Lösungen Wahrscheinlichkeitstheorie

Größe: px
Ab Seite anzeigen:

Download "Lösungen Wahrscheinlichkeitstheorie"

Transkript

1 Lösungen Wahrscheinlichkeitstheorie Serie 6 Aufgabe 1 (stochastische Unabhängigkeit). Für die Ereignisse A, B und C sind folgende Wahrscheinlichkeiten bekannt: P (A) = 0, 2; P (B) = 0, 6; P (A \ B) = 0, 08; P (A C) = 0, 1; P (B C) = 0, 3; P (A B C) = 0, 06. (a) Entscheiden Sie, ob die Ereignisse A und B stochastisch unabhängig sind. (b) Wie groß muss P (C) sein, damit A B und C stochastisch unabhängig sind? (c) Sind mit dieser Wahl für P (C) die drei Ereignisse A, B, C stochastisch unabhängig? (d) Das Ereignis D sei mit C unvereinbar, d.h. D C =. Wie groß muss P (D) sein, damit C und D stochastisch unabhängig sind? Lösung: Zu (a): Es gilt A \ (A \ B) = A B. Wegen A \ B A folgt dann P (A B) = P (A \ (A \ B)) = P (A) P (A \ B) = 0, 2 0, 08 = 0, 12. Somit gilt P (A B) = 0, 12 = 0, 2 0, 6 = P (A) P (B), das heißt, A und B sind stochastisch unabhängig. Zu (b): Es muss gelten P ((A B) C) = P (A B) P (C) = 0, 12 P (C). Wegen erhalten wir P ((A B) C) = P (A B C) = 0, 06 P (C) = 0, 06 0, 12 = 0, 5. 1

2 Zu (c): Wir überprüfen zunächst die paarweise stochastische Unabhängigkeit. Nach (a) sind A und B stochastisch unabhängig. Ferner gelten dann P (A C) = 0, 1 = 0, 2 0, 5 = P (A) P (C), P (B C) = 0, 3 = 0, 6 0, 5 = P (B) P (C), also sind die Ereignisse A, B, C paarweise stochastisch unabhängig. Schließlich gilt noch P (A B C) = 0, 06 = 0, 2 0, 6 0, 5 = P (A) P (B) P (C), das bedeutet, A, B, C sind stochastisch unabhängige Ereignisse. Zu (d): Es muss gelten Wegen D C = folgt auch also Somit muss P (D) = 0 sein. P (D C) = P (D) P (C) = P (D) 0, 5. P (D C) = P ( ) = 0, P (D) 0, 5 = 0. Aufgabe 2 (Lotto 6 aus 49). In einem Betrieb werden zwei gleichartige Smartphones hergestellt, die sich im Hinblick auf ihre Zuverlässigkeit unterscheiden. Ein Smartphone vom Typ I übersteht die Garantiezeit reparaturfrei mit Wahrscheinlichkeit 0, 95, ein Smartphone vom Typ II nur mit Wahrscheinlichkeit 0, 8. Auf den Typ I entfallen 30% der Gesamtproduktion. (a) Berechnen Sie die Wahrscheinlichkeit dafür, dass ein beliebig ausgewähltes Smartphone die Garantie reparaturfrei übersteht. (b) Mit welcher Wahrscheinlichkeit ist ein während der Garantiezeit reklamiertes Smartphone vom Typ I? Achten Sie darauf, die für das Lösen der Aufgabe relevanten Ereignisse zu benennen. Welche Größen sind entsprechend der Aufgabenstellung durch die Werte 0, 95, 0, 8 sowie 30% vorgegeben? Schreiben Sie formal auf, wonach unter (a) und (b) gefragt wird. Welche (aus der VL) bekannten Resultate wenden Sie an? Lösung: Sei (Ω, A, P ) ein Wahrscheinlichkeitsraum, welcher dieses Zufallsexperiment modelliert. Es beschreibe T 1 das Ereignis, dass das Smartphone vom Typ I ist, das bedeutet: P (T 1 ) = 0, 3. Ferner bezeichne T 2 das Ereignis, dass das Smartphone vom Typ II ist. Dies ist das Gegenereignis von T 1, also haben wir P (T 2 ) = 1 P (T 1 ) = 1 0, 3 = 0, 7. 2

3 Mit RF bezeichnen wir das Ereignis, dass ein beliebig gewähltes Smartphone die Garantiezeit reparaturfrei übersteht. Die Wahrscheinlichkeit, dass ein Smartphone vom Typ I die Garantiezeit reparaturfrei übersteht, wird durch die bedingte Wahrscheinlichkeit P (RF T 1 ) = 0, 95 angegeben. Dagegen ist die Wahrscheinlichkeit, dass ein Smartphone vom Typ II die Garantiezeit reparaturfrei übersteht, durch die bedingte Wahrscheinlichkeit gegeben. P (RF T 2 ) = 0, 8 Zu (a): Wir nutzen den Satz von der totalen Wahrscheinlichkeit (Theorem 7.2 im Skript). Mit den vorherigen Bezeichnungen gilt dann P (RF ) = P (RF T 1 ) P (T 1 )+P (RF T 2 ) P (T 2 ) = 0, 95 0, 3+0, 8 0, 7 = 0, 845, also übersteht ein beliebig gewähltes Smartphone die Garantiezeit reparaturfrei mit einer Wahrscheinlichkeit von 84, 5%. Zu (b): Es wird nach der bedingten Wahrscheinlichkeit P (T 1 RF c ) gefragt. Dabei sei RF c das Gegenereignis zu RF (also, dass ein beliebig gewähltes Smartphone während der Garantiezeit reklamiert wird). Es gilt P (RF c ) = 1 P (RF ) = 1 0, 845 = 0, 155. Mit der Bayesschen Formel (Theorem 7.3 im Skript) erhalten wir P (T 1 RF c ) = P (RF c T 1 ) P (T 1 ). P (RF c ) Es gilt (da A P (A T 1 ) ein Wahrscheinlichkeitsmaß ist, siehe die Vorlesung), P (RF c T 1 ) = 1 P (RF T 1 ) = 1 0, 95 = 0, 05. Somit erhalten wir P (T 1 RF c ) = P (RF c T 1 ) P (T 1 ) P (RF c ) = 0, 05 0, 3 0, 155 0, Aufgabe 3 (gemeinsame Verteilungen). Seien X, Y, Z drei paarweise unabhängige diskrete Zufallsvariablen, von denen Folgendes bekannt ist: X B 100, 1/3 (X ist binomialverteilt zu den Parametern n = 100 und p = 1/3) Y B3/4 (Y ist Bernoulli-verteilt mit der Erfolgswahrscheinlichkeit p = 3/4) Z P 3 (Z ist Poisson-verteilt zum Parameter λ = 3) 3

