Grundlagen Computernetze Einführung in die Welt der Rechnernetze

Größe: px
Ab Seite anzeigen:

Download "Grundlagen Computernetze Einführung in die Welt der Rechnernetze"

Transkript

1 BENG-TKI 2005 Grundlagen Computernetze Einführung in die Welt der Rechnernetze Prof. Jürgen Plate

2 2 Grundlagen Computernetze Inhaltsverzeichnis 1. Einführung Einführung ISO-Referenzmodell für die Datenkommunikation Paketvermittlung vs. Leitungsvermittlung Logische Struktur von Netzen Zugriffsverfahren ALOHA CSMA/CD Token-Ring Token-Bus Übertragungsverfahren Ethernet Ethernet II Novells raw IEEE und SNAP...26 Erweiterungen für VLANS Identifizierung des Ethernet-Interfaces Signallaufzeiten, Slot Time Einordnung Ethernet ins OSI-7-Schichten-Referenzmodell Historisches Entwicklung der Übertragungsmedien (IEEE 802.3) Promiscous Mode Power over Ethernet Übertragungsmedien Standard-Ethernet, 10Base AUI-Kabel (Transceiver-Kabel) Thinwire-Ethernet (Cheapernet), 10Base Twisted-Pair, 10BaseT Lichtwellenleiter Gigabit-Ethernet Anzeige-LEDs Ethernetkarten konfigurieren unter Linux...70

3 3 Grundlagen Computernetze 6.9 Tabellen Störquellen Dämpfung Begrenzung der Bandbreite Verzerrungen durch Laufzeit Rauschen Reflexionen, Rückflussdämpfung, Nebensprechen Repeater, Bridge, Router Multiport-Repeater Hub Repeaterregel (5-4-3-Regel) Lichtwellenleiter (10BaseF, FOIRL) und Sternkoppler Bridge Switch Router Layer-3-Switching Terminalserver Gateway Firewall-Rechner VLAN - virtuelle lokale Netzwerke Twisted-Pair-Verkabelung Stecker und Buchsen Steckerbelegung und Adernfarben Fehlerquellen und Fehlersuche Netz-Verkabelung und Netzplanung Netz-Verkabelung Netzplanung Netz-Dokumentation TCP/IP Die TCP/IP-Protokolle ARP IP - Internet Protocol ICMP - Internet Control Message Protocol UDP - User Datagram Protocol TCP - Transmission Control Protocol...178

4 4 Grundlagen Computernetze 11.7 PPP - Point to Point Protocol IP Next Generation Domain Name System (DNS) Netzwerkkonfiguration am Beispiel Linux Höhere Protokolle DHCP und RADIUS SMTP POP IMAP FTP HTTP Weitverkehrsnetz, VoIP, Powerline, Funknetze Übertragungsmedien für Weitverkehrsnetze Voice over IP Powerline Communications Funk-LAN-Technologie Weitere Drahtlos-Verfahren Anhang Literatur RFC 1925: The Twelve Networking Truths...300

5 5 Grundlagen Computernetze 1. Einführung 1.1 Einführung Der Zusammenschluß von diversen Computern und Peripheriegeräten zu Netzen gewinnt immer stärkere Bedeutung. Netze (Netzwerke) sind Verbindungssysteme, an die mehrere Teilnehmer zum Zweck der Datenkommunikation angeschlossen sind. Lokale Netze (LAN, Local Area Network) sind Netze in einem örtlich begrenzten Bereich (Raum, Gebäude, Gelände), der sich im Besitz einer einzigen Organisation (z. B. Firma) befindet. Die Verbindung mehrerer LAN-Segmente erfolgt über Koppelelemente (Hubs, Switches, Bridges, Router, etc.). Weitverkehrsnetze (WAN, Wide Area Network) sind Netze, die über weitere Entfernungen reichen (Stadt, Land, Welt). Die einzelnen Netze können über Router oder Gateways miteinander gekoppelt werden und dabei auch öffentliche Kommunikationsnetze nutzen. Jegliche Kommunikation zwischen zwei Partnern ist an bestimmte Voraussetzungen gebunden. Zum einen muß die Hardware der Partner und der Datenübertragungseinrichtungen über kompatible Schnittstellen verfügen und zum anderen müssen Vereinbarungen über die Art und Weise des Informationsaustausch getroffen werden (Protokolle). Zur Festlegung von Schnittstellen und Protokollen gibt es zahlreiche Standards (nationale und internationale Normen, Firmenstandards). Wie definiert die ISO (International Standardisation Organisation) ein LAN? "Ein lokales Netz (LAN) ist ein Netz für bitserielle Übertragung von Informationen zwischen untereinander verbundenenen unabhängigen Geräten. Das Netz unterliegt vollständig der Zuständigkeit des Anwenders und ist auf ein Grundstück begrenzt." Es werden also nicht nur Computer miteinander vernetzt, sondern auch andere Geräte wie Drucker, Monitore, Massenspeicher, Kontrollgeräte, Steuerungen, Fernkopierer und anderes. Der Unterschied eines LAN zu anderen Netzen wird von der ISO durch folgende Eigenschaften festgelegt: begrenzte Ausdehnung, hohe Datenübertragungsrate, geringe Fehlerrate, dezentrale Steuerung, wahlfreier Zugriff und die Übertragung von Datenblöcken. Kern der Datenkommunikation ist der Transport der Daten, also die Datenübertragung von einem Sender mittels eines Übertragungskanals zu einem Empfänger. Die zu übertragenden Daten werden im Rhythmus eines Sendetaktes auf das Übertragungsmedium gegeben. Damit die Information korrekt wiedergewonnen werden kann, muß am Empfangsort eine Abtastung der Signale zum richtigen Zeitpunkt erfolgen. Normalerweise verwendet man dazu eine Codierung, die eine Rückgewinnung des Taktes aus dem Signal erlaubt. Auf diese Weise kann sich der Empfänger jederzeit auf den Takt des Senders synchronisieren. 1.2 ISO-Referenzmodell für die Datenkommunikation Eine wesentliche Forderung in der Datenfernverarbeitung ist das Zusammenschalten unterschiedlicher Stationen (verschiedener Hersteller). Dazu ist eine Schematisierung und Gliederung des Kommunikationsprozesses in wohldefinierte, hierarchische Ebenen (Schichten, Layers) notwendig. Es erfolgt eine Zuordnung der einzelnen Kommunikationsfunktionen zu bestimmten

6 6 Grundlagen Computernetze logischen Schichten. Wird in einer Schicht eine Anpassung (Änderung, Erweiterung) vorgenommen, bleiben die anderen Ebenen davon unberührt. ISO (International Standards Organisation) hat für offene Netze ein 7-Schicht-Modell, das OSI-Modell (OSI = Open Systems Interconnection), geschaffen. Dieses Modell liegt nahezu allen Kommunikationsgeräten und -Verfahren zugrunde (zur Not werden vorhandene Protokolle in das Schema von ISO/OSI gepreßt). Im OSI-Modell werden die grundsätzlichen Funktionen der einzelnen Ebenen und die Schnittstellen zwischen den Ebenen festgelegt. So ergibt sich eine universell anwendbare logische Struktur für alle Anforderungen der Datenkommunikation verschiedener Systeme. Das OSI-Model liefert Eine Basis für die Interpretation existierender Systeme und Protokolle in der Schichten- Perspektive (wichtig bei Änderungen). Eine Referenz für die Entwicklung neuer Kommunikationsverfahren und für die Definition neuer Protokolle, also eine Grundlage für kompatible Protokolle. Wesensmerkmale der hierarchischen Schichtenstruktur bei Rechnernetzen sind: Das Gesamtsystem wird in eine geordnete Menge von Teilsystemen gegliedert. Teilsysteme des gleichen Ranges bilden eine Schicht (engl. Layer). Die einzelnen Schichten liegen entsprechend ihrer hierarchischen Rangordnung übereinander. Eine hierarchisch tieferliegende Schicht dient der Erfüllung der Kommunikationsfunktion der jeweils übergeordneten Schicht. Jede Schicht stellt definierte Dienste bereit. Diese Dienste realisieren bestimmte Kommunikations- und Steuerungsaufgaben. Die einzelnen Schichten stellen somit definierte Schnittstellen zu ihren Nachbarn bereit (Schicht 4 hat z. B. Schnittstellen zu den Schichten 3 und 5). Die Kommunikation findet nur über diese Schnittstellen statt (in der Grafik senkrecht). Die rein logische Kommunikation zwischen den beteiligten Stationen A und B erfolgt jedoch auf der Basis gleicher Schichten (in der Grafik waagrecht, mit '.' gekennzeichnet). Lediglich bei Schicht 1 handelt es sich um eine physikalische Verbindung.

7 7 Grundlagen Computernetze Aufgabe der einzelnen Schichten: Die Schichten 1-4 werden der Transportfunktion zugeordnet Die Schichten 5-7 werden den Anwenderfunktionen zugeordnet Zunächst eine kurze Beschreibung der einzelnen Schichten. Dabei ist auch der zur Schicht gehörende Datenblock gezeigt. Jede Schicht kann (muß aber nicht) die Daten mit einem eigenen Header (bzw. Datenrahmen) versehen, der zur Kommunikationssteuerung auf dieser Schicht dient. Der Datenblock einer Schicht (mit Rahmen) wird von der Schicht als reine Nutzdaten betrachtet, sie kann so auch an dem Header der übergeorneten Schicht nichts ändern. 7. Anwendungs-Schicht (Application) Verbindung zum Anwenderprogramm und Dialog mit den Programmen. Eine Standardisierung ist hier noch in weiter Ferne. Es gibt aber eine Reihe von grundsätzlichen Diensten, die angeboten werden müssen: o Austausch von Dateien, d. h. Dateizugriffsdienste über das Netz. Für das eigentliche Anwenderprogramm ist nicht erkennbar, ob auf eine Datei lokal oder über das Netz zugegriffen wird.

