heiko Fischer - Proseminar QM

Darstellungstheorie. Vortag von Heiko Fischer - Proseminar QM Darstellungstheorie Vortag von Heiko Fischer - Proseminar QM Wir haben uns in den vergangenen Vorträgen intensiv mit den Eigenschaften abstrakter Gruppen beschäftigt. Im physikalischen Kontext sind Gruppen

Mehr

Themenschwerpunkt A. Mechanik

Themenschwerpunkt A. Mechanik Herbst 2011 Einzelprüfungsnummer: 64013 Seite: 1 Themenschwerpunkt A Mechanik Aufgabe 1: Reibung Ein Teilchen der Masse m bewege sich mit der Anfangsgeschwindigkeit v 0 > 0 in x-richtung und soll durch

Mehr

Stark-Effekt für entartete Zustände

Stark-Effekt für entartete Zustände Stark-Effekt für entartete Zustände Die Schrödingergleichung für das Elektron im Wasserstoff lautet H nlm = n nlm mit H = p2 e2 2 m e 4 r Die Eigenfunktion und Eigenwerte dieses ungestörten Systems sind

Mehr

8 Das Wasserstoffatom

8 Das Wasserstoffatom 8DAS WASSERSTOFFATOM 41 Nomenklatur von Rotations-Vibrations-Übergängen. Bei den Spektroskopikern hat sich folgender Code eingebürgert: J := J J = 1 0 1 Code O P Q R S Hinter diese Buchstaben schreibt

Mehr

3.4 Gradient, Divergenz, Rotation in anderen Koordinaten

3.4 Gradient, Divergenz, Rotation in anderen Koordinaten 3.3.5 Rechenregeln Für Skalarfelder f, g und Vektorfelder v, w gelten die Beziehungen fg) = f g + g f v w) = v ) w + w ) v + v w) + w v) f v) = f v + v f v w) = w v) v w) 3.5a) 3.5b) 3.5c) 3.5d) f) = div

Mehr

Matrixdarstellung von Operatoren

Matrixdarstellung von Operatoren Kapitel 6 Matrixdarstellung von Operatoren 6 Matrizen in der Quantenmechanik Die Entdeckung der Quantenmechanik geht auf Werner Heisenberg zurück Er assoziierte physikalische Größen wie x und p mit Feldern

Mehr

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ. Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010

Mehr

Moderne Theoretische Physik WS 2013/2014

Moderne Theoretische Physik WS 2013/2014 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik WS 23/24 Prof. Dr. A. Shnirman Blatt 2:Lösungen Dr. B. Narozhny Besprechung 8..23. Gauß scher

Mehr

Quantenmechanik - Übungen 5 SS 2018

Quantenmechanik - Übungen 5 SS 2018 Prof Dr A Maas Institut für Physik N A W I G R A Z Quantenmechanik - Übungen 5 SS 08 Präsenzaufgaben 7 April 08 Eine der interessantesten Beobachtungen in der Teilchenphysik der letzten drei Jahrzehnte

Mehr

Frühjahr 2009 Einzelprüfungsnummer: Seite: 1. Themenschwerpunkt A. Mechanik

Frühjahr 2009 Einzelprüfungsnummer: Seite: 1. Themenschwerpunkt A. Mechanik Frühjahr 2009 Einzelprüfungsnummer: 64013 Seite: 1 Themenschwerpunkt A Mechanik Aufgabe 1: Newton sche Kosmologie Die von Hubble zuerst beobachtete Expansion des Universums wird empirisch durch das Gesetz

Mehr

Klausur: Quantentheorie I, WS 07/08

Klausur: Quantentheorie I, WS 07/08 Klausur: Quantentheorie I, WS 7/8 Prof. Dr. R. Friedrich 1 Aufgabe 1: Stern-Gerlach Experiment Betrachten Sie ein neutrales Teilchen mit Spin 1/ (z. B. ein Neuton) in einem inhomogenen Magnetfeld B = b(

Mehr

Die Schrödingergleichung in zwei Dimensionen

Die Schrödingergleichung in zwei Dimensionen a Die Schrödingergleichung in zwei Dimensionen ψ(x, y) E pot 0 b Im zwei-dimensionalen Fall können wir für die Wellenfunktion ψ(x, y) einen Ansatz mit separierten Variablen machen, ψ(x, y) = f(x) (y).