4 Bestimmen Sie die Gewichtsfunktionen der gemeinsamen Verteilungen von (a) X und Y ; (b) Y und Z; (c) X, Y und Z, wenn bekannt ist, dass die Familie unabhängig ist. Lösung: Aus der Vorlesung ist bekannt: Die Gewichtsfunktion von X ist gegeben durch ( ) ( ) k ( ) k ρ X (k) =, für k {0, 1,..., 100}, k 3 3 die Gewichtsfunktion von Y ist gegeben durch ( ) 3 l ( ) 1 1 l ρ Y (l) =, für l {0, 1}, 4 4 und die von Z durch ρ Z (m) = e 3 3m m!, für m N 0. Wir werden Theorem 8.5 aus der Vorlesung nutzen. Zu (a): Da X und Y unabhängig sind, folgt aus Theorem 8.5 dann für beliebig gewählte (k, l) {0, 1,..., 100} {0, 1}: ( ) ( ) k ( ) k ( ) 3 l ( 1 1 l ρ (X,Y ) (k, l) = k ) Zu (b): Da Y und Z unabhängig sind, folgt aus Theorem 8.5 für alle (l, m) {0, 1} N 0 : ( ) 3 l ρ (Y,Z) (l, m) = 4 ( 1 4) 1 l e 3 3m m!. Zu (c): Da X, Y und Z unabhängig sind, folgt wiederum aus Theorem 8.5 für alle (k, l, m) {0, 1,..., 100} {0, 1} N 0 : ( ) ( ) k ( ) k ( ) 3 l ρ (X,Y,Z) (k, l, m) = k ( 1 4) 1 l e 3 3m m!. Bevor wir die nächste Aufgabe lösen, beweisen wir noch das folgende Lemma, in dem einige elementare Eigenschaften für stochastisch unabhängige Ereignisse in einem Wahrscheinlichkeitsraum (Ω, A, P ) angegeben werden. Lemma. Seien (Ω, A, P ) ein Wahrscheinlichkeitsraum und A, B, C A Ereignisse. (a) Folgende Aussagen sind äquivalent: (i) Es sind A und B stochastisch unabhängig. 4

5 (ii) Es sind A und B c stochastisch unabhängig. (iii) Es sind A c und B c stochastisch unabhängig. (iv) Es sind A c und B stochastisch unabhängig. (b) Sind die Ereignisse A, B, C stochastisch unabhängig, dann sind auch A und B C stochastisch unabhängig. Beweis: Zu (a): (i) = (ii): Seien A und B stochastisch unabhängig. Unter Beachtung von A \ B = A B c und A B = A \ (A \ B) sowie A \ B A gilt dann P (A B) = P (A \ (A \ B)) = P (A) P (A \ B) = P (A) P (A B c ). Da A und B stochastisch unabhängig sind, gilt ferner P (A B) = P (A) P (B), also haben wir P (A) P (B) = P (A) P (A B c ). Daraus folgt P (A B c ) = P (A) P (A) P (B) = P (A) (1 P (B)) = P (A) P (B c ), das bedeutet, A und B c sind stochastisch unabhängig. (ii) = (iii): Dies folgt aus der Implikation (i) = (ii) mit A = B c und B = A. (iii) = (iv): Dies folgt ebenfalls aus der Implikation (i) = (ii) für A = A c und B = B c, wobei man B = (B c ) c beachte. Abermals folgt dies aus (i) = (ii) mit A = B und B = A c, wobei man wiederum A = (A c ) c beachte. Zu (b): Seien A, B, C stochastisch unabhängig. Wegen P (A B ) = P (A ) + P (B ) P (A B ), für alle A, B A, ( ) gilt insbesondere für A = A B und B = A C dann (unter Beachtung von (A B) (A C) = A B C) P (A (B C)) = P ((A B) (A C)) = P (A B) + P (A C) P ((A B) (A C)) = P (A B) + P (A C) P (A B C). Nun sind A, B, C stochastisch unabhängig. Somit erhalten wir weiter (unter erneuter Verwendung von ( ) im letzten Schritt) P (A (B C)) = P (A B) + P (A C) P (A B C) = P (A) P (B) + P (A) P (C) P (A) P (B) P (C) = P (A) P (B) + P (A) P (C) P (A) P (B C) = P (A) (P (B) + P (C) P (B C)) = P (A) P (B C), also sind A und B C stochastisch unabhängig. 5