8 8 Grundlagen Computernetze o o o o Verwaltungsprotokolle für Benutzerzugang, Dateizugriffsrechte, elektronische Post, usw. Remote Job Entry, d. h. absetzen von Rechenaufträgen an entfernte Systeme Virtuelle Terminals, d. h. Umleitung der Ein-/Ausgabe eines Programms auf dem fernen Rechner an den lokalen Bildschirm und die lokale Tastatur. Message-Handling-Systeme: Austausch und Verwaltung von Mitteilungen an Benutzer anderer Systeme. Die Schicht 7 besteht also trotz ihres Namens nicht aus den eigentlichen Anwenderprogrammen - diese setzen auf dieser Schicht auf. Das kann einerseits direkt geschehen, z. B. beim Zugriff auf Dateien eines anderen Rechners (Datei-Server) andererseits auch nur durch (lokale) Übergabe von Dateien an das Message-Handling-System. 6. Darstellungs-Schicht (Presentation) Hier werden für die Anwendung die Daten interpretiert. Überwachung des Informationsaustausches und Codierung/Decodierung (z. B. EBCDIC in ASCII) der Daten sowie Festlegung der Formate und Steuerzeichen. Diese Schicht bildet oft eine Einheit mit der Anwendungsschicht oder sie fehlt ganz, falls sie nicht benötigt wird. Hier können z. B. "virtuelle Terminals" eingebunden werden. Wie wir früher schon besprochen haben, besitzen Terminals ganz unterschiedliche Codes für die Tastatur und die Steuerung der Darstellung auf dem Bildschirm. In Schicht 6 können diese Codes in einen einheitlichen Code übersetzt werden. 5. Kommunikationssteuerung (Session) Diese Ebene steuert die Aufbau, Durchführung und Beendigung der Verbindung. Überwachung der Betriebsparameter, Datenfluß-Steuerung (bei Bedarf mit Zwischenspeicherung der Daten), Wiederaufbau der Verbindung im Fehlerfall und Synchronisation. Der Verbindungsaufbau ist ein bestätigter Dienst, d. h. beide Partner tauschen Parameterübergabe und Bestätigung im Wechselspiel aus. Danach befinden sich beide Partner in einem definierten Zustand. Das trifft nicht für die nächste Phase, den Datentransfer zu. Es ist aus Zeitgründen z. B. nicht sinnvoll nach dem Senden eines Datenblocks auf die Bestätigung zu warten. Es wird gleich der nächste Block geschickt und die Bestätigungen laufen zeitversetzt ein (immerhin muß alles die Schichten 4-1 durchlaufen). Durch sogenannte "Synchronisation Points" wird die Datentransferphase in Abschnitte unterteilt. Bei einer Störung oder Unterbrechung kann der Transfer an einen definierten Punkt wieder aufgenommen werden. Beide Partner können den Verbindungsaufbau beenden. Das kann ordnungsgemäß nach Beendigung aller Transfers geschehen (Ende mit Synchronisation) oder durch Unterbrechen der Verbindung (Ende ohne Synchronisation). In diese Ebene fallen auch das Ein- und Ausgliedern von Stationen beim Token-Ring und die Adressierung eines bestimmten Partners. 4. Transport (Transport) Reine Transportfunktion. Diese Schicht stellt sicher, daß alle Datenpakete den richtigen Empfänger erreichen. Aufbau der Datenverbindung zwischen zwei Partnern, Datentransport, Flußkontrolle, Fehlererkennung und -korrektur. Diese Schicht verbirgt die Charakteristika des Netzes (LAN, WAN,...) vor den darüberliegenden Schichten. Die Transportschicht kann z. B. auch bei einer Forderung nach höherem Datendurchsatz

9 9 Grundlagen Computernetze mehrere Verbindungen zum Parner aufbauen und die Daten in Teilströmen leiten (splitting/combining). Auch das Aufteilen der Daten in passende Blöcke und die Flußkontrolle obliegen dieser Schicht. Die Dienste der Transportschicht werden in fünf Klassen unterschieden: o o o o o Klasse 0 ist die einfachste. Es findet gegenüber der Schicht 3 keine Fehlerkontrolle statt und einer Transportverbindung enspricht genau eine Netzverbindung. In der Klasse 1 kommt zwar keine Fehlerbehandlung hinzu, es wird jedoch versucht, von der Schicht 3 gemeldete Fehler zu beheben und nicht an die Schicht 5 weiterzuleiten. Z. B. kann bei Unterbrechung der Transportverbindung versucht werden, diese wieder aufzubauen, ohne daß dies oberhalb der Schicht 4 bemerkt wird. Klasse 2 kann mehrere Transportverbindungen aufbauen (Multiplexverbindung). In diesem Fall darf die Netzverbindung erst dann getrennt werden, wenn die letzte Transportverbindung abgebaut ist. Klasse 3 deckt die Leistungen der Klassen 1 und 2 ab, d. h. einfache Fehlerbehandlung und Multiplexen. Klasse 4 enthält neben den Funktionen der Klasse 3 zusätzliche Mechanismen zur Fehlererkennung und -behandlung. Speziell bei Datagramm-orientieren Netzen (LAN) kann so ein verbindungsorientierter Dienst bereitgestellt werden (Sicherstellen von Vollständigkeit, Eindeutigkeit und Reihenfolge der Datenblöcke). 3. Vermittlung-/Paket-Schicht (Network) Diese Ebene dient hauptsächlich der Datenpaket- Übertragung. Sie ist zusändig für die Wahl der Datenwege (routing), für das Multiplexen mehrerer Verbindungen über einzelne Teilstrecken, für Fehlerbehandlung und Flußkontrolle zwischen den Endpunkten einer Verbindung (nicht zwischen den Anwenderprozessen). Die Flußkontrolle auf dieser Ebene schützt den Endpunkt einer virtuellen Verbindung für Überlastung. Die Fehlerbehandlung in dieser Schicht bezieht sich nicht auf Übertragungsfehler (dafür ist Schicht 2 ausreichend), sondern auf Fehler, die bei der virtuellen Verbindung auftreten: Erkennen und Beseitigen von Duplikaten, Beseitigen permanent kreisender Blöcke, wiederherstellen der richtigen Datenpaket-Reihenfolge, usw. Bei WANs behandelt diese Schicht die Umsetzung eines Protokolls in ein anderes (internetworking). Man kann daher die Schicht 3 in drei Teilschichten unterteilen: o o o 3a (Subnetwork Access): Abwickeln der Protokolle des jeweiligen Teilnetzes. 3b (Subnet Enhancement): Funktionen der Teilnetze so ergänzen, daß die Anforderungen von 3c erfüllt werden. 3c (Internetworking): Teilnetzunabhängige Protokolle abwickeln (Routing, globale Adressierung) 2. Sicherungs-Schicht (Data Link) Sicherstellen einer funktionierenden Verbindung zwischen zwei direkt benachbarten Stationen. Diese Schicht stellt einen definierten Rahmen für den Datentransport, die Fehlererkennung und die Synchronisierung der Daten zur Verfügung.

10 10 Grundlagen Computernetze Typische Protokolle: BSC, HDLC, usw. Die Information wird in Blöcke geeigneter Länge unterteilt, die als Datenrahmen (frames) bezeichnet werden und mit Prüfinfo für die Fehlererkennung und -korrektur versehen werden. Auf dieser Ebene erfolgt auch die Flußkontrolle für die Binärdaten. Es muß nicht jeder einzelne Rahmen bestätigt werden, sondern es kann auch eine vorgegebene Maximalzahl von Frames gesendet werden, bevor die Bestätigung abgewartet werden muß. Über die Bestätigung der Gegenstation wird der Datenfluß gesteuert. Datenrahmen und Bestätigungen müssen also nur innerhalb eines Bereichs ("Fenster") liegen. Bei lokalen Netzen wird diese Schicht nochmals unterteilt: o o 2a (Media Access Control, MAC): Regelt den Zugriff auf das Übertragungsmedium 2b (Logical Link Control, LLC): Vom übertragungsmedium abhängige Funktionen der Schicht 2 1. Bitübertragung (Physical) Hier erfolgt die physikalische Übertragung der Daten. Diese Ebene legt die elektrischen, mechanischen, funktionalen und prozeduralen Parameter für die physikalische Verbindung zweier Einheiten fest (z. B. Pegel, Modulation, Kabel, Stecker, Übertragungsrate, etc.) Veranschaulichung des Schichtenmodells mit einem Beispiel Das Beispiel arbeitet nur mit drei Schichten. Die Ausgangssituation besteht in zwei Wissenschaftlern in Arabien und China, die ein Problem diskutieren wollen. Nun sprechen beide nur Ihre Landessprache und auch Dolmetscher, die Arabisch und Chinesisch können, sind nicht aufzutreiben. Beide suchen sich nun Dolmetscher, die Englisch können. Der Weg der Nachrichten: 1.3 Paketvermittlung vs. Leitungsvermittlung Hier soll kurz erklärt werden, wie die zu übertragenden Informationen in den meisten Netzen von einem auf den anderen Rechner kommen. Die Daten werden paketweise übertragen. Man spricht daher von einem paketvermittelten Netz. Zur Veranschaulichung ein Gegenbeispiel und ein Beispiel:

11 11 Grundlagen Computernetze Im Telefonnetz wird für jedes Gespräch eine Leitung zwischen zwei Gesprächspartnern benötigt. Diese Leitung bleibt auch belegt, wenn keine Information übertragen wird, also keiner spricht. Hier handelt es sich um ein leitungsvermitteltes Netz. Im Briefverkehr wird dagegen ganz anders vorgegangen. Wenn Informationsübertragung ansteht, wird ein Brief geschrieben und dieser mit einer Adresse versehen. Sodann wird dieses Informationspaket dem Netz überlassen, indem man es in einen Briefkasten wirft. Das örtliche Postamt entscheidet dann aufgrund der Empfängeradresse, ob der Brief direkt an den Empfänger (wenn dieser also im Versorgungsbereich dieses Postamtes wohnt) auszuliefern ist, oder durch Einschalten von mehr oder weniger Zwischenstationen. In der Regel findet der Brief dann ein Postamt, das die Auslieferung des Briefes an den Empfänger aufgrund der Adresse vornehmen kann. Schwierigkeiten bei der Auslieferung können dem Absender aufgrund der Absendeadresse mitgeteilt werden.