Mehr

Musterlösung 01/09/2014

Musterlösung 01/09/2014 Musterlösung 1/9/14 1 Quickies (a) Warum spielen die Welleneigenschaften bei einem fahrenden PKW (m = 1t, v = 1km/h) keine Rolle? (b) Wie groß ist die Energie von Lichtquanten mit einer Wellenlänge von

Mehr

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator VL 9 VL8. VL9. Das Wasserstoffatom in der Klass. Mechanik 8.1. Emissions- und Absorptionsspektren der Atome 8.2. Quantelung der Energie (Frank-Hertz Versuch) 8.3. Bohrsches Atommodell 8.4. Spektren des

Mehr

H LS = W ( r) L s, (2)

H LS = W ( r) L s, (2) Vorlesung 5 Feinstruktur der Atomspektren Wir betrachten ein Wasserstoffatom. Die Energieeigenwerte des diskreten Spektrums lauten E n = mα c n, (1 wobei α 1/137 die Feinstrukturkonstante, m die Elektronmasse

Mehr

Ferienkurs Theoretische Quantenmechanik 2010

Ferienkurs Theoretische Quantenmechanik 2010 Fakultät für Physik Michael Schrapp Technische Universität München Vorlesung Ferienkurs Theoretische Quantenmechanik 010 1 dimensionale Probleme Inhaltsverzeichnis 1 Die Schrödingergleichung 1.1 Wiederholung

Mehr

4.9 Der Harmonische Oszillator

4.9 Der Harmonische Oszillator 4.9 Der Harmonische Oszillator Zum harmonischen Oszillator gehört klassisch die Hamiltonfunktion H = p m + k x. 4.58) Damit wird z.b. näherungsweise die Bewegung von einzelnen Atomen in einem Festkörper

Mehr

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Sebastian Wild Freitag, 6.. Inhaltsverzeichnis Die WKB-Näherung. Grundlegendes............................. Tunnelwahrscheinlichkeit.......................

Mehr

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator VL 9 VL8. VL9. Das Wasserstoffatom in der Klass. Mechanik 8.1. Emissions- und Absorptionsspektren der Atome 8.2. Quantelung der Energie (Frank-Hertz Versuch) 8.3. Bohrsches Atommodell 8.4. Spektren des

Mehr

Theoretische Physik I: Lösungen Blatt Michael Czopnik

Theoretische Physik I: Lösungen Blatt Michael Czopnik Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin

Mehr

10. Das Wasserstoff-Atom Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell:

10. Das Wasserstoff-Atom Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell: phys4.016 Page 1 10. Das Wasserstoff-Atom 10.1.1 Das Spektrum des Wasserstoff-Atoms im Bohr-Modell: Bohr-Modell liefert eine ordentliche erste Beschreibung der grundlegenden Eigenschaften des Spektrums

Mehr

Matrixelemente von Tensoroperatoren und die Auswahlregeln

Matrixelemente von Tensoroperatoren und die Auswahlregeln Vorlesung 3 Matrixelemente von Tensoroperatoren und die Auswahlregeln In der Quantenmechanik müssen wir ab und zu die Matrixelemente von verschiedenen Operatoren berechnen. Von spezieller Bedeutung sind

Mehr

Moderne Theoretische Physik II. V: Prof. Dr. D. Zeppenfeld, Ü: Dr. M. Rauch. Klausur 2 Lösung. 04. April 2017, 11:00-13:00 Uhr

Moderne Theoretische Physik II. V: Prof. Dr. D. Zeppenfeld, Ü: Dr. M. Rauch. Klausur 2 Lösung. 04. April 2017, 11:00-13:00 Uhr KIT WS 6/7 Moderne Theoretische Physik II V: Prof. Dr. D. Zeppenfeld, Ü: Dr. M. Rauch Klausur Lösung 4. April 7, :-: Uhr Aufgabe : Störung zum zweidimensionalen harmonischen Oszillator ++7 Punkte a Die