6 Aufgabe 4 (Fertigungsprozess). Bei einem Fertigungsprozess treten nacheinander die Arbeitsgänge Drehen, Fräsen und Schleifen auf. Zur Sicherung eines gleichmäßigen Erzeugnisdurchlaufs werden drei Drehmaschinen, zwei Fräsmaschinen und eine Schleifmaschine eingesetzt. Die Maschinen seien voll ausgelastet und fallen innerhalb einer Schicht unabhängig voneinander mit folgenden Wahrscheinlichkeiten aus: Drehmaschine: 0, 3; Fräsmaschine: 0, 2; Schleifmaschine: 0, 1. (a) Berechnen Sie die Wahrscheinlichkeit dafür, dass innerhalb einer Schicht durch Ausfälle der betrachteten Maschinen der Erzeugnisdurchlauf gestoppt wird. (b) Berechnen Sie die Wahrscheinlichkeit dafür, dass innerhalb einer Schicht durch Ausfälle der betrachteten Maschinen der Erzeugnisdurchlauf verlangsamt wird, ohne dass es zum Anhalten eines Arbeitsschrittes kommt. Lösung: Zu (a): Beschreibe D das Ereignis, dass alle Drehmaschinen ausfallen, F das Ereignis, dass alle Fräsmaschinen ausfallen und S das Ereignis, dass die Schleifmaschine ausfällt. Da alle Maschinen voneinander unabhängig ausfallen, folgt dann: P (D) = 0, 3 3 = 0, 027, P (F ) = 0, 2 2 = 0, 04, P (S) = 0, 1. Insbesondere sind D, F, S unabhängige Ereignisse. Nun bezeichne A das Ereignis, dass die Produktion stoppt bzw. ausfällt. Man beachte, dass 1 A = S (S c F ) (S c F c D). Dies ist eine disjunkte Zerlegung von A und somit gilt Ferner gilt P (A) = P (S) + P (S c F ) + P (S c F c D). S c F c D = (S F ) c D. Nach dem obigen Lemma sind S c und F sowie S F und D unabhängig. Eine erneute Anwendung des Lemmas ergibt, dass dann auch (S F ) c und D unabhängig sind. Somit gelten P (S c F ) = P (S c ) P (F ) = (1 P (S)) P (F ) = 0, 9 0, 04 = 0, Es kommt zu einen Produktionsstopp genau dann, wenn: entweder die Schleifmaschine fällt aus, oder die Schleifmaschine läuft und alle Fräsmaschinen fallen aus, oder die Schleifmaschine läuft, mindestens eine Fräsmaschine läuft und alle Drehmaschinen fallen aus. 6

7 sowie P (S c F c D) =P ((S F ) c D) = P ((S F ) c ) P (D) = (1 P (S F )) P (D) = (1 (P (S) + P (F ) P (S F ))) P (D) = (1 (P (S) + P (F ) P (S) P (F ))) P (D) = (1 0, 1 0, , 004) 0, 027 =0, Damit folgt P (A) = 0, 1 + 0, , = 0, Zu (b): Das gesuchte Ereignis bezeichnen wir mit V. Es handelt sich hierbei um das Gegenereignis von A aus (a), jedoch ohne dem Ereignis L, dass alle Maschinen laufen. Die Wahrscheinlichkeit, dass alle Maschinen laufen, ist gegeben durch P (L) = 9 ( ) 8 2 ( ) = 0, Nun beachte man, dass L A c. Damit folgt P (V ) = P (A c \ L) = P (A c ) P (L) = 1 P (A) P (L) = 1 0, , = 0, Bemerkung. Sei (Ω, A, P ) ein Wahrscheinlichkeitsraum. Mittels vollständiger Induktion und dem obigen Lemma kann man zeigen: Falls A 1,..., A n A stochastisch unabhängig sind, dann sind auch die Ereignisse B 1,..., B n A mit B j { A j, A c j}, j = 1,..., n, stochastisch unabhängig. Dies kann in Aufgabe 4 angewendet werden: Da die Ereignisse S, D, F stochastisch unabhängig sind, müssen auch S c, F c, D stochastisch unabhängig sein. Dann folgt etwas kürzer P (S c F c D) = P (S c ) P (F c ) P (D) = (1 P (S)) (1 P (F )) P (D) = 0,

Lösungen Wahrscheinlichkeitstheorie

Lösungen Wahrscheinlichkeitstheorie Lösungen Wahrscheinlichkeitstheorie Serie 3 Aufgabe (Differenz der Augenzahlen. Es werden zwei sechsseitige Spielwürfel geworfen und die (nichtnegative Differenz Z der beiden Augenzahlen notiert. Stellen

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Stochastik Wiederholung von Teil 1

Stochastik Wiederholung von Teil 1 Stochastik Wiederholung von Teil 1 Andrej Depperschmidt Sommersemester 2016 Wahrscheinlichkeitsraum Definition Das Tripple (Ω, A, P) heißt Wahrscheinlichkeitsraum, falls gilt: (i) A ist eine σ-algebra,

Mehr

Wahrscheinlichkeitstheorie und Statistik

Wahrscheinlichkeitstheorie und Statistik Wahrscheinlichkeitstheorie und Statistik Definitionen und Sätze Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2018 2.5.2018 Diskrete Wahrscheinlichkeitsräume Diskreter

Mehr

Unabhängigkeit KAPITEL 4

Unabhängigkeit KAPITEL 4 KAPITEL 4 Unabhängigkeit 4.1. Unabhängigkeit von Ereignissen Wir stellen uns vor, dass zwei Personen jeweils eine Münze werfen. In vielen Fällen kann man annehmen, dass die eine Münze die andere nicht

Mehr

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 3

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 3 TUM, Zentrum Mathematik Lehrstuhl für Mathematische Physik WS 2013/14 Prof. Dr. Silke Rolles Thomas Höfelsauer Felizitas Weidner Einführung in die Wahrscheinlichkeitstheorie svorschläge zu Übungsblatt

Mehr

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit von Ereignissen. Bsp (3-maliges Werfen einer Münze) Menge der Elementarereignisse:

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit von Ereignissen. Bsp (3-maliges Werfen einer Münze) Menge der Elementarereignisse: 3 Bedingte Wahrscheinlichkeit, Unabhängigkeit von Ereignissen Bsp. 1.19 (3-maliges Werfen einer Münze) Menge der Elementarereignisse: Ω {zzz, zzw,zwz,wzz,zww,wzw,wwz,www}. Dabei gilt: Ω 2 3 8 N. Wir definieren

Mehr

Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass

Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass f Z (z) = Pr[Z = z] = x W X Pr[X + Y = z X = x] Pr[X = x] = x W X Pr[Y = z x] Pr[X = x] = x W X f X (x) f Y (z x). Den Ausdruck

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Wahrscheinlichkeitstheorie:, Unabhängigkeit Prof. Dr. Achim Klenke http://www.aklenke.de 6. Vorlesung: 02.12.2011 1/30 Inhalt 1 Wahrscheinlichkeit 2 2/30 Wahrscheinlichkeit

Mehr

Kapitel ML:IV. IV. Statistische Lernverfahren. Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen

Kapitel ML:IV. IV. Statistische Lernverfahren. Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen Kapitel ML:IV IV. Statistische Lernverfahren Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen ML:IV-1 Statistical Learning c STEIN 2005-2011 Definition 1 (Zufallsexperiment,

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 10. November 2010 1 Bedingte Wahrscheinlichkeit Satz von der totalen Wahrscheinlichkeit Bayessche Formel 2 Grundprinzipien