12 12 Grundlagen Computernetze 2. Logische Struktur von Netzen In diesem Abschnitt wird ganz knapp die logische Struktur von Netzen behandelt, also die Art und Weise, wie die einzelnen Stationen miteinander verbunden werden. Bei der Verkabelung von LANs muß man aber zwischen logischer Stuktur und Verkabelungsstruktur unterscheiden, z. B. kann ein Netz mit logischer Busstruktur bei der Verkabelung mit 'Twisted Pair'-Kabeln wie ein Sternnetz aussehen. Sternstruktur Alle Teilnehmer werden an einen zentralen Knoten angeschlossen (früher z. B. häufig Anschluß von Sichtgeräten an einen Zentralrechner). Eine direkte Kommunikation der Teilnehmer untereinander ist nicht möglich, jegliche Kommunikation läuft über den zentralen Knoten (Punkt-zu-Punkt-Verbindung, Leitungsvermittlung). Die Steuerung der Kommunikation vom Knoten aus ist sehr einfach: Polling (regelmäßige Abfrage aller Stationen) oder Steuerung über Interrupt. Bei Ausfall der Zentrale sind sämtliche Kommunikationswege unterbrochen. Ringstruktur Es gibt keine Zentrale, alle Stationen sind gleichberechtigt. Jeder Teilnehmer verfügt über einen eigenen Netzanschluß (Knoten) und ist über diesen mit seinem linken und rechten Partner verbunden. Die Übertragung der Info erfolgt in einer Richtung von Knoten zu Knoten. Bei Ausfall eines Knotens sind sämtliche Kommunikationswege unterbrochen.

13 13 Grundlagen Computernetze Busstruktur Es gibt keine Zentrale und keine Knoten. Die Verbindung aller Teilnehmer erfolgt über einen gemeinsamen Übertragungsweg. Zu einem Zeitpunkt kann immer nur eine Nachricht über den Bus transportiert werden. Bei Ausfall einer Station bleibt die Kommunikation der anderen Stationen erhalten. Bei den Bussystemen kann man noch unterscheiden in Basisband-Bussysteme und Breitband-Bussysteme. Bei Basisband-Bussystemen werden die elektrischen Pegel direkt übertragen; bei den für uns interessanten digitalen Informationen also 0- und 1-Pegel. Bei Breitband- Bussystemen werden über das Kabel mehrere unabhängige Kanäle geleitet (modulierte Übertragung). Busnetze müssen auf beiden Seiten mit der Leitungsimpedanz abgeschlossen werden, damit keine Echos auftreten, die zu Empfangsfehlern führen. vermaschte Struktur Jeder Teilnehmer ist mit mehreren anderen verbunden. Es gibt keine Zentrale und es existieren mehrere, unabhängige Übertragungswege zwischen zwei Stationen. Manchmal gibt es keine direkte Verbindung zwischen zwei Stationen. Dann führt der Weg über eine oder mehrere andere Stationen. Je nach Bedarf können die o. g. Topologien auch miteinander kombiniert werden, z. B. Bus mit angeschlossenen Sternen oder Bus mit angeschlossenen Bussen, was zu einer Baumstruktur führt. Insbesondere bei Weitverkehrsnetzen (WAN) treten vermaschte Strukturen auf. Teilweise ergeben sich dabei redundante Leitungswege, die auch bei Unterbrechung eines Wegs den Datentransport sicherstellen.

14 14 Grundlagen Computernetze 3. Zugriffsverfahren Bei jedem Netz gibt es die physikalischen Verbindungswege (Kanäle), über welche die einzelnen Stationen miteinander kommunizieren. Die Art und Weise, wie die einzelnen Stationen diese Kanäle nutzen und belegen, hängt vom jeweiligen System des Zugriffs, dem Zugriffsverfahren, ab. In diesem Abschnitt werden die unterschiedlichen Zugriffsverfahren im Überblick besprochen, wobei nicht auf die Protokolle eingegangen wird. Das Zugriffsverfahren ist nicht von einer bestimmten logischen Netzwerkstruktur abhängig. Lassen Sie uns zu Beginn ein historisch interessantes Verfahren mit ein paar Sätzen würdigen, das Ausgangspunkt für die Entwicklung der heute üblichen Zugriffsverfahren war. 3.1 ALOHA Dieses Verfahren ist eines der ältesten Zugriffsverfahren und wurde 1970 an der Universität von Hawaii entwickelt ("Aloha" = "Hallo"). Da man die Inseln nicht über Kabel verbinden konnte, hat man ein Funknetz aufgebaut. Die Grundidee ist recht einfach: Jede Station darf jederzeit senden. Danach wartet die sendende Station auf eine Bestätigung auf einem separaten Rückkanal. Senden zwei Stationen zur gleichen Zeit, treten Kollisionen auf - die Datenblöcke sind defekt und es erfolgt keine Bestätigung. Wurde eine Bestätigung empfangen, kann bei Bedarf weitergesendet werden. Im anderen Fall wartet jede Sendestation eine Zeitspanne, deren Länge zufällig bestimmt wird. Danach wird der Datenblock nochmals gesendet. Da die Wartezeit von einem Zufallsgenerator bestimmt wird, löst sich der Datenstau auf. Solange das Verhältnis von aktiver Sendezeit zu Leerlaufzeit hoch genug ist, arbeitet das System sehr gut. Sobald die "Netzlast" steigt, häufen sich Kollisionen, bis schließlich kein Datenblock mehr durchkommt. Der höchste Durchsatz ergibt sich, wenn die Sendeblöcke 18% der Gesamtzeit belegen. Zwei Jahre später wurde eine Verbesserung eingeführt: Slotted ALOHA. Jeder darf nun nur noch zu Beginn eines festgelegten Zeitintervalls mit dem Senden beginnen ("time slot"). Um nun alle Stationen zu synchronisieren, gibt es eine ausgezeichnete Station, die "Zeitmarken" senden darf. Die anderen Stationen synchronisieren sich mit diesem Markengeber. Der maximale Durchsatz wird hier bei einem Sendeanteil von knapp 36% erreicht. ALOHA wird immer noch bei manchen Formen der Kommunikation über Satelliten verwendet. 3.2 CSMA/CD Die Abkürzung "CSMA/CD" steht für "Carrier Sense Multiple Access/Collision Detect". Dieses Verfahren findet häufig bei logischen Busnetzen Anwendung (z. B. Ethernet), kann aber prinzipiell bei allen Topologien eingesetzt werden. Bevor eine Station sendet, hört sie zunächst die Leitung ab, um festzustellen, ob nicht schon ein Datenverkehr zwischen anderen Stationen stattfindet. Erst bei freier Leitung wird gesendet und auch während der Sendung wird mitgehört, um festzustellen, ob eine Kollision mit einer Station auftritt, die zufällig zum gleichen Zeitpunkt mit dem Senden begonnen hat (Collision Detect). Bei allen Leitungen ist eine gewisse Laufzeit (siehe später) zu berücksichtigen, so daß auch dann eine Kollision auftritt, wenn zwei Stationen um eine geringe Zeitspanne versetzt mit dem Senden beginnen. In einem solchen Fall produzieren alle sendenden Stationen ein JAM-Singal auf der Leitung, damit auf jeden Fall alle beteiligten Sende- und Empfangsknoten die Bearbeitung des aktuellen Datenpakets abbrechen.

15 15 Grundlagen Computernetze Das JAM-Signal besteht aus einer 32 Bit langen Folge von Danach warten alle sendewilligen Stationen eine zufallsbestimmte Zeit und versuchen es dann nochmals. Alle Stationen im Netz überprüfen die empfangenen Datenpakete und übernehmen diejenigen, die an sie selbst adressiert sind. Wichtigster Vertreter für CSMA/CD ist das Ethernet, dem deshalb ein eigener Abschnitt gewidmet ist. Normalerweise tritt eine Kollision innerhalb der ersten 64 Bytes auf (Weiteres in Kapitel 4, "Slot Time").

16 16 Grundlagen Computernetze Konfliktparameter k: k>1: Sender könnte eine ganze Nachricht an den Kanal übergeben, bevor ein Konflikt entsteht. Beim CSMA/CD-Verfahren inpraktikabel. k<1: CSMA/CD-Verfahren praktikabel Spezifikation: Bei größter zulässiger Netzlänge und kleinster zulässiger Paketlänge ergibt sich k~0,21. Wartezeit Die Wartezeit, die nach einer Kollision bis zum nächsten Sendeversuch vergeht, wird im Standard durch ein Backoff-Verfahren festgelegt (Truncated Binary Expotential Backoff). Es wird wie folgt definiert: Wartezeit = ZZ * T ZZ = Zufallszahl aus [0 < ZZ < 2 n ] n = Anzahl Wiederholungen des gleichen Blocks, jedoch maximal 10 T = Slot Time

17 17 Grundlagen Computernetze Die Slot Time entspricht der doppelten maximalen Signallaufzeit des Übertragungsmediums. Die Wartezeit steigt im statistischen Mittel nach 10 Versuchen nicht mehr an. Nach 16 Versuchen wird abgebrochen und eine Fehlermeldung erzeugt. Damit eine sendende Station eine Kollision sicher erkennen kann, muß die Dauer der Blockübertragung mindestens das Doppelte der Signallaufzeit zwischen den beiden beteiligten Stationen betragen. Somit ist die minimale Blocklänge abhängig von Signallaufzeit und Übertragungsrate. Das Rahmenformat von CSMA/CD ist nach IEEE festgelegt. Neben Verkabelungsproblemen gibt es bei CSMA/CD-Netzen einige typische Fehlerquellen. Einige davon sollen hier kurz vorgestellt werden. 'Late Collisions' sind Kollisionen, die außerhalb des Kollisionsfensters von 512 Bit, also später, auftreten. Dafür gibt es generell drei Ursachen: Entweder eine Station mit Hardwaredefekt (Netzwerkinterface, Transceiver, etc.), ein Fehler in der Software (Treiber), wodurch sich die Station nicht an die CSMA/CD-Konventionen hält (Senden ohne Abhören), oder die Konfigurationsregeln für die Kabellänge sind nicht eingehalten worden (zu lange Signallaufzeit). Sendet eine Station ohne Unterbrechung längere Zeit, also Frames mit mehr als die maximal zugelassenen 1518 Bytes, dann bezeichnet man dies als 'Jabber' (zu deutsch 'Geplapper'). Hauptursache sind hier defekte Netzwerkkarten oder -Treiber. 'Short Frames' sind Frames, die kleiner als die minimal zugelassenen 64 Bytes sind. Grund hierfür sind auch Defekte beim Netzwerkinterface oder im Treiber. 'Ghost Frames' sind in Ihrer Erscheinung ähnlich einem Datenframe, haben jedoch Fehler schon im Start-Delimiter. Potentialausgleichsströme und Störungen, die auf das Kabel einwirken, können einem Repeater ein ankommendes Datenpaket vorspiegeln. Der Repeater sendet das Geisterpaket dann weiter ins Netz.