Mehr

Übungen zur Quantenmechanik

Übungen zur Quantenmechanik Übungen zur Quantenmechanik SS11, Peter Lenz, 1. Blatt 13. April 011 Abgabe (Aufgabe ) bis 18.4.07, 1:00 Uhr, Übungskästen RH 6 Aufgabe 1: Gegeben sei ein Wellenpaket der Form Ψ( x, t) = 1 8π 3 Ψ( [ (

Mehr

Übungen zu Moderne Theoretischen Physik III SS Maxwell-Verteilung: (30 Punkte, schriftlich)

Übungen zu Moderne Theoretischen Physik III SS Maxwell-Verteilung: (30 Punkte, schriftlich) Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zu Moderne Theoretischen Physik III SS 06 Prof. Dr. A. Shnirman Blatt 4 PD Dr. B. arozhny, P. Schad Lösungsvorschlag.

Mehr

7.3 Der quantenmechanische Formalismus

7.3 Der quantenmechanische Formalismus Dieter Suter - 389 - Physik B3 7.3 Der quantenmechanische Formalismus 7.3.1 Historische Vorbemerkungen Die oben dargestellten experimentellen Hinweise wurden im Laufe der ersten Jahrzehnte des 20. Jahrhunderts

Mehr

Übung 2: Lösungen. Technische Universität München SS 2004 Zentrum Mathematik Prof. Dr. K. Buchner

Übung 2: Lösungen. Technische Universität München SS 2004 Zentrum Mathematik Prof. Dr. K. Buchner Technische Universität München SS 004 Zentrum Mathematik 3.5.004 Prof. Dr. K. Buchner Dr. W. Aschbacher Analysis II Übung : Lösungen Aufgabe T 4 Implizite Funktionen Die Funktion f : R R, fx, y := e sinxy

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Robert Binder (rbinder@theochem.uni-frankfurt.de) Jan von Cosel (jvcosel@theochem.uni-frankfurt.de)

Mehr

2. H Atom Grundlagen. Physik IV SS H Grundl. 2.1

2. H Atom Grundlagen. Physik IV SS H Grundl. 2.1 . H Atom Grundlagen.1 Schrödingergleichung mit Radial-Potenzial V(r). Kugelflächen-Funktionen Y lm (θ,φ).3 Radial-Wellenfunktionen R n,l (r).4 Bahn-Drehimpuls l.5 Spin s Physik IV SS 005. H Grundl..1 .1

Mehr

Die Dichtematrix. Sebastian Bröker. 2.November 2011

Die Dichtematrix. Sebastian Bröker. 2.November 2011 Die Dichtematrix Sebastian Bröker 2.November 2011 Westfälische Wilhelms-Universität Münster BSc Physik Seminar zur Theorie der Atome, Kerne und kondensierter Materie Die Dichtematrix Bröker 2 Inhaltsverzeichnis

Mehr

Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil

Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil 1. Grundlagen der Quantenmechanik (a) Wellenfunktion: Die Wellenfunktion Ψ(x, t) beschreibt den quantenmechanischen Zustand eines Teilchens am Ort x zur

Mehr

Probeklausur zur Vorlesung Physik III Sommersemester 17 (Dated: )

Probeklausur zur Vorlesung Physik III Sommersemester 17 (Dated: ) Probeklausur zur Vorlesung Physik III Sommersemester 17 (Dated: 22.5.2017) Vorname und Name: Matrikelnummer: Hinweise Drehen Sie diese Seite nicht um, bis die Prüfung offiziell beginnt! Bitte legen Sie

Mehr

Lösung - Schnellübung 13

Lösung - Schnellübung 13 D-MAVT/D-MATL Analysis II FS 7 Dr. Andreas Steiger Lösung - Schnellübung 3. Gegeben sei die Differentialgleichung y + λ 4 y + λ y = 0. Für welche Werte des reellen Parameters λ gibt es eine von Null verschiedene

Mehr

7 Zwei- und Dreidimensionale Probleme in kartesischen Koordinaten

7 Zwei- und Dreidimensionale Probleme in kartesischen Koordinaten 7 Zwei- und Dreidimensionale Probleme in kartesischen Koordinaten 7.1 Das Teilchen im -Dimensionalen Kasten Slide 119 Das Teilchen im Kasten Das Teilchen soll sich zwischen = 0 und = L und = 0 und = L