Mehr

KAPITEL 5. Erwartungswert

KAPITEL 5. Erwartungswert KAPITEL 5 Erwartungswert Wir betrachten einen diskreten Wahrscheinlichkeitsraum (Ω, P) und eine Zufallsvariable X : Ω R auf diesem Wahrscheinlichkeitsraum. Die Grundmenge Ω hat also nur endlich oder abzählbar

Mehr

TU DORTMUND Sommersemester 2018

TU DORTMUND Sommersemester 2018 Fakultät Statistik. April 08 Blatt Aufgabe.: Wir betrachten das Zufallsexperiment gleichzeitiges Werfen zweier nicht unterscheidbarer Würfel. Sei A das Ereignis, dass die Augensumme beider Würfel ungerade

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Kapitel 5 Stochastische Unabhängigkeit

Kapitel 5 Stochastische Unabhängigkeit Kapitel 5 Stochastische Unabhängigkeit Vorlesung Wahrscheinlichkeitsrechnung I vom SoSe 2009 Lehrstuhl für Angewandte Mathematik 1 FAU 5.1 Das Konzept der stochastischen Unabhängigkeit. 1 Herleitung anhand

Mehr

Stochastische Unabhängigkeit, bedingte Wahrscheinlichkeiten

Stochastische Unabhängigkeit, bedingte Wahrscheinlichkeiten Kapitel 2 Stochastische Unabhängigkeit, bedingte Wahrscheinlichkeiten 2.1 Stochastische Unabhängigkeit von Ereignissen Gegeben sei ein W-Raum (Ω, C, P. Der Begriff der stochastischen Unabhängigkeit von

Mehr

Kapitel 2. Wahrscheinlichkeit (wird heute behandelt) Kapitel 2. Wahrscheinlichkeit

Kapitel 2. Wahrscheinlichkeit (wird heute behandelt) Kapitel 2. Wahrscheinlichkeit Teil I: Wahrscheinlichkeitstheorie 1 Kapitel 2. Wahrscheinlichkeit (wird heute behandelt) Kapitel 3: Bedingte Wahrscheinlichkeit Kapitel 4: Zufallsvariablen Kapitel 5: Erwartungswerte, Varianz, Kovarianz

Mehr

Stochastische Unabhängigkeit. 01. Dezember 2014

Stochastische Unabhängigkeit. 01. Dezember 2014 Stochastische Unabhängigkeit 0. Dezember 204 Der Begriff der Unabhängigkeit Großbritannien, im November 999. Die Anwältin Sally Clark wird wegen Mordes an ihren Kindern angeklagt. Clark geriet unter Verdacht

Mehr

Wahrscheinlichkeitstheorie und Maßtheorie

Wahrscheinlichkeitstheorie und Maßtheorie KAPITEL 7 Wahrscheinlichkeitstheorie und Maßtheorie 7.1. Vorüberlegungen Die folgenden drei Beispiele sind Spezialfälle des Oberbegriffs Maß. Beispiel 7.1.1 (Verteilung der Ladung oder der Masse). Man

Mehr

Grundlagen der Wahrscheinlichkeitstheorie

Grundlagen der Wahrscheinlichkeitstheorie Priv.-Doz. Dr. H. Steinacker Wintersemester 2013/2014 Grundlagen der Wahrscheinlichkeitstheorie betrachte Wiederholungen eines Experimentes, gleicher Vorbereitung (z.b. Würfeln, Dart werfen, Doppelspaltexperiment,...)

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

Die Probabilistische Methode

Die Probabilistische Methode Die Probabilistische Methode Wladimir Fridman 233827 Hauptseminar im Sommersemester 2004 Extremal Combinatorics Zusammenfassung Die Probabilistische Methode ist ein mächtiges Werkzeug zum Führen von Existenzbeweisen.

Mehr

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit von Ereignissen

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit von Ereignissen 3 Bedingte Wahrscheinlichkeit, Unabhängigkeit von Ereignissen 3.1 Einführung Bsp. 19 (3-maliges Werfen einer Münze) Menge der Elementarereignisse: Ω {zzz,zzw,zwz,wzz,zww,wzw,wwz,www}. Ω 2 3 8 N Wir definieren

Mehr

Statistik I für Betriebswirte Vorlesung 2

Statistik I für Betriebswirte Vorlesung 2 Statistik I für Betriebswirte Vorlesung 2 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 16. April 2018 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 2 Version: 9. April

Mehr

Satz 16 (Multiplikationssatz)

Satz 16 (Multiplikationssatz) Häufig verwendet man die Definition der bedingten Wahrscheinlichkeit in der Form Damit: Pr[A B] = Pr[B A] Pr[A] = Pr[A B] Pr[B]. (1) Satz 16 (Multiplikationssatz) Seien die Ereignisse A 1,..., A n gegeben.

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 12.02.2010 Fakultät für Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Die Funktion f X;Y (x; y) := Pr[X = x; Y = y] heit gemeinsame Dichte der Zufallsvariablen X und Y. Aus der gemeinsamen Dichte f X;Y kann man ableiten

Die Funktion f X;Y (x; y) := Pr[X = x; Y = y] heit gemeinsame Dichte der Zufallsvariablen X und Y. Aus der gemeinsamen Dichte f X;Y kann man ableiten Die Funktion f ;Y (x; y) := Pr[ = x; Y = y] heit gemeinsame Dichte der Zufallsvariablen und Y. Aus der gemeinsamen Dichte f ;Y kann man ableiten f (x) = y2w Y f ;Y (x; y) bzw. f Y (y) = Die Funktionen

Mehr

Stochastik Musterlösung 2

Stochastik Musterlösung 2 ETH Zürich HS 2018 RW, D-MATL, D-MAVT Prof. Marloes H. Maathuis Koordinator Dr. Marvin S. Müller Stochastik Musterlösung 2 1. Wir betrachten folgende vier Wettersituationen. Es regnet nur am Morgen; Es

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

DWT 3.3 Warteprobleme mit der Exponentialverteilung 275/467 Ernst W. Mayr

DWT 3.3 Warteprobleme mit der Exponentialverteilung 275/467 Ernst W. Mayr Poisson-Prozess Wir hatten bei der Diskussion der geometrischen und der Poisson-Verteilung festgestellt: Wenn der zeitliche Abstand der Treffer geometrisch verteilt ist, so ist ihre Anzahl in einer festen

Mehr

Diskrete Strukturen II

Diskrete Strukturen II SS 2004 Diskrete Strukturen II Ernst W. Mayr Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2004ss/ds/index.html.de 18. Juni 2004 Exponentialverteilung als Grenzwert der geometrischen

Mehr

Zufallsvariable, Verteilung, Verteilungsfunktion

Zufallsvariable, Verteilung, Verteilungsfunktion Kapitel 5 Zufallsvariable, Verteilung, Verteilungsfunktion 5.1 Zufallsvariable Sei (Ω, A, P ) ein beliebiger Wahrscheinlichkeitsraum. Häufig interessiert nicht ω selbst, sondern eine Kennzahl X(ω), d.h.