18 18 Grundlagen Computernetze 3.3 Token-Ring Dieses Netz wurde von IBM entwickelt. Alle Rechner sind hintereinandergeschaltet und somit ringförmig verbunden. Im "Ruhezustand" (keine Station will senden) zirkuliert eine spezielle Nachricht im Netz, das sogenannte "Token" (genauer "Frei-Token", "free token"). Diese Nachricht wird von einem Rechner an den nächsten weitergegeben. Der Rechner, der im Besitz des Frei-Tokens ist, kann senden, indem er an dieses die Nachricht anhängt ("busy token"). Dieser Datenblock wird von Station zu Station weitergereicht, bis sie beim Empfänger angekommen ist. Der Empfänger bestätigt die Nachricht durch eine Acknowledge-Meldung, die mit dem Token weiter auf den Ring geschickt wird und schließlich wieder beim Absender eintrifft. Dieser schickt nun wieder ein Frei- Token auf die Reise. In der Regel berechtigt der Besitz des Tokens nur zur Sendung eines Blocks (non exhaustive), im anderen Extremfall könnte auch definiert werden, daß die Station soviele Datenblöcke senden kann, wie sie möchte (exhaustive). Damit könnte aber eine Station, die den Token besitzt, alle anderen dominieren. Normalerweise wird deshalb nur ein Block gesendet. Außerdem wird die Dauer der Sendeberechtigung befristet (Token Holding Time, z. B. 10 ms). Solange das Netz fehlerfrei funktioniert, stellt Token-Ring ein sehr einfach handzuhabendes Verfahren dar. Komplexer sind die Aufgaben beim Initieren des Netzes und beim Ein- oder Auskoppeln von Stationen. Token-Ring ist das einzige Netz mit aktiven Stationen, die aus Eingabe- und Ausgabeeinheit bestehen. Grundsätzlich sind alle Stationen gleichberechtigt, jedoch übernimmt eine von ihnen als "aktiver Monitor" besondere Überwachungsaufgaben im Netz. Eine andere Station überwacht als "passiver Monitor" den aktiven Monitor und kann gegebenenfalls dessen Aufgaben übernehmen. Die Aufgaben des aktiven Monitors sind: Erzeugen des Ringtaktes Überwachen des Tokens (Neuen Token erzeugen, falls er verloren geht, Verhindern mehrerer Tokens) Unterbinden permanent kreisender Blöcke oder Tokens erhöhter Priorität. (Generell: Ring säubern durch Senden eines "Purge Ring Frame" an alle Stationen und Erzeugen eines neuen Frei-Tokens). Verhindern, daß mehrere Monitore aktiv sind.

19 19 Grundlagen Computernetze Verzögerung des Token-Rahmens um 24 Bit-Zeiten (die Länge des Token-Rahmens beträgt 24 Bit). Auch bei extrem kleinem Ring wird so sichergestellt, daß eine Station den Token- Rahmen vollständig senden kann, bevor sie ihn wieder empfängt. In regelmäßigen Abständen sendet der aktive Monitor einen "Active Monitor Present Frame" an alle Stationen im Ring. Gleichzeitig wird dadurch eine Prozedur in Gang gesetzt, die allen Stationen die Adresse des jeweiligen Vorgängers im Ring liefert (NAUN = Nearest Active Upstream Neighbour) - eine Information, die nur im Fehlerfall wichtig ist. Ein Fehler auf Empfangsseite bedeutet, daß der eigene Empfänger oder der Sender des NAUN defekt ist. Die Auswahl des aktiven Monitors geschieht per "Claim-Token Process" durch: den derzeit aktiven Monitor, wenn dieser Probleme bei der Durchführung seiner Aufgaben hat, einen passiven Monitor, wenn der aktive Monitor nicht korrekt arbeitet (z. B. Timeout auftritt). eine neu eingegliederte Station, wenn diese das Fehlen des aktiven Monitors feststellt. Token-Ring-Netze werden normalerweise als Stern-Ring-Verbindungen mit passiven Ringleitungsverteilern aufgebaut. In den Ringleitungsverteilern befinden sich Relais (die von den Stationen gesteuert werden) zur Eingliederung von Stationen und zur Schaltung von Ersatzringen bei Defekten. Die Eingliederung einer Station erfolgt in fünf Schritten: 1. Ist ein Adapter vom Ring getrennt, sind gleichzeitig Eingangs- und Ausgangsleitung kurzgeschlossen. Es erfolgt zunächst ein Adaptertest. Nach dem Test versorgt der Adapter die Relais mit Strom und wird in den Ring eingegliedert. 2. Die Station hört nun den Ring ab. Wenn sie innerhalb einer festgelegten Zeit keine Aktivität des aktiven Monitors wahrnimmt, startet sie den Prozeß zur Auswahl des aktiven Monitors. 3. Durch Aussenden eines "Duplicate Address Test Frame" prüft die Station die Eindeutigkeit ihrer Adresse. Ist sie nicht eindeutig, koppelt sich die Station wieder ab. 4. Durch den NAUN-Prozeß erfährt die Station die Adresse ihres Vorgängers und ist nun ins Netz eingegliedert. 5. Von den Voreinstellungen abweichende Parameter können nun bei einer Server-Station abgefragt werden, sofern dies nötig ist.

20 20 Grundlagen Computernetze Die Funktionen von Monitor und der eingegliederten Stationen müssen nicht nur einmalig initiiert, sondern auch ständig überwacht werden. In vielen Fällen sind dies zahlreiche Aktionen, die auch viele Blöcke auf dem Netz zur Folge haben und in deren Verlauf auch Fehler- und Ausnahmebedingungen auftreten können. Der Nachteil von Token-Ring liegt darin, daß beim Ausfall einer Station oder bei Kabeldefekten das Netz unterbrochen wird. Wird die defekte Station hingegen abgeschaltet, schalten die Relais im Ringleitungsverteiler die Leitung durch. Token Ring ist genormt nach IEEE Token-Bus Auch beim Token-Bus wird der Zugriff über Token-Passing geregelt, nur besitzt das Netz Bus- oder Baumstruktur. Hier haben wir also den Fall, daß eine logische Ringstruktur auf eine physikalische Busstruktur aufsetzt. Das Verfahren wird z. B. beim ARCNET und in der industriellen Automatisierung (MAP = Manufacturing Automation Protocol) verwendet. Anders als beim Token-Ring empfangen alle Stationen auf dem Bus die Daten. Daher wird die Reihenfolge der Stationen nicht durch die hardwaremäßige Verbindung, sondern rein logisch durch die Adreßzuordung erledigt. Die Tokens werden von der Station mit der höchsten Adresse an diejenige mit der nächstniedrigeren weitergereicht. Die Station mit der niedrigsten Adresse schließt den logischen Ring durch Adressierung auf die höchste Adresse Token Bus ist genormt nach IEEE

7.9. Lokale Netze (LAN) Ja, aber ich würde lieber den Bus nehmen. Es gibt nichts schöneres auf der Welt als einen Bus.

7.9. Lokale Netze (LAN) Ja, aber ich würde lieber den Bus nehmen. Es gibt nichts schöneres auf der Welt als einen Bus. 7.9. Lokale Netze (LAN) Ja, aber ich würde lieber den Bus nehmen. Es gibt nichts schöneres auf der Welt als einen Bus. (Charles, Prince of Wales, als er gefragt wurde, ob er die Reise mit der königlichen

Mehr

Inhalt: 1. Layer 1 (Physikalische Schicht) 2. Layer 2 (Sicherungsschicht) 3. Layer 3 (Vermittlungsschicht) 4. Layer 4 (Transportschicht) 5.

Inhalt: 1. Layer 1 (Physikalische Schicht) 2. Layer 2 (Sicherungsschicht) 3. Layer 3 (Vermittlungsschicht) 4. Layer 4 (Transportschicht) 5. Inhalt: 1. Layer 1 (Physikalische Schicht) 2. Layer 2 (Sicherungsschicht) 3. Layer 3 (Vermittlungsschicht) 4. Layer 4 (Transportschicht) 5. Ethernet 6. Token Ring 7. FDDI Darstellung des OSI-Modell (Quelle:

Mehr

Fachbereich Medienproduktion

Fachbereich Medienproduktion Fachbereich Medienproduktion Herzlich willkommen zur Vorlesung im Studienfach: Grundlagen der Informatik I USB Universal serial bus (USB) Serielle Datenübertragung Punkt-zu-Punkt Verbindungen Daten und

Mehr

Themen. MAC Teilschicht. Ethernet. Stefan Szalowski Rechnernetze MAC Teilschicht

Themen. MAC Teilschicht. Ethernet. Stefan Szalowski Rechnernetze MAC Teilschicht Themen MAC Teilschicht Ethernet Medium Access Control (MAC) Untere Teilschicht der Sicherungsschicht Verwendung für Broadcast-Netze Mehrere Benutzer (Stationen) verwenden einen Übertragungskanal z.b. LANs

Mehr

TCP/IP-Protokollfamilie

TCP/IP-Protokollfamilie TCP/IP-Protokollfamilie Internet-Protokolle Mit den Internet-Protokollen kann man via LAN- oder WAN kommunizieren. Die bekanntesten Internet-Protokolle sind das Transmission Control Protokoll (TCP) und

Mehr

1. Erläutern Sie den Begriff Strukturierte Verkabelung

1. Erläutern Sie den Begriff Strukturierte Verkabelung Datenübertragung SS 09 1. Erläutern Sie den Begriff Strukturierte Verkabelung Stellt einen einheitlichen Aufbauplan für Verkabelungen für unterschiedliche Dienste (Sprache oder Daten dar). Eine Strukturierte

Mehr

Grundlagen Computernetze

Grundlagen Computernetze Table of Contents Grundlagen Computernetze...1 Grundlagen Computernetze...1 Inhalt...1 1 Einführung...1 2 Logische Struktur von Netzen...1 3 Zugriffsverfahren...1 4 Übertragungsverfahren...1 5 Ethernet...1

Mehr

TCP/UDP. Transport Layer

TCP/UDP. Transport Layer TCP/UDP Transport Layer Lernziele 1. Wozu dient die Transportschicht? 2. Was passiert in der Transportschicht? 3. Was sind die wichtigsten Protkolle der Transportschicht? 4. Wofür wird TCP eingesetzt?