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Robert Binder (rbinder@theochem.uni-frankfurt.de) Jan von Cosel (jvcosel@theochem.uni-frankfurt.de)

Mehr

2.1 Die Heisenbergschen Vertauschungsrelationen

2.1 Die Heisenbergschen Vertauschungsrelationen Kapitel 2 Die Schrödinger-Gleichung Einführung Im Formalismus der Quantenmechanik werden Observablen z. B. Ort, Impuls oder Energie eines Teilchens im Allgemeinen nicht durch Zahlen x, p x, E, etc. oder

Mehr

7 Die Hamilton-Jacobi-Theorie

7 Die Hamilton-Jacobi-Theorie 7 Die Hamilton-Jacobi-Theorie Ausgearbeitet von Rolf Horn und Bernhard Schmitz 7.1 Einleitung Um die Hamilton schen Bewegungsgleichungen q k = H(q, p) p k ṗ k = H(p, q) q k zu vereinfachen, führten wir

Mehr

Theoretische Chemie (TC II) Computational Chemistry

Theoretische Chemie (TC II) Computational Chemistry Theoretische Chemie (TC II) Computational Chemistry Lecture 2 28/10/2011 Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Vorlesung: Mi 11h30-13h, Fr 8h-9h30 Praktikum (gemäß Ankündigung, statt Vorlesung):

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Robert Binder (rbinder@theochem.uni-frankfurt.de) Madhava Niraghatam (niraghatam@chemie.uni-frankfurt.de)

Mehr

Schrödingergleichung und Potentialprobleme. 1 Zeitentwicklung und Schrödingergleichung

Schrödingergleichung und Potentialprobleme. 1 Zeitentwicklung und Schrödingergleichung Seite 1 Ferienkurs Quantenmechanik - Aufgaben Sommersemester 014 Fabian Jerzembeck und Christian Kathan Fakultät für Physik Technische Universität München Schrödingergleichung und Potentialprobleme 1 Zeitentwicklung

Mehr

Klassische Theoretische Physik I WS 2013/ Wegintegrale ( = 50 Punkte)

Klassische Theoretische Physik I WS 2013/ Wegintegrale ( = 50 Punkte) Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 213/214 Prof. Dr. J. Schmalian Blatt 2 Dr. P. P. Orth Abgabe und Besprechung 8.11.213 1. Wegintegrale 1 +

Mehr

Ŵ schreiben, wobei einerseits. 2m m!2ˆx 2, einen eindimensionalen harmonischen Oszillator beschreibt, dessen Eigenenergien. ~! (VIII.

Ŵ schreiben, wobei einerseits. 2m m!2ˆx 2, einen eindimensionalen harmonischen Oszillator beschreibt, dessen Eigenenergien. ~! (VIII. 0 Näherungsmethoden in der Quantenmechanik VIII.. c :::::::: :::::::::::::::::::::::::::::::::::::: Beispiel: anharmonischer Oszillator Als Beispiel für die in den vorigen Paragraphen entwickelten Störungsrechnung

Mehr

Universelle Quantengatter

Universelle Quantengatter Universelle Quantengatter Physik des Quantencomputers Alexander Jakub Kwiatkowski Fakultät für Physik, KIT 24. April 2012 A.J.Kwiatkowski (Fakultät für Physik, KIT) Universelle Quantengatter 24.04.12 1

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 216 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 9. PD

Mehr

Atom-/Quantenmechanik Fragenkatalog

Atom-/Quantenmechanik Fragenkatalog Atom-/Quantenmechanik Fragenkatalog Prof. Dr. Andreas Görling Institut für Physikalische und Theoretische Chemie Friedrich Alexander Universität Erlangen Nürnberg Egerlandstraße 3, 91058 Erlangen Prof.

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Gedämpfte & erzwungene Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 16. Dez. 16 Harmonische Schwingungen Auslenkung

Mehr

WKB-Methode. Jan Kirschbaum

WKB-Methode. Jan Kirschbaum WKB-Methode Jan Kirschbaum Westfälische Wilhelms-Universität Münster Fachbereich Physik Seminar zur Theorie der Atome, Kerne und kondensierten Materie 1 Einleitung Die WKB-Methode, unabhängig und fast

Mehr