Mehr

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal Beispiel 37 Wir werfen eine Münze so lange, bis zum ersten Mal Kopf erscheint. Dies geschehe in jedem Wurf unabhängig mit Wahrscheinlichkeit p. Wir definieren dazu die Zufallsvariable X := Anzahl der Würfe.

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 3. Vorlesung - 21.10.2016 Bedingte Wahrscheinlichkeit In einer Urne sind 2 grüne und 3 blaue Kugeln. 2 Kugeln werden ohne Zürücklegen gezogen. Welches ist die Wahrscheinlichkeit, dass : a) man eine grüne

Mehr

Stochastik Aufgaben zum Üben: Teil 2

Stochastik Aufgaben zum Üben: Teil 2 Prof. Dr. Z. Kabluchko Wintersemester 205/206 Hendrik Flasche Januar 206 Aufgabe Stochastik Aufgaben zum Üben: Teil 2 Es sei X eine Zufallsvariable mit Dichte f X (y) = cy 5 I y>. Bestimmen Sie c, P[2

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 15.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück STOCHASTISCHE UNABHÄNGIGKEIT Annika Pohlmann Philipp Oel Wilhelm Dück 1 GLIEDERUNG 1) Bedingte Wahrscheinlichkeiten 2) Unabhängigkeit für mehr als zwei Ereignisse 3) Unabhängigkeit für Zufallsvariable

Mehr

Stochastik I. Vorlesungsmitschrift

Stochastik I. Vorlesungsmitschrift Stochastik I Vorlesungsmitschrift Ulrich Horst Institut für Mathematik Humboldt-Universität zu Berlin Inhaltsverzeichnis 1 Grundbegriffe 1 1.1 Wahrscheinlichkeitsräume..................................

Mehr

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung 2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung Die einfachste Verteilung ist die Gleichverteilung, bei der P(X = x i ) = 1/N gilt, wenn N die Anzahl möglicher Realisierungen von

Mehr

Grundgesamtheit, Merkmale, Stichprobe. Eigenschaften der Stichprobe. Klasseneinteilung, Histogramm. Arithmetisches Mittel, empirische Varianz

Grundgesamtheit, Merkmale, Stichprobe. Eigenschaften der Stichprobe. Klasseneinteilung, Histogramm. Arithmetisches Mittel, empirische Varianz - 1 - Grundgesamtheit, Merkmale, Stichprobe Dimension, Umfang Skalierung Eigenschaften der Stichprobe kennzeichnende Größen Eigenschaften der Stichprobe kennzeichnende Größen Punktediagramm, Regressionsgerade,

Mehr

Lemma 23 Die (paarweise verschiedenen) Ereignisse A 1,..., A n sind genau dann unabhängig,

Lemma 23 Die (paarweise verschiedenen) Ereignisse A 1,..., A n sind genau dann unabhängig, Lemma 23 Die (paarweise verschiedenen) Ereignisse A 1,..., A n sind genau dann unabhängig, wenn für alle (s 1,..., s n ) {0, 1} n gilt, dass wobei A 0 i = Āi und A 1 i = A i. Pr[A s 1 1... Asn n ] = Pr[A

Mehr

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit 3 Bedingte Wahrscheinlichkeit, Unabhängigkeit Bisher : (Ω, A, P) zur Beschreibung eines Zufallsexperiments Jetzt : Zusatzinformation über den Ausgang des Experiments, etwa (das Ereignis) B ist eingetreten.

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 . Grundlagen der Wahrscheinlichkeitstheorie. Zufallsereignisse, Ereignisraum und Ereignismenge Zufallsexperiment: nach einer bestimmten Vorschrift ausgeführter, unter gleichen edingungen beliebig oft wiederholbarer

Mehr

KAPITEL 1. Martingale

KAPITEL 1. Martingale KAPITEL 1 Martingale 1.1. Stochastische Prozesse Sei (Ω, F, P) ein Wahrscheinlichkeitsraum. Das heißt, Ω ist eine Menge, F ist eine σ-algebra auf Ω, und P ein Wahrscheinlichkeitsmaß auf (Ω, F ). Zuerst

Mehr

Einführung in die Wahrscheinlichkeitsrechnung

Einführung in die Wahrscheinlichkeitsrechnung Marco Cattaneo Institut für Statistik Ludwig-Maximilians-Universität München Sommersemester 2011 1. Wahrscheinlichkeitsrechnung 2. Diskrete Zufallsvariable 3. Stetige Zufallsvariable 4. Grenzwertsätze

Mehr

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit von Ereignissen

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit von Ereignissen 3 Bedingte Wahrscheinlichkeit, Unabhängigkeit von Ereignissen 3.1 Einführung Bsp. 19 (3-maliges Werfen einer Münze) Menge der Elementarereignisse: Ω = {zzz,zzw,zwz,wzz,zww,wzw,wwz,www}. Ω = 2 3 = 8 = N

Mehr

Zentralübung Diskrete Wahrscheinlichkeitstheorie

Zentralübung Diskrete Wahrscheinlichkeitstheorie Zentralübung Diskrete Wahrscheinlichkeitstheorie Christian Ivicevic (christian.ivicevic@tum.de) Technische Universität München 14. Juni 2017 Agenda Disclaimer und wichtige Hinweise Übungsaufgaben Disclaimer