Mehr

Präsentation Zusammenfassung: OSI-Schichtenmodell, Hub, Switch

Präsentation Zusammenfassung: OSI-Schichtenmodell, Hub, Switch Bechtle Systemhaus Mannheim 03.03.2003 Netzwerkkomponenten Folie 1 Ulrike Müller, Fabian Simon, Sabine Moldaschl, Andreas Peter Präsentation Zusammenfassung: OSI-Schichtenmodell, Hub, Switch Bechtle Systemhaus

Mehr

Ethernet Applikation Guide

Ethernet Applikation Guide Ethernet Applikation Guide Derzeit sind drei Arten von Ethernet gängig, jede mit Ihren eigenen Regeln. Standard Ethernet mit einer Geschwindigkeit von 10 Mbit/s, Fast Ethernet mit Datenraten bis zu 100

Mehr

(LANs) NET 4 Teil 1.4 - Local Area Networks 1

(LANs) NET 4 Teil 1.4 - Local Area Networks 1 Teil 1.4 Local Area Networks (LANs) NET 4 Teil 1.4 - Local Area Networks 1 Klassifikation Netzwerke Primär nach Ausdehnung: Local Area Network (LAN) Metropolitan Area Netzwork (MAN) Wide Area Network (WAN)

Mehr

IP Adressen & Subnetzmasken

IP Adressen & Subnetzmasken IP Adressen & Subnetzmasken Jörn Stuphorn stuphorn@rvs.uni-bielefeld.de Universität Bielefeld Technische Fakultät Stand der Veranstaltung 13. April 2005 Unix-Umgebung 20. April 2005 Unix-Umgebung 27. April

Mehr

Einführung in die. Netzwerktecknik

Einführung in die. Netzwerktecknik Netzwerktecknik 2 Inhalt ARP-Prozeß Bridging Routing Switching L3 Switching VLAN Firewall 3 Datenaustausch zwischen 2 Rechnern 0003BF447A01 Rechner A 01B765A933EE Rechner B Daten Daten 0003BF447A01 Quelle

Mehr

Vorlesung "Verteilte Systeme" Wintersemester 2000/2001. Verteilte Systeme. Empfänger Kommunikationssystem. Netzwerk

Vorlesung Verteilte Systeme Wintersemester 2000/2001. Verteilte Systeme. Empfänger Kommunikationssystem. Netzwerk Verteilte Systeme 1. Netzwerke Grundstruktur Sender Empfänger Kommunikationssystem Empfänger Systemsoftware Systemsoftware Hardware Hardware Netzwerk Verteilte Systeme, Wintersemester 2000/2001 Folie 1.2

Mehr

netzwerke TECHNISCHE KAUFLEUTE UND HWD

netzwerke TECHNISCHE KAUFLEUTE UND HWD netzwerke TECHNISCHE KAUFLEUTE UND HWD Was ist ein Netzwerk? Zweck? N. stellen innerbetriebliche, zwischenbetriebliche und überbetriebliche Datenverbindungen zwischen mehreren IT- Systemen her. Es werden

Mehr

Gigabit Ethernet. Technische Daten: Standart 802.3z. Aspekte für Gigabit Ethernet

Gigabit Ethernet. Technische Daten: Standart 802.3z. Aspekte für Gigabit Ethernet Standart 802.3z Gigabit Ethernet Aspekte für Gigabit Ethernet 80% aller Installationen im LAN-Bereich sind Ethernet-Installationen hohe Zuverlässigkeit entscheidet im Unternehmenseinsatz alle vorhandenen

Mehr

Rechnernetze und Organisation

Rechnernetze und Organisation Assignment A3 Präsentation 1 Motivation Übersicht Netzwerke und Protokolle Aufgabenstellung: Netzwerk-Protolkoll-Analysator 2 Protokoll-Analyzer Wireshark (Opensource-Tool) Motivation Sniffen von Netzwerk-Traffic

Mehr

Breitband ISDN Lokale Netze Internet WS 2009/10. Martin Werner, November 09 1

Breitband ISDN Lokale Netze Internet WS 2009/10. Martin Werner, November 09 1 Telekommunikationsnetze 2 Breitband ISDN Lokale Netze Internet Martin Werner WS 2009/10 Martin Werner, November 09 1 Breitband-ISDN Ziele Flexibler Netzzugang Dynamische Bitratenzuteilung Effiziente Vermittlung

Mehr

Rechnernetze I. Rechnernetze I. 1 Einführung SS 2014. Universität Siegen rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404

Rechnernetze I. Rechnernetze I. 1 Einführung SS 2014. Universität Siegen rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404 Rechnernetze I SS 2014 Universität Siegen rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404 Stand: 9. Mai 2014 Betriebssysteme / verteilte Systeme Rechnernetze I (1/10) i Rechnernetze

Mehr

Grundlagen Netzwerktechnik

Grundlagen Netzwerktechnik Grundlagen Netzwerktechnik - Aus dem Inhalt - 1. Von der Notwendigkeit der Vernetzung 2 2. Computer-Netzwerk 2 3. Erörterung: Vernetzung oder Einplatzlösungen? 2 4. Netzwerktopologie 3 5. Übertragungsmedien

Mehr

Internet Routing am 14. 11. 2006 mit Lösungen

Internet Routing am 14. 11. 2006 mit Lösungen Wissenstandsprüfung zur Vorlesung Internet Routing am 14. 11. 2006 mit Lösungen Beachten Sie bitte folgende Hinweise! Dieser Test ist freiwillig und geht in keiner Weise in die Prüfungsnote ein!!! Dieser

Mehr

Manchester Codierung sowie Differenzielle Manchester Codierung

Manchester Codierung sowie Differenzielle Manchester Codierung Manchester Codierung sowie Differenzielle Manchester Codierung Nadine Sass 1 von 8 Inhaltsverzeichnis Inhaltsverzeichnis... 2 Abbildungsverzeichnis... 3 Das Ethernet... 4 Das IEEE 802.3 Ethernet Paketformat...

Mehr

BRÜCKENTYPEN FUNKTION UND AUFGABE

BRÜCKENTYPEN FUNKTION UND AUFGABE Arbeitet auf der OSI-Schicht 2 Verbindet angeschlossene Collision-Domains mit verwandten Protokollen In jeder Collision-Domain kann gleichzeitig Kommunikation stattfinden Nur eine Verbindung über eine

Mehr

Computeranwendung in der Chemie Informatik für Chemiker(innen) 5. Internet

Computeranwendung in der Chemie Informatik für Chemiker(innen) 5. Internet Computeranwendung in der Chemie Informatik für Chemiker(innen) 5. Internet Jens Döbler 2003 "Computer in der Chemie", WS 2003-04, Humboldt-Universität VL5 Folie 1 Dr. Jens Döbler Internet Grundlagen Zusammenschluß

Mehr

Internetworking. Motivation für Internetworking. Übersicht. Situation: viele heterogene Netzwerke

Internetworking. Motivation für Internetworking. Übersicht. Situation: viele heterogene Netzwerke Internetworking Motivation für Internetworking Übersicht Repeater Bridge (Brücke) Verbindung zwischen zwei gleichen LANs Verbindung zwischen zwei LANs nach IEEE 802.x Verbindung zwischen mehreren LANs

Mehr

Router 1 Router 2 Router 3

Router 1 Router 2 Router 3 Network Layer Netz 1 Netz 2 Netz 3 Router 1 Router 2 Router 3 Router 1 Router 2 Router 3 Netz 1, Router 1, 1 Netz 1, Router 1, 2 Netz 1, Router 2, 3 Netz 2, Router 2, 2 Netz 2, Router 2, 1 Netz 2, Router

Mehr

1976 im Xerox Palo Alto Research Center entwickelt 1980 erster Standard von Xerox, DEC und Intel 1983 erster IEEE Standard 802.3

1976 im Xerox Palo Alto Research Center entwickelt 1980 erster Standard von Xerox, DEC und Intel 1983 erster IEEE Standard 802.3 4 Ethernet weltweit sehr verbreitete LAN-Technologie historische Entwicklung: 1976 im Xerox Palo Alto Research Center entwickelt 1980 erster Standard von Xerox, DEC und Intel 1983 erster IEEE Standard

Mehr

Internetprotokoll TCP / IP

Internetprotokoll TCP / IP Internetprotokoll TCP / IP Inhaltsverzeichnis TCP / IP - ALLGEMEIN... 2 TRANSPORTPROTOKOLLE IM VERGLEICH... 2 TCP / IP EIGENSCHAFTEN... 2 DARPA MODELL... 3 DIE AUFGABEN DER EINZELNEN DIENSTE / PROTOKOLLE...