Mehr

4 Diskrete Wahrscheinlichkeitsverteilungen

4 Diskrete Wahrscheinlichkeitsverteilungen 4 Diskrete Wahrscheinlichkeitsverteilungen 4.1 Wahrscheinlichkeitsräume, Ereignisse und Unabhängigkeit Definition: Ein diskreter Wahrscheinlichkeitsraum ist ein Paar (Ω, Pr), wobei Ω eine endliche oder

Mehr

Mustererkennung: Wahrscheinlichkeitstheorie. D. Schlesinger () ME: Wahrscheinlichkeitstheorie 1 / 10

Mustererkennung: Wahrscheinlichkeitstheorie. D. Schlesinger () ME: Wahrscheinlichkeitstheorie 1 / 10 Mustererkennung: Wahrscheinlichkeitstheorie D. Schlesinger () ME: Wahrscheinlichkeitstheorie 1 / 10 Definitionen (axiomatisch) Wahrscheinlichkeitsraum (Ω, σ, P), mit Ω Die Grundmenge, die Menge der elementaren

Mehr

Wiederholung. Einführung in die Wahrscheinlichkeitstheorie Wahrscheinlichkeitsraum Ergebnismenge Ω = {ω 1, ω 2, } mit ω Ω Pr[ω]=1.

Wiederholung. Einführung in die Wahrscheinlichkeitstheorie Wahrscheinlichkeitsraum Ergebnismenge Ω = {ω 1, ω 2, } mit ω Ω Pr[ω]=1. Wiederholung Einführung in die Wahrscheinlichkeitstheorie Wahrscheinlichkeitsraum Ergebnismenge Ω = {ω 1, ω, } mit ω Ω Pr[ω]=1. Berechnung von Pr[ n i=1 A i ]: A i disjunkt: Additionssatz n i=1 Pr[A i

Mehr

1 Elementare Wahrscheinlichkeitstheorie

1 Elementare Wahrscheinlichkeitstheorie 1 Elementare Wahrscheinlichkeitstheorie 1.1 Zufallsexperiment Definition 1.1. Ein Zufallsexperiment ist ein Vorgang, der im Prinzip beliebig oft unter identischen Randbedingungen wiederholt werden kann.

Mehr

8. Formelsammlung. Pr[ ] = 0. 0 Pr[A] 1. Pr[Ā] = 1 Pr[A] A B = Pr[A] Pr[B] DWT 8.1 Gesetze zum Rechnen mit Ereignissen 203/467 Ernst W.

8. Formelsammlung. Pr[ ] = 0. 0 Pr[A] 1. Pr[Ā] = 1 Pr[A] A B = Pr[A] Pr[B] DWT 8.1 Gesetze zum Rechnen mit Ereignissen 203/467 Ernst W. 8. Formelsammlung 8.1 Gesetze zum Rechnen mit Ereignissen Im Folgenden seien A und B, sowie A 1,..., A n Ereignisse. Die Notation A B steht für A B und zugleich A B = (disjunkte Vereinigung). A 1... A

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Wahrscheinlichkeitstheorie (Klausuraufgaben) Marcel Bliem Marco Boßle Jörg Hörner Mathematik Online Herbst 2010 Bliem/Boßle/Hörner (MO) PV-Kurs HM 3 1 / 7

Mehr

Satz 18 (Satz von der totalen Wahrscheinlichkeit)

Satz 18 (Satz von der totalen Wahrscheinlichkeit) Ausgehend von der Darstellung der bedingten Wahrscheinlichkeit in Gleichung 1 zeigen wir: Satz 18 (Satz von der totalen Wahrscheinlichkeit) Die Ereignisse A 1,..., A n seien paarweise disjunkt und es gelte

Mehr

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen David Geier und Sven Middelberg RWTH Aachen, Sommersemester 27 Inhaltsverzeichnis Information 2 Aufgabe 4 Aufgabe 2 6 4 Aufgabe

Mehr

Satz 16 (Multiplikationssatz)

Satz 16 (Multiplikationssatz) Haug verwendet man die Denition der bedingten Wahrscheinlichkeit in der Form Damit: Pr[A \ B] = Pr[BjA] Pr[A] = Pr[AjB] Pr[B] : (1) Satz 16 (Multiplikationssatz) Seien die Ereignisse A 1 ; : : : ; A n

Mehr

Partialbruchzerlegung

Partialbruchzerlegung Partialbruchzerlegung Beispiel: Partialbruchzerlegung Seien g(x) = x und f (x) = 1 x x 2. f R (x) = x 2 x 1 besitzt die beiden Nullstellen 1 2 ± 1 4 + 1, d.h. φ = 1+ 5 2 und φ = 1 5 2. Damit gilt f (x)

Mehr

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 2

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 2 TUM, Zentrum Mathematik Lehrstuhl für Mathematische Physik WS 2013/14 Prof. Dr. Silke Rolles Thomas Höfelsauer Felizitas Weidner Tutoraufgaben: Einführung in die Wahrscheinlichkeitstheorie svorschläge

Mehr

Sprechstunde zur Klausurvorbereitung

Sprechstunde zur Klausurvorbereitung htw saar 1 Sprechstunde zur Klausurvorbereitung Mittwoch, 15.02., 10 12 + 13.30 16.30 Uhr, Raum 2413 Bei Interesse in Liste eintragen: Max. 20 Minuten Einzeln oder Kleingruppen (z. B. bei gemeinsamer Klausurvorbereitung)

Mehr

Stochastik. 1. Wahrscheinlichkeitsräume

Stochastik. 1. Wahrscheinlichkeitsräume Stochastik 1. Wahrscheinlichkeitsräume Ein Zufallsexperiment ist ein beliebig oft und gleichartig wiederholbarer Vorgang mit mindestens zwei verschiedenen Ergebnissen, bei dem der Ausgang ungewiß ist.

Mehr

7. Kapitel: Zufallsvorgänge, Ereignisse und Wahrscheinlichkeiten

7. Kapitel: Zufallsvorgänge, Ereignisse und Wahrscheinlichkeiten 7. Kapitel: Zufallsvorgänge, Ereignisse und Wahrscheinlichkeiten 7.1 Zufallsvorgänge - zufälliges Geschehen/ Zufallsvorgang/ stochastische Vorgang: aus Geschehen/Vorgang/Experiment (mit gegebener Ausgangssituation)

Mehr

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 1

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 1 TUM, Zentrum Mathematik Lehrstuhl für Mathematische Physik WS 2013/ Prof. Dr. Silke Rolles Thomas Höfelsauer Felizitas Weidner Tutoraufgaben: Einführung in die Wahrscheinlichkeitstheorie svorschläge zu

Mehr

Klausur zur Einführung in die Wahrscheinlichkeitstheorie und Statistik

Klausur zur Einführung in die Wahrscheinlichkeitstheorie und Statistik Klausur zur Einführung in die Wahrscheinlichkeitstheorie und Statistik Prof. Dr. C. Löh/M. Blank 27. Juli 2012 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen

Mehr

1 Bedingte Erwartungswerte

1 Bedingte Erwartungswerte Die folgenden Regeln sind das alltägliche Handwerkszeug für den Umgang mit bedingten Erwartungen und werden in diesem Abschnitt, allerdings ohne Beweise, zitiert. Es ist durchaus eine lohnenswerte Übung,

Mehr

Wie groß ist die Wahrscheinlichkeit Pr[X > y + x X > x]? Da bei den ersten x Versuchen kein Erfolg eintrat, stellen wir uns vor, dass das

Wie groß ist die Wahrscheinlichkeit Pr[X > y + x X > x]? Da bei den ersten x Versuchen kein Erfolg eintrat, stellen wir uns vor, dass das Sei X geometrisch verteilt mit Erfolgswahrscheinlichkeit p. Dann ist Pr[X = k] die Wahrscheinlichkeit, dass wir bei einem binären Experiment mit Erfolgswahrscheinlichkeit p genau in der k-ten unabhängigen

Mehr

15. September 2010 Prof. Dr. W. Bley. Universität Kassel Klausur SS 2010 Diskrete Strukturen I (Informatik) Name:... Matr.-Nr.:... Viel Erfolg!

15. September 2010 Prof. Dr. W. Bley. Universität Kassel Klausur SS 2010 Diskrete Strukturen I (Informatik) Name:... Matr.-Nr.:... Viel Erfolg! 15. September 010 Prof. Dr. W. Bley Universität Kassel Klausur SS 010 Diskrete Strukturen I (Informatik) 1 3 4 5 6 Name:................................................ Matr.-Nr.:............................................

Mehr

Abgabetermin: 5. Mai 2017, Uhr

Abgabetermin: 5. Mai 2017, Uhr Übungsblatt Nr. 1 26. April 2017 1. Sei F k, k K, eine Familie von σ-algebren, wobei K eine beliebige Menge ist. Zeigen Sie, daß F d = k K F k ebenfalls eine σ-algebra ist! Beweisen Sie, daß die Vereinigung

Mehr

Welche Axiome sind Grundlage der axiomatischen Wahrscheinlichkeitsdefinition von Kolmogoroff?

Welche Axiome sind Grundlage der axiomatischen Wahrscheinlichkeitsdefinition von Kolmogoroff? 2. Übung: Wahrscheinlichkeitsrechnung Aufgabe 1 Welche Axiome sind Grundlage der axiomatischen Wahrscheinlichkeitsdefinition von Kolmogoroff? a) P ist nichtnegativ. b) P ist additiv. c) P ist multiplikativ.

Mehr

Wahrscheinlichkeiten

Wahrscheinlichkeiten Wahrscheinlichkeiten Bestimmung der Wahrscheinlichkeit Bei einem Zufallsexperiment kann man nicht voraussagen, welches Ereignis eintritt, aber manche Ereignisse treten naturgemäß mit einer größeren Wahrscheinlichkeit

Mehr

7. Übungsblatt - Lösungsskizzen

7. Übungsblatt - Lösungsskizzen Einführung in die Wahrscheinlicheitstheorie und Statisti Prof. Dr. Jan Johannes Sandra Schluttenhofer Wintersemester 08/9 7. Übungsblatt - Lösungssien Aufgabe 5 Faltung und Ausdünnung einer Poisson-Verteilung,

Mehr

Statistik I für Betriebswirte Vorlesung 3

Statistik I für Betriebswirte Vorlesung 3 Statistik I für Betriebswirte Vorlesung 3 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 15. April 2019 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 3 Version: 1. April

Mehr

1 1 e x2 =2 d x 1. e (x2 +y 2 )=2 d x d y : Wir gehen nun zu Polarkoordinaten uber und setzen x := r cos und y := r sin.

1 1 e x2 =2 d x 1. e (x2 +y 2 )=2 d x d y : Wir gehen nun zu Polarkoordinaten uber und setzen x := r cos und y := r sin. Lemma 92 Beweis: Wir berechnen zunachst I 2 : I 2 = Z 1 I := e x2 =2 d x p = 2: 1 Z 1 1 Z 1 Z 1 = 1 1 Z 1 e x2 =2 d x 1 e (x2 +y 2 )=2 d x d y : e y2 =2 d y Wir gehen nun zu Polarkoordinaten uber und setzen

Mehr

Aufgaben. d) Seien X und Y Poissonverteilt mit Parameter µ, X, Y P(µ). 2. Dann ist die Summe auch Poissonverteilt mit (X + Y ) P(2µ).

Aufgaben. d) Seien X und Y Poissonverteilt mit Parameter µ, X, Y P(µ). 2. Dann ist die Summe auch Poissonverteilt mit (X + Y ) P(2µ). Aufgaben 1. Bei den folgenden 10 Fragen ist jeweils genau eine Antwort richtig. Es gibt pro richtig beantwortete Frage 1 Punkt und pro falsche Antwort 1/2 Punkt Abzug. Minimal erhält man für die gesamte

Mehr

p k (1 p) n k s k = (1 p + ps) n. k p(1 p) k 1 s k ((1 p)s) k 1 =

p k (1 p) n k s k = (1 p + ps) n. k p(1 p) k 1 s k ((1 p)s) k 1 = Binomialverteilung Für X Bin(n, p) gilt nach der binomischen Formel G X (s) = E[s X ] = n ( ) n p k (1 p) n k s k = (1 p + ps) n. k Geometrische Verteilung Sei X eine geometrisch verteilte Zufallsvariable