Mehr

Vortrag zur Diplomarbeit

Vortrag zur Diplomarbeit Fakultät Informatik Professur für VLSI-Entwurfssysteme, Diagnostik und Architektur Vortrag zur Diplomarbeit Entwurf und Implementierung eines zuverlässigen verbindungsorientierten Transportprotokolls für

Mehr

Thema: VLAN. Virtual Local Area Network

Thema: VLAN. Virtual Local Area Network Thema: VLAN Virtual Local Area Network Überblick Wie kam man auf VLAN? Wozu VLAN? Ansätze zu VLAN Wie funktioniert VLAN Wie setzt man VLAN ein Wie kam man auf VLAN? Ursprünglich: flaches Netz ein Switch

Mehr

Verbindungslose Netzwerk-Protokolle

Verbindungslose Netzwerk-Protokolle Adressierung Lokales Netz jede Station kennt jede Pakete können direkt zugestellt werden Hierarchisches Netz jede Station kennt jede im lokalen Bereich Pakete können lokal direkt zugestellt werden Pakete

Mehr

IT-Systemelektroniker Arbeitskunde

IT-Systemelektroniker Arbeitskunde CBT-Arbeitsheft Lehrer-Version Seite 1 ÜBERSICHTSSEITE Titel Themen Einleitung Netzwerk - Topologien Zeit / Unterrichtsraum 2 Unterrichtsstunden / Klassenraum Einführung Ziel der Übung erklären. Lernziele

Mehr

Idee des Paket-Filters

Idee des Paket-Filters Idee des Paket-Filters Informationen (Pakete) nur zum Empfänger übertragen und nicht überallhin Filtern größere Effizienz Netzwerk größer ausbaubar Filtern ist die Voraussetzung für Effizienz und Ausbaubarkeit

Mehr

DNÜ-Tutorium HS Niederrhein, WS 2014/2015. Probeklausur

DNÜ-Tutorium HS Niederrhein, WS 2014/2015. Probeklausur Probeklausur Aufgabe 1 (Allgemeine Verständnisfragen): 1. Wie nennt man die Gruppe von Dokumenten, in welchen technische und organisatorische Aspekte (bzw. Standards) rund um das Internet und TCP/IP spezifiziert

Mehr

Klausur Rechnernetze 1.3 ws99/00 Name: Matr.Nr.: 1. Kennwort:

Klausur Rechnernetze 1.3 ws99/00 Name: Matr.Nr.: 1. Kennwort: Klausur Rechnernetze 1.3 ws99/00 Name: Matr.Nr.: 1 Teil 1 ohne Unterlagen Aufgabe 1-3 Aufgabe max. Pkt. err. Pkt. 1 22 2 10 3 8 Summe 1 40 4 12 5 6 6 12 7 6 Summe 2 36 *40/36 Summe 80 Falls Sie ein Kennwort

Mehr

Einführung in die Informationstechnik. IV Internet, Grundlagen und Dienste

Einführung in die Informationstechnik. IV Internet, Grundlagen und Dienste Einführung in die Informationstechnik IV Internet, Grundlagen und Dienste 2 Überblick Grundlagen Datenkommunikation Datenübertragung analog, digital ISDN, DSL Netzarten und topologien Protokolle Internet

Mehr

Einführung in die Informationstechnik

Einführung in die Informationstechnik 2 Überblick Einführung in die Informationstechnik IV Internet, Grundlagen und Dienste Grundlagen Datenkommunikation Datenübertragung analog, digital ISDN, DSL Netzarten und topologien Protokolle Internet

Mehr

Übungsklausur WS 13/14

Übungsklausur WS 13/14 Übungsklausur WS 13/14 Name, Vorname: Geburtsdatum: Matrikelnummer: Datum: Für die Bearbeitung der Klausur dürfen keine Bleistifte oder Stifte mit roter Farbe verwendet werden. Zusatzblätter, welche nicht

Mehr

Netzwerk- Konfiguration. für Anfänger

Netzwerk- Konfiguration. für Anfänger Netzwerk- Konfiguration für Anfänger 1 Vorstellung Christian Bockermann Informatikstudent an der Universität Dortmund Freiberuflich in den Bereichen Software- Entwicklung und Netzwerk-Sicherheit tätig

Mehr

Computer-Netze. Computer Netze. Verbundarten. Computer Nets. Verbundarten. Distributed Computer Systems:

Computer-Netze. Computer Netze. Verbundarten. Computer Nets. Verbundarten. Distributed Computer Systems: Computer Nets Distributed Computer Systems: collection of interconnected independent computers for independent tasks. 7 Computer-Netze Verbundarten Lastverbund: Aufteilung der Rechenlast (Jobs) auf mehrere

Mehr

VS3 Slide 1. Verteilte Systeme. Vorlesung 3 vom 22.04.2004 Dr. Sebastian Iwanowski FH Wedel

VS3 Slide 1. Verteilte Systeme. Vorlesung 3 vom 22.04.2004 Dr. Sebastian Iwanowski FH Wedel VS3 Slide 1 Verteilte Systeme Vorlesung 3 vom 22.04.2004 Dr. Sebastian Iwanowski FH Wedel Inhaltsverzeichnis für die Vorlesung Zur Motivation: 4 Beispiele aus der Praxis Allgemeine Anforderungen an Verteilte

Mehr

15 Transportschicht (Schicht 4)

15 Transportschicht (Schicht 4) Netzwerktechnik Aachen, den 16.06.03 Stephan Zielinski Dipl.Ing Elektrotechnik Horbacher Str. 116c 52072 Aachen Tel.: 0241 / 174173 zielinski@fh-aachen.de zielinski.isdrin.de 15 Transportschicht (Schicht

Mehr

Client-Server-Prinzip

Client-Server-Prinzip Client-Server-Prinzip Kommunikation im Internet erfolgt nach dem Client-Server-Prinzip: Client sendet eine Anfrage (fordert eine Dienstleistung an) Server sendet die Antwort (bietet eine Dienstleistung

Mehr

Netzwerke. Grundlagen. Martin Dausch. 8. Ausgabe, 1. Aktualisierung, Juli 2013

Netzwerke. Grundlagen. Martin Dausch. 8. Ausgabe, 1. Aktualisierung, Juli 2013 Netzwerke Martin Dausch 8. Ausgabe, 1. Aktualisierung, Juli 2013 Grundlagen NW 3 Netzwerke - Grundlagen 3 Topologien In diesem Kapitel erfahren Sie den Unterschied zwischen physikalischer und logischer

Mehr

KN 20.04.2015. Das Internet

KN 20.04.2015. Das Internet Das Internet Internet = Weltweiter Verbund von Rechnernetzen Das " Netz der Netze " Prinzipien des Internet: Jeder Rechner kann Information bereitstellen. Client / Server Architektur: Server bietet Dienste

Mehr

Rechnernetze I. Rechnernetze I. 2 Protokolle und Protokollhierharchie SS 2014

Rechnernetze I. Rechnernetze I. 2 Protokolle und Protokollhierharchie SS 2014 Rechnernetze I SS 014 Universität Siegen rolanda.dwismuellera@duni-siegena.de Tel.: 071/740-4050, Büro: H-B 8404 Stand: 10. August 015 Betriebssysteme / verteilte Systeme Rechnernetze I (1/13) i Rechnernetze

Mehr

ComputeriaUrdorf «Sondertreff»vom30. März2011. Workshop mit WLAN-Zugriff auf das Internet

ComputeriaUrdorf «Sondertreff»vom30. März2011. Workshop mit WLAN-Zugriff auf das Internet ComputeriaUrdorf «Sondertreff»vom30. März2011 Workshop mit WLAN-Zugriff auf das Internet 30. März 2011 Autor: Walter Leuenberger www.computeria-urdorf.ch Was ist ein (Computer-)Netzwerk? Netzwerk-Topologien

Mehr

Übungen zu Rechnerkommunikation

Übungen zu Rechnerkommunikation Übungen zu Rechnerkommunikation Sommersemester 2009 Übung 7 Jürgen Eckert, Mykola Protsenko PD Dr.-Ing. Falko Dressler Friedrich-Alexander Universität Erlangen-Nürnberg Informatik 7 (Rechnernetze und Kommunikationssysteme)

Mehr

Hauptdiplomklausur Informatik Januar 2007: Computer Networks

Hauptdiplomklausur Informatik Januar 2007: Computer Networks Universität Mannheim Fakultät für Mathematik und Informatik Lehrstuhl für Praktische Informatik IV Prof. Dr.-Ing. W. Effelsberg Hauptdiplomklausur Informatik Januar 2007: Computer Networks Name: Matrikel-Nr.:

Mehr

Netzwerktechnologie 2 Sommersemester 2004

Netzwerktechnologie 2 Sommersemester 2004 Netzwerktechnologie 2 Sommersemester 2004 FH-Prof. Dipl.-Ing. Dr. Gerhard Jahn Gerhard.Jahn@fh-hagenberg.at Fachhochschulstudiengänge Software Engineering Software Engineering für Medizin Software Engineering

Mehr

IP-Adressen und Ports

IP-Adressen und Ports IP-Adressen und Ports Eine Einführung Tina Umlandt Universität Hamburg 2. August 2011 Überblick Präsentationsablauf 1 IP = Internetwork protocol Schematische Darstellung über die Layer IP-Datenpaket (IPv4)

Mehr

FOPT 5: Eigenständige Client-Server-Anwendungen (Programmierung verteilter Anwendungen in Java 1)

FOPT 5: Eigenständige Client-Server-Anwendungen (Programmierung verteilter Anwendungen in Java 1) 1 FOPT 5: Eigenständige Client-Server-Anwendungen (Programmierung verteilter Anwendungen in Java 1) In dieser Kurseinheit geht es um verteilte Anwendungen, bei denen wir sowohl ein Client- als auch ein

Mehr

Das Ethernet. Geschichtlicher Hintergrund und Entwicklung des Ethernet

Das Ethernet. Geschichtlicher Hintergrund und Entwicklung des Ethernet Das Ethernet Definition Ethernet Ethernet ist eine herstellerunabhängige und sehr weit verbreitete Netzwerktechnologie zur Datenübertragung in lokalen Netzwerken (LANs). Die Grundlage für das Ethernet

Mehr

Wie organisiert ihr Euer menschliches «Netzwerk» für folgende Aufgaben? an alle an ein bestimmtes an ein bestimmtes an alle an ein bestimmtes

Wie organisiert ihr Euer menschliches «Netzwerk» für folgende Aufgaben? an alle an ein bestimmtes an ein bestimmtes an alle an ein bestimmtes Computernetzwerke Praxis - Welche Geräte braucht man für ein Computernetzwerk und wie funktionieren sie? - Protokolle? - Wie baue/organisiere ich ein eigenes Netzwerk? - Hacking und rechtliche Aspekte.

Mehr

Station. Ein Ringnetzwerk

Station. Ein Ringnetzwerk Token-Ring Token-Verfahren sind Zugriffsverfahren, die mittels einer Sendeberechtigung, reprä-sentiert durch ein spezielles Bitmuster "Token", den Zugriff auf das Medium regeln (Token=engl. für Pfand).!

Mehr

Gefahren aus dem Internet 1 Grundwissen April 2010

Gefahren aus dem Internet 1 Grundwissen April 2010 1 Grundwissen Voraussetzungen Sie haben das Internet bereits zuhause oder an der Schule genutzt. Sie wissen, was ein Provider ist. Sie wissen, was eine URL ist. Lernziele Sie wissen, was es braucht, damit

Mehr

Einführung in TCP/IP. das Internetprotokoll

Einführung in TCP/IP. das Internetprotokoll Schwarz Einführung in TCP/IP das Internetprotokoll Was ist ein Protokoll? Mensch A Mensch B Englisch Deutsch Spanisch Französisch Englisch Japanisch Was sind die Aufgaben eines Protokolls? Informationen

Mehr

Carsten Harnisch. Der bhv Co@ch Netzwerktechnik

Carsten Harnisch. Der bhv Co@ch Netzwerktechnik Carsten Harnisch Der bhv Co@ch Netzwerktechnik Inhaltsverzeichnis Einleitung 11 Über dieses Produkt 11 Zielgruppe 11 Aufbau 11 Modul 1 Einführung in die Netzwerktechnik 13 1.1 Der Netzverbund 13 1.2 Die

Mehr

Modul 4: Fast und Gigabit Ethernet

Modul 4: Fast und Gigabit Ethernet Modul 4: Fast und Gigabit Ethernet M. Leischner // K. Uhde Netze SS 2010 Folie 1 Ethernet: Namensregelung Beispiele: 10Base-T, 100Base-Fx, 10GBase-T Der Name enthält 3 Bereiche Der erste Bereich gibt die

Mehr

Internet - Grundzüge der Funktionsweise. Kira Duwe

Internet - Grundzüge der Funktionsweise. Kira Duwe Internet - Grundzüge der Funktionsweise Kira Duwe Gliederung Historische Entwicklung Funktionsweise: -Anwendungen -Rechnernetze -Netzwerkschichten -Datenkapselung -RFC -Verschiedene Protokolle (Ethernet,

Mehr

Aufbau des Internets. Nelson & Bruno Quellen: Netplanet

Aufbau des Internets. Nelson & Bruno Quellen: Netplanet Aufbau des Internets Nelson & Bruno Quellen: Netplanet Inhaltsverzeichnis Arten von Netzwerken Host-Architekturen Schichtenmodelle TCP/IP - Haussprache des Internet Übertragung im Netz Routing Topologie

Mehr

1. PROFIBUS DP (DEZENTRALE PERIPHERIE)

1. PROFIBUS DP (DEZENTRALE PERIPHERIE) DER PROFIBUS PROFIBUS ist ein Bussystem das sowohl im Feldbereich als auch für Zellennetze mit wenigen Teilnehmern eingesetzt wird. Für den PROFIBUS gibt es drei Protokollprofile die gemeinsam auf einer

Mehr

Grundlagen der Rechnernetze. Internetworking

Grundlagen der Rechnernetze. Internetworking Grundlagen der Rechnernetze Internetworking Übersicht Grundlegende Konzepte Internet Routing Limitierter Adressbereich SS 2012 Grundlagen der Rechnernetze Internetworking 2 Grundlegende Konzepte SS 2012

Mehr

Vorlesung 11: Netze. Sommersemester 2001. Peter B. Ladkin ladkin@rvs.uni-bielefeld.de

Vorlesung 11: Netze. Sommersemester 2001. Peter B. Ladkin ladkin@rvs.uni-bielefeld.de Vorlesung 11: Netze Sommersemester 2001 Peter B. Ladkin ladkin@rvs.uni-bielefeld.de Vielen Dank an Andrew Tanenbaum der Vrije Universiteit Amsterdam für die Bilder Andrew Tanenbaum, Computer Networks,

Mehr

SNMP und der MIB- Browser von MG-Soft

SNMP und der MIB- Browser von MG-Soft SNMP und der MIB- Browser von MG-Soft 1. SNMP 1.1 Was ist SNMP 1.2 Historie von SNMP 1.3 Einordnung in das OSI-Modell 1.4 Die Architektur von SNMP 1.5 Kommunikation von SNMP 1.6 SNMP-PDUs PDUs 2. MIB und

Mehr

Dieter Conrads. Telekommunikation. Grundlagen, Verfahren, Netze. Mit 178 Abbildungen. 4., überarbeitete und erweiterte Auflage.

Dieter Conrads. Telekommunikation. Grundlagen, Verfahren, Netze. Mit 178 Abbildungen. 4., überarbeitete und erweiterte Auflage. Dieter Conrads Telekommunikation Grundlagen, Verfahren, Netze Mit 178 Abbildungen 4., überarbeitete und erweiterte Auflage vieweg Vll Inhaltsverzeichnis 1 Entwicklung - Perspektiven 1 2 Grundsätzliche

Mehr

CSMA/CD: - keine Fehlerkorrektur, nur Fehlererkennung - Fehlererkennung durch CRC, (Jabber) Oversized/Undersized

CSMA/CD: - keine Fehlerkorrektur, nur Fehlererkennung - Fehlererkennung durch CRC, (Jabber) Oversized/Undersized 1.1.: MAC-Adressen für CSMA/CD und TokenRing bestehen jeweils aus 48 Bits (6 Bytes). Warum betrachtet man diese Adressräume als ausreichend? (im Gegensatz zu IP) - größer als IP-Adressen (48 Bits 32 Bits)

Mehr

2. Architektur von Kommunikationssystemen

2. Architektur von Kommunikationssystemen 2. Architektur von Kommunikationssystemen 2.1 2.2 TCP/IP-basierte Protokollarchitektur Digitale Kommunikationssysteme Prof. Dr. Habermann / Dr. Hischke 12-01 / 1 Das OSI-Referenzmodell wird ausführlich

Mehr

Modul 4: Fast- und Gigabit- Ethernet

Modul 4: Fast- und Gigabit- Ethernet Modul 4: Fast- und Gigabit- Ethernet 23.04.2012 17:49:05 17:47:50 M. Leischner // K. Uhde Netze SS 2012 Folie 1 Ethernet: Namensregelung Beispiele: 10Base-T, 100Base-Fx, 10GBase-T Der Name enthält 3 Bereiche

Mehr

Rechnernetze 1 Vorlesung im SS 07

Rechnernetze 1 Vorlesung im SS 07 Rechnernetze 1 Vorlesung im SS 07 Roland Wismüller roland.wismueller@uni-siegen.de Tel.: 740-4050, H-B 8404 Zusammenfassung: Einführung Netz besteht aus Knoten und Verbindungen Rekursiver Aufbau: Knoten

Mehr

Token Ring - Historie, Standards und Anschluss. Prof. Dr. W. Riggert mit überarbeiteten Abbildungen von Madge Networks

Token Ring - Historie, Standards und Anschluss. Prof. Dr. W. Riggert mit überarbeiteten Abbildungen von Madge Networks Token Ring - Historie, Standards und Anschluss Prof. Dr. W. Riggert mit überarbeiteten Abbildungen von Madge Networks Inhalt Das Tutorial ist in drei Abschnitte gegliedert. Abschnitt 1 gibt einen historischen

Mehr

Netz 2 WAN. Netz 3 R3

Netz 2 WAN. Netz 3 R3 Router Ein Router verbindet Subnetze gemäß Ebene 3 des OSI-Referenzmodells. Dies beinhaltet insbesondere die Wegewahlfunktionalität als zentrale Funktion der Ebene 3. Da die Ebene 3 für alle aktuell etablierten

Mehr

Rechnernetze II WS 2013/2014. Betriebssysteme / verteilte Systeme Tel.: 0271/ , Büro: H-B 8404

Rechnernetze II WS 2013/2014. Betriebssysteme / verteilte Systeme Tel.: 0271/ , Büro: H-B 8404 Rechnernetze II WS 2013/2014 Betriebssysteme / verteilte Systeme rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404 Stand: 5. Mai 2014 Betriebssysteme / verteilte Systeme Rechnernetze

Mehr

Telekommunikationsnetze 2

Telekommunikationsnetze 2 Telekommunikationsnetze 2 Breitband-ISDN Lokale Netze Internet WS 2008/09 Martin Werner martin werner, January 09 1 Breitband-ISDN Ziele Flexibler Netzzugang Dynamische Bitratenzuteilung Effiziente Vermittlung

Mehr

1 Protokolle und. Netzwerkkomponenten. 1.1 Was sind Protokolle? Was sind Protokolle?

1 Protokolle und. Netzwerkkomponenten. 1.1 Was sind Protokolle? Was sind Protokolle? Was sind Protokolle? 1 Protokolle und Netzwerkkomponenten Lernziele: Überblick über die Protokolle Unicast, Broadcast und Multicast Aufgaben der Netzwerkkarte Netzwerktechnologien Aktive Netzwerkkomponenten

Mehr

Internet und WWW Übungen

Internet und WWW Übungen Internet und WWW Übungen 6 Rechnernetze und Datenübertragung [WEB6] Rolf Dornberger 1 06-11-07 6 Rechnernetze und Datenübertragung Aufgaben: 1. Begriffe 2. IP-Adressen 3. Rechnernetze und Datenübertragung

Mehr

Kap. 4. Sicherungs-Schicht ( Data Link Schicht)

Kap. 4. Sicherungs-Schicht ( Data Link Schicht) Kap. 4 Sicherungs-Schicht ( Data Link Schicht) Sicherungs-Schicht (Data-Link-Schicht) Rolle: Beförderung eines Datagramms von einem Knoten zum anderen via einer einzigen Kommunikationsleitung. 4-2 Dienste

Mehr

Netzwerke. Autor: Roland Bauch. Grundlagen. Überarbeitete Ausgabe vom 22. Januar 2008. HERDT-Verlag für Bildungsmedien GmbH, Bodenheim

Netzwerke. Autor: Roland Bauch. Grundlagen. Überarbeitete Ausgabe vom 22. Januar 2008. HERDT-Verlag für Bildungsmedien GmbH, Bodenheim Netzwerke NW Autor: Roland Bauch Grundlagen Überarbeitete Ausgabe vom 22. Januar 2008 HERDT-Verlag für Bildungsmedien GmbH, Bodenheim Internet: www.herdt.com NW Alle Rechte vorbehalten. Kein Teil des Werkes

Mehr

Netzwerkgrundlagen. OSI-Modell. Layer 1 Physikal Layer. Layer 2 Data Link Layer. Layer 3 Network Layer

Netzwerkgrundlagen.  OSI-Modell. Layer 1 Physikal Layer. Layer 2 Data Link Layer. Layer 3 Network Layer Netzwerkgrundlagen http://de.wikipedia.org/wiki/ethernet OSI-Modell http://de.wikipedia.org/wiki/osi-modell Das OSI-Modell beschreibt modellhaft eine Art der Datenübertragung für die Kommunikation offener,

Mehr

5.) Nach erfolgreicher Übertragung entfernt der Sender seinen Daten-Rahmen vom Ring. Wodurch kann ein verwaister Rahmen entstehen?