Mehr

Mathematische Grundlagen der Computerlinguistik Wahrscheinlichkeit

Mathematische Grundlagen der Computerlinguistik Wahrscheinlichkeit Mathematische Grundlagen der Computerlinguistik Wahrscheinlichkeit Dozentin: Wiebke Petersen 8. Foliensatz Wiebke Petersen math. Grundlagen 1 Motivation Bsp.: In vielen Bereichen der CL kommt Wahrscheinlichkeitstheorie

Mehr

Vertiefung NWI: 8. Vorlesung zur Wahrscheinlichkeitstheorie

Vertiefung NWI: 8. Vorlesung zur Wahrscheinlichkeitstheorie Fakultät für Mathematik Prof. Dr. Barbara Gentz SS 2013 Vertiefung NWI: 8. Vorlesung zur Wahrscheinlichkeitstheorie Mittwoch, 5.6.2013 8. Unabhängigkeit von Zufallsgrößen, Erwartungswert und Varianz 8.1

Mehr

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 4

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 4 TUM, Zentrum Mathematik Lehrstuhl für Mathematische Physik WS 3/4 Prof. Dr. Silke Rolles Thomas Höfelsauer Felizitas Weidner Tutoraufgaben: Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge

Mehr

7 Poisson-Punktprozesse

7 Poisson-Punktprozesse Poisson-Punktprozesse sind natürliche Modelle für zufällige Konfigurationen von Punkten im Raum Wie der Name sagt, spielt die Poisson-Verteilung eine entscheidende Rolle Wir werden also mit der Definition

Mehr

Sammlung alter Klausuraufgaben zur Stochastik keine Abgabe keine Besprechung in den Tutorien

Sammlung alter Klausuraufgaben zur Stochastik keine Abgabe keine Besprechung in den Tutorien Sammlung alter Klausuraufgaben zur Stochastik keine Abgabe keine Besprechung in den Tutorien Prof. F. Merkl 23. Mai 2016 Zu Ihrer Information und als zusätzliches Übungsmaterial sind hier die Aufgaben

Mehr

SS 2017 Torsten Schreiber

SS 2017 Torsten Schreiber 173 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Wird die Anordnung von unterschiedlichen Objekten eines Experiments untersucht, so handelt es sich um eine. Möchte man die Anzahl der möglichen

Mehr

Kapitel II Kontinuierliche Wahrscheinlichkeitsräume

Kapitel II Kontinuierliche Wahrscheinlichkeitsräume Kapitel II Kontinuierliche Wahrscheinlichkeitsräume 1. Einführung 1.1 Motivation Interpretation der Poisson-Verteilung als Grenzwert der Binomialverteilung. DWT 1.1 Motivation 211/476 Beispiel 85 Wir betrachten

Mehr

Statistik für Ingenieure Vorlesung 4

Statistik für Ingenieure Vorlesung 4 Statistik für Ingenieure Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 21. November 2017 3.3 Wichtige diskrete Wahrscheinlichkeitsverteilungen 3.3.1 Diskrete

Mehr

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit 3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit Lernziele dieses Kapitels: Mehrdimensionale Zufallsvariablen (Zufallsvektoren) (Verteilung, Kenngrößen) Abhängigkeitsstrukturen Multivariate

Mehr

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung lausthal Begriffe Informatik II rundbegriffe der Wahrscheinlichkeitsrechnung. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Definition: Unter einem Zufallsexperiment versteht man einen,

Mehr

Stochastik für Ingenieure

Stochastik für Ingenieure Otto-von-Guericke-Universität Magdeburg Fakultät für Mathematik Institut für Mathematische Stochastik Stochastik für Ingenieure (Vorlesungsmanuskript) von apl.prof. Dr. Waltraud Kahle Empfehlenswerte Bücher:

Mehr

Statistik I für Betriebswirte Vorlesung 4

Statistik I für Betriebswirte Vorlesung 4 Statistik I für Betriebswirte Vorlesung 4 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 30. April 2018 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 4 Version: 24.

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, 31.01.2011 Fakultät für Mathematik M. Winkler Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Bearbeitungszeit 90 min. Die Klausur gilt als bestanden, wenn

Mehr

7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen

7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen 7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen 7.7.1 Die Laplace-Verteilung Sei X eine gleich verteilte Zufallsvariable mit den Werten in der Menge Ω X = {x i R : i = 1,...,n}, d.h. f (x i = 1

Mehr

1.3 Stochastische Unabhängigkeit und bedingte

1.3 Stochastische Unabhängigkeit und bedingte 1.3 Stochastische Unabhängigkeit und bedingte Wahrscheinlichkeiten Ziel: komplexere Modelle aus Verkettung ( Koppelung ) von Zufallsexperimenten bauen, insbesondere Ziehung von n-personen aus n-maliger

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 13.0.2010 Fakultät für Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Statistik I für Betriebswirte Vorlesung 2

Statistik I für Betriebswirte Vorlesung 2 Statistik I für Betriebswirte Vorlesung 2 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 13. April 2017 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 2 Version: 11.

Mehr

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung lausthal Informatik II rundbegriffe der Wahrscheinlichkeitsrechnung. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Begriffe Definition: Unter einem Zufallsexperiment versteht man einen,

Mehr

Statistik für Ingenieure Vorlesung 2

Statistik für Ingenieure Vorlesung 2 Statistik für Ingenieure Vorlesung 2 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 24. Oktober 2016 2.4 Bedingte Wahrscheinlichkeiten Häufig ist es nützlich, Bedingungen

Mehr

Abitur 2016 Mathematik Stochastik IV

Abitur 2016 Mathematik Stochastik IV Seite 1 http://www.abiturloesung.de/ Seite Abitur 016 Mathematik Stochastik IV Bei einem Zufallsexperiment wird eine ideale Münze so lange geworfen, bis zum zweiten Mal Zahl (Z) oder zum zweiten Mal Wappen

Mehr

Kapitel XI - Die n-fache unabhängige Wiederholung eines Experiments

Kapitel XI - Die n-fache unabhängige Wiederholung eines Experiments Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XI - Die n-fache unabhängige Wiederholung eines Experiments Wahrscheinlichkeitstheorie Prof. Dr. W.-D. Heller Hartwig

Mehr