5.) Nach erfolgreicher Übertragung entfernt der Sender seinen Daten-Rahmen vom Ring. Wodurch kann ein verwaister Rahmen entstehen? Übung 5 1.) In einem CSMA/CD-LAN mit einer Übertragungsrate von 10 Mbps soll der erste Bit- Schlitz nach jeder erfolgreichen Rahmenübertragung für den Empfänger reserviert sein, der dann den Kanal besetzt

Mehr

Rechnernetzwerke. Rechnernetze sind Verbünde von einzelnen Computern, die Daten auf elektronischem Weg miteinander austauschen können.

Rechnernetzwerke. Rechnernetze sind Verbünde von einzelnen Computern, die Daten auf elektronischem Weg miteinander austauschen können. Rechnernetzwerke Rechnernetze sind Verbünde von einzelnen Computern, die Daten auf elektronischem Weg miteinander austauschen können. Im Gegensatz zu klassischen Methoden des Datenaustauschs (Diskette,

Mehr

38 kbit/sek * 60 ------------------- = 22,8 kbit/sek 100

38 kbit/sek * 60 ------------------- = 22,8 kbit/sek 100 1.1.: Sie haben von zuhause eine Verbindung über die serielle asynchrone Schnittstelle des PC via Modem ins Internet aufgesetzt. Es wird angezeigt das die DÜ mit einer Baudrate von 38 kbit/sek durchgeführt

Mehr

Hauptdiplomklausur Informatik März 2002: Internet Protokolle

Hauptdiplomklausur Informatik März 2002: Internet Protokolle Universität Mannheim Fakultät für Mathematik und Informatik Lehrstuhl für Praktische Informatik IV Professor Dr. W. Effelsberg Hauptdiplomklausur Informatik März 2002: Internet Protokolle Name:... Vorname:...

Mehr

Netzwerkperformance 2.0

Netzwerkperformance 2.0 Netzwerkperformance 2.0 Die KPI`s als Schlüsselfaktoren der Netzwerke Andreas Dobesch, Product Manager DataCenter Forum 2014, Trafo Baden ISATEL Electronic AG Hinterbergstrasse 9 CH 6330 Cham Tel. 041

Mehr

2. Kommunikation und Synchronisation von Prozessen 2.2 Kommunikation zwischen Prozessen

2. Kommunikation und Synchronisation von Prozessen 2.2 Kommunikation zwischen Prozessen 2. Kommunikation und Synchronisation von Prozessen 2.2 Kommunikation zwischen Prozessen Dienste des Internets Das Internet bietet als riesiges Rechnernetz viele Nutzungsmöglichkeiten, wie etwa das World

Mehr

Dies ist eine Schritt für Schritt Anleitung wie man den Router anschließt und mit dem Internet verbindet.

Dies ist eine Schritt für Schritt Anleitung wie man den Router anschließt und mit dem Internet verbindet. Schnellinstallations Anleitung: Dies ist eine Schritt für Schritt Anleitung wie man den Router anschließt und mit dem Internet verbindet. 1) Verkabeln Sie Ihr Netzwerk. Schließen Sie den Router ans Stromnetz,

Mehr

LAN Konzept Bruno Santschi. LAN Konzept. Version 1.0 März 2001. LAN Konzept.doc Seite 1 von 10 hehe@hehe.ch

LAN Konzept Bruno Santschi. LAN Konzept. Version 1.0 März 2001. LAN Konzept.doc Seite 1 von 10 hehe@hehe.ch LAN Konzept Version 1.0 März 2001 LAN Konzept.doc Seite 1 von 10 hehe@hehe.ch Inhaltsverzeichnis 1 Einleitung... 3 1.1 Ausgangslage... 3 1.2 Rahmenbedingungen... 3 1.3 Auftrag... 3 1.4 Projektorganisation...

Mehr

Der P-Net Feldbus. Die Geschichte 2 Markt und Einsatzgebiete 2 Anwendungsmodelle 2 Technologie 4. Installationstechnik 6.

Der P-Net Feldbus. Die Geschichte 2 Markt und Einsatzgebiete 2 Anwendungsmodelle 2 Technologie 4. Installationstechnik 6. Der P-Net Feldbus Arbeit im Vertiefungsmodul Embedded Control WS 2005 Bernhard Rytz E3b Die Geschichte 2 Markt und Einsatzgebiete 2 Anwendungsmodelle 2 Technologie 4 Die Architektur 4 Die Telegramme 4

Mehr

Rechnernetze. Ethernet. (c) Peter Sturm, Uni Trier. Robert M. Metcalfe, 1976

Rechnernetze. Ethernet. (c) Peter Sturm, Uni Trier. Robert M. Metcalfe, 1976 Rechnernetze Ethernet Robert M. Metcalfe, 1976 1 Historisches Mai 1973 Bob Metcalfe Xerox PARC, Kalifornien Baut auf Aloha Network, Universität Hawaii auf Radio- Netzwerk zur Verbindung der einzelnen Inseln

Mehr

BNC-, RJ45-, und Glasfaser- Netzwerkkarten

BNC-, RJ45-, und Glasfaser- Netzwerkkarten Andreas Siebold Seite 1 01.09.2003 BNC-, RJ45-, und Glasfaser- Netzwerkkarten Eine Netzwerkkarte (Netzwerkadapter) stellt die Verbindung des Computers mit dem Netzwerk her. Die Hauptaufgaben von Netzwerkkarten

Mehr

Token- und Rahmenformat. Token-Ring - technische Aspekte

Token- und Rahmenformat. Token-Ring - technische Aspekte Token-Ring - technische Aspekte - Bitrate 4 Mb/s bzw. 16 Mb/s - Differentielle Manchester-Kodierung - Topologie: logischer Ring / physischer Stern - Ausbaufähig bis max. 250 Stationen / Ring (allerdings

Mehr

Um IPSec zu konfigurieren, müssen Sie im Folgenden Menü Einstellungen vornehmen:

Um IPSec zu konfigurieren, müssen Sie im Folgenden Menü Einstellungen vornehmen: 1. IPSec Verbindung zwischen IPSec Client und Gateway 1.1 Einleitung Im Folgenden wird die Konfiguration einer IPSec Verbindung vom Bintec IPSec Client zum Gateway gezeigt. Dabei spielt es keine Rolle,

Mehr

Computeria Urdorf «Sondertreff» vom 7. November 2012. Workshop. auf das Internet

Computeria Urdorf «Sondertreff» vom 7. November 2012. Workshop. auf das Internet Computeria Urdorf «Sondertreff» vom 7. November 2012 Workshop mit WLAN-Zugriff auf das Internet 7. November 2012 Autor: Walter Leuenberger www.computeria-urdorf.ch Was ist ein (Computer-)Netzwerk? Netzwerk-Topologien

Mehr

Gemeinsam statt einsam - ein Internet-Zugang für mehrere Rechner Wie geht das? - Tricks und Verfahren einer Technik, die wirklich Geld spart.

Gemeinsam statt einsam - ein Internet-Zugang für mehrere Rechner Wie geht das? - Tricks und Verfahren einer Technik, die wirklich Geld spart. Gemeinsam statt einsam - ein Internet-Zugang für mehrere Rechner Wie geht das? - Tricks und Verfahren einer Technik, die wirklich Geld spart. Ausgangssituation: Es ist ein Computer vorhanden (Rechnername

Mehr

7 Transportprotokolle

7 Transportprotokolle 7 Transportprotokolle 7.1 Transmission Control Protocol (TCP) 7.2 User Datagram Protocol (UDP) 7.3 Ports 7.1 TCP (1) IP-Pakete (Datagramme) von A nach B transportieren reicht nicht interaktive Verbindungen

Mehr

VRRP. Bild 004482 zeigt die Adressangaben in einem IP-Paket bei dessen Übermittlung über die Grenze eines IP-Subnetzes hinweg.

VRRP. Bild 004482 zeigt die Adressangaben in einem IP-Paket bei dessen Übermittlung über die Grenze eines IP-Subnetzes hinweg. VRRP Virtual Router Redundancy Protocol Autor: Prof. Dr.-Ing. Anatol Badach Auszug aus dem Werk: Herausgeber: Heinz Schulte WEKA-Verlag ISBN 978-3824540662 Netzwerke auf Basis des Internet Protocol (IP)

Mehr

Vorlesung: Netzwerke WS 2011/12 Kapitel 2 Direktverbindungsnetzwerke Session 09 [Zusatzmaterial]

Vorlesung: Netzwerke WS 2011/12 Kapitel 2 Direktverbindungsnetzwerke Session 09 [Zusatzmaterial] Vorlesung: Netzwerke WS 2011/12 Kapitel 2 Direktverbindungsnetzwerke Session 09 [Zusatzmaterial] Prof. Dr. Michael Massoth [Stand: 22.11.2011] 9-1 9-2 Kapitel 2: Direktverbindungsnetzwerke [Zusatzmaterial]

Mehr

Aufgaben zum ISO/OSI Referenzmodell

Aufgaben zum ISO/OSI Referenzmodell Übung 1 - Musterlösung 1 Aufgaben zum ISO/OSI Referenzmodell 1 ISO/OSI-Model Basics Aufgabe 1 Weisen Sie die folgenden Protokolle und Bezeichnungen den zugehörigen OSI- Schichten zu: IP, MAC-Adresse, HTTP,

Mehr

Übertragungsprotokolle TCP/IP Ethernet-Frames / network layer

Übertragungsprotokolle TCP/IP Ethernet-Frames / network layer Ethernet-Frames / network layer Jedes Frame enthält am Anfang zwei Adressen (MAC Adressen) zu je 48 bit, anschliessend folgen die eigentlichen Daten. Die Adressen sind diejenige des Interfaces, welches

Mehr